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Gravitons radiated from light, evaporating black holes contribute to the stochastic background of
gravitational waves. The spectrum of such emission depends on both the mass and the spin of the black
holes, as well as on the redshifting that occurs between the black hole formation and today. This, in turn,
depends on the expansion history of the Universe, which is largely unknown and unconstrained at times
prior to the synthesis of light elements. Here, we explore the features of the stochastic background of
gravitational waves from black hole evaporation under a broad range of possible early cosmological
histories. The resulting gravitational wave signals typically peak at very high frequencies, and offer
opportunities for proposed ultrahigh-frequency gravitational wave detectors. Lower-frequency peaks are
also possible, albeit with a suppressed intensity that is likely well below the threshold of detectability.
We find that the largest intensity peaks correspond to cosmologies dominated by fluids with equations of
state that have large pressure-to-density ratios. Such scenarios can be constrained on the basis of violation
of ΔNeff bounds.
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I. INTRODUCTION

Black holes emit quasithermal radiation via the well-
known process of Hawking evaporation [1,2], through
which they evaporate at calculable rates into all physical
degrees of freedom with mass around or below the
associated black hole temperature [2]. These degrees of
freedom include gravitons; as such, black hole evaporation
directly produces gravitational radiation, as pointed out
long ago [3]. This possibility is especially intriguing
for light black holes of nonstellar, primordial origin—
primordial black holes (PBH) (see [4,5] for recent reviews).
In fact, this gravitational wave signal provides one of the
few ways, if not the only way to probe light PBH with
masses M ≲ 5 × 108 g, which evaporate prior to big bang
nucleosynthesis (BBN) and are otherwise completely
unconstrained.
References [6,7] first studied the production of a stochastic

gravitational wave background from light, evaporating PBH,
including the possibility of a phase of early matter domina-
tion (EMD). We note, however, that both of these studies
neglected the black hole angular momentum and its evolu-
tion, as well as the corresponding large deviations from
blackbody emission [3]. Reference [8] studied gravitational
wave production from a number of mechanisms, including
mergers and Hawking evaporation, but for the latter case
assumed both instantaneous black hole decay and a black-
body spectrum—assumptionswhich, aswewill demonstrate,
are inadequate. Reference [9] performed a precision study of

gravitational wave production from near-extremal Kerr black
holes in a standard cosmological setting. References [10,11]
investigated the contribution to the effective number of
neutrino species due to the thermal background of gravitons
from evaporating Kerr PBH. Finally, Refs. [12,13] studied
generic redshift effects in particle production fromKerr PBH,
in particular exploring the effects of extended black hole spin
and mass distributions.
As we discuss in detail below, in light of the recent

developments in the literature, the generic expectation for
the gravitational wave background produced by evaporat-
ing Schwarzschild black holes with a standard cosmologi-
cal history is two-fold:
(1) The peak frequency for gravitational wave emis-

sion is [see Eq. (33) below] fpeak≃ð1.8×1016HzÞ×
ðM=105 gÞ1=2, and thus, even for very light black
holes with masses close to the Planck scale, the
signal is at ultrahigh frequencies.

(2) The peak gravitational wave (GW) emission has an
absolute maximum energy density ΩGWh2jpeak ≃
4.2 × 10−7 [see Eq. (35) below]. As such, the
gravitational wave emission is possibly large enough
to be constrained by measurements of the number of
relativistic degrees of freedom (see e.g., the recent
detailed study presented in Ref. [11]), but likely
not detectable neither by currently operating gravi-
tational wave telescopes nor by planned high-
frequency detectors (see [14] for a review).
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Here, we examine how assumptions about the very early
Universe affect the expectations summarized above. Firstly,
the peak gravitational wave frequency depends critically on
how the emitted gravitons redshift, especially at very early
times. Secondly, both the peak amplitude and location
depend quite sensitively on the spin of the radiating black
hole population (see e.g., [11]). In particular, as pointed out
above, spinning black holes radiate gravitons both more
abundantly and peaking at lower frequencies [15]. Finally,
the cosmological history drastically affect the maximal
gravitational wave intensity, to the level of enhancing it by
several orders of magnitude, making graviton emission a
prime target for future high-frequency gravitational wave
searches.
Using state-of-the-art tools such as the BlackHawk

package [11], we explore the features of the stochastic
background of gravitational waves stemming from
Hawking evaporation of light PBH with nonstandard,
nonradiation-dominated cosmologies at early times. An
especially well-motivated scenario is the possibility of an
early phase of matter domination [6,11]; more generically,
prior to BBN, the Universe’s energy density could have
been dominated by a species ϕ with a generic equation of
state Pϕ ¼ wϕρϕ.
The remainder of this study is as follows: In Sec. II we

review the formation and evolution of PBH, especially for
the case of near-extremal spin. Section III examines, both
numerically and analytically, the gravitational wave pro-
duction from Hawking evaporation of gravitons, and
elucidates the impact of the blackbody and instant decay
approximations. Section IV introduces nonstandard cos-
mological histories, and examines the impact thereof on
gravitational waves from Hawking evaporation of grav-
itons. Finally, Sec. V discusses observational prospects and
constraints, and concludes.

II. PBH FORMATION & EVAPORATION

A. PBH formation

PBHs can form from a variety of mechanisms in the early
Universe, though most involve the collapse of matter
overdensities seeded by inflation or topological defects [5].
The resulting mass spectrum and energy density then
depend on the time of formation, reheating temperature,
and shape of the inflationary potential. In this work, we
consider, for simplicity, monochromatic mass spectra with-
out loss of generality, and leave the initial mass fraction at
formation Ωi

BH ≡ ρBH=ρtot as a free parameter, subject to
constraints.
The mass M of a PBH formed at time ti roughly

corresponds to the mass contained within a Hubble horizon

at ti, Mhor ¼ 4π
3
H−3ρ. Using the fact that ρ ¼ 3M2

Pl
8π H2 and

H ∼ 1
2t during radiation domination, one can then relate the

initial PBH mass to cosmological time in radiation domi-
nation as

M ∼ 1010
�

ti
10−28 s

�
g: ð1Þ

The abundance of PBHs with initial mass greater than
∼5 × 108 g is strongly constrained by evaporation, gravi-
tational lensing, gravitational waves from binary mergers,
dynamical effects, accretion, and large-scale structures (see
e.g., Fig. 3 of [16] for a summary). However, the abundance
of PBHs which decay before BBN, corresponding roughly
to initial masses ≲5 × 108 g, are largely unconstrained,
absent specific assumptions [4].
Note that a Schwarzschild black hole of mass M has a

lifetime [4]

τBH ≃ 407

�
M

1010 g

�
3

s; ð2Þ

so PBH evaporating before BBN must satisfy

ti
1 s

þ 4 × 1086
�

ti
10−28 s

�
3 ≲ 1: ð3Þ

Here, the second term always dominates the inequality for
t > tPl, with tPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c5

p
the Planck time, so here we

assume that the PBH mass M < 5 × 108 g, for which the
lifetime is shorter than 1 s. Note that the lifetime of Kerr
black holes is reduced by around a factor of one half for
near-maximal spinning black holes, leaving these estimates
unchanged.
Kerr black holes, which have nonvanishing angular

momentum J and preferentially emit higher-spin particles,
like the spin-2 graviton, are especially interesting in
the present analysis. In Boyer-Lindquist coordinates, the
geometry of a Kerr black hole is described by the metric [17]

ds2 ¼ −
Δ
ρ2

ðdt − αsin2θdϕÞ2 þ ρ2

Δ
dr2

þ ρ2dθ2 þ sin2θ
ρ2

½ðr2 þ α2Þdϕ − αdt�2; ð4Þ

where MPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
¼ 1.22 × 1019 GeV is the Planck

mass,1 M is the black hole mass, α ¼ J=M is the spin
parameter, and we have defined

ρ2 ¼ r2 þ α2 cos2 θ; Δ ¼ r2 þ α2 −
2Mr
M2

Pl

: ð5Þ

It will also be convenient to define the dimensionless spin

parameterα⋆ ¼ M2
Pl

M2 J, which can takevaluesα⋆ ∈ ½0; 1�, with
α⋆ ¼ 1 corresponding to the extremal case. Kerr black holes
have two horizons r�, with the outer horizon located at

1Hereafter we shall use natural units ℏ ¼ c ¼ 1.
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rþ ¼ M
M2

Pl

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2⋆

q �
: ð6Þ

The Hawking temperature associated with this horizon is

TBH ¼ M2
Pl

4πM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2⋆

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2⋆

p : ð7Þ

Note that this reduces to the temperature of the

Schwarzschild black hole T ¼ M2
Pl

8πM in the limit of vanishing
spinα⋆ → 0, and tends to 0 in the extremal limit α⋆ → 1. The
Kerr black hole is also characterized by an angular velocity
ΩBH given by

ΩBH ¼ M2
Pl

2M
α⋆

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2⋆

p : ð8Þ

B. Hawking evaporation and black hole evolution

The flux spectrum for the emission of a single particle
degree of freedom2 of a species i with frequency ω and spin
s is [15,18,19]

dNiðωÞ
dt

¼
X
l;m

σðsÞlmðωÞ
eðω−mΩÞ=TBH − ð−1Þ2s

d3k
ð2πÞ3 ; ð9Þ

where the sum runs over the total l and axial m angular
momenta of the emitted mode.3 This spectrum is almost
that of a perfect blackbody, with the deviation captured by

the “graybody factor” σðsÞlmðωÞ, which is related to the
probability that a given mode will be able to surmount the
gravitational potential barrier and escape to spatial infinity.
Since the emission of particles with masses greater than

the black hole temperature is exponentially suppressed, it
often suffices to include in the sum for the total flux only
those degrees of freedom lighter than the black hole. In this
case we can evaluate the phase-space factor to obtain the
simplified expression for the emission of a massless degree
of freedom per frequency interval

dNi

dtdω
¼ 1

2π

X
l;m

ΓðsÞ
lmðωÞ

eðω−mΩÞ=TBH − ð−1Þ2s ; ð10Þ

where ΓðsÞ
lm ¼ ω2

π σðsÞlm is the absorption probability.4

Each emitted particle carries off units of energy ω and of
angular momentum m about the black hole axis. Note that
mΩ acts as an effective chemical potential, biasing the
emission of particles whose angular momentum is aligned
with that of the black hole. In this manner, a black hole
sheds both mass and angular momentum, and evolves
toward a nonrotating state. The power emitted in a given
frequency interval per particle degree of freedom is

dEi

dtdω
¼ 1

2π

X
l;m

ωΓðsÞ
lmðωÞ

eðω−mΩÞ=TBH − ð−1Þ2s : ð11Þ

This enters into the rate at which the black hole loses mass
as [15]

dM
dt

¼ −
X
i

Z
dω

�
dEi

dtdω

�
; ð12Þ

where the sum runs over all degrees of freedom i emitted by
the black hole. Similarly, angular momentum is lost at a rate

dJ
dt

¼ −
X
i

Z
dω

�
m

dNi

dtdω

�
: ð13Þ

In practice, it is convenient to track the evolution by
introducing the dimensionless “Page factors” f and g,
defined implicitly via [19]

fðM; α⋆Þ ¼ −M2
dM
dt

; ð14aÞ

gðM; α⋆Þ ¼ −
M
α⋆

dJ
dt

: ð14bÞ

Given explicit forms for the graybody factors of all relevant
particle species, the contributions to f and g from each
species can be numerically evaluated and the values
tabulated. These can then be interpolated for the functions
fðM; α⋆Þ and gðM; α⋆Þ, from which one can solve Eq. (14)
to obtain the black hole mass and angular momentum as a
function of time. Sample evolutions are shown Fig. 1.
Figure 1 illustrates that the black hole mass remains

roughly constant near its initial value until the very end of
its lifetime, at which point it falls off dramatically. Angular
momentum serves to reduce the black hole lifetime by an
Oð1Þ factor, with rapidly spinning black holes evaporating
more quickly than their Schwarzschild counterparts.
Because angular momentum decreases more rapidly than
mass does, Kerr black holes finish shedding angular
momentum and transition to a Schwarzschild phase before
evaporating completely, as can be seen in Fig. 1. Once the
black hole has spun down (seen in the lower panel to
occur around M=Mi ∼ 0.4), it evolves identically to the
Schwarzschild case, as can be seen by the identical slopes
at low M=Mi ≲ 0.4 in the upper panel.

2In order to obtain the total flux per particle species i, one
would sum over the polarization and charge degrees of freedom.

3We neglect here the effect of the charge of the particle on σðsÞlm.
4The absorption probability ΓðsÞ

lmðωÞ ¼ ω2

π σðsÞlm is sometimes
referred to in the literature as the “graybody factor.” We refrain
from doing so here to avoid confusion.
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C. Graybody factors

While approximating the spectrum as a perfect black-
body usually suffices for estimating the black hole lifetime,
computing the gravitational wave signal will require a
precise knowledge of the graybody factors. In general,
these depend on the frequency, angular momentum, and
spin of the emitted particle species, as well as the structure
of spacetime about the black hole. Computation of the
graybody factors is quite nontrivial and involves solving
the relevant equation of motion for a given particle species
on a curved black hole background with appropriate
boundary conditions—the Teukolsky equations [20,21].
The absorption probability for a given mode, and thereby
the graybody factor, is then determined by taking ratios of
the amplitudes for incoming and outgoing waves at infinity.
The Teukolsky equations generically need to be solved

numerically,5 though analytic approximations exist in the
low-frequency limit, Mω=M2

Pl ≪ 1. In particular for the

s ¼ 2 graviton, the graybody factor, summed over angles,
in the low-frequency limit reads [15,26]

X
l;m

σð2Þlm !ω∼0 16A
225

�
5
M2

Pl

M2
þ 5

2
α2⋆ þ α4⋆

��
Mω

M2
Pl

�
4

; ð15Þ

where A ¼ 4πr2þ is the black hole area. Note that this is
highly suppressed, scaling with the frequency as ω4. In

contrast,
P

σð0Þlm ∼ ω0 for scalars,
P

σð1=2Þlm ∼ ω0 for fer-

mions, and
P

σð1Þlm ∼ ω2 for vector bosons. The suppression
at low frequencies in the graviton case can be understood
by recognizing that the dominant contribution to σ comes
from the mode of lowest l, and since l ≥ s this is l ¼ 2 for
the graviton. Meanwhile in the high-frequency limit
Mω=M2

Pl ≫ 1, the graybody factors for all particle species
approach the geometric-optics limit, which is essentially
the emitting area of the black hole.

III. STANDARD COSMOLOGICAL EVOLUTION

A. Analytical estimates

We are interested here in the present-day energy density
in the form of gravitational waves from evaporating PBHs,
as parameterized by the spectral density parameter ΩGW,
defined as

ΩGW ¼ 1

ρcrit

dρGW
d ln f

; ð16Þ

with ρcrit the critical energy density today. Before turning to
numerics, we will demonstrate how this can be computed
starting from the instantaneous spectrum of graviton

emission, dEgrav

dtdω . For the sake of having analytic expressions,
we will restrict ourselves to Schwarzschild black holes
(α⋆ ¼ 0) in the blackbody approximation, for which the
graybody factor is simply the frequency-independent area

of the black hole
P

σðsÞlm ¼ 4πr2s . We will also presume
instantaneous decay, taking the black hole mass and
temperature to be constants up until the moment of
evaporation at τBH. These approximations will be all
relaxed in the subsequent sections where we present our
numerical results.
Our starting point is the instantaneous energy flux

expression of Eq. (11). Taking
P

σlm ¼ 4πr2s ¼ 16π M2

M4
Pl

and multiplying by gi ¼ 2 for the two graviton polar-
izations, this becomes

dEgrav

dtdω
≃
16

π

M2

M4
Pl

ω3

eω=TBH − 1
: ð17Þ

To obtain the rate of graviton emission for an entire
population of evaporating PBHs, we multiply by the
number density nBHðtÞ

FIG. 1. Top: Evolution of black hole mass as a function of time
for the case of a Schwarzschild black hole (solid red line) as
compared with a near extremal (α⋆ ¼ 0.999) Kerr black hole
(dashed line). The lifetime of a rapidly spinning black hole is
reduced by a factor ∼2. Mi ¼ 104 g is taken as a benchmark, but
the above behavior is generic. Bottom: Evolution of dimension-
less spin parameter α⋆ as a function of M=Mi.

5Numerical solutions typically have issues with convergence at
the black hole horizon and spatial infinity. For this reason,
BlackHawk employs the methods outlined in Refs. [22–25] to
transform the Teukolsky equations into Schrödinger-like wave
equations with appropriately chosen short-range potentials.
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dρGW
dtdω

≃ nBHðtÞ
dEgrav

dtdω
: ð18Þ

This should then be integrated over the black hole lifetime
in order to determine the total amount of energy density in
the form of gravitational waves at the time of evaporation.
Let ti be the time of black hole formation, when graviton
emission commences, and let t� ¼ ti þ τBH ≃ τBH be the
time of black hole evaporation, which, for a Schwarzschild
black hole, is approximately

τBH ≃
10240π

g⋆;H
M3

M4
Pl

; ð19Þ

where g⋆;H ≃ 108 the number of effective degrees of
freedom, since we restrict ourselves to light black holes
evaporating before BBN, M ≲ 5 × 108 g. Since evapora-
tion is occurring in an expanding Universe, the black
hole number density and graviton energy density and
frequency are not fixed quantities, but rather experience
cosmological redshift. In particular, they evolve as
nBH ∼ a−3, ρGW ∼ a−4, and ω ∼ a−1, respectively. For ease
of integration, we can isolate the time dependence by
relating the graviton frequency and energy density to their
values at the time of evaporation, which we denote by a star

ρGW ¼ ρ�GW

�
a�
a

�
4

; ω ¼ ω�

�
a�
a

�
: ð20Þ

For the number density, it is more convenient to relate to the
initial value

nBH ¼ nBH;i

�
ai
a

�
3

; ð21Þ

which, in turn, can be related to the initial black hole mass
and mass fraction ΩBH;i ¼ ρBH;i=ρcrit;i, presuming forma-
tion via the collapse of density perturbations in the
radiation-dominated early Universe

nBH;i ¼
3M6

Pl

32πM3
ΩBH;i: ð22Þ

Finally converting from frequency interval to logarithmic
frequency interval d

d lnω ¼ ω d
dω, the energy density in the

form of gravitational waves at the time of evaporation is

dρ�GW
d lnω

≃
16nBH;iM2ω4�

πM4
Pl

Z
t�

ti

dt
ðai=aÞ3

eω�a�=aTBH − 1
: ð23Þ

As for the time dependence of the scale factor,6 initially
during radiation domination it scales as a ∼ t1=2. If the

initial energy density in black holes is sufficiently large and
the black holes are sufficiently long-lived, then they will
eventually come to dominate the energy density of the
Universe at a time

teq ≃
�
1 −ΩBH;i

ΩBH;i

�
2 M
M2

Pl

: ð24Þ

The condition on the initial energy density and mass for this
to occur is t� > teq, or�

M
105 g

�
2
�
ΩBH;i

10−11

�
2

≥ 1: ð25Þ

When this is satisfied, the Universe will undergo a brief
period of early matter domination from teq until t�, during
which the scale factor scales as a ∼ t2=3. Thus, the scale
factor appearing in Eq. (23) is

aðtÞ ¼
8<
:

ai
�
t
ti

�
1=2

t≲ teq

ai
�
teq
ti

�
1=2

�
t
teq

�
2=3

teq ≲ t≲ t�:
ð26Þ

One can also express aðtÞ in terms of a� by noting that

ai
a�

¼
�
ti
teq

�
1=2

�
teq
t�

�
2=3

: ð27Þ

Finally to translate the gravitational wave spectrum from
evaporation to today, we need to account for the dilution
of energy density and redshifting of frequency due to
cosmological expansion. The energy density in the form of
gravitational waves today is related to that at evaporation as

dρ0GW
d lnω0

¼ dρ�GW
d lnω�

�
a�
a0

�
4

; ð28Þ

where a0 ¼ aðt0Þ is the scale factor today, which we take to
be a0 ¼ 1. Explicit factors of the frequency appearing in
this expression should be translated to their redshifted
values today as ω0 ¼ ω�a�. Following black hole evapo-
ration, the Universe undergoes the usual epoch of radiation
domination, and it is convenient to express the ratio of scale
factors in terms of the plasma temperature and effective
degrees of freedom in entropy, obtained via conservation of
entropy g⋆;sa3T3 ¼ constant as

a� ¼
�

g⋆;sðT0Þ
g⋆;sðTRHÞ

�
1=3 T0

TRH
; ð29Þ

where T0 ¼ 0.235 meV is the temperature of the cosmic
microwave background (CMB) today and g⋆;sðT0Þ ¼ 3.91.
The reheating temperature for the SM plasma TRH ≡ Tðt�Þ
can be obtained by equating the energy density in the form

6When we turn to the numerical calculation, we will actually
solve theFriedmann equations for the precise background evolution.
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of PBHs immediately before decay with the energy density
in radiation immediately afterwards. Presuming black holes
come to dominate prior to decay, this is approximately

TRH ¼ 450

�
g⋆ðTRHÞ
106.75

�
−1=4

�
M

105 g

�
−3=2

GeV: ð30Þ

Substituting the spectral energy density today in the
definition of Eq. (16), we finally arrive at the prediction
for the spectral density parameter today

ΩGW ≃
ΩBH;i

H2
0M

ω4
0Iðω0Þ; ð31Þ

where H0 ¼ 100h km · s−1 · Mpc−1 is the Hubble rate,
with h ≃ 0.67–0.73. The nontrivial frequency dependence
lies in the integral

Iðω0Þ ¼
Z

t�

ti

dt
ðai=aÞ3

eω0=aTBH − 1
; ð32Þ

which generically needs to be evaluated numerically for
each ω0. Sample spectra are shown in Fig. 2.
The gravitational wave spectrum from graviton produc-

tion off of Hawking evaporation is almost thermal, but it
features more power at low frequencies due to the red-
shifting of higher-frequency modes into lower frequencies.
The peak is generically located at very high frequencies—
far out of the range of current and near-future gravitational
wave detectors. Decreasing the black hole mass shifts the
peak frequency to lower values. This is because smaller
black holes correspond to earlier formation times and

evaporate more promptly, leading to a much longer period
of cosmological redshift which serves to shift the spectrum
to lower frequencies. Even saturating the mass bound by
considering Planck scale black holes, however, we remain
outside of detector sensitivity.
By extremizing ΩGW with respect to ω0, one can show

that the frequency today peaks at ωpeak ≃ 2.8a�TBH, or
more explicitly

fpeak ≃ ð1.8 × 1016 HzÞ
�

M
105 g

�
1=2

; ð33Þ

where we have converted to linear frequency f ¼ ω=2π.
This is consistent with the peak positions in the sample
spectra of Fig. 2. Evaluating Iðf0Þ at the peak frequency,
which dominates the contribution to the integral, one can
show that the following empirical relation holds

IðfpeakÞ ≃ ð2.3 × 10−33 GeV−1Þ
�

M
105 g

�
−1
Ω−1

BH;i: ð34Þ

Combining this with Eq. (31) evaluated at fpeak, we find an
estimate for the maximal value of the spectral density
parameter which is, somewhat surprisingly, independent of
both the initial black hole mass and fractional energy
density, so long as these are sufficiently large that the black
holes come to dominate the energy density of the Universe
before decay,

ΩGWh2jpeak ≃ 4.2 × 10−7: ð35Þ

Note that we have extracted the reduced Hubble rate h to
alleviate the associated uncertainty in its value. This estimate
is consistent with the peak amplitude shown in Fig. 2 as
well as with [8]. Comparing with current gravitational
wave sensitivities (see e.g., Fig. A3 of [27]), we see that
the magnitude of this signal at its peak is within reach of
several current and proposed experiments; however this peak
occurs as ultrahigh frequencies far outside the current regime
of observability.
In the coming sections, we will see how a prolonged

phase of early matter domination can actually give rise to
extra cosmological redshift, which in turn serves to shift the
peak emission to lower frequencies. This additional red-
shift, however, also has the effect of diluting the gravita-
tional wave signal. In fact, since the energy density falls off
as four powers of the scale factor ρGW ∼ a−4 while the
frequency scales with just one f ∼ a−1, the effect onΩGW is
much more significant. Thus, to retain a detectable signal,
one would need to enhance graviton emission. Recall that
this estimate considered Schwarzschild black holes, for
which only approximately 1% of energy is emitted as
gravitons. In contrast, Kerr black holes preferentially emit
particles of higher spin, like the spin-2 graviton. For this

FIG. 2. Semianalytic estimate (solid lines) for the spectral
density parameter ΩGWh2 today, presuming a monochromatic
spectrum of Schwarzschild black holes of initial mass M and
ΩBH;i sufficiently large that the PBH eventually dominate the
Universe energy density, i.e., satisfying Eq. (25), such that
the black holes come to dominate before decay. We work in
the blackbody approximation and presume instantaneous decay.
This can be compared with the exact numerical solution (dashed
lines), for which these assumptions are relaxed.
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reason, we consider Kerr black holes in the remainder of
this work.
Finally by comparing with the exact spectra, obtained

via BlackHawk and shown also in Fig. 2 as dashed lines, we
see that the blackbody and instantaneous decay approx-
imations are not adequate, although the peak positions
coincide almost perfectly (which makes sense as the
graviton peak frequency is largely fixed by the black hole
temperature independently of graybody factors). As for the
peak height, however, we see that the semianalytic
calculation overestimates the amplitude by several orders
of magnitude due to the neglect of graybody factors, which
otherwise suppress higher-angular moments. Interestingly,
however, the peak in the case of near-extremal Kerr black
holes nearly matches the blackbody Schwarzschild esti-
mate. Finally, the exact spectral shape also differs from
the semianalytic estimate in that it features an extended
high-frequency tail. As the black hole evaporates, it
grows smaller and hotter, and the resultant gravitons
emitted towards the end of the black hole lifetime have
a higher initial frequency, leading to the formation of the
high-frequency tail.

B. Beyond blackbody and instant decay:
Exact numerical results

In order to obtain the exact instantaneous graviton
spectrum, we use the publicly available code
BlackHawk [28,29], which goes beyond both the blackbody
and instantaneous decay approximations. BlackHawk uses
tabulated and appropriately interpolated graybody factors
to precisely compute the emission rates of Eq. (10) for all
primary particle species. These are then used to solve for
the black hole mass and angular momentum loss rates of
Eqs. (12) and (13) in order to obtain the overall black hole
evolution. The result is time-dependent spectra which
incorporate both graybody factors and the evolution of
black hole mass and temperature. While BlackHawk does
allow for the study of black hole populations with extended
mass and spin distributions, we presume monochromatic
spectra for simplicity, as our primary focus will be on the
effect of modified cosmological expansion histories.

We denote by QGWðt;ωÞ≡ dNgrav

dtdω the instantaneous grav-
iton flux, which is an output of BlackHawk. The corresponding

instantaneous power is dEgrav

dtdω ¼ ω
2πQGWðt;ωÞ and the instan-

taneous energy density emitted in the form of gravitational
waves froman evaporating population of PBHswith number
density nBHðtÞ is

dρGW
dtdω

¼ nBHðtÞ
ω

2π
QGWðt;ωÞ: ð36Þ

In order to obtain the total energy emitted in the form
of gravitational waves, we need to integrate this quan-
tity over the course of the black hole lifetime, from

formation7 at ti ≃ M
M2

Pl
to evaporation at t�, which are also

outputs of BlackHawk. The energy density per logarithmic
frequency interval at evaporation then looks like

dρ�GW
d lnω�

¼ nBH;i

�
ai
a�

�
3 ω2�
2π

Z
t�

ti

dt
a�
aðtÞQGW

×

�
t;ω�

a�
aðtÞ

�
; ð37Þ

where, once again, we denote quantities evaluated at
evaporation with a “�.” The exact time dependence of the
scale factoraðtÞ appearing in this expression can be obtained
by solving numerically the equations governing the back-
ground evolution

_a
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3M2
Pl

ðρBH þ ρradÞ
s

;

_ρBH þ 3
_a
a
ρBH ¼ ρBH

_M
M

;

_ρrad þ 4
_a
a
ρrad ¼ −ρBH

_M
M

; ð38Þ

where the overhead dot denotes a derivative with respect to
coordinate time and the mass loss rate, given schematically
in Eq. (12), is a BlackHawk output. To go from the spectrum at
evaporation to that today, we redshift by four powers of the
scale factor according to Eq. (28), with a� again given by
Eq. (29). Finally, redshifting also the frequency to today as
ω0 ¼ ω�a� and dividing by the critical density, we arrive at
the fractional energy density in gravitational waves today

ΩGW ¼ 4nBH;ia3i
3M2

PlH
2
0

ω2
0

Z
t�

ti

dt
aðtÞQGW

�
t;

ω0

aðtÞ
�
: ð39Þ

In Fig. 3 we show the spectral shape of the energy
density in gravitational waves today ΩGWh2 for a sampling
of initial masses. In all cases we take the initial fractional
energy in black holes ΩBH;i sufficiently large that they
come to dominate the energy density before decay, in
which case the precise value of ΩBH;i has no bearing on the
spectrum. Solid lines correspond to the Schwarzschild case
(α⋆ ¼ 0) while dotted lines correspond to Kerr black holes
with near-extremal spin, α⋆ ¼ 0.999.

7Black holes formed during radiation domination tend to have
negligible spin, and so the formation of near-extremal Kerr black
holes will likely require the introduction of new physics. While it
is possible to spin up a population of PBH through accretion and
mergers, the maximal spin parameter obtained in this way is
α⋆ ∼ 0.7. Black holes that form from the collapse of density
perturbations during a period of early matter domination, on the
other hand, tend to have near-extremal spins [11].
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We see that the inclusion of spin has a significant impact
on both the shape and amplitude of the gravitational wave
spectrum today. First, note that for near-extremal black
holes the peak position shifts to lower frequencies by about
an order of magnitude. This is because rapidly spinning
black holes have a reduced lifetime as compared with their
nonspinning counterparts, and so the gravitational wave
spectrum experiences a longer period of cosmological
redshift.8 The amplitude of the peak is also enhanced by
several orders of magnitude due to the black hole spin,
which acts as an effective chemical potential biasing the
emission of higher-spin particles. As was the case for our
analytic estimate, we see that smaller-mass black holes
correspond to spectra that peak at lower frequencies. This is
because they can be produced at earlier times and evaporate
more quickly, leading to a longer period of cosmological
redshift.
We remark that the results of this section are in good

agreement with [9], which also considered the gravitational
wave signal from evaporating Kerr black holes presuming
standard cosmological evolution. They too found that the
typical peak frequencies were much too high for detection
in current and future gravitational wave experiments.

In light of this, we now go beyond this analysis to consider
the kinds of gravitational signals possible in nonstandard
cosmologies.

IV. NONSTANDARD COSMOLOGIES

A. Early matter domination

Gravitational waves from evaporating PBHs can consti-
tute an appreciable fraction of the energy density today.
However, in most cases, the spectrum peaks at very high
frequencies, far outside the reach of current and near-future
detectors. Even for the best-case scenario of a population of
Planckmass black holes which come to dominate the energy
density before decay, the peak frequency is only as low as
∼1011 Hz. One way to effect a shift to lower frequencies
wouldbe to invoke a periodof earlymatter domination. Since
the Universe expands to a greater extent in a fixed amount of
time during matter domination than during radiation domi-
nation, this introduces extra cosmological redshift which
serves to translate the spectrum to lower frequencies.
To induce this period of EMD, we introduce a heavy

auxiliary field ϕ and demand that its initial energy density
be greater than that in both black holes and radiation
combined ρϕ;i > ρBH;i þ ρrad;i. The Universe will then
remain matter dominated through black hole evaporation
up until the time τϕ at which ϕ decays, replenishing the SM
radiation bath and reheating the Universe. To distinguish
this from the situation of the previous section, this should
occur after black hole evaporation has completed, τϕ > t�.
Note that while it is true that the black holes themselves will
generically serve to induce a transient period of EMD
(presuming they possess sufficient initial energy density
and lifetime), this ends at the time of evaporation. If instead
EMD comes about as a result of a heavy auxiliary field,
then it can last much longer—potentially up until ∼Oð1Þ s,
when radiation domination must begin so as not to spoil the
predictions of BBN.
An added benefit to using the auxiliary field to establish

EMD is that the black holes can then form during the matter
dominated epoch with appreciable spin. For the standard
cosmology case of the section prior, we were agnostic as to
how the black hole population acquired near-extremal spins.
Given that black holes formed from the collapse of over-
densities during radiation domination generally have negli-
gible spin, one would have to rely on accretion and mergers,
which generally only result in a spin parameter of α⋆ ≲ 0.7.
On the other hand, black holes formed during matter
domination typically have appreciable spin, which is ideal
in terms of maximizing the amplitude of the GW signal.
In the typical radiation dominated case, a density pertur-

bation will collapse to form a black hole upon re-entering the
horizon if its amplitude is greater than some threshold value
δth. Naively applying the analytic formula for the threshold in
the matter dominated case, one finds that it vanishes δth → 0,
which would seem to suggest that any region of overdensity

FIG. 3. Spectral density parameterΩGWh2 for a monochromatic
spectrum of PBHs of initial massM andmass fractionΩBH;i, taken
to be sufficiently large that the black holes come to dominate
before decay. The peak amplitude is enhanced by several orders of
magnitude for near-extremal rotating black holes (α⋆ ¼ 0.999,
dashed line) as compared with the nonrotating case (α⋆ ¼ 0, solid
line). Cosmological evolution is otherwise standard.

8Based on the semianalytic estimate, one might naively
conclude that this shift towards lower frequencies is due to the
fact that rapidly spinning black holes are considerably cooler than
those of negligible spin, as can be seen from Eq. (7). However for
Kerr black holes, typical graviton energies are not of order the
temperature, but rather the combination TBH þmΩBH, with ΩBH
the black hole angular momentum given in Eq. (8). The large
value ofΩBH for rapidly spinning black holes compensates for the
smaller TBH, such that the typical energies are comparable or even
larger than those of gravitons from the analogous Schwarzschild
black hole.
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could collapse to a blackhole. This is of course not the case, as
it turns out that nonspherical effects play a crucial role for
collapse during matter domination. As an overdensity begins
to collapse, its angular momentum grows significantly and
prevents collapse in a majority of cases. Those horizons that
do succeed in collapsing, however, form black holes which
are rapidly spinning with near-extremal values of α⋆ ∼ 1. See
e.g., [11,30,31] for further detail regarding the computationof
the initial mass fraction ΩBH;i in the matter-dominated case.
In terms of the gravitational wave signal ΩGW, the

derivation proceeds as in the case of standard cosmological
evolution, and the spectral density parameter today is still
given by Eq. (39) with nBH;i in Eq. (22). The difference

9 lies
in the input for the initial conditions as well as the evolution
of the scale factor aðtÞ itself. With the addition of the
auxiliary field ϕ, Eq. (38) governing the background
evolution become

_a
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3M2
Pl

ðρϕ þ ρBH þ ρradÞ
s

;

_ρϕ þ 3Hρϕ ¼ −Γϕρϕ;

_ρBH þ 3HρBH ¼
_M
M

ρBH;

_ρrad þ 4Hρrad ¼ Γϕρϕ −
_M
M

ρBH; ð40Þ

where the decay rate is approximately Γϕ ≃
m3

ϕ

M2
Pl
on dimen-

sional grounds. The mass of ϕ should be appropriately
chosen to ensure the corresponding lifetime τϕ ¼ Γ−1

ϕ is
after evaporation but before BBN.
Solving this system of equations and evaluating Eq. (39)

for the spectrum today for various choices of decay time
tdec ¼ ti þ τϕ yields the plots in Fig. 4. We see that a longer
period of EMD is associated with a more heavily redshifted
spectrum, as expected. For the best case scenario of a
population of Planck mass black holes, letting EMD persist
until ∼1 s can bring the peak frequency as low as ∼104 Hz.
However, the associated signal strength is vanishingly small
atΩGWh2 ∼ 10−36. Unfortunately, this is a generic side effect
of the energy density in gravitational waves falling off as
ρGW ∼ a−4 while the frequency decreases as f ∼ a−1.

B. Generalized equation of state

Extra cosmological redshift coming from a period of
early matter domination, or any period with equation of
state w < 1=3, will result in lower-peak frequencies but

also dramatically smaller amplitudes, as previously noted.
Given that the peak signal is barely on the cusp of
observability ΩGW ∼ 10−7.5 in the standard scenario, any
period of slower expansion which serves to dilute energy
density will lower the signal to outside of sensitivity.
In this section, we consider how the signal from graviton

production changes upon varying the equation of state w of
a species that dominates the energy density of the Universe
at early times. Note that Refs. [32–36], among others,
explored the effect of nonstandard cosmologies on gravi-
tational waves produced by large density perturbations in
the early Universe—a complementary probe to the signal
we discuss herein.
We first note that the gravitational wave signal is not the

only potential observable associated with graviton emission
from PBHs. High-energy gravitons emitted by a population
of light, evaporatingPBHconstitute a thermal backgroundof
dark radiation, which contributes to the effective number of
neutrino species Neff , defined as the contribution to the
radiation energy density beyond that of photons,

ρrad ¼ ργ

�
1þ 7

8

�
4

11

�
4=3

Neff

�
: ð41Þ

It is useful to factor this as Neff ¼ NSM
eff þ ΔNeff , where

NSM
eff ¼ 3.046 accounts for the contribution from SM

FIG. 4. Spectral density parameter ΩGWh2 presuming black
hole formation and evaporation during a period of early matter
domination induced by the presence of a heavy auxiliary field ϕ
which lasts until a time tdec.

9Technically the introduction of a new species changes the
particle emission rate from the black hole, but the effect is
completely negligible. We could also take ϕ to be sufficiently
heavy such that its emission from the black hole is statistically
suppressed.

PRIMORDIAL GRAVITATIONAL WAVES FROM BLACK HOLE … PHYS. REV. D 107, 104021 (2023)

104021-9



neutrinos and ΔNeff parameterizes the departure from the
SM prediction. This is tightly constrained by both BBN
and CMB measurements. In particular, the one-tailed
Planck TT, TE, EEþ lowEþ lensingþ BAO constraint
is ΔNeff < 0.30 at 95% [37]. The contribution to ΔNeff
from gravitational waves reads,

ΔNeff ¼
8

7

�
11

4

�
4=3 ρGW

ργ
: ð42Þ

TheΔNeff bound is an integral bound which applies to the
total energy density in gravitational waves integrated over all
frequencies. It can thus be interpreted as a bound on the
maximum amplitude of the GW spectrum,Ωmax

GW. Then from
ρGW ≃ Ωmax

GWρcrit and ργ ¼ π2

15
T4
0, with T0 ¼ 0.235 meV, the

CMB temperature today, we find

ΔNeff ≃
120

7π2

�
11

4

�
4=3 ρcrit

T4
0

Ωmax
GW: ð43Þ

Demanding that ΔNeff ≲ 0.30 translates to a constraint on
the spectral density parameter,

Ωmax
GW ≲ 3.6 × 10−6: ð44Þ

The possibility that the early Universe might be domi-
nated by a species whose energy density redshifted differ-
ently from radiation would modify the thermal history of
the Universe and affect both the spectrum of gravitons
emitted by evaporating PBHs and the effective number of
relativistic degrees of freedom. We shall consider here
cosmological models where at early times the energy
density is dominated by a species ϕ with a generalized
equation of state Pϕ ¼ wϕρϕ and wϕ > 1=3, corresponding
to a period of faster expansion relative to the standard case.
If black hole evaporation occurs before or during ϕ
domination, then the energy density in gravitational waves
will experience less dilution, potentially giving rise to a
signal which saturates the ΔNeff bound, and which might
even be detectable with future, high-frequency gravitational
wave searches, as discussed below.
The energy density in ϕ evolves with the scale factor a as

ρϕ ∼ a−ð4þnÞ; ð45Þ

where we follow the same notation as [38,39] and param-
eterize the deviation from the radiation scaling with
n ¼ 3wϕ − 1. Generically, for a canonically normalized
scalar field minimally coupled to gravity, the equation of
state is wϕ ¼ ðK − VÞ=ðK þ VÞ, where

K ¼ 1

2

�
dϕ
dt

�
2

; ð46Þ

and V ¼ VðϕÞ is the potential. Then wϕ → 1 for K ≫ V
(a regime dubbed kination), and wϕ → −1 for K ≪ V,
yielding a range of −4 ≤ n ≤ 2. Models with n > 2 are also
possible10 for instance in the context of ekpyrotic sce-
nario [42] or with periodic potentials and a varying
wϕ [43,44].
The background evolution is described by the following

equations:

_a
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3M2
Pl

ðρϕ þ ρBH þ ρradÞ
s

;

_ρϕ þ ð4þ nÞHρϕ ¼ 0;

_ρBH þ 3HρBH ¼
_M
M

ρBH;

_ρrad þ 4Hρrad ¼ −
_M
M

ρBH; ð47Þ

with n > 0. We specify the initial fractional energy den-
sities ΩBH;i, Ωϕ;i, and Ωrad;i ¼ 1 −ΩBH;i −Ωϕ;i at the time
of black hole formation, where Ωx;i ¼ ρx;i=ρi and

ρi ¼
3M2

Pl

2ð4þ nÞ2π
1

t2i
: ð48Þ

Note that ϕ will generically dominate at early times by
virtue of the way its energy density scales with redshift,
Eq. (45), giving rise to an expansion with a ∼ t2=ð4þnÞ. We
take the PBH to form during this period at a time
ti ¼ 4

4þn
Mi
M2

Pl
. As the Universe expands, the energy density

in ϕ quickly becomes subdominant, as demonstrated in
Fig. 5, which shows the evolution of the energy densities of
the various components for different choices of initial
conditions. We denote by tϕ the time at which the energy
density in ϕ becomes subdominant to that in radiation and
black holes, ρϕðtϕÞ ¼ ρradðtϕÞ þ ρBHðtϕÞ.
One might wonder about the efficiency of PBH for-

mation during a period of equation of state greater than that
of radiation, w > 1=3. The authors of [45] have argued that
the threshold for overdensity collapse in general cosmol-
ogies with w ≥ 0 (n ≥ −1) is given by the following
analytic formula11

10Notice that for n > 2 there is no causality violation, despite
having pϕ > ρϕ, since the sound speed is c2s ¼ 1 [40,41].

11This nominally vanishes for the matter dominated case
n ¼ −1, which would seem to suggest any overdensity should
collapse to a black hole. However the derivation of [45] posits
spherical symmetry, and as we have already argued, deviations
from spherical symmetry and angular momentum play a large role
in the suppression of PBH formation during matter domination.
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δth ¼
�
nþ 4

nþ 6

�
sin2

�
πffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

ðnþ 2Þ
�
; ð49Þ

where the prefactor assumes comoving gauge. This is based
on the Jeans criterion as the determining factor for PBH
formation and is derived by demanding that the free-fall
timescale be shorter than the sound wave propagation
timescale, such that gravitational collapse wins out over
the pressure gradient. For radiation domination n ¼ 0 it
gives δth ≃ 0.414 while for kination n ¼ 2 we have
δth ≃ 0.375. Thus forming PBH during an early period
with n > 0 should be comparable if not marginally easier
when compared with the radiation dominated case.
Reference [46] analyzed PBH formation for w > 1=3,
presenting specific results for kination, w ¼ 1, and addi-
tionally studying the induced gravitational waves from
large scalar modes in a kination epoch. Furthermore,
Ref. [47] studied PBH formation in a scenario with moduli
domination and reheating after inflation (see also the recent
review in Refs. [36,48] that discusses the potential effects
induced by quantum gravity corrections).
Ignoring for now more exotic scenarios with n > 2, the

gravitational wave signal will be greatest for the case of
kination n ¼ 2, during with the energy density redshifts as
ρ ∼ a−6. In such a scenario it is easy to violate the bound on
ΔNeff , as shown in Fig. 6. The duration of kination is fixed
by the choice of initial conditions for the fractional energy
density in each sector, with a larger initial density corre-
sponding to a longer period of kination (see Fig. 5). For our
benchmark points, we chooseΩϕ which gives the desired tϕ
and set 10% of the remaining energy density to be in the
form of PBH, ΩBH ¼ 0.1ð1 −ΩϕÞ. We see that even an
extremely transient period of kination, completing long

before black hole evaporation completes, can result in a
largely boosted signal, which can be ruled out on the
grounds of violation of ΔNeff bounds.
Figure 6 studies, for a mass M ¼ 104 grams, and

quasimaximal Kerr (a� ¼ 0.999), the spectrum of gravita-
tional waves emitted in kination domination, with differing
times tϕ at which the kination energy density equals the
energy density of the other components, tϕ ¼ 10−30 s (red
line), 10−25 s (blue line), and 10−20 s (black line). The
density of gravitational waves increases the longer the
period of kination domination, with the peak well inside
the region excluded byΔNeff. We also observe a steepening
of the lower-frequency tail (below the peak), while the
high-frequency behavior does not depend on the tϕ.

V. DISCUSSION, OBSERVATIONAL PROSPECTS,
AND CONCLUSIONS

While the general upper bound on the gravitational wave
spectrum from evaporating PBHs discussed above prevents
the possibility to detect a stochastic gravitational wave
signal in a standard cosmological scenario, this conclusion
is affected by considering generalized early Universe
cosmologies, as detailed in the previous section. In par-
ticular, for wϕ ≥ 1 the gravitational wave amplitude can
significantly exceed the ΔNeff bound, and potentially be
detectable with future high-frequency gravitational wave
searches.
The detection of ultrahigh-frequency (f ≫ 1 kHz) gravi-

tational waves is an active area of intense experimental
investigation (see e.g., the recent review [14]). Several
experimental techniques have been proposed, ranging from
tabletop interferometers, holometers, optically levitated
sensors, devices based on the inverse Gertsenshtein effect
(the conversion of gravitational waves to photons [49]), on

FIG. 5. Sample evolution of ρBH, ρrad, and ρϕ as obtained by
solving Eq. (47) for a population of near extremal (α⋆ ¼ 0.999)
PBH with initial mass Mi ¼ 104 g. We take n ¼ 2, such that the
initial ϕ domination corresponds to kination. This continues until
ρϕ becomes subdominant to ρBH at a time tϕ ¼ 10−20 s. Black
hole domination then continues until evaporation replenishes the
radiation bath at t� ≃ 3 × 10−15 s.

FIG. 6. Spectral density parameter ΩGWh2 as compared with
the ΔNeff bound of Eq. (44) (gray shaded region) presuming ϕ
domination until tϕ. Longer periods of kination stemming from
larger initial energy density in ϕ result in an amplified gravita-
tional wave signal, potentially contributing inappropriately
to ΔNeff .
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gravitational wave to electromagnetic wave conversion in
an electric or magnetic field, bulk acoustic-wave devices,
superconducting rings, and graviton-magnon resonance.
We consider the following broad classes of experimental

techniques, in order of increasing frequency sensitivity, and
with a proposed dimensionless sensitivity figure.12

(i) Laser interferometers (1–10) kHz [9 × 10−26] [50].
(ii) Optically levitated sensors (10–100) kHz [4×

10−24] [14].
(iii) Enhanced magnetic conversion (∼10) GHz [10−30]

[51,52].
(iv) Inverse Gersenshtein effect (1014–1018) Hz

[3 × 10−30] [53].
In particular, a promising technology repurposes axion-like
particle conversion in a magnetic field to look for graviton
conversion [53]; here we highlight current constraints, and
the associated relevant frequency range, for JURA (Joint
Undertaking on the Research for Axionlike particles) [54],
OSQAR II [55], and CAST [56].
Figure 7 compares existing proposals for high-frequency

gravity wave detectors with our predictions for the gravi-
tational wave emission from PBH evaporation with
standard and nonstandard early-Universe cosmological
histories. The latter are taken for the benchmark case of
M ¼ 1 g, α⋆ ¼ 0.999 PBH and shown as colored lines.
The standard prediction, featuring PBH evaporation at

τBH ∼ 10−28 s, is shown in orange. The early matter
domination case is shown in red, and assumes that the
“extra,” nonstandard species (in this case, a nonrelativistic
matter component) decays at tdec ¼ 10−25 s. The green line
corresponds to a kination scenario where the species
responsible for kination becomes subdominant at
tϕ ¼ 10−25 s; the blue and purple lines corresponds to
an even-faster redshifting species with n ¼ 4, 6, also
becoming subdominant at the same time, tϕ ¼ 10−25 s.
Our general findings are that for large n (i.e., for a “stiff”

equation of state, wϕ ≥ 1), the peak gravitational wave
emission can be quite “bright,” exceeding limits from
the number of relativistic species (dashed gray line), and
well into the frequency range of future high-frequency
gravitational wave detectors; we find that the very-high
and very-low frequency behavior of the gravitational
wave spectrum is unchanged, but at frequency around
and below the peak frequency, the different redshifting
in different early Universe cosmologies produces different
spectral shapes. Finally, albeit for larger w, the spec-
trum shifts to higher frequency, we find that the peak
spectrum for n ¼ 2, 4, 6 only mildly moves to higher
frequencies.
In summary, we have considered the spectrum of

gravitational waves produced by the evaporation of light,
primordial black holes in the early Universe in the context
of generic cosmological histories. We first discussed the
general features of the signal in a standard cosmological
setting where the PBH form and evaporate in radiation
domination, potentially with a brief period of black hole
domination, and highlighted how there is a general upper
limit to the intensity of the ensuing gravitational wave

FIG. 7. Characteristic strain hc ofM ¼ 1 g, quasiextremal (α⋆ ¼ 0.999) PBHs for a sample of early Universe cosmologies compared
with the sensitivity of several proposed high-frequency gravitational wave detector technologies, as well as the ΔNeff bound from
Planck [37] (gray, dashed).

12Note that we present our results in terms of the dimensionless
characteristic strain hc, related to the spectral density parameter as

ΩGW ¼ 4π2

3H2
0

f2h2c:
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stochastic background. We then studied the case of early
matter domination by a species different from the PBH
themselves, and concluded that the peak of the gravity
wave spectrum shifts to lower frequencies, but is also
significantly suppressed in intensity, leading to bleak
detection prospects. Finally, we entertained scenarios
where the early Universe is dominated by a species red-
shifting faster than radiation, such as kination of super-stiff
fluids. In those cases, while the peak gravitational wave
emission is shifted to higher frequencies, the intensity of

the peak emission is also greatly enhanced, and possibly in
conflict with constraints from the number of relativistic
degrees of freedom. On a more optimistic note, however,
this offers opportunities for discovery for future high-
frequency gravitational wave detectors.
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