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We propose a new simple model of acoustic black hole in a thin tube, where the difference in the
gravitational potential is used to create a transonic flow. The main merit of our transonic flow model is that
the Euler equations can be solved analytically. In fact, we can obtain an exact solution to the equation in
terms of a height function in the monatomic case γ ¼ 5=3. For arbitrary γ, we find that it takes a simple
form by the near-sonic approximation. Moreover, we obtain two analytic solutions describing a backward
wave and a forward wave, from which we can confirm the existence of sonic horizons.
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I. INTRODUCTION

In 1974, Hawking theoretically predicted that a black
hole can cause a black body radiation by quantum effects,
which is referred to as Hawking radiation [1]. The Hawking
radiation with a thermal spectrum causes black hole
evaporation by pair creation of a particle and an antiparticle
in the neighborhood of an event horizon and also yields
today’s unresolved problem of information loss paradox [2].
For black holes in the Universe, the temperature of Hawking
radiation is so low that it is considered to be difficult to
observe it.
However, the essence of the Hawking radiation does not

lie in astrophysical black holes themselves but rather in the
spacetime structure of an event horizon. Therefore, it is
expected that a similar physical system may also exhibit
something like Hawking radiation. From this point of
view, in 1981, Unruh demonstrated that the acoustic
analogue of black holes admits the thermal spectrum of
the Hawking radiation [3]. So far, many researchers have
proposed various analogue models in different fields of
physics. As for the hydrodynamical system, we have
analog black holes in the Laval nozzle models [4–8],
surface gravity wave models [9], and draining bathtub
models [10–16]. For other fields, the analog models are
also proposed in the Bose-Einstein condensation (BEC)
[17,18], electronic wave guide [19], superfluid 3He [20],
and so on. Using these analogies, many interesting physics
involving the Hawking radiation have been actually

observed in the laboratory experiments such as surface
gravity waves [21–26],1 optical fibers [27,28], and BEC
[29–32] (also see the reviews [33,34]).
For the realization in the hydrodynamics, a simple one-

dimensional model is the Laval nozzle model [4], where
changing the cross section of the flow creates the sound
horizon at the narrow throat of the nozzle. Another simple
model is the draining bathtub model [10], where the sound
horizon is formed by the steady planer flow only with radial
and tangential velocity. The bathtub models can be used to
prove the superradiant instability that involves a rotating
horizon [11,13,14].
In many previous models of acoustic black hole, con-

tribution of gravity is ignored, and variation of pressure is
used to create a transonic flow. In these models, since the
main concern was the sonic horizon and its neighborhood,
the global structure was not solved analytically, due to
the nonlinearity of the Euler equations. In this article, we
consider a new type of acoustic analog model, in which
the gravitational potential plays the main role in making the
transonic configuration. In this model, we find the solution
of an analog black hole analytically in case of monatomic
fluid. Moreover, we can obtain two approximately solu-
tions in the case that the flow velocity is near the speed of
sound. One is the wave propagating in the same direction as
the background flow, and the other is in the different
direction. From the backward wave, one can see that this
model has black and white hole horizons.
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1Recently, it was argued that the analogy in the surface gravity
wave should be treated carefully since the analogy no longer
works for the nonlinear regime [26], in which some earlier
experiments (say, Ref. [24], for example) took place.
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The rest of this article is devoted to the analysis of our new
acoustic model. In the next section, we briefly review the
general theory on analog black holes, particularly, the
analogy between theSchwarzschild black holemetricwritten
in Painlevé-Gullstrand coordinates and an acoustic metric
describing by a perfect fluid. In Sec. III, explaining our setup
in detail, we propose our new acousticmodel, which is a one-
dimensional tubemodel with acoustic black andwhite holes.
Then,we solve the fluid equations to obtain an exact solution.
In Sec. IV, we solve the perturbed equations by a near-sonic
approximation. In Sec. V, we discuss the causal structure of
the spacetime which the acoustic metric describes by the
conformal diagram. In Sec.VI,we summarize our results and
discuss possible generalization.

II. ACOUSTIC METRIC

We briefly explain how the acoustic geometry appears
from the fluid dynamics, which was first studied by Unruh
[3]. Let us consider an inviscid perfect fluid that follows the
continuity equation

∂0ρþ ∂iðρviÞ ¼ 0; ð1Þ
and the Euler equations

∂0vi þ vj∂jvi ¼ −
1

ρ
δij∂jpþ μi; ð2Þ

where μi is an external force per unit mass. We also assume
the equation of state for the ideal gas

p
ρT

¼ const. ð3Þ

With the barotropic condition p ¼ pðρÞ and the adiabatic
condition, we also have

pρ−γ ¼ const; ð4Þ
where γ is the heat capacity ratio. For an irrotational flow,
the velocity can be expressed by the velocity potential ϕ as

vi ¼ −δij∂jϕ: ð5Þ
Therefore, the fluid equations (1) and (2) reduce to the
equations for ρ and ϕ.
Now we consider a small perturbation around a back-

ground flow

ρ → ρbg þ ρ̃; ϕ → ϕbg þ ϕ̃; ð6Þ

which leads to a master equation for ϕ̃:

0 ¼ −ð∂0 þ ∂ivibg þ vibg∂iÞ
�
ρbg
c2s

ð∂0ϕ̃þ vjbg∂jϕ̃Þ
�

þ δij∂iðρbg∂jϕ̃Þ; ð7Þ

where we denote vibg ¼ −δij∂jϕbg. Note that cs is the speed
of sound in the rest frame background fluid given by

c2s ðxÞ ¼
dpbg

dρbg
¼ γpbg

ρbg
: ð8Þ

In fact, this has the same form as the Klein–Gordon
equation for a massless scalar field on the following metric,
i.e., acoustic metric,

ds2ðacÞ ¼
ρbgðxÞ
csðxÞ

½−ðc2s ðxÞ − v2bgðxÞÞdt2 − 2δijvibgðxÞdtdxj

þ δijdxidxj�: ð9Þ
This metric describes the Schwarzschild black hole
written in the Painlevé–Gullstrand coordinate by setting
vrbg ¼ −c

ffiffiffiffiffiffiffiffiffi
rg=r

p
, vθbg ¼ vφbg ¼ 0, and cs ¼ c.

III. SETUP

So far, the analog horizons have been studied in various
setups with transonic flows. In particular, for the hydro-
dynamic analog, the draining bathtub [10] and the Laval
nozzle [4] models have been popular models. However, the
effect of the gravitational potential has been ignored in both
models. In this article, we rather make use of the gravity to
realize a simple model of the transonic flow as in the
surface gravity wave model [9].
For simplicity, we consider a flow within the thin tube

whose height is given by the function hðxÞ at the coordi-
nate x measured along the tube (Fig. 1). Assuming that
the tube is thin enough, one can regard the inside flow as
one-dimensional flow along x. Therefore, the fluid equa-
tions (1), (2) and the wave equation (7) reduce to

∂0ρþ ∂xðρvÞ ¼ 0; ð10Þ

∂0vþ v∂xv ¼ −
1

ρ
∂xp − g∂xh; ð11Þ

and

0 ¼ −ð∂0 þ ∂xvþ v∂xÞ
�
ρ

c2s
ð∂0ϕ̃þ v∂xϕ̃Þ

�
þ ∂xðρ∂xϕ̃Þ;

ð12Þ

FIG. 1. Flow in a curved thin tube.
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where v and g are the velocity in the x direction and
the gravitational acceleration, respectively. p is given by
Eq. (4). Note that from here on we omit the subscript “bg”
in the background variables.
For the stationary configuration, the continuity equa-

tion (10) and Poisson relation (4) lead to

ρðxÞvðxÞ ¼ �ρ̂ĉs; ð13Þ

c2s ðxÞ ¼
γpðxÞ
ρðxÞ ¼

�
ĉs

jvðxÞj
�

γþ1

v2ðxÞ; ð14Þ

where the flow should be either in positive or negative
directions. Without loss of generality, we can choose
vðxÞ > 0. The constant ρ̂ and ĉs are determined by the
values at the sonic point x ¼ xs

ρ̂≡ ρðxsÞ; ĉs ≡ vðxsÞ ¼ csðxsÞ: ð15Þ

For instance, let us consider the height profile as depicted
in the upper graph of Fig. 2. One can see that the detail of the
transonic flow is strongly restricted (lower graph of Fig. 2).
The Euler equation (11) is rewritten as an ODE of vðxÞ

gh0ðxÞ ¼ −
�
1 −

�
ĉs
vðxÞ

�
γþ1
�
vðxÞv0ðxÞ; ð16Þ

where 0 denotes the derivative with respect to x. This
immediately indicates that the sonic points, if they exist,

only appear at the stationary points h0ðxÞ ¼ 0. By differ-
entiating it, we also have

gh00ðxsÞ ¼ −ðγ þ 1Þ½v0ðxsÞ�2 < 0: ð17Þ

Hence, the sonic points must appear at the local maxima of
the potential. In the similarway, one can easily show the local
extremaof thevelocity profile correspond to the localminima
of the potential.
Equation (16) is integrated to give the Bernoulli formula

ghðxÞ þ 1

γ − 1

ĉγþ1
s

vγ−1ðxÞ þ
v2ðxÞ
2

¼ C: ð18Þ

To obtain a transonic flow around a sonic point x ¼ xs,
we set

C ¼ γ þ 1

γ − 1

ĉ2s
2
þ ghðxsÞ: ð19Þ

With this, Eq. (18) is rewritten in a dimensionless form

−h̄ðxÞ þ v̄1−γðxÞ − 1

γ − 1
þ v̄2ðxÞ − 1

2
¼ 0; ð20Þ

where we have defined the normalized velocity and
potential as

v̄ðxÞ≡ ĉ−1s vðxÞ; h̄ðxÞ≡ ĉ−2s gðhðxsÞ − hðxÞÞ: ð21Þ

The behavior around the sonic point is determined by
expanding v̄ðxÞ ¼ 1þ δv̄ðxÞ,

δv̄ðxÞ ≃�
ffiffiffiffiffiffiffiffiffiffiffi
2

γ þ 1

s ffiffiffiffiffiffiffiffiffi
h̄ðxÞ

q
: ð22Þ

Since h̄ðxÞ ≃ h̄00ðxsÞðxs − xÞ2 for x ≃ xs, the smoothness of
δv̄ðxÞ requires

δv̄ðxÞ ≃
ffiffiffiffiffiffiffiffiffiffiffi
2

γ þ 1

s
×

(∓ ffiffiffiffiffiffiffiffiffi
h̄ðxÞ

p
ðx ≤ xsÞ

�
ffiffiffiffiffiffiffiffiffi
h̄ðxÞ

p
ðx > xsÞ

: ð23Þ

We could not find the global solution for Eq. (20) in
general, but for the monatomic case (γ ¼ 5=3), we find an
analytic solution

v̄ðxÞ ¼

−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh3

ψ

3

r
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
coshψ

p
þ 3

ffiffiffi
3

p
sinh

ψ

3

�
3 cosh

ψ

3
þ coshψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ψsech3

ψ

3

r
− 2

��−1=2
;

s
ð24Þ

FIG. 2. Correspondence between the height and velocity
profile.
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with

ψ ¼ �arccosh

��
1þ 1

2
h̄ðxÞ

�
2
�
: ð25Þ

For x ≃ xs, we have

v̄ðxÞ ≃ 1þ
ffiffiffi
3

p
ψ

2
ffiffiffi
2

p ; ψ ≃�
ffiffiffiffiffiffi
2h̄

p
: ð26Þ

Therefore, for the smoothness at x ¼ xs (23), we must
choose

ψ ¼
�∓arccosh½ð1þ 1

2
h̄ðxÞÞ2� ðx ≤ xsÞ

�arccosh½ð1þ 1
2
h̄ðxÞÞ2� ðx > xsÞ

: ð27Þ

This gives the transonic solution for a given height
function hðxÞ.

IV. NEAR-SONIC APPROXIMATION
AND WAVE PROPAGATION

In this section, we solve the wave propagation (12) in the
acoustic geometry derived in the previous section. Since it
is difficult to obtain exact solutions in general, we consider
two simple configurations.

A. Wavy toroidal tube

First, we consider a periodic model of the length 2πL,
whose height is given by the following profile (Fig. 3):

hðxÞ ¼ λ sin2
x
L
; ð28Þ

where λ is the amplitude of the elevation.2 The inclination
angle θ of the tube is given by

sin θ ¼ h0ðxÞ ¼ λ

L
sin

2x
L
; ð30Þ

which restricts the range of λ for 0 ≤ λ ≤ L. Since the sonic
points must be at x ¼ πL=2; 3πL=2, the transonic solution
for γ ¼ 5=3 is given by Eq. (24) with

ψ ¼
�∓arccosh½ð1þ 1

2
λ̄cos2 x

LÞ2� ð0 ≤ x ≤ πL=2; 3πL=2 ≤ x < 2πLÞ
�arccosh½ð1þ 1

2
λ̄cos2 x

LÞ2� ðπL=2 < x < 3πL=2Þ ; ð31Þ

where

λ̄≡ gλ
ĉ2s

; ð32Þ

and the sign is set so that it flips at each sonic points. In
Fig. 4, we show a typical velocity profile of the transonic
solution, where we assumed a laboratory-sized system with

2For the actual implementation, it would be useful to
clarify the dependence on the base coordinate X. From dX ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − h0ðxÞ2
p

dx, we have

X ¼ L
2
E

�
2x
L
;
λ2

L2

�
; 0 ≤ X ≤ 4LE

�
λ2

L2

�
; ð29Þ

where Eðϕ; kÞ and EðkÞ are the incomplete and complete elliptic
integrals of the second kind, respectively.

(a) (b)

FIG. 3. (a) Bent tube of the length 2πL in accordance with hðxÞ and (b) wavy toroidal tube.
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L¼ 0.5 m and λ¼ 5 × 10−2 m, and superfluid 4He (M4He ¼
4.0026 × 10−3 kg=mol, γ ¼ 5=3) at the sonic points
temperature of T̂ ¼ 2 K, also with g ¼ 9.798 m=s2 and
R ¼ 8.314 m2 kg s−2K−1mol−1. The value of λ̄ is given
by λ̄ ¼ 7.075 × 10−5.
To solve the wave equation (12) analytically, we further

assume the small amplitude of the elevation λ̄ ≪ 1 where
the flow becomes almost sonic. As shown above, this
assumption is rather realistic in the laboratory experiment.
The small undulation allows us, as a by-product, to obtain
the analytic form of the velocity profile for general γ as in
Eq. (23),

v̄ðxÞ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffi
2λ̄

γ þ 1

s
cos

x
L
þOðλ̄Þ for λ̄ ≪ 1: ð33Þ

In the same way, the sonic speed cs and the mass density ρ
are expanded as

csðxÞ ¼ ĉs þ ĉsðγ − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ̄

2ðγ þ 1Þ

s
cos

x
L
þOðλ̄Þ; ð34Þ

ρðxÞ ¼ ρ̂þ ρ̂

ffiffiffiffiffiffiffiffiffiffiffi
2λ̄

γ þ 1

s
cos

x
L
þOðλ̄Þ: ð35Þ

We will refer to this formulation as the near-sonic approxi-
mation. With these backgrounds, Eq. (12) can be solved by
expanding in

ffiffiffī
λ

p
.

First, we begin with the waves at the limit λ̄ → 0, where
the wave equation (12) reduces to

0 ¼ ∂0ð∂0ϕ̃þ 2ĉs∂xϕ̃Þ; ð36Þ

which has solutions

ϕ̃ ¼ exp ½−iðωt − kxÞ�; ω ¼ 0; 2kĉs: ð37Þ

The wave with ω ¼ 2kĉs corresponds to the forward wave
that propagates in the same direction as the background

sonic flow, and the one with ω ¼ 0, the backward wave that
tries to go back against the background.
To study the transonic effect, we assume following wave

form:

ϕ̃ðt; xÞ ¼ exp ½−iωtþ iΨðxÞ�: ð38Þ

For the forward wave, assuming ω ¼ Oð1Þ, we can expand
the phase as

Ψðfor ÞðxÞ¼k0xþ
ffiffiffi
λ

p
ψ ðforÞ
1 ðxÞþOðλÞ; k0≔ω=ð2ĉsÞ: ð39Þ

By expanding Eq. (12), we obtain

0¼
ffiffiffiffiffiffiffiffiffiffi
2

γþ1

s �
Lω
ĉs

cos
x
L
−2isin

x
L

�
−

8L
3−γ

∂xψ
ðforÞ
1 ðxÞ: ð40Þ

This can be solved as

ψ ðforÞ
1 ðxÞ¼constþ3−γ

8

ffiffiffiffiffiffiffiffiffi
2

1þγ

s �
Lω
ĉs

sin
x
L
þ2icos

x
L

�
: ð41Þ

Therefore, the forward wave solution is given by

ϕ̃ðfor Þðt; xÞ ¼ Aðfor ÞðxÞ exp ½−iωtþ iΨ̃ðfor ÞðxÞ�; ð42Þ

where we rewrote the modulations in the amplitude and
phase separately as

Aðfor ÞðxÞ ¼ exp

 
−
3 − γ

4

ffiffiffiffiffiffiffiffiffiffiffi
2λ̄

1þ γ

s
cos

x
L

!
; ð43Þ

Ψ̃ðfor ÞðxÞ¼ ω

2ĉs
xþ3− γ

8

ffiffiffiffiffiffiffiffiffiffi
2λ̄

1þ γ

s
Lω
ĉs

sin
x
L
: ð44Þ

The local phase velocity is then also expanded by
ffiffiffī
λ

p

vðforÞph ðxÞ¼ ω

dΨ̃ðfor ÞðxÞ=dx¼ 2ĉs

 
1−

3− γ

4

ffiffiffiffiffiffiffiffiffiffi
2λ̄

1þ γ

s
cos

x
L

!
:

ð45Þ

For the backwardwave,we should startwith rescalingω as

ω¼ω1

ffiffiffī
λ

p
; ð46Þ

since it gives ω ¼ 0 at the limit λ̄ → 0. Then, it turns out the
mode function should satisfy

FIG. 4. Velocity profile of transonic flow solution in Eq. (24).
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0 ¼
 ffiffiffiffiffiffiffiffiffiffiffi

2

γ þ 1

s
iω1

ĉs
sec

x
L
− L−1 tan

x
L

!
∂xeiΨ

ðbackÞðxÞ

þ ∂x∂xeiΨ
ðbackÞðxÞ; ð47Þ

which is solved as

eiΨ
ðbackÞðxÞ ¼ C0 þ C1

�
1 − sin x

L

1þ sin x
L

� iLω1
ĉs
ffiffiffiffiffiffiffiffi
2ð1þγÞ

p
: ð48Þ

Since we are interested in the propagating solution, we
choose C0 ¼ 0 and C1 ¼ 1, which lead to

ΨðbackÞðxÞ ¼ Lω1

ĉs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ γÞp log

�
1 − sin x

L

1þ sin x
L

�
: ð49Þ

This wave actually propagates backward in the subsonic
region and forward for the supersonic region

vðbackÞph ðxÞ¼ ω

dΨðbackÞðxÞ=dx¼−ĉs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγþ1Þλ

2

r
cos

x
L
: ð50Þ

In Fig. 5 we give plots of these forward and backwardwaves.

B. Infinite tube with a single bump

Another simple situation is a tube with the infinite length
with a single bump (Fig. 6)

hðxÞ ¼ λsech2
x
L
; ð51Þ

where L gives the width of the bump, and the amplitude λ is
limited in the range of 0 ≤ λ ≤ ð3 ffiffiffi

3
p

=4ÞL as in the toroidal
model. The sonic point only exists at x ¼ 0. For the small
elevation, Eq. (23) leads to

v̄ðxÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
2λ̄

γ þ 1

s
tanh

x
L
þOðλ̄Þ; ð52Þ

where we set the sign so that x < 0 is subsonic and x > 0

supersonic, and λ̄ is defined in the same way as Eq. (32).
With the same analysis as in the toroidal tube, we obtain the
forward wave (42) but with

AðforÞðxÞ ¼ exp

 
3 − γ

4

ffiffiffiffiffiffiffiffiffiffiffi
2λ̄

1þ γ

s
tanh

x
L

!
; ð53Þ

Ψ̃ðforÞðxÞ ¼ ω

2ĉs
x −

3 − γ

8

ffiffiffiffiffiffiffiffiffiffiffi
2λ̄

1þ γ

s
Lω
ĉs

log cosh
x
L
; ð54Þ

where the phase velocity becomes

vðforÞph ðxÞ ¼ 2ĉs þ
3 − γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ γÞp ĉs

ffiffiffī
λ

p
tanh

x
L
: ð55Þ

The backward wave is given by

ϕ̃ðbackÞðt; xÞ ¼ e−i
ffiffī
λ

p
ω1t

����sinh xL
����
iLω1
ĉs

ffiffiffiffiffi
2

γþ1

p
; ð56Þ

where the phase velocity becomesFIG. 6. Infinite tube with a single bump.

(a) (b)

FIG. 5. Plots of the waves in the case of λ̄ ¼ 7.075 × 10−5 and γ ¼ 5=3. (a) The forward going wave with ω ¼ 10ĉs=L, and (b) the
backward going one with ω1 ¼ 10ĉs=L.
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vðbackÞph ðxÞ ¼ ĉs

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

2

r ffiffiffī
λ

p
tanh

x
L
: ð57Þ

The two waves are shown in Fig. 7.

V. ACOUSTIC METRIC
AND CAUSAL STRUCTURE

Finally, we discuss that the causal structure of the
spacetime corresponds to the toroidal model. The acoustic
metric is written as Eq. (9). In order to see the causal
structure of the spacetime described by the acoustic metric,
let us consider the conformally transformed metric

ds̃2ðacÞ ¼ −ðc2s ðxÞ − v2ðxÞÞdt2 − 2vðxÞdtdxþ dx2

þ dy2 þ dz2; ð58Þ

which can be written as

ds̃2ðacÞ ¼−
�
1−

v2ðxÞ
c2sðxÞ

�
c2s ðxÞdt2� þ

1

1− v2ðxÞ
c2s ðxÞ

dx2þdy2þdz2;

ð59Þ

where

dt� ¼ dtþ vðxÞ
c2s ðxÞ − v2ðxÞ dx: ð60Þ

The two-dimensional ðt�; xÞ part of the metric is similar to
the Schwarzschild metric, where one must note that the
radial coordinate x, unlike the Schwarzschild metric, has the
finite range 0 ≤ x ≤ 2πL, so the spacetime has no infinity.
Therefore, the Schwarzschild-like metric (59) describes the
spacetime displayed by the conformal diagram in Fig. 8,
which consists of the following four portions.

(i) An outer region of black and white holes: Dout¼
fðt;xÞj−∞< t<∞;0≤ x< π

2
L;3π

2
L<x≤ 2πLg. In

this region, the background velocity is smaller than
the sonic velocity, i.e., vðxÞ < csðxÞ.

(ii) A black hole horizon: HB ¼ fðt; xÞjt ¼ ∞; x ¼
π
2
Lg: In this point, the background velocity coin-

cides with the sonic velocity vðxÞ ¼ csðxÞ.
(iii) An inner region of black and white holes: Din ¼

fðt; xÞj −∞ < t < ∞; π
2
L < x < 3π

2
Lg. In this re-

gion, the background velocity is larger than the
sonic velocity, i.e., vðxÞ > csðxÞ.

(iv) A white hole horizon: HW¼fðt;xÞjt¼∞;x¼3π
2
Lg:

In this point, the background velocity coincides with
the sonic velocity vðxÞ ¼ csðxÞ.

(a) (b)

FIG. 7. Plots of (a) the forward going and (b) backward going waves with the same parameter choice as Fig. 5.

FIG. 8. Conformal diagram of an acoustic black and white
hole spacetime. The sonic points x ¼ πL=2; t ¼ ∞ and x ¼
3πL=2; t ¼ ∞ act as black hole horizon HB and white hole
horizonHW, respectively. One should note that the sonic velocity
csðxÞ depends on x, and hence, the sound cones differ.
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VI. SUMMARY AND DISCUSSIONS

We have proposed a simple model of the acoustic black
hole. Unlike many conventional models which make use
of a pressure difference, our model avails itself of the
gravitational potential to create a transonic flow. The main
advantage of our model is that we can solve the Euler
equations analytically. In particular, we have found an exact
solution to the equations for a given height function in the
monatomic case of γ ¼ 5=3. Under the near-sonic approxi-
mation, we obtain two wave solutions in the toroidal tube
and infinite tube setups: One describes a wave propagating
in the same direction as the background flow, and the other
the backward going one. One can see from the backward
wave solution that there are two sonic horizons, black and
white hole horizons, in our periodic transonic flow model.
Of course, there are some shortcomings in our model.

The toroidal bending of the tube causes the centrifugal
force on the fluid, whose effect is ignored in the analysis.
The inertia force for a fluid element per unit mass is
estimated as ĉ2s=Rwhere ĉs is the sonic velocity and R is the
curvature radius of the bending tube. Since we have 102 ≲
ĉs ≲ 103 m=s for ordinary fluids, this rather dominates over
the gravitational acceleration g ∼ 10 m=s2 in the laboratory
experiment. Nevertheless, the inertia would not matter in
the thin tube approximation since the tube provides the
supporting force. However, with a finite cross section,
the strong inertia would make strong inhomogeneity in the
density and pressure profiles for given x, which will affect
the wave propagation as the finite size effect. To incorpo-
rate this, one has to start from the three-dimensional system
and reduce it to that of one dimension. The lack of energy
supply is another unphysical assumption. To make a similar
steady flow in the laboratory, one has to place a pump to
compensate the dissipation. The pump will be placed in the

middle of the flow on either of subsonic or supersonic
sides, which will cut the circular topology of the analog
spacetime. For these reasons, our toroidal model will not be
considered physically reasonable, but we believe that it is
still considered pedagogically worthwhile as a toy model
for learning about properties of an acoustic black hole.
In general, one of important advantages to consider analog

models is that one can carry out an experimentwith respect to
black hole physics in a laboratory. However, to do so, at least,
in the fluid system, the sonic horizon must be stable since a
shock wave may appear near the horizon. At present, we do
not know the stability in our model, which deserves our
future works. In addition, we also should see whether the
wave propagation has the similar nature to that of Hawking
radiation. Moreover, we can also consider various general-
izations of our model if we give appropriate forms of the
function hðxÞ. For instance, if we replace x=L in hðxÞ with
nx=L, we can construct a multiblack hole system of n black
and white holes. Furthermore, if we choose the function
hðxÞ with periodicity 2πL such that hð0Þ ¼ hð2πLÞ ¼ 0,
h0ðπL=2Þ ¼ h0ðπ3L=2Þ ¼ 0 and h00ðπL=2Þ ¼ 0, we can
consider the analog model of black hole binary.
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