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Gravity and matter on a pure geometric thick polynomial f(R) brane
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In this paper, writing the most general form f(R) =

", a;R" + A the solutions of the pure geometric

thick f(R) brane are investigated. For the certain value of n, the analytical thick brane solution can be
calculated, and when n = 3, n = 4, and n = 10, the thick brane solutions are presented. The solutions are
stable against linear tensor perturbations. The zero mode of gravity and scalar field can be localized on
thick f(R) branes naturally. The zero mode of a vector field and left-chiral fermion can be localized on
thick f(R) branes by introducing the coupling with scalar curvature R of spacetime, and the massive
resonant modes can be quasilocalized on the brane with the large coupling coefficients.
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I. INTRODUCTION

The idea that our four-dimensional (4D) Universe can be
considered as a brane embedded in a higher-dimensional
spacetime, can supply new insights for solving the gauge
hierarchy problem [1-8] and the cosmological constant
problem [9-21]. In the Randall-Sundrum (RS) braneworld
model [22], the effective 4D gravity could be recovered
even in the case of noncompact extra dimensions, however,
singularities are present at the position of the branes. The
smooth thick braneworld solutions are generally based on
gravity coupled to bulk scalar fields [23—62]. For some
comprehensive reviews about thick branes, please see
Refs. [63—-67]. There are also thick branes arising from
pure geometry without the inclusion of bulk scalar fields at
all [68-77].
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In braneworld scenarios, the important issue is the
localization of gravity and various bulk matter fields for
the purpose of recovering the effective 4D gravity and
building up the standard model. Generally the gravity and
the scalar field zero mode can be localized on the brane
naturally. For five-dimensional (5D) free spin-1 Abelian
vector field, the zero mode cannot be trapped on the
Minkowski (M,) brane, however, it can be localized on
the thick de Sitter brane and Weyl thick brane [8,78-81]. In
some ways, by introducing the coupling with background
geometry, the zero mode of the vector field can also be
trapped on the Minkowski brane [82,83]. For the spin-1/2
fermion, zero mode cannot be localized on the branes without
introducing the coupling. By introducing the coupling
between the fermion and background scalar fields or fermion
and background geometry, the left-chiral fermion zero mode
can be localized on the brane [8,16,48,78-80,84—129].

However, due to the fact that Einstein’s general rela-
tivity is not renormalizable, the effects of higher order
curvature terms are suggested to consider. f(R) gravity
theories, which the Lagrangians are proportional to some
functions of the scalar curvature R, were created in the
investigation of cosmology, and offer pure geometric
explanations for cosmological inflation and dark energy
in physically [130-137]. Nevertheless, there are studies
devoted to embedding branes into various types of f(R)
gravities [6,41,50,57-60,73,74,77,138-150]. In Ref. [77],
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two cases of the thick brane solutions have been inves-
tigated in pure geometry f(R) gravities: one with a
triangular f(R) and the other a simple polynomial f(R).

In this paper, we intend to investigate the thick branes
generated by only geometry under pure f(R) gravity. The
general form of f(R) would be considered, which is chosen
as a nth order polynomial of the scalar curvature R. When
the degree of the polynomial f(R) is n = 3, the solution is
equivalent to the one of Ref. [77], When n = 4 and n = 10,
the solutions are new solutions. These solutions will be
presented in next section. The stability of tensor perturba-
tions and the localization of gravity are discussed in
Sec. III. The zero mode of gravity can be localized on
the brane naturally. In Sec. IV, the zero mode of the scalar
field can be trapped on the branes naturally. In Sec. V, by
introducing the coupling between the vector field and
the background geometry, the zero mode vector can be
localized on the brane and the massive resonant Kaluza-
Klein (KK) modes can also be quasilocalized on the brane.
In Sec. VI, for a pure geometry brane, the coupling between
the fermion and the background scalars cannot be intro-
duced, however, we introduce the coupling between the
fermion and the background geometry, and the zero mode
of the left-chiral fermion and the massive resonant KK
modes can be localized and quasilocalized on the brane.
Finally, the conclusion and discussion are given in Sec. VII.

II. THE PURE GEOMETRIC THICK f(R) BRANES

We start with the following 5D action for a pure
geometric thick f(R) braneworld

$=30 | Er®) (1)

where k2 = 87Gs with G5 being the 5D Newton constant,
R is the 5D scalar curvature, and g = det(g,;y) is the
determinant of the metric. Throughout this paper, capital
Latin letters M,N,--- =0, 1, 2, 3, 5 and Greek letters
u,v,---=0,1,2,3 are used to represent the bulk and brane
indices, respectively. From this action, the 5D Einstein
equation is given by

1
Rynfr— EgMNf(R) + (gunEO =V Vy)fr =0, (2)

where fr = %, O = ¢""V,,Vy is the 5D d’Alembert
operator, and R,y is the 5D Ricci tensor, defined in terms
of the Riemann tensor Ry = Rz%QN-

The line element of the M, brane is assumed as
ds* = gynydxMdxN = 0y dxtdx? + dy*,  (3)

where €40 is the warp factor,

Ny = diag(=1,+1,+1,+1) (4)

is the metric of the 4D Minkowski spacetime, and y denotes
the extra dimensional coordinate. From the metric (3), the
Ricci tensor and scalar curvature can be computed:

R

, = —eMO(A" +4A7)y,,,  Rss = —4A" —4A"7, (5)

w
R = —20A” — 8A", (6)

where the prime denotes the derivatives with respect to
extra dimensional coordinate y. The Einstein equations (2)
can be rewritten as:

F(R) +2fr(4A" + A") — 6fRA" = 2f% =0, (7a)

— f(R) = 8fr(A" + A?) + 8fA" = 0. (7b)

The above two equations are not independent, because
the left side of Eq. (2) is divergence free [134]. Hence,
we choose to solve Eq. (7a) in the following discussion.

In this paper, we are interested in investigating the
general form of f(R), chosen as a nth order polynomial
of the scalar curvature R:

FR) =3 a4 A )

where the a; coefficients have the appropriate dimensions,
A is 5D cosmological constants, and the parameter n should
be an integer.

According to Egs. (6) and (8), one can easily prove that
f(R) includes (A”)" and (A’)?", f% includes A" and f%
includes A””. By taking f(R), f, and f7% back into Eq. (7),
obviously, the Einstein equations are high-order differential
equations, and very hard to be solved. In order to find a
solution, we begin with a simple A(y), which consider
as [77,150]

A(y) = —61In(cosh(ky)) 9)
with § a dimensionless positive constant, and k another
positive constant with the dimension of length inverse. At
the infinity, the behavior of the A(y — o0) is

A(y = ) = =68k|y|. (10)

Defining a new parameter by k = 6k, it is easy to proof that
the warp factor

e2A(y—0) _, e—21~<|y|’ (11)

which is the same as the warp fact of the RS II brane-
world and implies that the metric (3) reduces an anti—de
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Sitter (AdS) one, which is essential for the localization
of gravitation. The following expressions can also
be taken

A'(y) = —6k tanh(ky), (12)
A(y) = 5°k*(1 — sech?(ky)), (13)
A"(y) = —6k2sech?(ky), (14)

and the scalar curvature takes a simple form:

R(y) = 208%k? (esech?(ky) — 1), (15)
where ¢ = %. Furthermore, we can obtain the following
expressions

f(R) = Z a;(208%k2)i (e sech?(ky) — 1)/ + A, (16)
i=1

fr= zn:iai(2062k2)i‘l(e sech’(ky) = 1)™", (17)

i=1
fr =Y 2i(1 = i)a;ke(208%k*) "~ sech? (ky) tanh(ky)
i=1

=

x (&sech?(ky) —1)2, (18)

FRA" = 2i(i = 1)a;6ke(205%)"~ sech? (ky)
i=1

x (1 — sech?(ky))(esech?(ky) — 1)=2, (19)
|
B boo bo
B, by by
: = : b;;
B, bu_1o bu-1
Bn bn,O bn,l

where the element of the matrix b; ; is

bl/

= (=1)/712(208%)/ 1 k¥ g1

X [1052Cje - j5(46Cj._18 +(1+ 45)Cj:11)

+2j(j = 1)((2+38)Cizhe + (3 4 36)Ci3)

+4j(j = 1) -2)(CHe + C3)] (24)
By setting all the coefficients to zero B; = 0, the solution to
the Eq. (21) can be calculated. Analyzing the expression

bn—l.n—l

§ =D 2i(i = agek (205°)~" esech? (ky) = 1)
i=1

xisechz(ky)[2(i — 2)esech?(ky)(1 — sech?(ky))
+ (2 — 3sech?(ky))(esech?(ky) — 1)] (20)

By taking above expressions back into Eq. (7a), it is clear
that all the terms of the Einstein equation are the function of
sech?(ky), and the order of the highest is 2n. The Einstein
equation (7a) can be expressed as the following algebraic
equation:

B;sech? (ky) =0, (21)
=0

=l

where the coefficient B; can be written as follows

= (=1)7712a;(208%)/ kel
j=i
x [106°Cie — j6(45C]_ e + (1 +48)C'7})
+2j(j = D((2+38)Ci7he + (3 4 36)Ci3)
+4j(j =D - 2)(CiZe + C3)]. (22)

with gy = A and C; the binomial coefficient. Here we
define Cj» = (0 when i > j. The B, can also be expressed as
a column matrix:

bon-1  bon ag
by ni by n ai
) (23)
bn—l,n ap—1
byn-1 b a,

((n+1)x(n+1))

|

(24), when i > j, itis easy to find that b; ; = 0, since all the
binomial coefficients are zero. Specially, except for b, ,,
the elements of the last row of the matrix are zero, so the
coefficient B, satisfies the following formulation

B, = 2i%a, (2062k2)1en1[(10 — 4n)8
+ (6n> —=Tn+4)5 + (4n* —6n> +2n)] = 0. (25)

For nonzero solution of «,,, the relationship between 6 and
n can be calculated as follows
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FIG. 1. The relation between the parameter § and n.
4n® —6n +2
s (26)
2n—35

For each certain value of n, the parameter § can be
obtained as it is depicted in Fig. 1. In order to ensure
that the behavior of warp factor at infinity tends to zero, §
must be positive definite, so the minimum value of the
positive integer n is ny;, = 3. It is easy to see that when
n =4, the minimum & can be achieved 6,;, = 14, and
when 7 tends to infinity, 6 is proportional to n and tends to
divergence.
Furthermore, Eq. (23) can be reexpressed as follows

By considering the Egs. (24) and (26), all the elements of
the matrix b; ; can be calculated for the given value of n, so
the matrix equation (27) contains n linear equations and
n+ 1 unknown parameters A,a;,a,,as,...,a,, and the
relationships of these parameters could be concluded by
solving Eq. (27).

When n =1 and f(R) = a;R + A, the case of general
relativity is recovered. Because 6 = 0 and A(y) = 0, there
is no pure geometric thick M brane solution. However, by
using a different metric ansatz, a de Sitter dS; brane
solution can be obtained, which has been studied in
Refs. [8,151], or by introducing the tension of the brane,
the RS braneworld model [3,22] can also be concluded.

When n =2 and f(R) = a,R + a,R*> + A, the param-
eter 6§ =—6 and A(y) = 61In(cosh(ky)), thus the warp
factor e*A(") = cosh'?(ky) is divergent at infinity of the
extra dimensional coordinate. By introducing a background
scalar, the divergence of warp factor is removed and the
thick branes can be constructed in Ref. [50,57,147].

When n = 3, the parameter § =20 and warp factor
A(y) = —201In(cosh(ky)), and a pure geometric thick M,
brane can be received. When n = 4, the parameter 6 can be
achieved the minimum value 6 = d,;, = 14, and a pure
geometric thick M, brane can also be constructed. When
n=2>5,6,..., the solutions of a thick M, brane can be
concluded, however, as the value of the parameter n
increases, the calculation also increases. In this paper,
the solutions will be discussed when n =3 (for the
minimum n), n =4 (for the minimum §), and n = 10

1byy ... bopi boy A 0 (for a large value n), and these cases are very typical. The
’ ' ' parameters of the solutions are shown in Table I. Here, the
0biy o bt big a1 coefficient a; is set to positive, so the 5D cosmological
b : : : — constant must be negative A < 0, and the 5D spacetime is
L.J : : : AdS one. Moreover, the coefficients a; for the solutions are
00 ... byipibyin a1 shown in Fig. 2, and it can be found that the coefficients a;
00 .. 0 0 a, significantly decreases with increasing the order i. For the
(n+D)x(n 1) caseof n = 3,if weset A = — %, the result is the same
(27) as example 2 in Ref. [77].
TABLE 1. The solutions of the pure geometric f(R) thick brane for n = 3, n = 4, and n = 10.
n n=3 n=4 n=10
s §=20 5=14 =114
a, — gl A~ —0.0333 4 -0.0478 4 ~0.0292 4
a, T A 4121 x 1074 2.488 x 10754 3.166 x 1075 4
as — riagooE A & —6.724 x 1070 4 —2.166 x 1078 4 —4.403 x 1077 4
ay 7.927 x 10713 4 —2.834 x 10744
as ~1.002 x 10718 A;
ag —3.689 x 107 A
a —1.130 x 10727 A
as —2.550 x 10732 A
a ~3.684 x 1077
i ~2.530 x 10742 4;
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FIG. 2. The coefficients || in logarithmic coordinate. n = 3
for the dashed blue line, n = 4 for the green line, and n = 10 for
the thin red line. The parameter is set to k = 1.

The pure geometric thick branes can be constructed, and
the behaviors of the scalar curvature (15) at zero and
infinity can be analyzed as follows:

{

The shapes of A(y) and R(y) are shown in Figs. 3(a)
and 3(b). We can find that both of A(y) and R(y) are
smooth of the extra dimensional and R(y) tends to a
constant —208%k> at infinity.

R(y = 0) = 85k2,

28
R(y = 0) = —208%k>. (28)

III. TENSOR PERTURBATION
AND THE LOCALIZATION OF GRAVITY
ON THE THICK f(R) BRANES

The stability of the tensor perturbations of the gravity
will be studied in this section. The small perturbations £,
are introduced into the metric [144]:

. ——- n=3
5 \ — n=4
—_50f 7 N — n=10
— /// \\\
= 7 NS
< —100f L, "
,// \\\
4
-150F 7 >
// \\
// \
-2001
-10 -5 0 5 10
y

FIG. 3.

R(y)

ds* = A0 (n,, + h, )dx*dx* + dy?, (29)
where h,, = h,(x",y) depend on all the spacetime

coordinates. The following relations can be obtained
immediately:

1 ~
OR,, = ) (Dh/m +0,0,h — 0,0,hj; — 0”66]1,‘,’)

s

1
—2e*A'N,, — 3h,,e*A”? — EezAth

1
— E eZAA/r//wh/’ (30)
1 A
OR,s = an(alh,, —0,h), (31)
l 11,/ "

SR = 8(¢"R,,)
= —eA0h + e7249,0,h — SA'H — 1", (33)

where 0 = 70,0, is the 4D d’Alembert operator, and
h = n*"h,,. The tensor perturbations satisfy the transverse-
traceless (TT) condition d,hj = h = 0.

The perturbed Einstein equations can be expressed:

1
ORunSR + RunSRrrOR — 559MNf(R)

1
- EgMNfR(SR +8(gunfr) —(Vy Vafr) =0, (34)

where

2000

0

-2000

-4000

-6000

-8000

-10000¢

The shapes of A(y) in (a) and R(y) in (b) for different thick brane solutions. n = 3 for the dashed blue line, n = 4 for the green

line, and n = 10 for the thin red line. The parameter is set to k = 1.

104017-5



GUO, WANG, FU, and XIE

PHYS. REV. D 107, 104017 (2023)

Fon = dfg _ &*f(R)
RR=4R — dR*
8(ViuVnSr) = (0m0y — Ty 0p) (frrOR) = 6T 4n0p f &,

(35)
8(gunOf r) = S9unTf r + 9undg* 8 (VaVpfr)
+ 9ung*P8(V4Vpfr). (36)

By substituting the Eqgs. (30)—(33) into the Eq. (34), the
perturbed Einstein equations can be simplified:

(e_ZAE‘h/,w + 4A,h;w + th)fR + h;/wf;? = O’ (37)

or, we can have a more simpler form

!
R
Oy =70yl = 0. (38)

By following the method given in Refs. [3,22], a
coordinate transformation can be introduced

dz = e0)dy, (39)
and the conformal flat metric can be taken:
ds? = ¥ (y,, dx'dx” + dz?). (40)

By using the coordinate transformation Eq. (39), the
perturbed Einstein equations Eq. (38) are rewritten as:

[ag + (3aZA + 5}f R) 9. + ﬁ] hy=0. (41
R

By doing the KK decomposition

B (7, 2) = e M e, () (2), (42)

a Schrodinger-like equation for the KK modes y/(z) can be
reexpressed

(=02 + W(2)ly(z) = my(z), (43)

where the effective potential W(z) is

9 3
W(z) = 1 (0.A)* + 5agA
2 fr 4 fz Ir
The above Eq. (44) can be factorized as
00"y (z) = m*y(z) (45)

with
B 3 10.fr
Q_+az+<262A+2 f;e)’ (46)
3 10.fr
o d 1%
0 6Z+<26ZA+2fR>, (47)

which ensures that there is no gravitational mode with
m? < 0 and the braneworld solutions are stable against the
tensor perturbations. However, the scalar perturbations are
still not clear because of the higher derivatives in the
perturbation equations. It is well known that a pure f(R)
gravity is conformally equivalent to a theory with a
minimally coupled scalar in Einstein’s gravity [131]. By
following the method given by in Ref. [77], our solutions
are stable against the small linear metric perturbations,
including tensor, vector, and scalar perturbations, in the
Einstein frame.
For Eq. (43), the zero mode with m = 0 is

1
w(0)(z) = Noe @ f3(2), (48)

where Ng is the normalization constant, and the vy ) (z)
satisfies the normalizable condition

[T wo@pd=1. ()

The coordinate transformation Eq. (39) can be rewritten
as follows:

7= / e 40dy = / cosh? (ky)dy. (50)

However, the above equation cannot be analytically calcu-
lated for an arbitrary 8, and it is also difficult to directly get
the analytical expressions for the effective potential W(z)
and the zero mode (o) (z) under the conformal coordinate
z. So the solutions under the coordinate y can be calculated
firstly, and the numerical solutions under the conformal
coordinate z can also be obtained.
By using the relation

e=A0) 221K 56 00ky. (51)

the asymptotic behavior of the relation between z and y can
be analyzed

y—=—+00 1

T 55t ek, (52)

We can solve the asymptotic behavior of the relation
between y and z for z tends to infinity
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30

FIG. 4. The relation between z and y. n = 3 for the dashed blue
line, n = 4 for the green line, and n = 10 for the thin red line. The
parameter is set to k = 1.

-
-
-
———’
-
-

FIG.5. The shapes of A(z) for different solutions. n = 3 for the
dashed blue line, n = 4 for the green line, and n = 10 for the thin
red line. The parameter is set to k = 1.

-1000

-2000

R(2)

-3000

-4000

e 1
y=rs S In(276kz). (53)

And the relations between z and y can be solved by
numerical method, and shown in Fig. 4, when ¢ are the
determined values given by n = 3, 4, 10 respectively.

Then the behavior of A(z) and the scalar curvature R(z)
at z =0 and z — +oo can be analyzed respectively,

{A(ZIO) =0 ’ (54)

A(z = +o0) = —1In(5k|z])

{R(z =0) = 85k> 2 (55)
R(z = +00) = —208%k> + C,|z| 5

with C; = (85k? + 205%k?)(8k)7, and we can have con-
clusions that the warp factor e’ tends to 0 and R tends
to a constant —205°k> for z — 4-co. The numerical sol-
utions of A(z) and R(z) are also solved and shown in
Figs. 5 and 6.

Since there is no analytical expression for the effective
potential W(z) with respect to the coordinate z, the
expression for it in the coordinate y can be expressed as
follows:

15 ' 3
W(a(y) = 5 0A2(y) + 540047 ()

o O+ S

2 fr
AV

—lezA(y) (fR> ‘ (56)

4 R
2x1010  4x10"© 6x10"° 8x101° 1x10M

1x10"0 < z < 1x10""

(b)

FIG. 6. The shapes of the scalar curvature R(z) for different solutions. n = 3 for the dashed blue line, n = 4 for the green line, and
n = 10 for the thin red line. The range of the coordinate is around zero for (a), and the range of the coordinate is far away from zero for

(b). The parameter is set to k = 1.
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Wiz(y))

(a)

FIG. 7.

The shapes of the potential W(z(y)) in 7(a) and W(z) in 7(b) for different solutions. n = 3 for the dashed blue line, n = 4 for

the green line, and n = 10 for the thin red line. The parameter is set to k = 1.

And the shapes of W(z(y)) are shown in Fig. 7(a). The
numerically solution of W(z) are shown in Fig. 7(b),
which are similar to Fig. 7(a). The asymptotic behavior
of these potentials tends zero at infinity. The height of
the potential is related to the parameter § decided by n.
When n =10 and 6 = lsﬂ, the height of the potential is
the tallest of all, and when n =4 and 6 = 14, it is the
lowest.

This potential supports a normalizable zero mode, and
the normalization constant Ng satisfies the following
condition:

1.5

1.0

lwo(2)|?

0.5r

0.0

-2gzg2

FIG. 8. The shapes of the zero mode for gravity [y g (z)|* for
different solutions. n = 3 for the dashed blue line, n = 4 for the
green line, and n = 10 for the thin red line. The parameter is set
to k=1.

where @ = ky and dz =e™ dT‘". For our solutions, the
above integration can be done analytically. For n = 3, the
integration gives

N 3723736645632 B
k 245251477631875k*

(58)

and N ~ 8.115k3/v/=A. For n = 4 and n = 10, similarly,
we can get Ng ~ 6.181k3/v/=A, and N ~ 8.965k3/v/—A
respectively. Thus, the gravitational zero mode is normal-
izable and can be localized on the brane, which results in
the familiar Newton’s law on the brane. The shape of zero
mode [y (g)(z)|* is shown in Fig. 8. There is a platform for
the gravitational zero mode around zero, so the zero mode
is localized near zero.

Starting from m? > 0, the continuum of the massive KK
modes might lead to a correction to the Newtonian potential
on the brane. As have been addressed in Ref. [27], if the
potential lim._,, W(z) = @ the massive modes will
contribute a correction AU « 1/r* to the Newton’s law
at large distance (see also [46]). For our solutions, the
asymptotic behavior of z2W(z) with z — oo can be ana-
lytically obtained. Instead of writing down the explicit
expressions, it is shown in Fig. 9 that for our solu-

tions lim,_ o z°W(z) = 175), namely f = 3/2. Thus, the
corrections to the Newtonian potential AU o 1/7° are
suppressed at large r for the braneworld.

Note that for KK modes with 0 < m? < W,,,.(z), there
might exist some resonant KK modes which tend to plane
waves when z — oo and cannot be normalized for this type
potential W(z) [52]. Here W, (z) is the maximum of the
potential. However, according to the numerical calculation,
there exists no resonant state.
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FIG.9. The shapes of z>W(z) for different solutions. n = 3 for the dashed blue line, n = 4 for the green line, and n = 10 for the thin

red line. The parameter is set to k = 1.

IV. LOCALIZATION OF SPIN-0 SCALAR FIELDS
ON THE THICK f(R) BRANES

In this section, we will investigate the localization of
scalar field on the thick f(R) branes. We start with the
action of a 5D massless scalar field:

1
SO = / dSX\/ —g |:— EgMNan)aNq)} 5 (59)
and the equation of motion from the above action (59) is
read as:

L (Vg o) = 0. (60)

!,
Using the conformal metric (40), and introducing the KK
decomposition

D 2) = > o6 ro(2)eH, (61)
0
we can get the 4D Klein-Gordon equation
1 %
\/—_—gau( _gnﬂyal/)¢9 = m5¢09 (62)

where § = det(s,,) is the determinant of the 4D effective
metric, and the Schrodinger-like equation of the scalar KK
modes respect to the extra dimensional coordinate

(=02 + Vo(2)xo(z) = mgre(2), (63)
where m, is the mass of the 8th KK mode of the scalar field,
and the potential is given by:

9

3
Vo(z) = §0§A + 1

(0:A)%. (64)
The scalar KK modes should satisfy the following orthogo-
nal normalization conditions:

/_ ® 42020 (2) = Same (65)

[Se]

and the action (59) of the 5D free massless scalar field turns
to the 4D effective action of a massless (my = 0) and a
series of massive (my > 0) scalar fields:

1 1
So= / d*x\/=g [— 59 0ubodupo —5miy|  (66)
0

By setting m = 0, the scalar zero mode can be solved from
Eq. (63)

Z0(z) = Nsei), (67)
where Ng is the normalization constant given by
+00 +oo
1= [ TPz =83 [ e
N} [+eo
= e (@) (w)dw. (68)

-1.0 -0.5

FIG. 10. The shapes of the effective potential V(z) for
different solutions. n = 3 for the dashed blue line, n = 4 for
the green line, and n = 10 for the thin red line. The parameter is
set to k = 1.
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FIG. 11. The shapes of scalar field zero mode |yy(z)[*> for
different solutions. n = 3 for the dashed blue line, n = 4 for the
green line, and n = 10 for the thin red line. The parameter is set

tok=1.

When n=3, n=4, and n=10, Ng~ 1583k,
Ng ~ 1.446\/k, and Ng ~ 1.637\/k respectively. The zero
mode of scalar can be localized on the brane.

Considering Eq. (54), the asymptotic behavior of V(z)
(64) and yy(z) (67) can be analyzed as follows:

Vo(z =0) = —3 6k
{ ol ) 2 (69)
Vo(z = +oo) — % |z|_2 -0,
z=0)=N
{Zo( ) s o (70)
Xo(z = F00) — N (k) 72[z[2

The numerical results of V(z) and [y,(z)|? are also shown
in Figs. 10 and 11 respectively. We can have a conclusion
that the zero mode of the scalar is localized at z = 0.

V. LOCALIZATION OF SPIN-1 VECTOR FIELDS
ON THE THICK f(R) BRANES

In this section, we will investigate the localization of
vector fields on the thick f(R) brane. We start with a 5D
gauge invariant action for a vector field coupled to the
scalar curvature [83]

1
Si=-3 / P xy/=g9v(R) g™ " FyrFs,  (71)

where Fyy = dyAy — dyAy, is the field strength tensor,
and gy(R) is the function of scalar curvature R. Setting
gv(R) = 1, the action of the 5D free vector field can be
recovered. The equation of motion is read as follows:

%__gaMW——ggv (R)gNFSFys) =0, (72)

Using the conformal metric (40), introducing the following
general KK decomposition:

Je i (gv(R)) % (73)

Zaﬂ ﬁ)ﬂa

and choosing the gauge freedom A5 = 0, the vector KK
modes py(z) should satisfy the following Schrodinger-like
equation:

A, (x*2) =

[—02 + V1 (2)]po(z) = mpe(z). (74)

where the effective potential V(z) is

1 1
Vi(z) = EOEA +t3 (0.A)?

9:Ad.gy(R)  dgv(R) (d.gv(R))?
2gv(R) 2gv(R) 4(9V(R))2.

The full 5D action (71) can be reduced to the 4D
effective action for a massless and series of massive vectors

~( 1
S1 = Z/d4x\/ —g<—Z’1”a’1yﬂf;(£>f(($
0

1
- gmirallal” ). (76)

(75)

when integrated over the extra dimension, with the require-
ment that Eq. (74) is satisfied and the following ortho-
normalization conditions are obeyed:

/_ ® po(@)pe(2)dz = 4. (77)

By setting m = 0, the solution of zero mode of the KK
modes can be calculated:

po(z) = Nver' @ (gy(R(2)))%, (78)

where Ny is the normalization constant given by

+00 +oo
1= / 1po(2)2dz = N2 / A gy (R(2))dz

Ny

ki / 7 ov(R(@)do. (79)

Next we will investigate the relation between the
coupling with the gravity and the localization mechanism
of the KK modes for the vector field.

A. Without the coupling: gv(R)=1

First, we do not introduce the coupling between the
vector field and the background spacetime, i.e., gy(R) = 1.
From Eq. (75), the potential of the vector can be reduced to

1, 1
SA" 4 A (80)

Vl(Z):2 4

104017-10



GRAVITY AND MATTER ON A PURE GEOMETRIC THICK ...

PHYS. REV. D 107, 104017 (2023)

Vi(2)

-5} J

-2 -1 0 1 2

FIG. 12. The shapes of vector field effective potential V(z)
without coupling term for different solutions. n =3 for the
dashed blue line, n = 4 for the green line, and n = 10 for the thin
red line. The parameter is set to k = 1.

and the asymptotic behavior of V,(z) at z =0 and z —» oo
can be analyzed as follows

Vi(z > to0) 2272 > 0.
The shapes of V| (z) for the thick brane solutions are shown

in Fig. 12 by numerical method.
The zero mode (78) can also be reduced to

po(z) = NyeH, (82)
and the asymptotic behavior of p,(z) has be calculated

{po(z =0)=Ny (53)

po(z > to0) — ﬁz‘é - 0.

From Egs. (79) and (83), it is clear that the zero mode does
not satisfy the normalization constant, i.e.,

00 o |
/ po(2)?dz %/ Edz - 0. (84)
1 1

Therefore the zero mode py(z) Eq. (82) cannot be localized
on the brane without the coupling between the vector and
the gravity. The situation is the same as the RS model.

B. With the coupling: gy(R) = (1+ 385)

In order to localization of the zero mode of the vector
field, the coupling between the vector and the gravity must
be introduced, and the following simple form is chosen in
this paper:

w(®) = (14 5503)" 85

where ¢ is coupling coefficient.

By using Eq. (75), the effective potential can be given by
A" A?  q(A'RI+RY) q(qg—2)R2
2 4 40k*S* +2R - 4(20k%8* + R)*’
(86)

Vi(z) =

and the asymptotic behaviors of V(z) at zero and infinity
are

. (87)

The zero mass mode can also be given by

R \?
= NyeH@ (14—, 88
Po ve + 20 k2 52 ( )
and the asymptotic behaviors of the zero mode py(z) at
z=0and z - oo are

{po(z = 0) = Ny (32}

5540 5+2¢ 5+

q (89)
polz = o0) = Ny(B2)4(50) 525

For the purpose of trapping the zero mode of the vector
field on the brane, the normalization condition (79) should
be satisfied, i.e.,

/ pi(z > +o0)dz z/ 71" %dz < 00, (90)
1 1

which require that the coupling coefficient must be
positive g > 0. In this paper, we will investigate the
effects of the coupling coefficient g on the localization
of the vector KK modes, so here set g = %5, 56, 106, 206.
The numerical solutions of the potential V;(z) for the
n = 3 thick brane are shown Fig. 13. It is clear that the
potentials have a negative well around z = 0 and have two
symmetrical barriers at both sides of the origin of the extra

3000F
2500
2000
1500

Vi(2)

1000
500F

-500E.

FIG. 13. The shapes of the effective potential for the vector
fields V,(z) with coupling term for different values of the
coupling coefficient g. The parameters are setton = 3 and k = 1.

104017-11



GUO, WANG, FU, and XIE

PHYS. REV. D 107, 104017 (2023)
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loo(2)|?
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-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5<z<15

FIG. 14. The shapes of vector field zero modes |py(z)|?> with the
coupling coefficient g = g for different solutions. n = 3 for the
dashed blue line, n = 4 for the green line, and n = 10 for the thin
red line. The parameter is set to k = 1.

dimension, which increased with the coupling coefficient g.
For the case of n = 4 and n = 10, the potentials are similar
to n = 3. When g = g, the numerical results of the vector
zero mode for n = 3, n = 4, and n = 10 have been also
shown in Fig. 14. Generally, this type of potential implies
that there may exist resonant states, which tend to plane
waves when z — oo and cannot be normalized. Following
the method presented in Refs. [105,109,110,152], the
relative probability function of a resonance on the brane
is defined as follows:

_ 2 e(z)Pdz

)= T 0P

O1)

Zmax

~Zmax

where 2z, is approximately the width of the thick
brane, and z,,,x = 10z. It is clear that the KK modes are

TABLE II. The mass, width, and lifetime of resonant KK modes of the vector with k = 1.
n 1 q vipa 0 m? m r T
3 20 56 220.1707 1 173.1216 13.1575 0.2574 3.8840
106 794.7859 1 377.0040 19.4165 6.092 x 10 1.641 x 103
2 659.3324 25.6774 0.1214 8.2327
3 829.4739 28.8005 1.4998 0.6667
206 3.020 x 103 1 778.1259 27.8949 1.431 x 10711 6.984 x 100
2 1.470 x 103 38.3434 6.533 x 1077 1.530 x 10°
3 2.070 x 103 45.5006 3.880 x 10~ 2.577 x 103
4 2.567 x 103 50.6670 0.0273 36.5568
5 2.931 x 103 54.1458 0.4101 2.4379
6 3.176 x 103 56.3604 2.4695 0.4049
4 14 56 152.5827 1 120.7882 10.9903 0.2455 4.0724
105 550.7041 1 263.5687 16.2348 6,529 x 104 1.531 x 103
2 459.9604 21.4466 0.1200 8.3271
3 581.1552 24.1071 1.5808 0.6325
206 2.092 x 103 1 544.3748 23.3318 1.988 x 107! 5.028 x 100
2 1.027 x 103 32.0602 8.152 x 1077 1.226 x 10°
3 1.446 x 103 38.0281 4.501 x 107* 2.221 x 103
4 1.790 x 103 42.3200 0.0295 33.8816
5 2.042 x 103 45.1897 0.4127 2.4229
6 2.230 x 103 47.2321 3.6694 0.2725
10 ‘Si“ 56 251.7237 1 197.5419 14.0549 0.2653 3.7686
106 908.7305 1 429.9404 20.7350 6.001 x 10 1.666 x 10°
2 752.3325 27.4286 0.1222 8.1773
3 945.6910 30.7520 1.5185 0.6585
206 3.453 x 103 1 887.2097 29.7860 1.301 x 10~ 7.686 x 100
2 1.676 x 103 40.9470 6.170 x 1077 1.620 x 10°
3 2.361 x 103 48.5960 3.745 x 104 2.670 x 103
4 2.929 x 103 54.1234 0.0268 37.2132
5 3.346 x 103 57.8474 0.4162 2.4025
6 3.615 x 103 60.1269 2.5566 0.3911
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FIG. 15. The mass spectra, the effective vector potential V;, and corresponding relative probability Py with different coupling
coefficient ¢ = 56, 106,206. V, for the black line, the even parity KK mode for the blue line, and the odd parity KK mode for the red

line. The parameters are set to n =3 and k = 1.

approximately taken as plane waves and the corresponding
probability Py (m?) tend to 1/10, when m? > Vnax (ymax jg
the maximum value of the corresponding potential V). The
lifetime 7 of a resonant state is 7 ~ I'"! with I = ém being
the full width at half maximum of the peak. Equation (74)
can be solved by the numerical method, and we will set the

coupling coefficient ¢ as different values g = %5, 59,
106,206, for each thick brane solution (n =3, n =4,
and n = 10), respectively.

When g = %5, there is no resonant state vector KK mode
for each thick brane solution. However, when g = 56, there
1s one resonant KK mode for each thick brane solution, and
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FIG. 16. The shapes of vector resonance KK modes with the coupling coefficient ¢ = 206. The parameters are setton = 3 and k = 1.

the total number of resonant KK modes increases with the
coupling coefficient g. The mass, width, and lifetime of the
vector resonant KK modes with different values of ¢ for
each thick brane solution are listed in Table II.

For the case of n = 3 thick brane solution, the profiles
of the relative probability Py corresponding to different
coupling coefficient ¢ are shown in Fig. 15. In these
figures, each peak corresponds to a resonant state, and the
corresponding mass spectra with the effective potentials
are also shown in Fig. 15. For the mass spectra of the
vector KK modes, it can be seen that the ground state is
zero mode (bound state), and all the massive KK modes
are resonant KK modes. From Table II and Fig. 15(f), it is
clear that there are six resonant KK modes when g = 206,
and all the resonant KK modes are shown in Fig. 16. So
we can summarize that the vector KK zero mode can be
localized on the pure geometric thick f(R) brane, and the
massive KK modes can be quasilocalized on the brane.
For the other cases n = 4(5 = 14) and n = 10(5 = 114),
the situation is similar to the case of n = 3(6 = 20).
Furthermore, the coupling function gy (R) can also be set
as other formulations and the property of the localization
will be different. And the discussion in more detail has be
investigated in Ref. [83].

VI. LOCALIZATION OF SPIN-1/2 FERMION
FIELDS ON THE THICK f(R) BRANES

In this section, the localization of Spin—1/2
fermion field on the thick f(R) branes will be investigated,

and the 5D Dirac
expressed as

action of fermion can be

8= / dxy/=g[¥TM 9y + wpr)¥ = nPTM0y,:(R) Y,
(92)
where w,, is the spin connection defined as
1w
with
N . _ A _ _
iy =S EMM(0uEY = OnE}) — 5 NV (0 EY — OnEjy)
1

The letters with barrier M, N are the five dimen-
sional local Lorentz indices and the vielbein E%

satisfies E%E%nM N — gMN The relation between the gamma

matrices TM and TM = (I'*,T%) = (y#,y°) is given
by I'M = EMTM,

Here the coupling between Dirac fermion and back-
ground spacetime [129] —¥PI™d,,g¢(R)¥ with 7 coupling
coefficient is introduced. Here we assume that the coupling
coefficient # is positive.

Considering the conformally flat metric Eq. (40),
the component of the spin connection is given by
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w, =3(0,A(z))y,rs and ws = 0. The equation of motion
of the 5D Dirac fermion can be derived as

[r"9, + 179, +20.A(2)) +nd.g¢(R)]¥ = 0. (95)
The chiral decomposition for ¥(x, z) can be introduced,

W(x.2) = e 24O [y, (x)Lo(z) + wr, (X)Ry(2)].  (96)
0

where ¥, = —y°¥,, and Wg, = y*¥, are the left- and
right-chiral components of the 4D Dirac fermion field,
respectively.

By takeing the following orthonormalization conditions
for the KK modes Ly and Ry

/oo LngdZ = 590‘v (97)
/ " RoR,dz = 6y, (98)
/°° LgRgdZ - 0, (99)

one can take the effective action of the 4D massless and
massive Dirac fermions from the 5D Dirac action (92)

=3 [ e/l 0+ ) = mow (100

By introducing the chiral decomposition Eq. (96), the
Schrodinger-like equations of motion for the left- and
right-chiral fermion KK modes Ly(z) and Ry(z) can be
obtained:

(=02 + Vi(2)|Lo(z) = mzLo(2). (101a)

(=02 + VR(2)]Ry(2) = m§Ry(2). (101b)

where the effective potentials Vi g(z) of the fermion KK
modes are read as

Vi(z) = (n9.9¢(R))* + n02ge(R), (102a)

Vr(2) = (n0.9:(R))> =ndZgi(R). ~ (102b)

By setting my = 0 in Eq. (101), the solution of zero modes
Ly and R, can be obtained

Ly ef(; dznd.g¢(R) _ en9r(R(2)) (103a)

Ro o &= Jo 4109®) _ oona(R@) (103b)

From the above relations (103), it is impossible to make
both massless left- and right-chiral KK modes to be
localized on the brane at the same time, since when one
is normalizable, the other one is not.

From Egs. (101) and (102), it is clear that, if we do not
introduce the coupling in the action (92), i.e., n = 0, the
effective potentials for left- and right-chiral KK modes
Vir(z) =0 and both left- and right-chiral fermions
cannot be localized on the thick brane, so the coupling
term must be introduced. Moreover, since R is even
function of z, V| r(z) are naturally Z, even with respect
to z. Here we set a simple formulation:

208%k* + 86k>

(R) = -2~ 200 104
aR) = = 20w (164

By using Egs. (54), (55), and (104), the asymp-
totic behaviors of Vi (z) at z=0 and z — oo are as
follows

Vi(z =0) = =2nk*,

{ Vi(z = 0) = 2 (1-06)z72, (105)
Vr(z =0) = 25k?,

{VR(Z—>oo) _)%(5_1)(2. (106)

Considering the coupling formulation (104) and Eq. (103),
for the positive coupling coefficient # and positive param-
eter 0 and k, only left-chiral fermion zero mode may be
localized on the brane. The asymptotic behavior of Ly(z) is
also given by

{Lo(z =0)=Ne™, (107)

Ly(z > ) — NpeCLlel’

where N, is a constant, C; = (6k):>0 and s =2>
‘ST"T‘" =7 are positive constants, respectively. It is easy to
see that the normalization condition of the left-chiral
fermion zero mode is satisfied, and it can be localized
on the brane.

Next, the effect of the coupling between fermion and
background spacetime for the property of the localiza-
tion will be investigated, so the coupling coefficient 7
will be taken different values: 7 = 1, 50, 100. This type
potential implies that resonant left- and right-chiral KK
modes may exist. Mimic to the case of vector, the
fermion relative probabilities for finding the left- and
right-chiral fermion resonant states with mass m can be
defined as:

L,R(z)*dz
L,R(z)Pdz’

J2
— —%
fzmux
~Zmax

Pyg(m?) (108)
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FIG. 17. The mass spectra and the effective potentials of the left- and right-chiral fermions with different coupling coefficient y = 1,

n = 50, and = 100. The parameters are set to n = 3 and k = 1.

For the case of n =3, when the coupling coefficient
n =1, the effective potentials and the mass spectra for
the left- and right-chiral fermion KK modes are shown
in Figs. 17(a) and 17(b). Only the left-chiral fermion
zero mode (bound state) can be localized on the brane.

When the coupling coefficient 1 =50, the effective
potentials and the mass spectra for the left- and right-
chiral fermion KK modes are shown in Figs. 17(c) and
17(d). For the left-chiral fermion KK modes, there is
only one bound zero mode and one massive resonant
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FIG. 18.
parameters are set to # = 100, n = 3, and k = 1.
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FIG. 19. The shapes of the left-chiral fermion KK modes, which is set to n = 100, n = 3, and k = 1.

KK mode, which is an even-parity. However, for the
right-chiral fermion KK mode, there is only one massive
resonant KK mode, which is an odd-parity. Both the
mass of the left- and right-chiral fermion KK modes are
the same. In fact, these conclusions are originated from
the coupled equations of the left- and right-chiral
fermions. When 5 = 100, the effective potentials and
the mass spectra for the left- and right-chiral fermion
KK modes are shown in Figs. 17(e) and 17(f).
The profiles of the relative probability P z(m?*) are
shown in Figs. 18(a) and 18(b), respectively. And the
left- and right-chiral fermion KK modes are shown in
Figs. 19 and 20. So we can summarize that the 4D
massless left-chiral fermion can be localized on the

brane, and the 4D massive Dirac fermions can also be
quasilocalized on the brane, which consist of the pairs
of coupled left- and right-chiral KK modes with differ-
ent parities. The total number of resonant KK modes
increases with the coupling coefficient 7.

For the cases of n =4 and n = 10, the situation is
similar to the case of n = 3, and the mass, width, and
lifetime of the left- and right-chiral fermion KK resonant
modes are listed in Table III.

Furthermore, the coupling function g¢(R) can also be set
as other formulations and the property of the localization
will be different. And the discussion in more detail has been
investigated in Ref. [129].

Lo . . .
Right 0.04
0.8 =1

Right
=2

FIG. 20. The shapes of the right-chiral fermion KK modes, which is set to = 100, n = 3, and k = 1.
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TABLE III. The mass, width, and lifetime of resonant KK modes of the fermions with the parameter k = 1.
n n Chrial Height of V; & 0 m? m r T
3 50 Left 201.3102 1 157.0089 12.5303 0.1732 5.7749
Right 202.9641 1 156.9938 12.5297 0.1801 5.5527
100 Left 798.2219 1 360.5018 18.9869 9.592 x 1073 1.042 x 10*
2 635.9341 25.2177 0.0464 21.5500
3 803.5692 28.3473 1.2032 0.8311
Right 798.9972 1 360.5020 18.9868 9.555 x 1073 1.046 x 10*
2 635.9326 25.2177 0.0470 21.2549
3 803.7101 28.3497 1.3213 0.7568
4 50 Left 296.0509 1 172.5166 13.1345 0.0057 173.6421
2 281.7977 16.7868 0.4054 2.4664
Right 296.7473 1 172.5166 13.1345 0.0058 172.3199
2 281.6335 16.7819 0.4227 2.3652
100 Left 1.179 x 103 1 373.4193 19.3240 1.844 x 107° 5.421 x 108
2 691.9976 26.3058 4.681 x 1073 2.136 x 10*
3 950.5699 30.8313 0.0113 88.4840
4 1.134 x 103 33.6808 0.2806 3.5632
Right 1.179 x 103 1 373.4196 19.3240 1.868 x 107° 5.353 x 108
2 691.9974 26.3058 4.647 x 1075 2.151 x 10*
3 950.5701 30.8313 0.0114 87.4471
4 1.134 x 103 33.6800 0.2929 3.4134
10 50 Left 175.4931 1 149.2316 12.2160 0.3738 2.6751
Right 177.7526 1 149.0260 12.2076 0.4045 2.4718
100 Left 694.0240 1 354.2681 18.8220 0.0010 929.1899
2 606.2331 24.6218 0.1903 5.2540
Right 695.0366 1 354.2683 18.8220 0.0011 909.9818
2 606.3846 24.6248 0.1982 5.0438

VII. CONCLUSION AND DISCUSSION

In this paper, we investigate a pure geometric thick
M, brane, embedded in a AdSs spacetime, in general
f(R) gravity theory. Here, the form of f(R) is set as
f(R) =>"", a;R" + A, and any background scalar has not
been introduced. For the pure geometric thick M, brane,
the parameter n must be satisfied n > 3, and for a certainty
value of n, a thick brane solution can be obtained. In this
paper, the solutions of the M, brane for n = 3, n = 4, and
n = 10, have been studied, and found that the solutions are
stable against tensor perturbations. Moreover, we inves-
tigate the localization of gravity and various bulk matter
fields on the branes.

For the gravity, it is found that the gravitational zero
mode can be localized near zero. All the massive modes
are continuous-spectrum wave functions and cannot be
localized on the brane. For the scalar field, the zero
mode is localized on the zero. For the vector field, if the
coupling between vector and background spacetime is not
introduced, the vector zero mode cannot be localized on the

brane, with the same case of RS brane. However, by
introducing the coupling, the zero mode can be localized on
the brane. For a large coupling coefficient, there exist
vector resonant states, and the number of the resonances
increases with the coupling coefficient. For the spin-1/2
fermion field, in order to localize the fermion zero mode,
the coupling between the fermion and the background
spacetime must be introduced. With a small coupling
coefficient, only the left-chiral fermion zero mode is
localized on the brane. However, with a large coupling
coefficient, the left-chiral fermion zero mode is localized on
the brane, and a finite number of resonant massive KK
modes of the left- and right-chiral fermions are quasilo-
calized on the brane. And the number of resonances also
increases with the coupling coefficient. Hence, the massless
fermion is localized on the brane consists of just the left-
chiral KK mode, and the massive fermions are quasilo-
calized on the brane consist of the left- and right-chiral
fermion KK modes, represented the 4D Dirac massive
fermions. The lifetime of the fermion KK resonant modes
decreases with their masses.
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