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We analyze the quasinormal modes (QNMs) of a recently obtained solution of a Schwarzschild black
hole (BH) with corrections motivated by Loop Quantum Gravity (LQG). This spacetime is regular
everywhere and presents the global structure of a black bounce, whose radius depends on a LQG parameter.
We focus on the investigation of massless scalar field perturbations over the spacetime. We compute the
QNMs with the Wentzel-Kramers-Brillouin approximation as well as the continued fraction method. The
QNM frequency orbits, for l ¼ 0 and n > 0, where l and n are the multipole and overtone numbers,
respectively, are self-intersecting, spiraling curves in the complex plane. These orbits accumulate to a fixed
complex value corresponding to the QNMs of the extremal case. We obtain that, for small values of the
LQG parameter, the overall damping decreases as we increase the LQG parameter. Moreover, the spectrum
of the quantum corrected black hole exhibits an oscillatory pattern, which might imply in the existence of
QNMs with vanishing real part. This pattern suggests that the limit n → ∞ for the real part of the QNMs is
not well defined, which differs from Schwarzschild’s case. We also analyze the time-domain profiles for the
scalar perturbations, showing that the LQG correction does not alter the Schwarzschild power-law tail. We
compute the fundamental mode from the time profile by means of the Prony method, obtaining excellent
agreement with the two previously mentioned methods.
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I. INTRODUCTION

The detection of gravitational waves (GWs) marks the
beginning of GWastronomy [1,2] and creates great expect-
ations for the future of gravitational physics research. Any
orbiting pair of astrophysical objects produces GWs, but
only those sufficiently compact and moving very rapidly
can produce detectable signals for the current generation of
GWs detectors. This makes black hole (BH) binaries ideal
systems for detecting GWs. The collision of BHs can be
divided in three stages: (i) inspiral, where the BHs orbit
around each other, getting closer due to loss of energy
through GWs; (ii) merger, which is the actual collision of
the two BHs; and (iii) ringdown, where the merged BH
relaxes to its equilibrium form (widely believed to be a Kerr
BH [3]). The GW signal produced by the binary carries a
very characteristic signature [4–6], which in turn can reveal
properties of the BH itself [7–9].

In a perturbed physical system, the modes of vibration
associated with energy dissipation are called quasinormal
modes (QNMs). Thus, the ringdown phase of the coales-
cence of two BHs is essentially characterized by the
corresponding QNMs [10,11]. The study of BH perturba-
tions began with the work of Regge and Wheeler [12] and
was further developed by Zerilli [13,14]. The problem of
finding the QNM frequencies was investigated for the first
time in a famous paper written by Chandrasekhar and
Detweiler as a non-self-adjoint boundary problem [15].
Thus, we lose the nice properties of self-adjoint problems,
such as completeness and normalizability of the eigen-
functions, and the spectrum becomes complex [16,17]. The
real part of the eigenfrequencies is the standard oscillation
frequency, whereas the imaginary part is related to the wave
damping.
Starting in the 1960s, due to several astronomical discov-

eries related with pulsar, quasars, and cosmic background
radiation, Einstein’s theory of general relativity (GR) expe-
rienced a new series of experimental confirmations [18,19].
More recently, in addition to the alreadymentioned detection
of GWs, the shadow images of M87* and Sgr A* were
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obtained [20,21].GRhad its birth in the beginning of the 20th
century, and now it is enjoying a more mature and robust era,
both theoretically and experimentally.
Despite these previous achievements, most relativists

believe that GR cannot be the final theory of gravity and
should be replaced by some quantum theory. The very early
Universe [22], the interior of BHs [23], and the last stages
of BH evaporation [24] are examples of physical scenarios
where quantum effects play a fundamental role and GR no
longer gives a precise description of the gravitational field.
This is one of the biggest open questions in theoretical
physics to date, i.e., how to reconcile gravity with quantum
mechanics.
The canonical quantization of gravity considering as

canonical variables the spatial metric and its conjugated
momentum, led to some problems [25]. Since the con-
straints equations are nonpolynomial functions of the
canonical variables, their corresponding operator equations
in the quantum formulation are not well defined [26]. Due
to Sen [27], Ashtekar [28], and Barbero [29], a new set of
coordinates was found, the Ashtekar-Barbero connection
variables, such that the constraints equations were reduced
to polynomial expressions. By writing GR in terms of the
Ashtekar-Barbero variables, it is possible to put the theory
in a framework very similar to other quantum field theories,
where quantization techniques have already been devel-
oped [30]. The early construction of Loop Quantum
Gravity (LQG) was based on the quantization of GR, in
terms of a smeared version of the connection variables in a
background-independent fashion. For some of the impor-
tant results of LQG, we can mention the construction of
singular-free cosmological models [31], the quantization of
spherically symmetric vacuum spacetime [32], as well as
the derivation of the Hawking-Bekenstein entropy [33].
Working within the full machinery of LQG is very

challenging, and some effective models have shown to be
useful in understanding what quantum gravity effects might
look like. There are several works applying modifications
to GR for cosmological models [34,35] and also for
spherically symmetric spacetimes, such as Schwarzschild
[36–38] and Reissner-Nordström solutions [39].
In Refs. [40,41], an effective spherically symmetric

spacetime is proposed, which is not singular and presents
a global structure of a black bounce whose radius is hidden
by an event horizon. Here, we calculate the scalar QNMs of
this quantum corrected BH, investigating how its spectrum
deviates from the well-known Schwarzschild case.
The remaining of this paper is organized as follows. In

Sec. II, we review some aspects of the solution obtained in
Refs. [40,41], highlighting its main properties. In Sec. III,
we investigate the dynamics of a massless scalar field over
the quantum corrected spacetime and review the corre-
sponding boundary problem of QNMs. In Sec. IV, we
revisit two methods for calculating QNM frequencies,

namely, the third order Wentzel-Kramers-Brillouin (WKB)
approximation, as well as Leaver’s continued fraction
method. In Sec. V, we exhibit a selection of our numerical
results. We first compare, as a consistency check, the third
order WKB results and the ones obtained via continued
fraction calculations. We also compute, with the Leaver
method, the first 30 overtones for themodes l ¼ 0 and l ¼ 1.
We present our final remarks in Sec. VI.We use natural units,
such that c ¼ G ¼ ℏ ¼ 1.

II. EFFECTIVE QUANTUM CORRECTED
SCHWARZSCHILD SPACETIME

The authors of Refs. [40,41] reported the following line
element,

ds2 ¼ −fðrÞdt2 þ
��

1 −
r0
r

�
fðrÞ

�
−1
dr2 þ r2dΩ2; ð1Þ

where r0 < 2M is a LQG parameter, fðrÞ≡ 1–2M=r, and
dΩ2 is the line element of the 2-sphere. This metric
represents a static, spherically symmetric, and asymptoti-
cally flat spacetime. The horizon is located at the hyper-
surface r ¼ rh ¼ 2M, similarly to what we have in
Schwarzschild spacetime (see for instance Ref. [42]).
Nonetheless, the quantity M cannot be simply interpreted
as the mass of the BH. As pointed out in Ref. [41], the
different geometric definitions of mass, namely, the
Komar, Arnowitt-Deser-Misner (ADM), and Misner-Sharp
masses, need to be taken into account. These quantities are
given by

MK ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r0
r

r
; ð2aÞ

MADM ¼ M þ r0
2
; ð2bÞ

MMS ¼ M þ r0
2
−
Mr0
r

; ð2cÞ

where MK, MADM, and MMS are the Komar, ADM, and
Misner-Sharp masses, respectively. The Komar and
Misner-Sharp masses do not need to coincide, since the
quantum corrected spacetime is not a solution of the
Einstein’s equations [43]. However, in the limit that r goes
to infinity, for spherically symmetric and asymptotically
flat spacetimes, the ADM and Misner-Sharp masses must
be equal [44], which is indeed the case. The BH parameters,
M and r0, can be redefined in a geometric invariant way,
according to

M ¼ lim
r→∞

MK; ð3aÞ

r0 ¼ 2 lim
r→∞

ðMMS −MKÞ: ð3bÞ
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In Fig. 1, we display the Penrose diagram of the
spacetime maximal extension [41]. Region I stands for
the asymptotically flat region in which r ∈ ðrh;∞Þ. This
patch has the usual conformal infinities, namely, the
timelike infinities, i− and iþ; the null infinities, J − and
J þ; and the spatial infinity, i0. Region II stands for the BH
region and corresponds to r ∈ ðr0; rhÞ. The remaining
regions III and IV, which cannot be covered by the
coordinate system ðt; r; θ;φÞ, are the white hole region
and another asymptotically flat region, respectively. The
blank bottom and upper regions with dashed contour are
copies of the middle structure [41].
The hypersurface r ¼ r0 is not a wormhole throat, since

r is a timelike coordinate in the region r0 < r < rh. In fact,
it corresponds to a bounce surface, analogous to the ones
studied, for instance, in Refs. [45,46]. Hence, this space-
time has a global structure of a black bounce (see Fig. 1).
We notice that the bounce radius r0 arises from the so-
called polymerization procedure [40,41]

r0 ¼ 2M
λ2

λ2 þ 1
; ð4Þ

where λ is a positive dimensionless parameter. From Eq. (4),
we note that the bounce is hidden by the event horizon
(r0 < rh). Therefore, as we show in Sec. V, the bounce does
not reveal itself in the QNMs, except for the fact that the
metric tensor components depend on r0. This is a particular
feature of the loop quantum corrected Schwarzschild space-
time. In othermodels of black bounce, the surface r ¼ r0 can
be located outside the event horizon [45,46]. In such cases,
there is a transition to a wormhole spacetime, and echoes
appear in the QNM spectrum (cf., for instance, Refs. [47–
49]). The effective quantumSchwarzschild spacetime, differ-
ently from the Schwarzschild BH, is regular everywhere, as
can be verified by computing the curvature scalar of this
spacetime.

III. SCALAR PERTURBATIONS

The dynamics of a massless scalar field Φ is determined
by the Klein-Gordon equation

∇μ∇μΦ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð5Þ

where g is the metric determinant and gμν are the contra-
variant components of the metric tensor. Due to spherical
and time translation symmetries, the scalar field admits the
product decomposition given by

ΦðxμÞ ¼ ψωlðrÞ
r

Ylmðθ;φÞe−iωt; ð6Þ

where Ylmðθ;φÞ are the spherical harmonics.
Inserting the metric components given in Eq. (1), as well

as the field decomposition given in Eq. (6), into Eq. (5), we
obtain a Schrödinger-like equation for the radial part, which
is given by

d2ψωl

dr2�
þ ðω2 − Vl;r0 ½rðr�Þ�Þψωl ¼ 0; ð7Þ

where the effective potential Vl;r0ðrÞ is defined by

Vl;r0ðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ 4M þ r0

2r3
−
3Mr0
r4

�
; ð8Þ

and r� is the tortoise coordinate:

dr� ¼
dr

fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r0=r

p : ð9Þ

The effective potential is illustrated in Fig. 2, where we see
that the maximum value of the potential decreases as we
increase the LQG parameter r0.

FIG. 1. Penrose diagram representing the global structure of the
spacetime proposed in Refs. [40,41], which corresponds to a
black bounce solution with radius r0.
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To calculate the scalar QNMs of the loop quantum
corrected Schwarzschild spacetime, we have to solve
Eq. (7), imposing the boundary conditions

ψωlðr�Þ ≈
8<
: e−iωr� ≈ ðr − 2MÞ

−2iωMffiffiffiffiffiffiffi
1−

r0
2M

p
; r� → −∞

eþiωr� ≈ eiωrr2iωMþiωr0
2 ; r� → þ∞

: ð10Þ

Equations (7) and (10) define an eigenvalue problem for
ψωl with eigenvalue ω in the domain r ∈ ð2M;∞Þ. We
expect that the spectrum is a countable infinite set
fωnjn ¼ 0; 1;…g, where n enumerates the eigenfrequen-
cies in increasing imaginary part magnitude order, the so-
called overtones.
In general, an expression for the spectrum cannot be

written in a closed analytical form, not even for
Schwarzschild. Thus, it is common to implement approxi-
mate and numerical methods to treat the problem of QNMs.
In the next section, we implement the third order WKB,
continued fraction, and Prony methods to compute the
scalar eigenfrequencies of the loop quantum corrected
Schwarzschild spacetime.

IV. SCALAR QNMs CALCULATIONS

A. WKB approximation

The first method we implement for the calculation of
scalar QNMs is the third order WKB approximation. The
WKB method is a semianalytic technique, first applied to
BH scattering problems by Schutz and Will [50] and then
improved by Iyer and Will [51]. For any barrier type
potential whose extremities are fixed (which is our case, see
Fig. 2), this method can be applied and yields an analytic
formula that approximates the QNM frequencies.

The third order WKB approximation is given by [51]

ω2
l;r0;n

≈ V0 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

q
Λ − i

�
nþ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

q
ð1þΩÞ;

ð11Þ

with

Λ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

p
�
1

8

�
Vð4Þ
0

V 00
0

��
1

4
þ κ2

�

−
1

288

�
V 000
0

V 00
0

�
2

ð7þ 60κ2Þ
�
; ð12aÞ

Ω ¼ 1

ð−2V 00
0Þ
�

5

6912

�
V 000
0

V 00
0

�
4

ð77þ 188κ2Þ

−
1

384

�
V 0002
0 Vð4Þ

0

V003
0

�
ð51þ 100κ2Þ

þ 1

2304

�
Vð4Þ
0

V 00
0

�2

ð67þ 68κ2Þ

þ 1

288

�
V 000
0 V

ð5Þ
0

V 002
0

�
ð19þ 28κ2Þ

−
1

288

�
Vð6Þ
0

V 00
0

�
ð5þ 4κ2Þ

�
; ð12bÞ

where V0 is the maximum value of Vl;r0 , κ ¼ nþ 1=2; the
primes correspond to first, second, and third order deriv-
atives; and the superscript in round brackets (i) denotes
derivative of fourth and higher orders with respect to the
tortoise coordinate. We note that there is an alternative but
equivalent method to the third order WKB approximation,
proposed in Ref. [52], based on an analogy between the BH
QNM problem and a quantum anharmonic oscillator. (The
third order WKB corrections given in Eq. (12) can be
interpreted as the anharmonicity corrections to the potential
[52].) In this work, such approximations will be used
mainly as a consistency check for the continued fraction
method.

B. Continued fraction method

One of the most accurate methods to calculate QNMs
was implemented in BH physics by Leaver [53], and it is
called the continued fraction method. This method is based
on finding an analytical solution of the radial equation as a
power series satisfying the QNM boundary conditions.
Thus, the QNM spectrum is determined by those values of
the frequencies which make the series convergent on the
entire domain.
In order to apply the power series method, we first need

to investigate the regular/irregular singular points of the
ordinary differential equation (7) (see Ref. [54] for further

�10 �5 0 5 10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

FIG. 2. Effective potential given in Eq. (8) as a function of the
tortoise coordinate for various values of r0 and l ¼ 0.
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details). The singularities of Eq. (7) are f0; r0; 2M;∞g,
where the singularity at infinity is irregular and all the
others are regular. The power series solutions around some
singularity has a convergence radius which cannot be
greater than the distance to the next neighboring singular
point. Since the domain of the QNM eigenvalue problem is
ð2M;∞Þ, we cannot find a well-defined solution in the
entire domain using a power series of r. Therefore, we
consider the map

r ↦
r − 2M
r − r0

: ð13Þ

Let ð0; r0; 2M;∞Þ be the ordered 4-tuple formed by the
singularities of Eq. (7). This 4-tuple, according to Eq. (13),
is mapped to ð2M=r0;∞; 0; 1Þ (see Fig. 3). Moreover, the
domain ð2M;∞Þ is compactified into (0, 1). The singular
point 2M=r0 is always greater than 1, since 0 < r0 < 2M.

Hence, in this new coordinate defined by Eq. (13), we can
find a well-defined analytical solution of Eq. (7) in the
domain (0, 1), which corresponds to the entire domain of
interest.
We, therefore, may consider the solution of Eq. (7) to be

ψωl ¼ rðr − r0Þ2iωMþiωr0
2
−1eiωr

X∞
n¼0

an

�
r − 2M
r − r0

�
ζþn

; ð14Þ

where

ζ ¼ −2iωMffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r0

2M

p ; ð15Þ

is the characteristic exponent obtained from the indicial
equation [54] corresponding to the ingoing solution at the
horizon. The functions multiplying the summation are
chosen to satisfy the boundary conditions at infinity, as
well as to simplify the recurrence relation.
The sequence ðanÞn∈N is determined by a 4-term recur-

rence relation defined by

α0a1 þ β0a0 ¼ 0; ð16aÞ

α1a2 þ β1a1 þ γ1a0 ¼ 0; ð16bÞ

αnanþ1 þ βnan þ γnan−1 þ δnan−2 ¼ 0; n ¼ 2; 3;…;

ð16cÞ

where the recurrence coefficients are given by

αn ¼ −32i
ffiffiffi
2

p
M5=2ðnþ 1Þωð2M − r0Þ þ 8Mðnþ 1Þ2ð2M − r0Þ3=2; ð17aÞ

βn ¼ 64M4ω2ð2M − r0Þ1=2 þ 8
ffiffiffi
2

p
M5=2ωð12Mωþ 12inþ 5iÞð2M − r0Þ

þ 4Mð−2lðlþ 1Þ þ 24M2ω2 þ 6iMð2nþ 1Þω − nð6nþ 5Þ − 2Þð2M − r0Þ3=2
þ 4

ffiffiffi
2

p
M3=2ωð4Mω − 4in − iÞð2M − r0Þ2 þ 2ð2nþ 1Þðnþ 2iMωÞð2M − r0Þ5=2; ð17bÞ

γn ¼ −128M4ω2ð2M − r0Þ1=2 − 16
ffiffiffi
2

p
M5=2ωð12Mωþ 6in− iÞð2M − r0Þ

þ 4Mð2lðlþ 1Þ þ nð−2− 24iMωÞ þMωð−34Mωþ 3iÞ þ 6n2 þ 1Þð2M − r0Þ3=2
þ 8

ffiffiffi
2

p
M3=2ωð6Mωþ 4in− iÞð2M − r0Þ2 þ ð−4lðlþ 1Þ þ 72M2ω2 þ 4iMð6n− 1Þω− 8n2 þ 4n− 2Þð2M − r0Þ5=2

þ 8
ffiffiffi
2

p
M3=2ω2ð2M − r0Þ3 þωð−2Mωþ 4in− iÞð2M − r0Þ7=2; ð17cÞ

δn ¼ 64M4ω2ð2M − r0Þ1=2 þ 8
ffiffiffi
2

p
M5=2ωð12Mωþ 4in− 3iÞð2M − r0Þ

þ 4Mð3nð1þ 4iMωÞ þMωð10Mω− 9iÞ− 2n2 − 1Þð2M − r0Þ3=2 þ ð−4
ffiffiffi
2

p
M3=2ωð16Mωþ 4in− 3iÞÞð2M − r0Þ2

þ ðnð−6− 32iMωÞ þ 12Mωð−5Mωþ 2iÞ þ 4n2 þ 2Þð2M − r0Þ5=2 þ 8
ffiffiffi
2

p
M3=2ω2ð2M − r0Þ3

þωð14Mωþ 4in− 3iÞð2M − r0Þ7=2 −ω2ð2M − r0Þ9=2: ð17dÞ

FIG. 3. Schematic representation of the map defined by
Eq. (13). We assign the values taken by singularities
ð0; r0; 2M;∞Þ ↦ ð2M=r0;∞; 0; 1Þ and show how the domain
ð2M;∞Þ is mapped to (0, 1).
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This recurrence relation is in agreement with Leaver’s
hypothesis, which says that a radial equation with a
confluent singularity and three regular singularities gen-
erates a solution whose expansion coefficients obey a
4-term recurrence relation [55].
To calculate the QNM from a 4-term recurrence relation,

we first have to apply the Gaussian elimination scheme,
defined by

α̃n ≡ αn; β̃n ≡ βn; γ̃n ≡ γn; for n ¼ 0; 1; ð18Þ
and

δ̃n ≡ 0; α̃n ≡ αn; ð19aÞ

β̃n≡βn−
α̃n−1δn
γ̃n−1

; γ̃n≡ γn−
β̃n−1δn
γ̃n−1

; for n≥ 2: ð19bÞ

The new recurrence coefficients now obey a 3-term
recurrence relation given by

α̃0a1 þ β̃0a0 ¼ 0; ð20aÞ

α̃nanþ1 þ β̃nan þ γ̃nan−1 ¼ 0; n ¼ 1; 2;…: ð20bÞ

The condition that the series defined in Eq. (14) converges
uniformly is given by [53]

0 ¼ β̃0 −
α̃0γ̃1

β̃1 −
α̃1 γ̃2

β̃2− α̃2 γ̃3
β̃3−���

;

≡ β̃0 −
α̃0γ̃1
β̃1−

α̃1γ̃2
β̃2−

α̃2γ̃3
β̃3−

… ð21Þ

Thus, the set of frequencies that makes Eq. (21) true is,
precisely, the QNM frequencies.
The roots of Eq. (21) can be found numerically. The most

stable root of the continued fraction defined in Eq. (21) is
the fundamental mode. The nth inversion of Eq. (21) is
defined by

β̃n −
α̃n−1γ̃n
β̃n−1−

… −
α̃0γ̃1
β̃0

¼ α̃nγ̃nþ1

β̃nþ1−
α̃nþ1γ̃nþ2

β̃nþ2−
…; ð22Þ

and its most stable root is the nth eigenfrequency.

C. Prony method

We can also solve Eq. (5) without assuming the time
dependence e−iωt in Eq. (6). This leads to the partial
differential equation,

∂
2Ψl

∂r2�
−
∂
2Ψl

∂t2
− Vl;r0 ½rðr�Þ�Ψl ¼ 0; ð23Þ

where now Ψl is a function of the variables ðt; r�Þ. We may
solve Eq. (23) numerically, setting a Gaussian wave

package centered at r� ¼ 0 as our initial configuration
for the field. The time evolution of the solution is
characterized by three stages: (i) a prompt response at
early times, which is strongly determined by the chosen
initial conditions of the field; (ii) exponential decay at
intermediate times, determined by the QNMs; and
(iii) power-law falloff at late times, due to backscattering
of the field in tail of the potential.
Once Eq. (23) is solved for some initial data configu-

ration, by means of estimating methods, one is able to
construct an analytic approximation that fits the original
solution. Here, we use the Prony method to find an
approximate Fourier decomposition, which allows us to
calculate the fundamental mode. A detailed description of
the Prony method can be found in Ref. [56].

V. RESULTS

In this section, we exhibit a selection of our results,
obtained from the methods described in the previous
sections.
For a consistency check that the continued fraction

method leads to the correct values of the eigenfrequencies,
we first compare the QNMs calculated with Leaver’s
method and the WKB approximation.
We compute the QNMs n ¼ 0, 1, 2 for different numbers

of the azimuthal number l ¼ 0, 1, 2. The results are
exhibited in the top panel of Fig. 4. We define a color
code for each value of n, namely, green ↔ n ¼ 0,
blue ↔ n ¼ 1, and red ↔ n ¼ 2. The (green, blue, and
red) circles represent the QNMs calculated with the WKB
method, while the solid lines were obtained by the
continued fraction method. Both WKB and continued
fraction calculations were computed for r0=rh ranging
from 0 (Schwarzschild) to 0.99. The yellow circles, located
at the top of each continuous line, represent the quasinor-
mal frequencies of the Schwarzschild BH calculated using
the WKB approximation.
Figure 4 shows that, as we increase the values of l, the

results obtained fromWKB and continued fraction methods
converge to the same value, which was already expected.
Nonetheless, even for l ¼ 0, both WKB and continued
fraction methods results are in very good agreement.
From the continued fraction computations, we also note

that the curves in the complex plane, parametrized by r0=rh,
for n > 0 and l ¼ 0, have a spiral-like shape. We display
the curves for n ¼ 1, l ¼ 0, and n ¼ 2, l ¼ 0 in the left and
right bottom panels of Fig. 4, respectively. We note that, in
order to obtain the results shown in the bottom panel of
Fig. 4, we applied the continued fraction method with the
improvement proposed by Nollert [57]. The Nollert
improvement is suitable to compute QNM frequencies
with large imaginary part; hence, it gives accurate numeri-
cal results when the LQG parameter is close to the extreme
value. While the LQG parameter varies in the indicated
range, the trajectory described in the complex plane moves
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away from the Schwarzschild QNMs and spirals toward
some fixed complex value, which corresponds to the QNMs
associated with the extremal case. A similar behavior was
also found for the Reissner-Nordström BH [58]. We also
note that that these curves are self-intersecting. The exist-
ence of self-intersecting curves in the orbits of the QNM
frequencies is related to the fact that, for different values of
the LQG parameter r0, the BH may present the same
frequency for some given n.

A. l = 0 modes

We can fix l ¼ 0 and compute the first 30 modes for
several values of r0=rh. The results, calculated with the

continued fractionmethod, are displayed in Fig. 5. The small
deviation from Schwarzschild regime (r0=rh ¼ 0, 0.05, 0.1)
is displayed in the top left panel of Fig. 5, where we obtain
the famous Schwarzschild’s scalar spectrum, formed by
two nonintersecting branches of QNM frequencies, with
slight disturbances. There is a decrease in the damping, in
accordance with Fig. 4.
Nonetheless, the QNM frequencies for higher values of

r0=rh are completely different from the Schwarzschild
case. In the remaining panels of Fig. 5, we exhibit the
spectrum near r0=rh ¼ 0.2, 0.3, 0.4, 0.5. As the LQG
parameter varies, the real part of the frequencies oscillates.
We obtained frequencies with ReðωÞ ¼ 0, e.g., the mode
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FIG. 4. Top: first three (n ¼ 0, 1, 2) QNM-frequencies of the scalar field on the quantum corrected Schwarzschild spacetime.
The green plots correspond to n ¼ 0, blue plots correspond to n ¼ 1, and red correspond to n ¼ 2. Circles represent the WKB
calculations, for several values of the LQG parameter r0, beginning at r0=rh ¼ 0 (yellow circles representing the Schwarzschild case)
and ending at r0=rh ¼ 0.99. The solid line shows the continued fraction calculation in the same range of parameters. Bottom:
computation of QNM frequencies for n ¼ 1, l ¼ 0 (bottom left panel) and n ¼ 2, l ¼ 0 (bottom right panel) for r0=rh ranging from 0 to
0.99, obtained using the continued fraction method with Nollert improvement [57]. All the frequencies become less damped as r0=rh
increases.
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FIG. 5. First 30 QNM frequencies (n ¼ 0; 1;…; 29) of the scalar field on the quantum corrected Schwarzschild spacetime
for l ¼ 0. The top left panel shows the modes for r0=rh ¼ 0, 0.05, 0.1, whereas the remaining panels exhibit the spectrum of the quantum
corrected BH for values of the LQG parameter near r0=rh ¼ 0.2, 0.3, 0.4, 0.5. All the spectra were calculated with the continued fraction
method.
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FIG. 6. First 30 QNM frequencies (n ¼ 0; 1;…; 29) of the scalar field on the quantum corrected Schwarzschild spacetime
for l ¼ 1. We display in the top left panel the modes r0=rh ¼ 0, 0.05, 0.1, whereas in the remaining panels, we show the spectrum for
higher values of the LQG parameter, namely, near r0=rh ¼ 0.2, 0.3, 0.4, 0.5. All spectra were calculated with the continued fraction
method.
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n ¼ 4 for r0=rh ¼ 0.48. However, the continued fraction
method does not converge for ReðωÞ → 0; hence, the
existence of purely damped modes cannot be indeed stated.
We remark that the existence of frequencies with real part

almost equal to zero can be found in Schwarzschild’s QNM
spectrum for the gravitational field. The algebraically special
frequency 2Mω ≈ −iðl − 1Þðlþ 1Þðlþ 2Þ=6 is almost a
pure imaginary number [59]. In the Schwarzschild case,
the algebraically special frequency does not exist for fields
other than the gravitational field. Thus, qualitatively, in the
weakly damped regime, the spectrum of the quantum
corrected Schwarzschild BH for the scalar field resembles
the spectrum of the Schwarzschild BH for the gravita-
tional field.

B. l = 1 modes

We may now fix l ¼ 1 and compute the first 30 modes
for the same values of the LQG parameter of Sec. VA.
The QNMs were calculated using the continued fraction
method and are displayed in Fig. 6. Once more, small
holonomy corrections r0=rh ¼ 0, 0.05, 0.1 lead to small
disturbances in the Schwarzschild spectrum, leading to
an overall decrease in the imaginary part of the QNM
frequencies.
The QNMs for higher values of the LQG parameter,

namely, near r0=rh ¼ 0.2, 0.3, 0.4, 0.5, are displayed in the
remaining panels of Fig. 6. As we increase the value of
r0=rh, again the oscillatory pattern appears in the spectrum
of the quantum corrected BH. The first five overtones are
also exhibited in Table II.
The pattern exhibited in both Figs. 5 and 6 may go on

forever as n increases. However, such analysis requires an
asymptotic study of QNMs that is beyond the scope of this
paper. If this assertion is true, then the limit limn→∞Reω
does not exist, which would differ from the Schwarzschild
case, which is known to be 2Mlimn→∞Reω ¼ ln 3=4π [60].

C. Time domain profile

We may solve numerically the time-dependent wave
equation given by Eq. (23), and for that, we need to specify
an initial condition. We consider the initial data as a
Gaussian, according to

Ψlð0; r�Þ ¼ e−r
2�=4; ∂tΨlðt; r�Þjt¼0 ¼ 0: ð24Þ

The chosen initial data do not play a significant role in the
time profile of the wave function from intermediate times
onward. After a transient initial stage (highly dependent on
initial conditions), the time profile is dominated by the
QNMs and then by the late time tail decay.
In Fig. 7, we exhibit the logarithmic plot for the absolute

value of the solution as a function of time. The tortoise
coordinate is fixed at r�=rh ¼ 10. We consider the cases
l ¼ 0 (left panel) and l ¼ 1 (right panel). The logarithmic
waveform is calculated for the cases of Schwarzschild
(darker blue) and holonomy corrected Schwarzschild with
r0=rh ¼ 0.3 (lighter blue). We also include the respective
Prony’s fittings (stars for Schwarzschild and inverted
triangles for quantum corrected Schwarzschild).

FIG. 7. Plots of ln jΨlðt; r� ¼ 10Þj for l ¼ 0 (left panel) and l ¼ 1 (right panel). In both plots, we include the Schwarzschild case
(darker blue), the quantum corrected Schwarzschild case with r0=rh ¼ 0.3 (lighter blue), and also their associated fittings obtained from
the Prony method (stars and inverted triangles, respectively).

TABLE I. First five overtones of scalar perturbations, expressed
in r−1h units, calculated by the continued fraction method for
l ¼ 0. We consider the Schwarzschild BH as well as the
holonomy corrected Schwarzschild BH with r0=rh ¼ 0.3.

l ¼ 0 (Leaver)

n Schwarzschild r0=rh ¼ 0.3

0 0.2209 − 0.2097i 0.2099 − 0.1828i
1 0.1722 − 0.6961i 0.1705 − 0.5996i
2 0.1514 − 1.2021i 0.1518 − 1.0329i
3 0.1408 − 1.7073i 0.1403 − 1.4657i
4 0.1341 − 2.2112i 0.1307 − 1.8974i
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The three phases described in the Sec. IV C are clearly
distinguished in Fig. 7. We highlight that the power-law tail
developed at late times seems to be independent of the loop
quantum correction.
The fundamental modes, obtained from the Prony

method, for l ¼ 0, 1 are shown in Table III. This results
can be compared with those of Tables I and II. As we can
see, both results are in excellent agreement.

VI. DISCUSSION AND CONCLUSIONS

Computing QNMs of BHs is a long-standing task in BH
physics. The first calculation of QNMs as a boundary
problem was carried out in a paper by Chandrasekhar and
Detweiler [15]. Later on, Leaver developed a simple, but
very powerful, approach to this problem [53,55]. Since
then, the calculation of QNMs of different types of
astrophysical objects has been carried out. Most of the
main BHs’ spacetimes already have their QNMs cataloged
in several tables with great precision.
Simultaneously with the progress of the BH perturbation

theory, the search for a quantum theory of gravity was
strongly active. Among several possibilities, the theory of
LQG has had many interesting results, namely, the con-
struction of singular-free cosmological and BH solutions

[31,32] and the derivation of the Hawking-Bekenstein
entropy [33]. These results might be the smoking guns
to a complete and consistent theory of quantum gravity.
Nevertheless, there is still a lot of work to be done until we
can interpret all LQG results properly. Thus, many effective
models have been studied, aiming to obtain effects that one
would expect to observe in the complete LQG theory.
We investigated the scalar QNMs of a quantum corrected

Schwarzschild BH. We used standard methods of BH
perturbation theory, namely, the third order WKB approxi-
mation, the continued fraction method (also named as
Leaver’s method) and the Prony method. In order to
perform a consistency check, we compared the numerical
results, computed through the three different methods, and
obtained an excellent agreement, in the regime of appli-
cability of each method.
We computed the QNMs for different values of the

multipole number l and the overtones n. In particular, we
obtained the first 30 overtones for the fundamental mode
l ¼ 0 and the first 30 overtones for the mode l ¼ 1, using the
Leaver method. Our numerical results show that, for a fixed l
and n, the quantum corrected Schwarzschild BH perturba-
tions become less damped aswe increase the LQGparameter
r0. Moreover, for l ¼ 0 and n > 0, the QNMs frequencies
curves in the complex plane are self-intersecting, meaning
that two different quantum corrected Schwarzschild BH
configurations may have the same QNMs.
Furthermore, we obtained that for middle-to-high values

of r0=rh the scalar QNMs of the quantum corrected
Schwarzschild BH may have vanishing real part, i.e., it
admits purely decaying modes. We remark that purely
decaying modes in a classical Schwarzschild BH exist
solely for gravitational perturbations [53,59].
The recent detection of GWs has deepened our under-

standing of the classical nature of gravity. It is possible that
future generations of GW detectors, such as the LISA
detector, can probe the quantum nature of the gravitational
field. In this work, we obtained that the QNM oscillations
of a quantum-corrected BH can be very different from the
Schwarzschild one. Our results indicate that the story about
the quantum nature of gravity can be heard from the sounds
played by a BH.
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