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Bimetric gravity is a theory of gravity that posits the existence of two interacting and dynamical metric
tensors. The spectrum of bimetric gravity consists of a massless and a massive spin-2 particle. The form of
the interactions between the two metrics g,, and f,, is constrained by requiring absence of the so-called
Boulware-Deser ghost. In this work we extend the original bimetric theory to its bimetric-affine
counterpart, in which the two connections, associated with the Ricci scalars, are treated as independent
variables. We examine in detail the case of an additional quadratic in the Ricci scalar curvature term

R?(g,T) and we find that this theory is free of ghosts for a wide range of the interaction parameters, not
excluding the possibility of a dark matter interpretation of the massive spin-2 particle.
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I. INTRODUCTION

The framework of modern cosmology, consisting of the
theory of gravitation and the Standard Model of particle
physics is characterized by the fact that the former is treated
classically due to the present lack of a fully quantum UV
completion of general relativity (GR), in contrast to the
latter which is a fully quantum field theory. Nevertheless,
as long as we are not very close to the Planck energy scale
it is believed that the effects of gravitation can be
treated classically in terms of an effective theory of gravity
based on GR with possible modifications arising from the
quantum nature of gravitating matter fields. Independently
of such expected modifications, open cosmological issues
like the dark energy associated with the present accelerated
expansion might require the modification of GR at large
distances as well. The problem of dark energy, the equally
pressing problem of dark matter, as well as the realization
of inflation at the early stages of the Universe have attracted
a number of proposals based on the introduction of new
fields, mostly scalar but also fermions and vectors. New
fields directly related to the gravitational sector such as
the scalar mode arising in the Starobinsky model [1] or a
massive spin-2 partner of the graviton have also been
considered, the latter being the key ingredient of the
bimetric theory of gravity [2]. A massive graviton also
arises in the massive gravity theory of Dvali-Gabadadze—
Porrati (DGP) [3,4]. The theory of a massive spin-2 field
has been first considered by Fierz and Pauli [5]. Although
the associated problem of a smooth massless limit was
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resolved [6], Boulware and Deser [7] showed that as it
stood the theory would necessarily contain a ghost. De
Rham, Gabadadze, and Tolley studied a nonlinear theory of
massive gravity in whose decoupling limit they proved the
absence of the ghost degree of freedom [8], while Hassan
and Rosen [9] generalized the de Rham, Gabadadze, and
Tolley massive gravity by including an arbitrary reference
metric f,, instead of the Minkowski one (see also [10-13]).
At relatively recent time a ghost-free nonlinear theory of
massive spin-2 was formulated by Hassan and Rosen [2],
but this time the gravitational action includes an additional
Ricci scalar for the new metric f,. A key feature of the new
theory, named bimetric gravity (or bigravity), is that both
metrics are dynamical contrary to the massive gravity
theories so far. For reviews on the subject of massive
gravity and bimetric gravity see, e.g., [14—16].

Bimetric gravity has been studied extensively in recent
years with still continuing activity [17-21]. An aspect
of bimetric gravity of a phenomenological interest is
the possible interpretation of the massive spin-2 particle
as a dark matter candidate [22-29]. In this scenario the
coupling of the massive spin-2 particle to the Standard
Model particles, being of gravitational origin, is naturally
Planck suppressed. This exceptionally feeble coupling to
matter could clarify why dedicated detection experiments
and collider searches have not found any signals of dark
matter.

As it is mentioned above gravitating quantum matter
fields are bound to generate modifications of GR, a well-
known example being the Starobinsky model [1] featuring
an additional quadratic Ricci scalar curvature R” term.
An immediate question arising is whether the ghost-free
construction of bimetric gravity could still be applied

© 2023 American Physical Society
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appropriately modified. Since the standard metric R? theory
gives rise to an additional dynamical scalar degree of
freedom the answer to this question rests on the detailed
nonlinear dynamics involving this extra scalar [see [30-34]
for applications of general F(R) bimetric extensions under
the metric formulation of gravity]. In contrast, in the metric-
affine (Palatini) formulation [35] of the Starobinsky model,
in which the connection is an independent variable, no such
extra dynamical scalar arises. In such a framework the
construction of a ghost-free bimetric R? theory, involving
only the graviton and its massive spin-2 partner, can be
conclusive. We note that the presence of quadratic R? terms
have proven to be important in models of cosmological
inflation [36-51].

In the present article we extend the original bimetric
theory to its bimetric-affine counterpart and study the case
of an additional quadratic curvature term, focusing on the
case of a quadratic term of the scalar curvature associated to
the standard graviton metric. We demonstrate that models
of ghost—free1 gravitating massive spin-2 can be constructed
along the lines of the standard bimetric gravity theory. In
Sec. II we set up the theoretical framework of bimetric
gravity and the bimetric-affine extension of it. In Sec. Il we
consider bimetric-affine theories based on an action that
includes quadratic terms of the Ricci scalar R? and derive
the equivalent bimetric action with a modified potential.
The linearized bimetric-affine quadratic action is presented
in Sec. IV and in Sec. V we analyze the corresponding
parametric space. Finally, we summarize and conclude
in Sec. VL

II. BIMETRIC GRAVITY

Standard bimetric gravity [2] based on the Einstein-
Hilbert action® is defined as®

S= /d“x{mg\/—_gR(g) + mi\/=fR(f)
+ 2m§m2\/—_gV(\/K)}, (1)

where g, and f,, stand for the two metric tensors and the
potential depends on the tensor (v/A)* , defined by

() () e

'See [52,53] for a discussion on the presence of ghosts in
ger%eral metric-affine theories with higher order curvature terms.
Throughout this paper we use different symbols for the
curvature scalar or/and tensors, which in the standard metric
gravity we denote by R, while in metric-affine gravity by R.
In the literature it is common to replace the scale my by a
dimensionless parameter « defined through m, = am,. Also, the
scale m is redundant, being an overall scale for the parameters f3,,,
2 2,2

and it is often set as m~ = « my.

The form of the potential is constrained so that the so-called
Boulware-Deser ghost [7] is absent and the arising mass for
one of the spin-2 combinations has the Fierz-Pauli form.
The exact form of the potential is

4
V(VA) =3 e, (V). (3)
n=0
where /3, are parameters, and e,,(\/Z) are five functions of
the metric tensors, which are given by
n+l n—1

o (V8) = EL N

k=0

1)*Tr (\/K"_k) e (\/E) . (4

starting with eq(v/A) = 1. To obtain a linearized approxi-
mation of the above theory we consider small fluctuations
of the metrics around a common background g,,

9w ~ g;w + hﬂl/’ fﬂl/ ~ g;w + l/w' (5)

The resulting linearized action takes the form

S= / d*x\/=§ { By & e =L f LM 1
C(h—zﬂ

I
Ay (huh =512 =21 - 4)

+B [(h,w —1,)? +

|
+ A (lﬂ,,zw ~SE-21- 4) } (6)

where £, is the Lichnerowicz operator. The appearing
parametric coefficients are

1
B = —mémz(ﬂl + 26, + ps).

4
1
A, = =5 M 2m*(Bo + 3P1 + 3P + Bs),
1
Ay = —Emémz(ﬂl + 3P, + 35 + Pa). (7)

The linearized action (6) describes one massless and one
massive spin-2 particle with zero cosmological constant if
C=-1, and B<0. (8)
Unlike the quadratic theory, which will be analyzed in the
next section, in the case of the usual bimetric theory the
requirement C = —1 that “removes” the ghost degree of
freedom from the theory is automatically satisfied due to

the special form of the potential (3). Note also that in
general one parameter is fixed from the equality of the

104012-2



BIMETRIC-AFFINE QUADRATIC GRAVITY

PHYS. REV. D 107, 104012 (2023)

cosmological constants and a second one if we assume zero
As, i.e., zero cosmological constants.

Applying the conditions (8) we can rewrite the action (6)
in terms of the massive (M,,) and massless (G,,) eigen-
states

——=L (i, - (92)

/41/ + mflﬂl/) (9b)

A /m + m> F
,/m + mf
The inverse relations are

——(m,G,, —mM,,),  (10a)

,/m +mf
,/m —|—mf

——(m/G,, + myM,,). (10b)
The action is*
1
S = / d4 [ G g/w G/m + Z Mﬂl/ gﬂupﬂ MPr°o
mFP (M, M+ — M2)] : (11)

Note that the Fierz-Pauli mass is

my
P, (B1+ 22 + B3).
(12)

The so-called minimal choice for the f# parameters is

/}0:3’ ﬂlz_lv ﬂ2:ﬂ3:0’ ﬁ4:1 (13)

*Assuming that the coupling to matter is

¢, = GwT eV
7% )
2 im '’

1
[ 2 2 w / 2
mg—i-mf Mgy /1y

from the effective coupling of the massless mode we can read off

the physical Planck mass to be Mp = | /mﬁ + m]% The issue of

which metric tensor should couple to the Standard Model particle
spectrum has been discussed extensively in the literature [54—70],
and, as a result, only two feasible options are free of ghost degrees
of freedom. One option is for a matter field to couple minimally
to only one of the metric tensors. The other option is for matter
to couple minimally to an effective metric that is formed by
combining the two metrics.

These values yield
LI
A;=A;=0 and B:—ngm. (14)
Therefore, in this case mgp = m?*(mg + m3)/ms.

The bimetric action (1) can also be considered in a
bimetric-affine framework in which the connections asso-
ciated with each Ricci scalar are not constrained by the
Levi-Civita (LC) condition but are independent variables.

The action can be written in terms of the two distortion
tensors

Cﬂpv = rﬂpb - Fﬂpu(g)|LC’ éﬂ/)u = llpzz - Fﬂpu(f)|LC’

(15)

as

S= /d4 Mgn/=99" R ( +mf\/7fMDR
+2mim? =gV (VA) }. (16)

The curvature scalars can be written in terms of the
corresponding standard metric Ricci® scalars as

R(g9.C) = R(g) + 2Dy, (9)C,"* + Cr.Cr—Cre

(17)

= R(f) + 2Dy, ()0, +C1 07 = C1C™,
(18)

R(f.C)

where the covariant derivatives are taken with respect to
the corresponding Levi-Civita connections. Varying the

action with respect to C and C we obtain that Cl, =80,

and éﬂ" L= 5’,;@,,, where Q, and Q, are arbitrary vectors.
Substituting this solution into the curvature scalar expres-
sions cancels out all extra terms and reduces them into the
corresponding Ricci scalars. As a result the action returns
into its familiar form (1). Therefore, the bimetric-affine
formulation of the Einstein-Hilbert gravity is entirely
equivalent to the standard bimetric formulation.

III. QUADRATIC GRAVITY

As we have explained in the introduction there is
sufficient evidence that quantum corrections of matter

>The antisymmetrization of indices is defined as T7,) =
%(T - Tl/}l)
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fields coupled to gravity will generate modifications to the
Einstein-Hilbert action. The simplest of these corrections
corresponds to quadratic curvature terms and in particular
to quadratic Ricci scalar terms, being safe from the point of
view of not introducing any new ghostlike degrees of
freedom. In our case of a bimetric theory, such terms would
be R?(g) or R*(f) or even a mixed term R(g)R(f). In what
follows we shall focus on the simplest case of just a R?(g)
term. Thus, we consider the action

S= /d4 my\/=gR(g) +m3/~fR(f
+ 2732 V=GR (g) + 2m2m?, /——gv(\/X) a9
This can be rewritten in terms of an auxiliary scalar y as
X
S = /dﬁ{méd—g(l +ﬁ>R(g) + m?-\/—fR(f)
m2
~ 5oV TE A 2mim? /——gv(\/E) } (20)

5_/d‘*x{\/——gmg<1+i2 R(g) + —fm}R(f)+\/——gm§(1+

Solving for éﬂl/ﬂ gives the same result as in the Einstein-

Hilbert case and ultimately reduces R(f,C) to just R(f).

Solving for C,,,, on the other hand leads to an equation

33C,,Y + 85C, 5 — Cp* — C,°

/%5 = 20 In(1 +)(/ﬁ12)6‘y‘],

(24)
which has a solution
C;u/p - gﬂ[b ] ln( +)(/ﬁ12) (25)
Substituting back into the action we get it into the form
S= /d4 { (1+ ) (9) + /= Fm2R(f)
(Vr)?

2= My
+4m“ Ta+4) 2wV H#

+ 2m2m*\/—gV (\/Z) } (26)

The bimetric-affine version of the action (19) reads®
S= /d4x{m§,/—g7€(g, C)+ m%\/—fR(f,é)
m;
+ T V=9R*(9.C) + 2mm?, /—gV(\/Z) } (21)

Note that this is not the most general bimetric-affine quadratic
action of scalar curvature invariants that could be written.
Apart from the terms R2(f, C) and R (g, C)R (. C) that were
left aside, we could also have linear or quadratic terms of
the parity-odd Holst invariant’ R. These terms are known to
introduce extra dynamical degrees of freedom. We also leave
such terms aside and concentrate on the simplest of all
quadratic cases of just an R*(g,C) term. The equivalent
auxiliary scalar form of the action (21) is

s= [ax{mvma(14 2 R0 /=R
2 =+ 2mime gy (V) ) (22)

Using the expressions (17) and (18) we write the action as

X v
mz) (2D[ﬂ (g) Cz/]

G4 CH =00

2
5 mVTa 2m§m2\/:§V(\/K) } (23)

[
Next, we consider the Weyl rescaling of the g, metric

¥ -1
g/w - (1 +ﬁ) gﬂl/’ (27)

which transforms the action to the Einstein frame as

5=/d4X{m§\/—_gR(g)+m,2c\/ij(f)

m? Ve
"2 VI £
2m

T

v (g VE)

®The Riemann curvature tensor is defined as R/, =0,1,
oI,/ + F ».rt,=T,2,0,  while the Ricci scalar is given by
R = R .

The Holst invariant is given by the contraction of the Levi-
Civita antisymmetric symbol with the Riemann tensor, i.e., R =

(—g)7' 2P R = 2(—g) 277 (D,C,pp + CypiCh15).
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Note that the kinetic term contribution generated by the
Weyl rescaling exactly cancels the existing y-kinetic term,
ending up with a nondynamical y field in the Einstein
frame. Due to the property e, (\/wx) = @"?e,(y/x), the
detailed Weyl-rescaled potential term reads

2mim /=g > Puen(VA) (1 +z /)22 (29)
n=0

Varying the action with respect to y we obtain the equation

n (5-2)pea(v) (1+2)". a0)

The solution to this equation, substituted back into the
action, gives the complete nonlinear bimetric theory in
terms of the two metric tensors g, and f,,. Nevertheless, as
in the case of Einstein-Hilbert bimetric theory [2], we must
investigate whether there are suitable values of the param-
eters 3, that allow for the correct ghost-free spectrum.
Therefore, we should next consider the linearized limit of
this theory.

y  2m?
m: w2

IV. LINEARIZATION OF THE BIMETRIC-AFFINE
QUADRATIC ACTION

In order to identify the spectrum arising from the
quadratic action (28) and derive the necessary conditions
for a ghost-free spectrum we must consider a linear
approximation, keeping at most quadratic terms of the
fields in the same fashion as in the case of the Einstein-
Hilbert bimetric action. We first linearize the action with
respect to the auxiliary y keeping at most quadratic orders.
The action (28) takes the form

mz
S= / d4x{m5\/—_gR<g> +mi/=fR() = 5 5 =

+ 2m§m2\/:§ioﬁnknen (JE) } (31)

with

2
X ( 2L (M K\ ("
o 2 () e £ (22) (2-3).

Variation of (31) with respect to y yields the solution®

$Note that (33) is the same as the one resulting from the
linearization of (30).

2 (VA)0/2-2)
=255 fue, (VA) (/2 2)(n/2 - 3)

(33)

il

Varying with respect to g,, and f,, we obtain the
following Einstein equations:

1
R;w(g)_ig;wR<) 47 2gm/ ZZﬂnKn lll/ =0 ’ (348')
1 2.2 4 o (n
R () =5 fuwR(f) =53, Vi) = 0. (34b)

The analytic forms of the matrices Vi and V') are

given in A.

Next we proceed to complete the linearization by
approximating the dynamical fields as

g/w ~ g/,w + hﬂl/’ fﬂl/ ~ gﬂv + l;w' (35)

An important class of solutions are the proportional
solutions f,, = ¢?g,, [17] in which we can set ¢* =1
without loss of generality. Substituting this ansatz the
equations of motion are reduced to

N _ _
R;w(.g) - Eg/wR(g) + Aggm/ = O’ (368')
N SR _
R;w(g) - Egbe(g) + Afg;w =0, (36b)
with
.
Ay = L5 = m*(Boko + 31k + 3ok + f3k3), (37a)
4m
2,2
Ay = —79 (Brx1 + 3Pary + 3P3k3 + Paky)- (37b)
f

Note that the auxiliary y is substituted using Eq. (33) in
which the polynomials e, (for the proportional solutions)
are in turn 1,4,6,4,1. Its corresponding expression reads

(o +3B 436+ b)
L= . (38)
(2P0 + 5P+ 4Py + P3) — 1

m

Consistency between the equations of motion (36a)—(36b)
requires A, = A, which fixes one of the f, parameters.

After quite a bit of algebra we arrive at the linearized
action, which has the same general form as in the Einstein-
Hilbert bimetric case given by Eq. (6), namely
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S= /d“x\/_{ 91, M P+ fz JEW 100
+€(h—l)2}

: 1
Ay (muh =102 =21 - 4)

+ B |:(hm/ - l;w)z

. 1
o _[2 D] —
+ Ay (Lut —5 P ~21-4) } (39)

The appearing parametric coefficients Ag,Af, C, and B are
given by complicated expressions of the parameters f3,,, m,,
my, and 2 = m*/in* in B. Note also that the parameters of
the third and forth line of (39) are related to the corre-
sponding cosmological constants by the relations A, =
24,/m} and Ay = 2A;/m?. Again the spectrum can con-
sist of a massless spin-2 and a massive spin-2 particle,
without the presence of any ghosts, provided the following
conditions on the parameters are met, namely

Ay =Ap=A, C=-1, and B<0, (40)
with or without the additional requirement of a vanishing
cosmological constant A = 0. The equation C = —1 is
most easily “solved” with respect to the parameter A as

1 - Br+2p, + B3
T 2B0(B1 4 4P+ 3P5) + 618y + 86155 + 255
(41)

This specific constraint on the parameters is adequate to
remove the ghost degree of freedom from the linearized
theory. The “trivial” case with 4 = 0 discussed in Sec. II is
also a solution. Substituting, 4, into (B1)—(B3) we obtain
the simplified expressions

Aglizs, = —mgmP[2157 + 36f35 + 565 + 264,

+ 1851 (36, + B3) + 2P0 (3p1 + 4P, + B3)]
x [4(561 + 86, 4+ 343)] ", (42a)
Aglmy = —m2m?*[163 + 3663 + 1563 + 345, B>

+ 54p,53 + 204 (8B, + 3p3) + 106, (365 + B4)]
x [4(561 + 86, + 343)] ! (42b)

B, =m2m*(By +2p>+P3)* (3561 + 486, + 1563)
X [8(561 + 8B, +3p3) " (42¢)

Note here that the B| ,—,, Do longer depends on the
parameter f3,. The Fierz-Pauli mass reads

+
mgp = —L(ﬁl + 2B + B3)*
my

X (35p1 + 48 + 150;)[2(5p1 + 8B, + 363)]
(43)
V. PARAMETER SPACE

Assuming the values of parameters for the minimal

massive model introduced in [9], i.e., fy = 3,5, = —1,
Br =0,p; =0,p, = 1, the functions A, A, vanish, while
C=—-234 Tt is evident that for this choice of the

T2
parameters the quadratic theory will necessarily be plagued

with the ghost degree of freedom, since C = —1 only if
A =0, i.e., in the absence of the R? term.

The parameter space of the bimetric theory9 is spanned
by our set of physical parameters m,, a = m,/m,, and 1 as
well as the model parameters f3,. The enforcement of the
constraints (40) results in fixing two of the fs. In what
follows we shall analyze the various cases of the resulting
viable bimetric models.

A. The f,=p5=0 case

We proceed analyzing first the case of models corre-
sponding to the choice of f, = 3 = 0. In this case the

C = —1 constraint fixes f3, to be f, = ﬁ The correspond-
ing Fierz-Pauli mass expression is

mFP ﬁl( ) M%,

which requires a negative value for the free parameter /.
The parameter f3, is also fixed by the A, = Ay condition,
although it does not play any role, since it does not appear
in the expression for mpp. The common value of the
cosmological constant is

22 o 18)

The so-called Higuchi bound'’ [90,91] m%, > 2A/3, after
replacing M3 = m2(1 + a?), leads to the following restric-
tion on f:

(44)

(45)

9Cosmological constraints on the parameters of bimetric (and
massive) gravity have been analyzed extensively in the literature
[7 1 89]
"°If this bound is violated, the helicity-0 mode of the massive
spin-2 field develops the wrong sign in its kinetic term.
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B> 72 ifa> 1
{ 72(1—d?) (46)

20 : ’
/)71 < —7/1(1_{12) y ifa<l1

Of course, the a < 1 case is always met for f; < 0.

Enforcing the constraint of vanishing cosmological
constant fixes f; to be | = —% and gives the following
expression for the Fierz-Pauli mass

1 (m)\?
h=—|—| M3. 47
"Er = Toz (mf> P (47)

Assuming that m = m, we may rewrite mgp in terms of the
mass scale of the quadratic correction 7 as

M3 w?

2 P -2

mip = ——=—(1+ . 48

P~ 701" 10 ( a”’) (48)
B. The g, .3 nonzero case

For general nonzero f3,, /3 we can invert (41) as

_ B+ 20> + 3 — 24315, + 4P\ B3 + af3) .

Po 205, + 46> + 35y)

(49)

Note that in the case f, = 3 = 0 we recover fy = 217 Next,
using the constraint equation A, = A; we also fix the
parameter 3, as

By = [1/3(3a% — 1) 4 36f3(a* — 1) 4 543(a* - 3)
+25:B5(1302 = 27) + 2,5, (27a% — 17)
+6B153(30% = 5) + 2B0(3p) + 4B, + B3)d?]

X [2(862 +3p5 + 5p1)] 7" (50)

Actually g4 does not play much of a role, since it does not
appear in mgp. Considering the parameters f, and f, as
fixed, the resulting models are parametrized in terms of f3,,

:B39 and ﬂl'

The resulting expressions for the Fierz-Pauli mass and
the cosmological constant, written in terms of the rescaled
parameters

are

mgp = =1 Mp <mﬁf>2(35 + 486, + 1553) (1 + 2, + B5)?

x [2(5 + 8B, +353)" 7, (52)

and

A=-—m?B(1 +2B, + B3)(3+ 4B, + B3 + A(21 + 78p,
+ 363 + 725 + 1563 + 66/3,/33)
-1

x [20(1+ 45, +38)(5 + 8B, + 385)| . (53)

In contrast to the f, = fi3 = 0 case, in which the positivity
of the Fierz-Pauli mass requires f; <0, in this case
mip > 0 is maintained for

fir >0 and 35+48B, +156; <0  (54a)

or

By <0 and 354488, + 1585 >0.  (54b)

Enforcing the constraint of vanishing cosmological con-
stant reduces the number of free parameters to two. Thus,
for A = 0 we get the additional constraint in the form of a
quadratic equation for 5 in terms of §,, namely

221 + 78, + 36f3 + 7233 + 1563 + 66/5,53)
+344p, +p; = 0. (55)

In Fig. 1 we have plotted the solutions of this equation for
various values of the parameter 1. As can be seen the
solutions are not very sensitive on the choice of . Pairs of
(3, B3) on this plot define different models with vanishing
cosmological constant and a Fierz-Pauli mass given by
(52). Substituting the solutions of (55),

100 - T T ]
—— ;\ =1
sob N\ 4 Tm==- A=10 ]
-------- X =100
- -
S S A
S PN ]
1 B
_50F ‘1’ \ 1 E
} N ]
2 S ‘\"Q‘\ A=
00k 2 o e, N
-100 -50 0 50 100
Ba/Br
FIG. 1. The lines along which Eq. (55) is valid for various

values of 1. Along these lines the cosmological constant vanishes.
The insertion at the bottom left shows an enlargement of the plot
for small values.
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FIG.2. Left: the Fierz-Pauli mass in units of $; M3m?/ m? as a function of the ratio f3,/f; for the choice (54a). Right: the Fierz-Pauli
mass in units of —3; M3m?/ mi as a function of the ratio 3,/ for the choice (54b). In both panels the solid lines correspond to the plus

sign solution of (55), while the dashed ones correspond to the minus sign. The same colors indicate the same .

1 =616+ 11p,) £ /T — 1084(1 + /) + 3622(1 + po)?

3=

into (52) we obtain that

14+412+ V12 +222+1

Pr # — 360

(57)

in order to avoid a vanishing Fierz-Pauli mass. The values
pr=—1— {0,1,2} /42 are also excluded since for these
values the denominator of (53) vanishes. For 5, = 0 the
solution of (55) with the minus sign gives 3 = 0 for 1 =
—1/7 as it should be. The other solution does not coincide
with the #, = 3 = 0 case for any real value of A. Figure 2
illustrates the Fierz-Pauli mass in units of the overall factor
+f1Mpm* /m;. The left panel coincides with the choice

(54). This choice enforces 1 = A3, to be positive, since the
parameter 1 = m?//m?> is positive by definition. Also, for
this choice we have that , < 0, while 3 > 0. In the right
panel of the same figure we plot the choice (54b). This
choice in turn, enforces 4 < 0, while again $, <0 and
p3 > 0. In both panels the solid lines correspond to the
“+”-sign solution of (55), while the dashed ones to the
“—"-sign one.

Having in mind the phenomenological motivations for
considering a massive spin-2 particle, we should also see
whether the parameter space allows its mass to be low
enough so that it is phenomenologically interesting.
Reading off from Fig. 2 we see that, for |A| ~ O(10) and
1B2/B1] ~ O(1), we have mi,/M% ~ 1073|B, |, after choos-
ing the redundant parameter m = my. Thus, it seems that a
relatively light mgp could be maintained only for very small
model values of 8. For instance, taking || ~ O(107),
we obtain mgp ~O(10 TeV), while m~O(10° GeV), if
my ~m, =~ Mp. Of course, mgp can be smaller at the price

; 56
304 (56)

|

of even smaller values of the relevant potential parameters.
Thus, although the possibility of a dark matter interpreta-
tion of the massive spin-2 is not excluded, this has to go
along with rather small values of the interaction parameters
of the theory.

VI. CONCLUSIONS

In the present article we considered the ghost-free
bimetric theory of gravity [2] in a general bimetric-affine
framework where the connections associated to both Ricci
scalars are independent variables. Furthermore, we con-
sidered quadratic curvature corrections to the standard
Einstein-Hilbert type of action, expected to arise from
matter fields quantum interactions. We focused on the
simplest case of a quadratic Ricci scalar term associated to
one of the metrics. The resulting theory, its spectrum
consisting only on the standard massless graviton and a
massive spin-2 field, was analyzed in its linearized limit
and the constraints for the absence of a Boulware-Deser
ghost [7] were derived. We analyzed the constraints and
solved the corresponding parameter equations, thus iden-
tifying the parameter space that defines viable models. Our
results show that you can extend bimetric gravity in the
metric-affine framework including quadratic curvature
terms, while maintaining the absence of ghosts, for a wide
range of model parameters.
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=2
Vi) = f,,(TeX]x?, = X7,
N ~(3 1
APPENDIX A: THE Vi) AND 7 FUNCTIONS Vi) = fu, (X*, = Tr[X]X%, 3 (Tr[X]? = Tr[xX*])x", )
The matrices V,%) appearing in the equations of motion \7,(3) = fu (A2)
(34a), (34b) are given by
where X = /A, defined in (2).

0
V/EW) = g/ll/?
1
Viw) = gﬂDTr[X] - gvapw

APPENDIX B: FORMULAS
g The functions involved in (6) are given by
Vi = g O = THIXC,) + 52 (T~ T, Ay = —m2m®(Bo +3(By + Ba) + B3)[622(Bo + 3(B1 + fa)
Vi = =g, (X7, = TR, 3 (X = T, ) + $3) (1650 + 3561 + 246, + 5p3) — 2A(10f,
+ 9 (DX = 3T + 2TX)), (A +27p1 42462 +7ps) + 1][2(1 - 640260 + 56,
+4p, + B3))7) 7 (B1)

and
|

A = —m2m?[622(B3(178) + 56p, + 63B3) + 84St + 6B4(2By + 5P1 + 4P, + p3)* + 10583 + 21643 + 1553
+ 342815, + 328B0B1 83 + 2168065 + 298B0f2B3 + 60BS3 + 51062 B, + 4295233 + 6098, 55 + 7808152533
+ 1550155 + 351535 + 1345,53) — 6A(Bo(3p1 + 108, + 1155 + 4B4) + 77 + 1865 + 55 + 284(51 + 4B, + f3)
+ 29018 + 286153 + 25p253) + Br + 3(Ba + P3) + Ba)[2(1 — 64(280 + 5p1 + 46> + B3))*] 7", (B2)

B = m2n 222 (B (S16, + 1126, + 63B3) + (25267 + 7508, B + 3608, By + 43263 + 3506, + 6042)
+ 35183 + 273 (445, + 1983) + 36,(42965 + 553 + 328,3) + 4325 + ISﬂ% + 4596555 + 148,53)
= 22(Bo(9B1 + 208, + 11p5) + 1638, + 3083) + 2157 + (482 + B3) (982 + 583)) + f1 + 2, + B3]
X [4(1 = 6A(2f0 + 541 + 45, + B3))°] . (B3)

C = [422(BL(159B, + 352, + 19583) + Bo(T837 + 141643 + 117285 + 2133 + 128, (1985, + 9583)) + 9453
+9B3(4018, + 17563) + 9B, (47353 + 340,85 + 5963) + 12963 + 1389635 + 4518, + 4563)
— 1223433 (5181 + 1128, + 63p3) + F3(152157 + 45523, 8, + 21908, B3 + 267235 + 22008,3; + 393/3)
+ 26,(189083 + B3 (71438, + 309085) + 23, (388543 + 299335 + 5133) + 259283 + 27624355
+ 895,82 + 90B3) + 315081 + 28803 (5B + 233) + 3B3(T4673 + 90833 + 54648,/3)
+ 231 (730853 + 24083 + 75273355 + 2396,33) + 3456/33 + 3085 + 45363353 + 21056333 + 4165,33)
— A(4Bo(15p, + 32B, + 17B3) + 15383 + 6B, (7635 + 35p3) + 27683 + 224,33 + 4153) + 2(B, + 2B, + B3)]
X [2(64(280 + 5p1 + 4P, + B3) — 1) (227 (B5(5181 + 1123, + 6333) + (2521 + 750,13, + 3608, 3
+ 43285 + 6082 + 3508, 83) + 35153 + 2743 (445, + 1985) + 3, (42965 + 3285, + 5543) + 43283
+ 4598385 + 148B,% + 1563) — 24(Bo (981 + 208, + 1153) + 2157 + (635, + 3083)
+ (482 + P3)(9B2 + 5B3)) + b1 + 28, + B3)] 7. (B4)
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