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In this work we analyze the sound perturbation of Unruh’s acoustic effective geometry in both (2þ 1)
and (3þ 1) spacetime dimensions and present an exact analytical expression for the quasibound states of
these idealized black-hole configurations by using a new approach recently developed, which uses the
polynomial conditions of the hypergeometric functions. Our main goal is to discuss the effects of having an
event horizon in such effective metrics. We also discuss the stability of the systems and present the radial
eigenfunctions related to these quasibound state frequencies. These metrics assume just the form it has for a
Schwarzschild black hole near the event horizon, and therefore may, in principle, shed some light into the
underlying classical and quantum physics of astrophysical black holes through analog acoustic probes.
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I. INTRODUCTION

The theory of general relativity had predicted some
astrophysical and cosmological phenomena, as for example
the gravitational redshift and Mercury’s perihelion [1],
which had passed for experimental tests with high pre-
cision. Furthermore, another very interesting, important
prediction is the existence of black holes. From a theo-
retical point of view, the black-hole physics has been a very
productive field of research in the last century, including
the studies of classical and quantum properties of these
objects [2,3]. Henceforth, these properties have been
passing observational checks with very high accuracy, as
for example the gravitational waves emitted by compact
objects and their binary systems [4,5].
From a classical point of view, even the light waves

cannot escape from the black-hole (final) attraction [6].
However, from a quantum point of view, the black holes can
emit radiation with a specific (Hawking) temperature [7].
These physical phenomena are intrinsically related to the
existence of an (exterior) event horizon [8]. Two other forms
of radiation that play a crucial role in understanding the
physics of black holes are the quasinormal modes (QNMs)
and the quasibound states (QBSs). The QNM frequencies
are the set of vibrational spectra associatedwith the (damped

reverberation) ringdown of a black hole [9,10], which can be
calculated when purely ingoing (outgoing) boundary con-
ditions are imposed at the exterior event horizon (infinity).
The QBSs are localized mode solutions in the black-hole

potential wells [11,12]. They are ingoing waves at the
exterior event horizon, which means that the radial solution
diverges by reaching a maximum value, and tend to zero far
from the black hole at the spatial infinity [13], which means
that the probability of finding any particle there is null. In
this context, the continuous spectrum of the classical stable
bound states is replaced by a discrete spectrum of reso-
nances with the tunneling through the potential barrier
giving the finite probability of the particle to be captured by
the horizon. That is the gravitational analog of the hydrogen
atom orbitals, which means a spectrum of normalizable
bound states. There has been, strangely, little effort devoted
to the study of the quasibound state spectrum, despite the
fundamental importance for the electromagnetic analog.
Indeed, it is clear that these states must exist and they can
provide a quantum description of a test particle orbiting a
black hole. The physics of this problem can be understood
if we assume that the singularity at the center of a black
hole acts as a current sink, and therefore all normalizable
states must decay in time, which implies that we must
search for eigenstates over the two-dimensional space of
complex energies. The constructed states have a finite half-
life, so they can be viewed as resonance states (or quasista-
tionary states). Thus, the QBS frequencies are the set of
resonance spectra associated with the dissipation of energy
at the exterior event horizon, and hence they are inevitably
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complex, which can be expressed as ωn ¼ Re½ω� þ iIm½ω�,
where n is the overtone number, Re½ω� is the real part
(oscillation frequency), and Im½ω� is the imaginary part
(decay or growth rate).
Obviously the observational measurements of some

physical phenomena such as superradiance and Hawking
radiation are almost impossible to make at the level of
terrestrial laboratories with the current ground-based detec-
tors, since the Hawking temperature is 7 orders of magni-
tude smaller than the temperature of the cosmic microwave
background (CMB), for a Schwarzschild-like black hole
with a mass equivalent to the solar mass. On the other hand,
for the QNM spectrum, these difficulties are related to the
process of extracting quasinormal information from gravi-
tational waves. Finally, for the QBS spectrum, since it does
not contain outgoing waves at spatial infinity, it would not
leave any imprint in gravitational waves, and hence it could
only be detected by analyzing the gravitational potential in
the vicinity of a (relaxing) collapsing star. However,
there have been several works proposing new (summation)
methods to help detect these kinds of weak signals [14,15].
Therefore, this fact widely opens the interest, and research
as well, in analog models of gravity that mimic some
properties of black-hole spacetimes.
Analog models of gravity were proposed by Unruh [16]

as controlled tabletop laboratory experiments aiming to test
some process that occurs in the interplay between general
relativity and quantum physics. In this framework, the
equation of motion describing the propagation of sound
modes (the phonons) on a (supersonic) fluid flow can be
identically written as the Klein-Gordon equation for a
massless scalar field minimally coupled to an effective
geometry containing a sonic event horizon; this kind of
background is called an acoustic black hole. The most
promising experiments with analog models of gravity
were performed with fluids [17–27], Bose-Einstein con-
densates [28–32], and optical systems [33,34], among
others (see Ref. [35] and references therein).
In the present work, we analytically compute the QBSs

(or resonant frequencies) in the (3þ 1)-dimensional
Unruh’s acoustic black hole by using the Vieira-Bezerra-
Kokkotas (VBK) approach [36,37], which suggests impos-
ing the polynomial condition of Gauss’s hypergeometric
functions [38] as a matching condition for the two
asymptotic behaviors of the radial solution. In fact, the
VBK approach was originally developed for the radial
solution given in terms of the Heun functions [39], as well
as the analytical expression for the QNMs of (3þ 1)-
dimensional Unruh’s acoustic black hole was obtained
from the polynomial condition of Gauss’s hypergeometric
functions by Saavedra [40]. Therefore, we will show that
the VBK approach can also be applied for the radial
solution given in terms of the hypergeometric functions,
and then the radial eigenfunctions related to the QBSs has
the (correct) desired behavior. We also investigate the QBSs

in the (2þ 1)-dimensional Unruh’s acoustic black hole,
given the lower-dimensional properties of tabletop
experiments.
This paper is organized as follows. In Sec. II, we

introduce the metric corresponding to the four-dimensional
Unruh acoustic black hole (4DUABH), solve the wave
equation, and obtain the spectrum of QBSs. In Sec. III,
we perform these same analyses in the three-dimensional
Unruh acoustic black hole (3DUABH). Finally, in Sec. IV,
the conclusions are given. Here, we adopt the natural units
where G≡ c≡ ℏ≡ 1.

II. FOUR-DIMENSIONAL UNRUH’S
ACOUSTIC BLACK HOLE

In this section, we start by considering the general
acoustic black-hole solution in Minkowski spacetime
obtained by Unruh [16] (see also Refs. [41,42]), and then
we discuss his choice for the flow velocity in order to
obtain an acoustic metric that assumes just the form it has
for a Schwarzschild metric near the event horizon.
The fundamental equations of motion for an irrotational

fluid are given by

∇ × v ¼ 0; ð1Þ

∂tρþ∇ · ðρvÞ ¼ 0; ð2Þ

ρ½∂tv þ ðv · ∇Þv� ¼ −∇p; ð3Þ

where v, ρ, and p are the velocity, density, and pressure of
the fluid, respectively. Next, we introduce the velocity
potential Ψ, such that v ¼ −∇Ψ, and assume the fluid as
barotropic, which means that ρ ¼ ρðpÞ. Then, by linear-
izing these equations of motion around some background
ðρ0; p0;Ψ0Þ, namely,

ρ ¼ ρ0 þ ϵρ1; ð4Þ

p ¼ p0 þ ϵp1; ð5Þ

Ψ ¼ Ψ0 þ ϵΨ1; ð6Þ

we get the following wave equation:

− ∂t

�
∂ρ

∂p
ρ0ð∂tΨ1 þ v0 ·∇Ψ1Þ

�

þ∇ ·

�
ρ0∇Ψ1 −

∂ρ

∂p
ρ0v0ð∂tΨ1 þ v0 ·∇Ψ1Þ

�
¼ 0; ð7Þ

where the local speed of sound, cs, is defined by

c−2s ≡ ∂ρ

∂p
: ð8Þ
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The wave equation (7) describes the propagation of the
linearized scalar potential Ψ1; that is, it governs the
propagation of the phase fluctuations as weak excitations
in a homogeneous stationary condensate, which can be
rewritten as a wave equation in a curved spacetime

1ffiffiffiffiffiffi−gp ∂μðgμν
ffiffiffiffiffiffi
−g

p
∂νΨ1Þ ¼ 0: ð9Þ

Note that this wave equation is similar to the covariant
Klein-Gordon equation with zero mass, where the acoustic
line element can be written as

ds2 ¼ gμνdxμdxν

¼ ρ0
cs

½−c2sdt2 þ ðdxi − vi0dtÞδijðdxj − vj0dtÞ�: ð10Þ

Now, Unruh assumed the background flow as a spheri-
cally symmetric, stationary, and convergent fluid, so that
the acoustic metric given by Eq. (10) becomes

ds2 ¼ ρ0
cs

�
−½c2s − ðvr0Þ2�dt2 þ

cs
c2s − ðvr0Þ2

dr2

þ r2ðdθ2 þ sin2θdϕ2Þ
�
; ð11Þ

where the following coordinate transformation was per-
formed:

t → tþ
Z

vr0
c2s − ðvr0Þ2

dr; ð12Þ

with vr0 ¼ vr0ðrÞ. Next, if the background flow smoothly
exceeds the velocity of sound at the sonic horizon r ¼ rh,
the radial component of the flow velocity can be
expanded as

vr0ðrÞ ¼ −cs þ aðr − rhÞ þOðr − rhÞ2; ð13Þ

where the control (tuning) parameter a is defined as

a ¼ ð∇ · vÞjr¼rh : ð14Þ

Therefore, we can write the line element for a 4DUABH as

ds2 ¼ ρ0
cs

�
−fðrÞdt2 þ cs

fðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð15Þ

where the acoustic metric function (or warp factor) fðrÞ has
the following form:

fðrÞ ¼ 2csaðr − rhÞ; ð16Þ

with rh being the acoustic event horizon, that is, the
outermost marginally trapped surface for outgoing
phonons, which is where the velocity of the fluid reaches
the speed of sound.
In what follows, we will analyze the motion of massless

scalar particles propagating at the external region of the
4DUABH. We adopt the VBK approach to obtain the exact
analytical solution for the Klein-Gordon equation (9) and
then use it to find the spectrum of QBS frequencies. From
now on, for simplicity and without loss of generality, we
will fix cs ¼ 1 and assume the density of the fluid ρ0 as a
constant.

A. Exact analytical solution to the wave equation

We are interested in some basic characteristics of these
4DUABHs, in particular the ones related to their interaction
with quantum scalar fields, including the Hawking-Unruh
radiation and the QBSs. In order to perform these studies,
we have to solve the wave equation (9). To do this, due to
the spherical symmetry, we can use the following separa-
tion ansatz

Ψ1ðt; r; θ;ϕÞ ¼ e−iωtUðrÞYlmðθ;ϕÞ; ð17Þ

where ω is the frequency (energy, in the natural units),
UðrÞ ¼ RðrÞ=r is the radial function, and Ylmðθ;ϕÞ are the
spherical harmonic functions, with l and m being the
angular (or polar) and magnetic (or azimuthal) quantum
numbers, respectively, such that l ¼ 0; 1; 2;… and
−l ≤ m ≤ l. Thus, by substituting Eqs. (15)–(17) into
Eq. (9), we obtain the radial equation given by

d2RðrÞ
dr2

þ
�

1

r− rh

�
dRðrÞ
dr

þ
�
r2ω2−4a2rðr− rhÞ−2aλðr− rhÞ

4a2r2ðr− rhÞ2
�
RðrÞ ¼ 0; ð18Þ

where λ ¼ lðlþ 1Þ is the separation constant.
Now, we will apply the VBK approach to write the radial

equation (18) as Gauss’s hypergeometric equation without
the assumption of specific boundary conditions. Then, we
will impose the appropriate boundary conditions on this
exact analytical radial solution in order to study the
Hawking-Unruh radiation and QBS spectra. Here, we just
show our main results and cordially invite the readers to
find this method best described in Refs. [43–45].
Let us define a new radial coordinate, x, as

x ¼ 1 −
rh
r
; ð19Þ

such that the three original singularities ðrh;∞Þ are moved
to the points (0,1). It is worth mentioning the fact that this
is the same transformation for the independent variable
used by Saavedra [40] to study the QNMs of UABH, and
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by Kim et al. [46] to analyze the decay rate and low-energy
near-horizon dynamics of acoustic black holes. However,
in the present work, we will choose different coefficients
(and their signs) for the transformation of the dependent
variable RðxÞ ↦ yðxÞ, which leads to a radial solution that
is more suitable for studying the Hawking-Unruh radiation
and the QBS frequencies, as follows. Then, the final step is
to define

RðxÞ ¼ xA0ð1 − xÞA1yðxÞ; ð20Þ

where the coefficients A0 and A1 are given by

A0 ¼ −
iω
2a

; ð21Þ

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − ω2

p

2a
: ð22Þ

Thus, by substituting Eqs. (19)–(22) into Eq. (18), we get

xð1 − xÞ d
2yðxÞ
dx2

þ ½1þ 2A0 − 2ð1þ A0 þ A1Þx�
dyðxÞ
dx

þ A3yðxÞ ¼ 0; ð23Þ

where the coefficient A3 is given by

A3 ¼ −
2a2rhð1þ A0 þ A1 þ 2A0A1Þ þ aλ − rhω2

2a2rh
: ð24Þ

The radial equation (23) has the form of Gauss’s
hypergeometric equation, which is given by

xð1 − xÞ d
2yðxÞ
dx2

þ ½γ − ðαþ β þ 1Þx� dyðxÞ
dx

− αβyðxÞ ¼ 0;

ð25Þ

where yðxÞ ¼ 2F1ðα; β; γ; xÞ are Gauss’s hypergeometric
functions [47]. The hypergeometric series is convergent if γ
is not a negative integer (i) for all of jxj < 1 and (ii) on the
unit circle jxj ¼ 1 if Reðγ − α − βÞ > 0, and given by

2F1ðα; β; γ; xÞ ¼ 1þ αβ

γ

x
1!

þ αðαþ 1Þβðβ þ 1Þ
γðγ þ 1Þ

x2

2!
þ � � �

¼
X∞
n¼0

ðαÞnðβÞn
ðγÞn

xn

n!
; ð26Þ

where ðαÞn ¼ ðαþ n − 1Þ!=ðα − 1Þ! is the Pochhammer
symbol.
Therefore, the general exact solution for the radial part of

the covariant massless Klein-Gordon equation in the
4DUABH spacetime can be written as

UjðxÞ ¼
�
1 − x
rh

�
RjðxÞ

¼
�
1 − x
rh

�
xA0ð1 − xÞA1 ½C1;jy1;jðxÞ þ C2;jy2;jðxÞ�;

ð27Þ

where C1;j and C2;j are constants to be determined and
j ¼ f0; 1g labels the solution at each singular point, which
are given as follows. The pair of linearly independent
solutions at x ¼ 0 (r ¼ rh) is given by

y1;0 ¼ 2F1ðα; β; γ; xÞ; ð28Þ

y2;0 ¼ x1−γ2F1ðαþ 1 − γ; β þ 1 − γ; 2 − γ; xÞ: ð29Þ

The pair of linearly independent solutions at x ¼ 1 (r ¼ ∞)
is given by

y1;1 ¼
ΓðγÞΓðγ − α − βÞ
Γðγ − αÞΓðγ − βÞ 2F1ðα; β; αþ β − γ þ 1; 1 − xÞ;

ð30Þ

y2;1 ¼ ð1 − xÞγ−α−β ΓðγÞΓðαþ β − γÞ
ΓðαÞΓðβÞ

× 2F1ðγ − α; γ − β; γ − α − β þ 1; 1 − xÞ: ð31Þ

In these solutions, the parameters α, β, and γ are given by

α ¼ 1

2a

2
64a

0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2λ

arh

s 1
CA − iωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − ω2

p 3
75; ð32Þ

β ¼ 1

2a

2
64a

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2λ

arh

s 1
CA − iωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − ω2

p 3
75; ð33Þ

γ ¼ 1 −
iω
a
: ð34Þ

Now, we will analyze the asymptotic behavior of the
aforementioned general exact solution near the acoustic
event horizon to investigate the Hawking-Unruh radiation.
Next, we will impose some specific boundary conditions on
the asymptotic behavior of the aforementioned general
exact solution to compute the QBS spectra.

B. Hawking-Unruh radiation

Near the acoustic event horizon, which means the limit
when r → rh (or x → 0), the new radial coordinate, given
by Eq. (19), can be expanded as
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x ≈
r − rh
rh

þOðr − rhÞ2: ð35Þ

Thus, in this limit, the radial solution, given by Eq. (27),
has the following asymptotic behavior:

lim
r→rh

U0ðrÞ ∼ C1;0ðr − rhÞA0 þ C2;0ðr − rhÞ−A0 ; ð36Þ

where all the remaining constants are included in C1;0 and
C2;0, which could be determined later by assuming some
additional boundary conditions, as, for example, that the
radial wave function should be appropriately normalized in
the range between the acoustic event horizon and the spatial
infinity. Then, by using Eq. (21) we can rewrite Eq. (36) as

lim
r→rh

U0ðrÞ ∼ C1;0Ψin;0 þ C2;0Ψout;0; ð37Þ

where the ingoing, Ψin;0, and outgoing, Ψout;0, scalar wave
solutions near the acoustic black-hole event horizon are
given, respectively, by

Ψin;0ðr > rhÞ ¼ e−iωtðr − rhÞ−
iω
2κh ð38Þ

and

Ψout;0ðr > rhÞ ¼ e−iωtðr − rhÞþ
iω
2κh : ð39Þ

Here, the gravitational acceleration on the acoustic event
horizon, κh, is defined as

κh ¼
1

2

dfðrÞ
dr

				
r¼rh

¼ a: ð40Þ

Finally, by using the analytic continuation described in the
VBK approach, we can obtain the relative scattering
probability, Γh, and the exact spectrum of Hawking-
Unruh radiation, N̄ω, which are given, respectively, by

Γh ¼
				Ψout;0ðr > rhÞ
Ψout;0ðr < rhÞ

				2 ¼ e−
2πω
κh ð41Þ

and

N̄ω ¼ Γ1

1 − Γ1

¼ 1

eω=kBTh − 1
; ð42Þ

where kB is the Boltzmann constant and Thð¼ κh=2πkBÞ is
the Hawking-Unruh temperature at the acoustic event
horizon. Therefore, we can conclude that the resulting
spectrum of Hawking-Unruh radiation, for massless scalar
particles in the 4DUABH spacetime, has a thermal char-
acter and hence it is analogous to the spectrum of black
body radiation.

C. Quasibound states

The QBSs are solutions of the equation of motion, in this
case given by Eq. (9), localized at the black-hole potential
well, which means that one has to impose two boundary
conditions on the radial solution, namely, one related to
ingoing waves at the acoustic event horizon, and the other
concerning the number of particles (probability density) at
the spatial infinity. After that, we need to use a matching
condition for these two asymptotic behaviors of the radial
solution. In this sense, in order to find the spectrum of
QBSs, we follow the VBK approach, which suggests
imposing the polynomial condition of the hypergeometric
functions as a matching procedure.
The first boundary condition related to the QBSs means

to require that the radial solution should describe only
ingoing waves at the acoustic event horizon. Therefore, the
first boundary condition is fully satisfied when it is
imposed that C2;0 ¼ 0 in Eq. (37), and hence we get

lim
r→rh

U0ðrÞ ∼ C1;0Ψin;0: ð43Þ

The second boundary condition related to the QBSs
means to require that the radial solution must tend to zero at
spatial asymptotic infinity. Then, in the limit when r → ∞
(or x → 1), the new radial coordinate, given by Eq. (19),
can be expanded as

x ≈
rh
r
þO

�
1

r

�
2

: ð44Þ

Thus, in this limit, the radial solution, given by Eq. (27),
has the following asymptotic behavior:

lim
r→∞

U1ðrÞ ∼ C1;1
1

rσ
; ð45Þ

where all the remaining constants are included in C1;1 and
the coefficient σ is given by

σ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − ω2

p

2a
: ð46Þ

Therefore, the second boundary condition is fully satisfied
when the sign of the real part of σ is positive (Re½σ� > 0);
otherwise, if Re½σ� < 0 the radial solution diverges at
spatial infinity. The final asymptotic behavior of the radial
solution at spatial infinity will be determined when we
know the values of the coefficient σ, which depends on the
frequencies ω, and the parameter a; they will be obtained in
what follows by using the VBK approach.
The hypergeometric functions become polynomials of

degree n if they satisfy the following condition:

α ¼ −n; ð47Þ
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where nð¼ 0; 1; 2;…Þ is now the overtone number (or the principal quantum number). Thus, as described by the VBK
approach, the polynomial condition given by Eq. (47) is a standard matching procedure, from which we obtain the exact
spectrum of QBSs given by

ωð�Þ
nl ¼ −iað2nþ 1Þfλþ 2arh½nðnþ 1Þ − 1�g � fλþ 2arh½nðnþ 1Þ þ 1�g ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að2λ − arhÞ=rh
p

2λþ 4arhnðnþ 1Þ ; ð48Þ

TABLE I. The massless scalar QBS frequencies ωð�Þ
nl , and their corresponding coefficient Re½σð�Þ

nl �, in the
4DUABH spacetime. We focus on the fundamental mode n ¼ 0, for l ¼ 1 and a ¼ 1.

rh ωðþÞ
01 Re½σðþÞ

01 � ωð−Þ
01 Re½σð−Þ01 �

0.01 10.08737 − 0.495000i 1.252500 −10.08737 − 0.495000i 1.252500
0.11 3.300437 − 0.445000i 1.277500 −3.300437 − 0.445000i 1.277500
0.21 2.570191 − 0.395000i 1.302500 −2.570191 − 0.395000i 1.302500
0.31 2.259819 − 0.345000i 1.327500 −2.259819 − 0.345000i 1.327500
0.41 2.086145 − 0.295000i 1.352500 −2.086145 − 0.295000i 1.352500
0.51 1.975034 − 0.245000i 1.377500 −1.975034 − 0.245000i 1.377500
0.61 1.897714 − 0.195000i 1.402500 −1.897714 − 0.195000i 1.402500
0.71 1.840496 − 0.145000i 1.427500 −1.840496 − 0.145000i 1.427500
0.81 1.795980 − 0.095000i 1.452500 −1.795980 − 0.095000i 1.452500
0.91 1.759794 − 0.045000i 1.477500 −1.759794 − 0.045000i 1.477500

FIG. 1. Top panel: Real (left) and imaginary (right) parts of the fundamental n ¼ 0 massless scalar QBSs of a 4DUABH with rh ¼ 1
and varying control parameter a. Bottom panel: Fundamental n ¼ 0 (left) and first overtone n ¼ 1 (right) massless scalar QBS phase
space of a 4DUABH with rh ¼ 1 and varying control parameter a.
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where λ ¼ lðlþ 1Þ and the signs � label the two solutions
of the characteristic resonant equation; note that we get a
second order equation for the frequency ω when we
substitute the parameter α given by Eq. (32) into the
polynomial condition given by Eq. (47).
In Table I we present some values of the QBS frequen-

cies ωð�Þ
nl , and their corresponding coefficient σð�Þ

nl , as
functions of the acoustic event horizon rh. From Table I,
we can conclude that both solutions are physically admis-
sible, since the real part of the coefficient σ is positive in
these cases, and therefore they represent QBS frequencies
for massless scalar fields in the 4DUABH spacetime.
In Figs. 1 and 2 we also present the behavior of these

QBS frequencies ωð�Þ
nl , as functions of the control param-

eter a and the acoustic event horizon rh, respectively.
From these results, we can conclude that the massless

scalar QBS frequencies ωð�Þ
nl in a 4DUABH spacetime have

the following symmetry:

ωðþÞ
nl ¼ −½ωð−Þ

nl ��; ð49Þ
where “ �” denotes complex conjugation. This symmetry
indicates that these two solutions have opposite oscillation

frequencies, Re½ωðþÞ
nl � ¼ −Re½ωð−Þ

nl �, and the same decay

rates, Im½ωðþÞ
nl � ¼ Im½ωð−Þ

nl �. This kind of symmetry may
describe the simultaneous particle-antiparticle creation
under phonon interaction [11,12].

D. Radial wave eigenfunctions

Now, we present the radial wave eigenfunctions related
to the massless scalar QBS frequencies in the 4DUABH
background. To this end, we also follow the VBK approach
(for details, please see Refs. [36,37]). As we explained
before, these radial wave eigenfunctions are related to the
polynomial condition of Gauss’s hypergeometric functions.
Therefore, the QBS radial wave eigenfunctions for

massless scalar fields propagating in a 4DUABH spacetime
are given by

Uð�Þ
nl ðxÞ¼Cð�Þ

nl

�
1−x
rh

�
xA0ð1−xÞA1

2F1ð−n;β;γ;xÞ; ð50Þ

where Cð�Þ
nl is a constant to be determined, 2F1ð−n; β; γ; xÞ

are Gauss’s hypergeometric polynomials and the signs (�)

are related to ωð�Þ
nl .

FIG. 2. Top panel: Real (left) and imaginary (right) parts of the fundamental n ¼ 0 massless scalar QBSs of a 4DUABH with a ¼ 1
and varying acoustic event horizon rh. Bottom panel: Fundamental n ¼ 0 (left) and first overtone n ¼ 1 (right) massless scalar QBS
phase space of a 4DUABH with a ¼ 1 and varying acoustic event horizon rh.

QUASIBOUND STATES OF ANALYTIC BLACK-HOLE … PHYS. REV. D 107, 104011 (2023)

104011-7



In Fig. 3 we present the first two squared radial wave
eigenfunctions. We observe that these radial solutions tend
to zero at spatial infinity and diverge at the acoustic event
horizon, which therefore represent QBSs. Note that
the radial wave eigenfunctions reach a maximum value
(at the acoustic event horizon rh ¼ 1) and then cross into
the acoustic black hole.

III. THREE-DIMENSIONAL UNRUH’S ACOUSTIC
BLACK HOLE

In this section, we discuss the Hawking-Unruh radiation
and the QBSs of a 3DUABH spacetime by following the
VBK approach. In the present case, we choose θ ¼ π=2,
and then the acoustic metric given by Eq. (15) can be
rewritten as

ds2 ¼ ρ0
cs

h
−fðrÞdt2 þ cs

fðrÞ dr
2 þ r2dϕ2

i
: ð51Þ

A. Exact analytical solution to the wave equation

In this case, we use the following separation ansatz:

Ψ1ðt; r;ϕÞ ¼ e−iωtUðrÞeimϕ; ð52Þ

where UðrÞ ¼ RðrÞ= ffiffiffi
r

p
is now the radial function and

m is now an integer (angular eigenvalue) such that
−∞ ≤ m ≤ þ∞.
Therefore, the general exact solution for the radial part of

the covariant massless Klein-Gordon equation in the
3DUABH spacetime can be written as

UjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − x
rh

s
RjðxÞ

¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − x
rh

s
xA0ð1 − xÞA1 ½C1;jy1;jðxÞ þ C2;jy2;jðxÞ�;

ð53Þ

FIG. 3. Top panel: The first two squared radial wave eigenfunctions (left) and their log-scale plots (right) of the fundamental n ¼ 0

massless scalar QBS frequencies ωðþÞ
nl of a 4DUABH with a ¼ 1 and rh ¼ 1, and varying radial coordinate r. The units are in multiples

of CðþÞ
nl . Bottom panel: The first two squared radial wave eigenfunctions (left) and their log-scale plots (right) of the fundamental n ¼ 0

massless scalar QBS frequencies ωð−Þ
nl of a 4DUABH with a ¼ 1 and rh ¼ 1, and varying radial coordinate r. The units are in multiples

of Cð−Þ
nl .
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where C1;j and C2;j are constants to be determined
and j ¼ f0; 1g labels the solution at each singular point,
which are given by Eqs. (28)–(31). In these solutions, the
coefficients A0, and A1, and the parameters α, β, and γ are
now given by

A0 ¼ −
iω
2a

; ð54Þ

A1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ω2

p

2a
; ð55Þ

TABLE II. The massless scalar QBS frequencies ωð�Þ
nm and their corresponding coefficient Re½σð�Þ

nm �, in the
3DUABH spacetime. We focus on the fundamental mode n ¼ 0, for m ¼ 1 and a ¼ 1.

rh ωðþÞ
01 Re½σðþÞ

01 � ωð−Þ
01 Re½σð−Þ01 �

0.01 7.106247 − 0.497512i 0.751244 −7.106247 − 0.497512i 0.751244
0.11 2.243154 − 0.473934i 0.763033 −2.243154 − 0.473934i 0.763033
0.21 1.689657 − 0.452489i 0.773756 −1.689657 − 0.452489i 0.773756
0.31 1.440434 − 0.432900i 0.783550 −1.440434 − 0.432900i 0.783550
0.41 1.292186 − 0.414938i 0.792531 −1.292186 − 0.414938i 0.792531
0.51 1.191333 − 0.398406i 0.800797 −1.191333 − 0.398406i 0.800797
0.61 1.116954 − 0.383142i 0.808429 −1.116954 − 0.383142i 0.808429
0.71 1.059041 − 0.369004i 0.815498 −1.059041 − 0.369004i 0.815498
0.81 1.012150 − 0.355872i 0.822064 −1.012150 − 0.355872i 0.822064
0.91 0.973049 − 0.343643i 0.828179 −0.973049 − 0.343643i 0.828179

FIG. 4. Top panel: Real (left) and imaginary (right) parts of the fundamental n ¼ 0 massless scalar QBSs of a 3DUABH with rh ¼ 1
and varying control parameter a. Bottom panel: Fundamental n ¼ 0 (left) and first overtone n ¼ 1 (right) massless scalar QBS phase
space of a 3DUABH with rh ¼ 1 and varying control parameter a.
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α ¼ 1

2a

�
a − iωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ω2

p
−
i

ffiffiffi
2

p
ajmjffiffiffiffiffiffiffi
arh

p
�
; ð56Þ

β ¼ 1

2a

�
a − iωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ω2

p
þ i

ffiffiffi
2

p
ajmjffiffiffiffiffiffiffi
arh

p
�
; ð57Þ

γ ¼ 1 −
iω
a
: ð58Þ

B. Hawking-Unruh radiation

In this case, the relative scattering probability, Γh, and
the exact spectrum of Hawking-Unruh radiation, N̄ω, which
are given, respectively, by

Γh ¼
				Ψout;0ðr > rhÞ
Ψout;0ðr < rhÞ

				2 ¼ e−
2πω
κh ð59Þ

and

N̄ω ¼ Γ1

1 − Γ1

¼ 1

eω=kBTh − 1
; ð60Þ

which are the same results as in the case of a 4DUABH.

C. Quasibound states

In this case, the radial solution, given by Eq. (53), has the
following asymptotic behavior at spatial infinity:

lim
r→∞

U1ðrÞ ∼ C1;1
1

rσ
; ð61Þ

where all the remaining constants are included in C1;1 and
the coefficient σ is now given by

σ ¼ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ω2

p

2a
: ð62Þ

Then, from the polynomial condition given by Eq. (47),
we obtain the exact spectrum of QBSs given by

FIG. 5. Top panel: Real (left) and imaginary (right) parts of the fundamental n ¼ 0 massless scalar QBSs of a 3DUABH with a ¼ 1
and varying acoustic event horizon rh. Bottom panel: Fundamental n ¼ 0 (left) and first overtone n ¼ 1 (right) massless scalar QBS
phase space of a 3DUABH with a ¼ 1 and varying acoustic event horizon rh.
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ωð�Þ
nm ¼ −iað2nþ 1Þ ffiffiffiffiffi

rh
p ½m2 þ 2arhnðnþ 1Þ� � ffiffiffiffiffiffi

2a
p fm3 þmarh½2nðnþ 1Þ þ 1�gffiffiffiffiffi

rh
p ½2m2 þ arhð2nþ 1Þ2� : ð63Þ

In Table II we present some values of the QBS
frequencies ωð�Þ

nm , and their corresponding coefficient

σð�Þ
nm , as functions of the acoustic event horizon rh. From

Table II, we can conclude that both solutions are physically
admissible, since the real part of the coefficient σ is
positive in these cases, and therefore they represent QBS
frequencies for massless scalar fields in the 3DUABH
spacetime.
In Figs. 4 and 5 we also present the behavior

of these QBS frequencies ωð�Þ
nm , as functions of the

control parameter a, and the acoustic event horizon rh,
respectively.
From these results, we can also conclude that the

massless scalar QBS frequencies ωð�Þ
nm in a 3DUABH

spacetime have the symmetry given by Eq. (49).

D. Radial wave eigenfunctions

In this case, the QBS radial wave eigenfunctions for
massless scalar fields propagating in a 3DUABH spacetime
are given by

Uð�Þ
nm ðxÞ¼Cð�Þ

nm

ffiffiffiffiffiffiffiffiffiffi
1−x
rh

s
xA0ð1−xÞA1

2F1ð−n;β;γ;xÞ; ð64Þ

where Cð�Þ
nm is a constant to be determined and the signs (�)

are related to ωð�Þ
nm .

In Fig. 6 we present the first two squared radial wave
eigenfunctions. We observe that these radial solutions tend to
zero at spatial infinity and diverge at the acoustic event
horizon, which therefore represent QBSs in a 3DUABH
spacetime.

FIG. 6. Top panel: The first two squared radial wave eigenfunctions (left) and their log-scale plots (right) of the fundamental n ¼ 0

massless scalar QBS frequencies ωðþÞ
nm of a 3DUABH with a ¼ 1 and rh ¼ 1, and varying radial coordinate r. The units are in multiples

of CðþÞ
nm . Bottom panel: The first two squared radial wave eigenfunctions (left) and their log-scale plots (right) of the fundamental n ¼ 0

massless scalar QBS frequencies ωð−Þ
nm of a 3DUABH with a ¼ 1 and rh ¼ 1, and varying radial coordinate r. The units are in multiples

of Cð−Þ
nm .
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IV. CONCLUSIONS

In this work we obtained exact analytical solutions for
the covariant massless Klein-Gordon equation in both four-
dimensional and three-dimensional Unruh’s acoustic black-
hole spacetimes. The radial solutions are given in terms of
Gauss’s hypergeometric functions.
The study of the asymptotic behaviors of the radial

solution led to the Hawking-Unruh radiation and quasi-
bound state phenomena. Near the acoustic event horizon,
the radial solution diverges by reaching a maximum value,
which indicates that the massless scalar particles cross into
the acoustic black hole. On the other hand, far from the
acoustic black hole at the asymptotic spatial infinity, the
radial solution tends to zero; that is, the probability of
finding any particles there is null.
We obtained the spectrum of quasibound state frequen-

cies for massless scalar particles propagating in both
four-dimensional and three-dimensional Unruh’s acoustic
black-hole spacetimes. This becomes possible by using the
VBK approach, which was developed to study the quasi-
bound states. Therefore, these results are new and, to our
knowledge, there are no similar results in the literature for
the backgrounds under consideration.
We obtained a set of eigenfrequencies that are solutions

of a characteristic resonant equation, which were derived
from the polynomial condition of Gauss’s hypergeometric
functions. All of these solutions are physically acceptable.
From these spectra, we also obtained the radial wave
eigenfunctions.

As a future perspective, it is possible to extend our results
in order to obtain a new acoustic curved Unruh’s acoustic
black hole embedded in Schwarzschild spacetime by using
the Gross-Pitaevskii theory [48,49]. Regarding observatio-
nal prospects, we can mention that the 4DUABH embedded
in a curved spacetime could describe a general black-hole
background immersed in intergalactic and/or cosmological
media supporting the propagation of sound waves.
Concerning the 3DUABH, this kind of analog model of
gravity seems to be more suitable for testing in a ground-
based laboratory.

V. DATA AVAILABILITY

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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