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Slowly rotating Kerr metric derived from the Einstein equations
in affine-null coordinates
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Using a quasispherical approximation of an affine-null metric adapted to an asymptotic Bondi inertial
frame, we present high order approximations of the metric functions in terms of the specific angular
momentum for a slowly rotating stationary and axisymmetric vacuum spacetime. The metric is obtained by
following the procedure of integrating the hierarchy of Einstein equations in a characteristic formulation
utilizing master functions for the perturbations. It further verified its equivalence with the Kerr metric in the
slowly rotating approximation by carrying out an explicit transformation between the Boyer-Lindquist
coordinates to the employed affine-null coordinates. A peculiar feature of the derivation is that in the
solution of the perturbation equations for every order a new integration constant appears which cannot be
set to zero using asymptotical flatness or regularity arguments. However, these additional integration
constants can be absorbed into the overall Komar mass and Komar angular momentum of a slowly rotating

black hole.
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I. INTRODUCTION

At the dawn of the “golden era of general relativity” in
the 1960s of the last century, two important spacetime
metrics were found, the Bondi-Sachs metric [1-3] and the
Kerr metric [4,5]. The first settled the question that an
isolated system loses mass via gravitational radiation and
that this effect is a nonlinear effect of general relativity;
while the second describes a stationary and rotating isolated
black hole that is expected to be the end product of a
gravitational collapse of a massive star or a merger of two
compact objects.

One of the defining features of the Bondi-Sachs metric is
that one coordinate is constant along a family of null
hypersurfaces while a radial coordinate along these null
hypersurfaces is an areal distance that can be related to a
luminosity distance [6]. Indeed, the first long term stable
evolution of black hole spacetimes were made using such
families of null hypersurfaces in a null cone-world tube
formalism [7]; also see [8,9] for review. Apart from usage
in numerical relativity simulations, the Bondi-Sachs metric
is now frequently used in high energy physics addres-
sing questions of the AdS/CFT correspondence [10]
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(and citations thereof). It also became popular to discuss
gravitational wave memory effects [11-15]. A pleasant
property of the Bondi-Sachs formalism is that the Einstein
equations can be solved in a hierarchical manner when
initial data on a null hypersurface and boundary condi-
tions at a null hypersurface [16], world tube [17], or vertex
[18-20] are given. However, the radial coordinate of the
Bondi-Sachs metric has the unpleasant property that it
breaks down when an apparent horizon forms due to the
focusing of the surface-forming null rays and their vanish-
ing expansion. This can be overcome in choosing an affine
parameter as the radial coordinate because an affine
parameter only becomes singular at a caustic. But, the
Einstein equations resulting from an affine-null metric do
not provide the hierarchical structure as the Bondi-Sachs
metric [9] and the hierarchical structure needs to be
reestablished by various new definitions of variables
[21-23]. Moreover, it turns out that the hierarchy of
equations in the affine-null metric formulation also breaks
down in the events of apparent horizon formation, but
fortunately the equations can be regularized so that it is
possible to follow the formation of black holes up to
singularity [24,25].

Despite the success and popularity of the Bondi-Sachs
metric in the various areas, an explicit closed analytical
representation of the Kerr metric in Bondi-Sachs form
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without bad behavior in the exterior region or related
metrics with one or two null coordinates is missing. Various
attempts have been made to derive a null metric represen-
tation numerically [26,27] as well as analytically [28-30].
In all of the approaches, the authors start out with the Kerr
metric and then calculate the respective null metric via a
coordinate transformation. After these transformations the
resulting metric can still possess a conical singularity at the
axis of symmetry (see [27] for a complete discussion). In
addition, the final metric is determined by integrals of
nonelementary functions. The approach of Argafiaraz and
Moreschi [27] differs from the aforementioned ones that the
authors aim to find a double-null representation of the Kerr
metric by geometrically adopting the coordinates to in- and
outgoing null geodesics adapted to the center of mass [31].
In this way, the authors were successful in finding null
coordinates that are not only regular at every point of the
external communication region (unlike the previous for-
mulations) but also that they are regular at the event
horizon, thus allowing a way to study the evolution of
different matter fields (as scalar fields) in such background
even when they cross the event horizon [32]. Unfortunately,
even in their construction arises a differential equation that
needs to be solved numerically and an explicit closed form
representation of the double null version of the Kerr metric
is not possible. The work of Bai and collaborators [33,34]
also starts with the Kerr metric (in Boyer-Lindquist
coordinates) and then makes coordinate transformation
to a Bondi-Sachs metric valid near future null infinity
(in a compactified version of the metric). The authors are
able to calculate the Newman-Penrose quantities and
multipoles at large distances and show the peeling property
of the Weyl tensor at large radii and the vanishing of the so-
called Newman-Penrose constants.

In this article, in contrast to all the previous works which
start with the Kerr metric expressed in Boyer-Lindquist
coordinates and attempt to find a null coordinate version of
it, we will directly solve the Einstein equations in a
characteristic formulation based on an affine-null metric
formulation of the Einstein equations. In addition, inspired
by the Hartle-Thorne methods for obtaining solutions for
slowly rotating compact stars [35], we will employ a
quasispherical approximation of the field equations to find
a high order approximation of the Kerr metric in outgoing
polar null coordinates. To obtain our solution, we assume
stationarity and axial symmetry. We further require an
asymptotic inertial observer as well as that Weyl scalar
Y, is regular everywhere where the background solution is
regular. A study of vacuum stationary metrics with a smooth
future null infinity in affine-null coordinates has recently
been carried out by Tafel in [36] by considering power series
of the metric components in terms of the inverse affine
distance.

Throughout the article, we will use signature +2, units
G = ¢ = 1, and the Einstein sum convention for indices as
well as products of associated Legendre polynomials.

The article is organized as follows: Sec. II recalls the
affine-null metric formulation, makes the necessary sym-
metry assumptions for archiving our goal, and defines the
perturbative variables; in Sec. III, we determine the back-
ground model (Sec. III A), define useful recursively reap-
pearing functions in the perturbation analysis (Sec. III B),
and solve the perturbation equations (Sec. III C-III F); in
Sec. III G the affine-null metric functions for the null are
expressed in terms of the mass and specific angular
momentum; in Sec. IV, to verify our results, we calculate
the affine-null version of the Kerr metric in a Bondi frame
via a coordinate transformation with a method adopted
from [33]; in Sec. V the position of the outer ergosphere
and (past) event horizon of the black hole are discussed;
and Sec. VI contains the final discussion of our work. The
article finishes with two appendixes: Appendix A lists
relations between associated Legendre polynomials and
Appendix B presents a derivation of the expression of the
Komar charges relevant for this work.

II. AFFINE-NULL METRIC FORMULATION
FOR STATIONARY AND AXIAL
SYMMETRIC SPACETIMES

Here we review the necessary properties of characteristic
initial value formulation of the Einstein equations in affine-
null coordinates, discuss the implications of the imposed
symmetry assumptions and present the notation used in our
analysis.

Taking coordinates x* = (u, A,x"), where u is an out-
going null coordinate, 4 is an affine parameter, and x* are
angular coordinates, a generic line element for an affine-
null metric defined with respect to a family of outgoing null
hypersurfaces u = const is [21-23,37]

Japdxtdx? = —Wdu?* — 2dud}

+ R2hp(dx* — WAdu) (dx® — WBdu). (2.1)

The determinant det(h,5) = det(q,z) = sin’ 0 is the deter-
minant of a round unit sphere metric g45. We remark that
the affine parameter A is chosen along the outgoing null
hypersurfaces u = const such that V*uV 4 = —1 every-
where along the rays generating the null hypersurfaces u =
const [37]. Consequently h,p is transverse-traceless and
has only 2 degrees of freedom. Thus, the function R relates
to the area of cuts du = dA = 0. The nonzero components
of the inverse metric are given by

hAB

gh=—1, M*=W, ¢4=-w4, gAB:F, (2.2)

where WA = (W?, W?) and hyph®C = 6§ and in parti-
cular [38]
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. 29
hypdxdx® = <e27d92 + %dqs?) cosh(26)
e
+ 2 sin@sinh(28)dOdgp. (2.3)

A complex null dyad to represent the 2-metric /1,45 such as
hAB = m(Aﬁ’lB) with mAmBhAB = mAﬁlBhAB —1=0is

mAaA =

1
(cosh — isinh §)dy
V2e?

(coshé +isinh6)d,, (2.4)

n ie’
V2sin@

As in any Bondi-Sachs type metric [9], the vacuum field
equations R,, = 0 with R, being the Ricci tensor can be
grouped into supplementary equations S; = 0 with

Si = (Ruu, Rug, Ru¢), (25)

one trivial equation, R,; = 0, and the six main equations
HY =0, K €(1,2.3,4) and H” =0, k € (1,2) with

HY = (Ry. Rig. PRy g, Re(m*mPR ).

)
HY = (R5, Sm(mAmPRp)),

with Re(x) and Im(x) the real and imaginary parts of x,
respectively. We assume that the spacetime is axisymmetric
and stationary with associated Killing vector fields g, and
0,4 Therefore the metric functions do not depend on u and
¢. The Killing symmetries imply two conserved quantities,
the Komar mass, K,,, and the Komar angular momentum,
K, which can be calculated from their respective integrals
(also see Appendix B)

1

Km = K(au) = g}g{}o %(W.ﬂ - R2hABWAW€1)R2quv
(2.7)
while for the axial Killing vector we have
.

where dg = sin8d0d¢ is the surface area element of the
unit sphere.

Let us assume there is a smooth one parameter family of
stationary and axially symmetric metrics g, (&), where ¢ is
a small parameter such that ¢ = 0 corresponds to a (static)
spherically symmetric spacetime solution of the vacuum
Einstein equations. Then there is an expansion of the metric

(2.6) fields such as
|
R(/I, 9) = r(/l) + R[l](/l, 9)8 + R[z] (/1, 9)6’2 + R[3] (/1, 9)83 + 0(84), (2.93)
W(A,0)=V()+ W[]](/l, 0)e + Wiy (1,0)e* + Wi (1,0)® + O(e*), (2.9b)
WA(1,0) = Wﬁ](l, 0)e + Wiy (4, 0)e* + Wi (4, 0)e’ + O(e*), (2.9¢)
7(4.0) =y (4, 0)e + 7y (A, 0)&* + y3(4,0)&® + O(&*), (2.94)
5(1, 9) = 5[1] (/1, 9)8 -+ 5[2] (/1, 9)82 + 5[3] (/1, 6)83 + 0(84). (2.96)

Inserting (2.9) in (2.7) and (2.8) implies K,, = O(¢") and
K; = O(e). We make the requirements

K(e) = Ky(=e).  Ki(e) = -Kp(=¢).  (2.10)
These conditions imply that under the change & — —¢
the sense of rotation is reversed [recall that K(dy) =
—K(0(_4))]. From the metric (2.1), we see that the
2-surfaces with u =u; and A =4y, defined such
that R(ug,4,0) = const have the induced metric
R%hypdx*dxB with area 47xR*(uy, /). We assume that
the area of these 2-surfaces is invariant under the change
e — —e, which implies that R* is an even function of &.

|
Therefore R is either an even or an odd function of e.
However, if R were an odd function, we had
R(¢ =0) =0, which is a nonadmissible solution. In
addition, ds®(d;,0,) and ds*(dy, dg) must be independent
of the sense of rotation implying that Ay, and hy, are
even. However, due to the frame dragging effect
ds*(0p, 9,) must depend on the sense of rotation. There-
fore hy, is an odd function of e. Using similar arguments,
because the Komar angular momentum K; is an odd
function of ¢ and taking into account (2.8) and the parity
behavior of 45 and R?, we have that W? is even and W%
odd. Similarly, since K,, must be an even function of &,
W must be even in &e. Therefore,
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Rppi) = Wiyyn) =0, (2.11a)
Wi, =0, (2.11b)
wh, =0, (2.11c¢)
Ynt+1] = Opn) = 0. (2.11d)

To arrive at the last conditions (2.11d) we have taken
into account the odd parity of hgy,, which gives us
sinh(6(¢)) =—sinh(6(—¢)). Hence, § must be odd in e.
Similarly, for hgy and hy, to be even, y(e) must satisfy
e2®) = ¢2(=¢) which implies that y is a even function
of e.

We conclude with

R =1+ Rpe* + Ryet + 0(°), (2.12a)
W=V + Wpye* + Wye + 0(e°), (2.12b)
W = sz]e2 + Wf4]e4 + 0(&*), (2.12¢)
WP = Whe+ Whe +0(e), (2.12d)
v = e +rwet + 0(e), (2.12€)
8= 05pe+ o’ + 0(£). (2.12f)

A similar expansion was made by Hartle [35] in
the derivation of a metric for slowly rotating stars using
a 3+ 1 decomposition of the metric. From (2.9) follows
that the Ricci tensor has the expansions

Rab = R[O]ab + R[l]abg + R[z]abgz + R[3]ab83 + e (213)

In fact, with the notation f[z] S {7[1’]’ 5[,»1, R[i], ﬁ], W[l]}’ it

turns out for a perturbation at order n > 1 that

St = Si(f i) + 51 (Fimen)): (2.14)
HY — g» A% 215

K & (fr) +hg (Fimen),  (2.15)
HY = B0 (F1) + 0 (Fuew),  (2.16)

where S'l-, H 3?, and A ,((5) are linear differential operators of

the indicated arguments. The functions s, hﬁ?, and hf) are
nonlinear functions of the lower order perturbations f,,
for m < n.

For the computations, it is useful to change the
angular coordinate according to y = —cos#, introduce

s(y) = /1 —y* and transform W% = s~!W”. In addition,
for a perturbation at order n it will be useful to make the
following decomposition of the perturbation 7, in terms of
associated Legendre polynomials, P (y):

Ry (2,y) = Riua(2)P(y), (2.17)
W) = W WP (218)
Wi =wh, o[22 )
Wi (2, y) = Wi (D) P(y), (2.20)
Vin) (A ¥) = Vinf (A P2(y). (2.21)

81 (2 ¥) = Sn. (A P(¥), (2.22)

in which we also apply the Einstein sum convention over Z,
the respective harmonics of the associated Legendre poly-
nomials. We remark that this decomposition with respect to
the associated Legendre polynomials is in fact a decom-
position in terms of axisymmetric spin-weighed harmonics
(up to normalization) obtained by setting m = 0 in the
standard (Y., (v, ®).

III. SOLUTION OF THE BACKGROUND
AND PERTURBATION EQUATIONS

A. Solution background equations

The main equations for the background model are

’
0= % (3.1a)
0=1[(r*),V-24, (3.1b)

from which we deduce

r(d) = riA+rg, (3.2)

where r; and ry are integration constants; however, since
we have the freedom of rescaling the affine parameter
A — al + B, so that we can take without loss of generality

r=Aa. (3.3a)
The next integration of (3.1b) yields
A
V) =1-— 3.3b

with A an integration constant.
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The resulting spacetime is the Schwarzschild metric in B. Recurrent operators in the equations
outgoing Eddington-Finkelstein coordinates, with a total of the perturbations
Bondi mass m, related to the integration constant A by
A = 4my. Moreover, A = A/2 corresponds to the location
of the past event horizon of the Schwarzschild horizon.

The principal part 3‘,»( f ) of the supplementary equations
in (2.14) while recalling the notation s?(y) = 1 — y? are

. 1 A ARy, (Wiy)y A
M (R[n], W[n], W[yn]) = 2—12 <1 - 2—/1) </12W[n]’,1 + pi ) ) + oYE Y _ 4—A2W[yn]7y, (3.4a)
A , 1 A (’14W'[V])/1 s Wf]
Yy — [ )t "
S> (Wi W[n]) =3P (1 2/1> . + ZW[nMy + Pt (3.4Db)
2
A~ b\ N A ) 1 ¢
S3(W[n]) = ﬁ (1 — 2,1) (/I4W[n],ﬂ),/1 + E (S4W[n]’y)’y. (34C)
Those for A in (2.15) are
() 2
H{"(Ryy) = _ZR[n],ﬂ/la (3.5a)
FWh)s (R ()
£r(r) 1 [n).47-A [n].y Y] aS") y
HY (R, 711 =— - —_— 3.5b
2 ( [n]s ¥ [n] [n]) 2/12 P S( A >/1+ s ( )
ﬂ ,SZ) (/14Wy )
o) y _ I, A sy )
H3" (Rps)s V1) Wi Wiap) = (W), Kl 21) (AR[n])_l] ) o
sty
= 2y, (3:5¢)
2 2w
(") y A s ]
H W) == A== v — , 3.5d
Vo ==[1(1-5)md] +5 () (3.50)
and those for IQI,@ of (2.16) are
77(9) ¢ S* oy 2
HY (8 W) = 575 AW 00+ (0as”) . (3.6a)
2
;) 4y _ A s y
Hy" (81, W[n]) =- {/1 </1 - 5) 5[,,],1] ) 5 (XZWM).M. (3.6b)
|
We observe that (3.5b) and (3.5d) as well as (3.6a) and _ I, 2
(3.6b) can be combined (see, e.g., in [39]) to two fourth M(F) = 2 A AF) jual 2+ [(AF) 1571
order (master) equations A 4 A
N GRS (PR W PCE)
0= M(Y[n]) - SZR[n],Myy’ (37&)
We emphasize that Egs. (3.7a) and (3.7b) (similar to the
Teukolsky master equations in 3 4 1 perturbation theory) are
0 = M(6)), (3.75)  the key equations to solve the system, because they provide
the initial data y |, or 5, needed to integrate the hypersurface
where equations of the characteristic initial value problem.
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C. First order perturbations
Since vy, Ry, Wﬁ]’ and Wy are zero, we only have to
consider the equations

0 = 858, W), (3.9)
0 = A (5. Wh). (3.10)
0 =AY (5. Wh). (3.11)

whose explicit form can be read off from (3.4c), (3.6a),
and (3.6b). The corresponding master equation is

1
0= 2 [14(/15[1]),,1/1,1],/1 + [(M[l]),,{,lysz],y

A 4 A
+ (ﬂ +2- s—2> (A01) 2 = 5 [AA0) gl 5o+ (3-12)

which is in fact a second order equation for the variable

vy = (A0))) us (3.13)
namely
Ay
0 =222 = Ay + (84— Ay, + 1
4
+2{(SZW[11.y),>v + [(2—;”%11}, (3.14)

which admit a solution by separation of variables by setting
wi(4y) = pp(A)S(y),

A
0=2424=A)ppu+ BL=A)pu,+ (; + 2k> P

(3.15)
d[,ds 4

0=— |22 + (2-k=-=)S,
i) ()

with k a constant. Identifying 2 —k = £(¢ + 1), we see
that (3.16) is an associated Legendre differential
equation (A1), whose general solution is

(3.16)

Se(y) = BuP(¢,2,y) + B Q(7,2,y), (3.17)

where P(-) and Q(-) are the Legendre functions of the first
kind and of the second kind, respectively.

Requiring a regular solution at the poles y = 41 imposes
that £ must be a non-negative integer and B, = 0, because
P(Z,2,—1) blows up at the pole y = —1 and Q(¢,2, £1)
blows up at the poles y = =+1. Then the remaining
Legendre function P(-) is the associated Legendre poly-
nomial P2(y).

To find a solution for (3.13) and (3.14), we set
Wi (4.y) = wna(A)P(y). 81)(4.y) = 814 (A)P(y).
(3.18)

where a sum in £ is understood. Note that P3(y) =
P3(y) =0, and consequently, 100 = 0. = 0 without
loss of generality. Subsequent insertion into (3.14) while
using Eq. (A1) gives us

1 1. A\ dyp g
0=—-aA-20) 04 (45 2) 2L
A=)t ( 2> 2

A
Using the parameter transformation x = ‘% — 1, similar
to [35], we find
Py dx+2dy) g
0=(1- — — :
(1-x) dx? x+1 dx
C+1)(x+1)-2x—4
, 3.20
+ (x+ 1)2 y/[l.f] ( )
which can also be written as
d d
0= & [(1 - x?) a(l - X)ll/u.f]}
4
+ f(f+ 1) - 1 _xz (1 —x)y/[l.f]. (321)

Equation (3.21) is an associated Legendre differential
equation, such as (A1), with the general solution

 BjgP(x) + Bp.g 07 (x)
Wi (x) = .

. (3.22)

Inverting the parameter transformation from x to A yields
the general solution of (3.19) so that using (3.18)

AB,, 47
w4, y) = <2A i 4]/1>P§ <K_ 1>P§(y)

AB[Z,K] 4)
" <2A - 41) 07 <X - 1) PX(y). (3.23)

The field ) is related to the Weyl scalar ‘¥,

)

y, — —
0 2

e+ 0(?). (3.24)
An inspection of (3.22) shows that ¥ becomes infinite for
A — A/2 and for 4 — oo if £ > 2. The first case corre-

sponds to the unperturbed location of the horizon while the
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second one corresponds to the asymptotic region.
Consequently, ¥, also becomes infinite in these cases.
We require regularity of the scalar curvature ¥, at these
locations, which implies By; sy = By, = 0. This leaves us
with the trivial solution y;; = 0.

Integration of (3.13) with this trivial solution while
using (3.18) yields

5
Sup(2) =B Biul. ] (3.25)

(L) = Plog 1 :
where as aforementioned, since dj; g = dj1.1) = 0, we get
that B([So.o] = B‘[so.l] = B‘F].O] = B‘FH] = 0. These modes are

physically irrelevant because Jy;) is expressed by the
angular base of P2-associated Legendre polynomials and
P§ =P} =0. Since §pj is now known, we are now in
position to integrate the hypersurface equation (3.10).
We insert (3.25) into (3.10), while using (A3), to find

ddy1.\ KePy(y)
(W) = 212(‘755‘ — (329
where
K,=2-¢(¢+1)=(1-¢)2+7¢). (3.27)
Then setting
Pp(y)
Wi (4 y) = W] () === (3.28)
gives us
¢
d (,Wig s .
o7 (ﬂ o= 2By, ;K (3.29)
or after integration
K,B? ., B?
Y (1.7] 3]
W[l.f] - B[O.f] T2 33 (3.30)

This gives us for the first order axisymmetric perturbations

B&
L.
5MLw=<%m+ ;Q%@x (3.31)
K:B),, Bh.] P! (v)
Wﬁ](ﬂ, y) = |:B€()).f] - /12[ L 3[/13]} fs . (332)

Again we set the unphysical modes BE’J(’).O] = B{[;_o] =0,

because of behavior of the angular base functions of Wﬁ].

Inserting the obtained solutions into (3.11) yields while
using (A6)

A 1
0 =5 8u.a4), — P14, — 5 (/IZWﬁf])J»

5 5 (3.33)

and together with (3.25) and (3.30) this gives us for
any £ > 2

¢

1 /A B
_ _pt 3.7]
0= —Bjy i+ <zBfOf] ¢ ) (3.34)
Hence for any ¢ > 2,
B?
o T
B[M] =0, B‘[SW] =34 (3.35)

Moreover, inserting the obtained solution into the supple-
mentary equation (3.9) while using (A7), we find

& &
5 B[O,f] ~ (¢ + I)Bﬂﬂ N 3ABf1f] — B[M]
’ 2 222 643
x Kp % s(y)PL(y). (3.36)
Considering (3.36) for the various modes of £ gives us the
following: # =0 is trivial because P(l) =0; the =1
coefficient vanishes since K; = 0. Therefore the coeffi-

cients B([/())_u and B([/;J] are unconstrained by the supple-

mentary equation 3'3. Finally considering 3'3 =0 for the
¢ > 1 coefficients while using (3.35) gives us

0="2(¢+1)B) . (3.37)

which implies

B  =0: V ¢£>1. 3.38
(1.]

Furthermore, requiring an asymptotic Bondi frame
(a nonrotating inertial observer at large distances), i.e.

Gapdx*dx? — —du® — didu + 2> qugdx*dx®,  (3.39)
annuls the integration constants,
¢ _
W[O.l] = B‘FM] =0. (3.40)

From the above requirements, the final solution of the
linear perturbations are

5[1](%@ =0,

B P)(y) By

w? — -
3B s

[1]()’v’1> =

e (34
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where we redefined B := B‘[’; 1 for notational convenience
because it is the only remaining integration constant.

D. Quadratic perturbations

Using the notation of Sec. III B, the relevant main
equations (i.e. only those containing ypj, Ry, W'E’Z], and
Wiy)) for the quadratic perturbations are found to be

0= 8y (W W)y) + B;sﬁz (1 - %) (3.42a)
0 = 8,(Wgy. W) (3.42b)
0=H"(Ry), (3.42)
0=AY (Rp. 7. W) (3.42d)
0= AY (W R v W) i 1“12 (3.42¢)
0= (rp. Wiy) + % (3.42f)

The first hypersurface equation (3.42c) is readily inte-
grated,

Ry = Crao(y) + Cri1 ()4, (3.43)

where Cgog(y) and Cpgyi(y) are free functions of y.
Similar to (3.7b), we can deduce a master equation for yy,

2 5B ,
0= M(]/[z]) -8 Rz,uyy - ﬁs . (344)
For finding a solution of the remaining fields yp [2]

and Wp), we need to solve the master equation (3 44),
Defining

v = (rp)u (3.45)
with Legendre decomposition
v = wpa(APF() (3.46)

while using (3.42c¢) gives us after insertion of (3.43), (3.45),
and (3.46) into (3.44)

d*ypp g N 4r—é dy g
dr 2 dy
A 5B?
+ [2—f(f+ 1)+ 21} M}PZ T (347)

o=d-Lia-m
{-5ra-20

To fully factor out the Legendre polynomials P2, we recall
that P3(y) = 3s2. This allows us to write

1 dzl//[z.f] A\ dyp.g
0= [{—Er(A—%) 2 +<4r—§>d_y
A , 5B% _,
+ [2 -0+ 1)+ 2/1} W, f]}af & (ﬂlﬂ ).

(3.48)

We can see that (3.48) resembles (3.19) if B = 0. Itis in
fact an inhomogeneous version of (3.19). We seek solutions
of (3.48) as a superposition of a homogeneous solution,
wE;;T) for B = 0, and a particular solution I/IE ;| for B #0,
ie.

hom ar
Ve = WEZ.K] '+ ‘/’Eg.f]t)- (3.49)

The homogeneous solution z,//[2 ] °m) will be like (3.23). Also
note that a particular solution needs to be found for only the
¢ =2 mode. We find z;/g‘azl]{) = —B%/(9A2*). Hence,

) + CpnQZ (5 - )}

CnaPi (% -
=A
V2.0 (4) { 2A —4)

BZ
—~ 52,
+< 9A/14> ‘

It follows by the same regularity arguments as in the
discussion for (3.23) that so the Weyl curvature scalar ¥,
does not blow up at the horizon of the unperturbed solution
and toward null infinity we must set C ,) = Cpp.g = 0.
Consequently a solution for the y, ) modes is

(3.50)

B2
Wi (d) = <— W) & (3.51)
Setting
/(4 Y) = rpa(APH(Y), (3.52)
we find after the integration of (3.45)
Cl B2
— (7 e 2

Insertion of (3.53) and (3.43) into (3.42d) gives us

47y
_(Wh) e,y (dm f]) P2, (3.54)
257? 2 di dy |

and using (A3) we find
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Wi dyp.a
0= (),4 —,> + 2SCR20,V - 2&2Kf< >Pf(y)
S yi . d/l

(3.55)

which indicates that the angular behavior of W{z] /s and

sCpro,, are dictated by the associated Legendre polyno-
mials PL(y). As of (A5), we set [note P,(y) = P%(y)]

R[Z] (’17 y) = R[2.f] (A)Pf( ) [Cﬁo 4 + Cﬁl.f]ﬂ]Pf(y)’
(3.56)
Wi (L) = W, (Ds()PLY).  (3.57)
This gives us
_d d oy R 2 drpp.q]
O—d/1</1 dﬂW > 2C[20f /1Kf< )
(3.58)
Integrating (3.58) yields
Y _ (R y
W o— o KeCha=Cn Con B o
[2.2] 7 ~0.7] 22 3.3 9A/14 A
(3.59)

where we set the integration constants Cﬁ)_o] = C’[V3_o] =0,

because P(l)(y) = (. Considering (3.5d) with (3.52), (3.57),
(A6), and s> = P%(y)/3 gives us

A B?
2 2w 2
|:/1 (1 _2/1) [ a)r :|’/1 (/1 21,’]> 12/1455’

so that after the insertion of (3.53) and (3.59), we obtain

: A Ch g B? K,
Y ¥ 2
Con =2z <CM 34 ) 942} (1 4 >5f

(3.61)

(3.60)

implying for any £ > 2

=3AC]

Lo (362)

Con=0  Chg

Next, proceed with the hypersurface equation (3.42¢) for
Wy Insertion of (3.52), (3.56), and (3.57) into (3.42¢)
gives us

(W),
A
(| (-5 oean],
Rps  (BWha),
+ (& +1) |+ =0 Koy | PUOY)
A 24
B?s?
- 3.63
4, ( )
Using
2 2 150 0
st=1-y"=3[P;(y) = P3()] (3.64)
as well as setting
Wi(4.y) = W) Po(y) (3.65)
yields
A
(AWp.e) I-= (ARp.4) 4 ;
R (/14Wy )
[2.7] 2.6 A
BZ
—@( 82). (3.66)
Since Rpp 4, sz' L and 7 are known, we find after
integration
cV ACR
[1.£] 20.7]
W[Z.f] KfC[ZI 4 (¢ + )KfC[O 4 +—j, + 222
+f(f+ )Chy | (2B B 2B
642 9A2°  182* 182477
(3.67)

where CY 1. are integration constants.

The calculation of (3.42a) and (3.42b) while using
(3.56), (3.57), (3.64), (A1) (for m = 0), and (A8) gives us

A AR
0= (1-5) (#Waa,+
2 2T ),

A
_f(f-f— 1) <W[2f] + = ) W[zf])

(3.68)

1 AN s
0_272<1 21)(’1 Wen)a

and the insertion of the respective coefficient solutions
(3.56), (3.59), and (3.67) yields

1 )
E W[Z,f],r + szf], (369)
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Clia
=7(0+ 1){ 1 + K [Cly 4= Chi g

A
+W}, (3.70)
ozi%u(c[ ] Z;C“ DKe st ey
Therefore,
W, =0 Y21, (3.72a)
Chy=3AC 4. VvV £22,  (3.72b)
[21 q4=Clg VYZ22 (3.72¢)

Note that (3.72b) is consistent with (3.62). The requirement
of an asymptotic inertial observer leads to

CTM] = Cﬁl,f] =0, (3.73)
which gives with (3.72) that Cﬁ = C’

B = 0. Thus,
redefining C := C)V ., the quadratic perturbations are

(11

BZ
rp(4,y) = <_54A/136§) P(y). (3.74)
Rm (ﬂ, y) =0, (375)
BZ
Wi) = (=0t ) sSOIPLO) (370
C B 2B? B2
=— — PY(y). 3.77
Wito) =S +1os+ (o= o ) A0 (377

E. Third order perturbations

Similarly, expressions for the higher order perturbation
quantities f|; can be obtained using the same procedure as
in the previous sections. In this and in the next subsection
we show the fundamental results without repeating inter-
mediate steps.

The relevant equations for the third perturbations are

B3s*

— 3 ¢
0= 85(5, W) TV (3.78)
34
. ~(8) B’s
0= H" (03, Wiy) = o (3.79)

2B3ys?

W. (3.80)

0=y )<5[3 W[3]) +

Similar to (3.7b), we can deduce a master equation
for 5[3],

40B°

Using P%(y) = 15ys? and following the steps of Sec. III C,
we find

B3
534 y) = <—m) P3(y), (3.82)
Wh (i y) = D 2B3 ] Pl(y)
Wiy 323 135A05) s(y)
B 4B P
- . (3.83
+ {405A/16 81A2/15} s(y) (3.:83)

where D is the only free new remaining integration constant
that appears at this order.

F. Fourth order perturbations

Here the relevant main equations are those containing

Yi4)> Ruaps Wiy, and Wiy which are
14 1 35\ B4
. 14 1 35)\B's"
0= 81 (Wup, Wyy) + <9A/1 122 6A2) 328
l(1-A\p_CB (16 _T B By
22 24 " \AZ2 323)94A| A°
8B*  CB?
8Bt ’ 3.84
2718A + 3A2° .
) TA+1202)s> ]| B'ys
0 — & (W W ( _
2 (Wi Wiy) [ 12 ] 9427
2ysCB?
ysC ’ (3.84b)
3AN
4 4
) B"s
0— A0 (Ry) - s (3.84c¢)
0— I:I(Y)(R W) + B'ys® (3.84d)
= Hy (R v Wig) + o '
s . (A—14r)B4s*
0 = Hy" (W, Rpj. 7, Wiy) + = —
2B*s2  DBs*
2B's* ’ 3.84
94276 24 e

104010-10



SLOWLY ROTATING KERR METRIC DERIVED FROM THE ...

PHYS. REV. D 107, 104010 (2023)

4 4
_ i : A\ B's
0= H47 (7/[2]’ Wf2]) + (14 +Z> 9A2/16
B*C BD 38B?
<2A/14 o 27A2/16> s (3.841)

The first hypersurface equation (3.84c) is readily inte-
grated,

s*B*

Riy(4,y) = Ego(y) + Eri (¥)A = 1080A215°

(3.85)

or expressed in terms of the Legendre polynomials PY(y),

Ry (A.y) = (Eff).f] + Eﬁ.zﬁ)@@)

B* <P3(y) 2P35()

_ _ L W)
135425\ 15 21 ' 35 )

(3.86)

Similar to (3.7a) we can deduce a master equation
for y 4

5B*Cs? 5BDs?
AN3 2

A\ B*s?
358 —s2(397+= ) | ——.
+[ s<9 Uﬂ%w

0= M(7[4]> - S2R[4],Myy -
(3.87a)

Using the methods of Sec. III D together with the inverted
Legendre relations

Pl(y
1= PY(y) = 1S( ). (3.88a)
Pl
TS (1) (3850
S
1 2 1
¥ =3-3P0) = 1-3P30), (3.88¢)
2Pi(y) | Pi(y)
3__“"4 2 3.88d
Y 35s + 7s ( )
1 4PY(y)  8PY(y) 8 2
(3.88¢)

we deduce the following solution for the fourth order
perturbation:

B* [Py 2P PY
R[4]=—7 T 37 Taz )

13525 \15 21 ' 35 (3.892)

BD
V4 = P

B2C B* 5
27A2  27A%2°  1134A%)°

4 B4
P2, 3.89b
N (405A3/15 * 17010A2/16> + ( )

P

w2

_ <ZBD 2B°C  2B* )
L

9A*  9A2)%  2835A217

+ 25 + A P}
814376 ' 47254207 ) ¥

(3.89¢)

_E_BD, 4B* B
4 T 0% T 4054226 675407
2B* 2B* 4BC 4BD BD\
+ Py

Yoa s oan Ton
8B* 2B* B*

+{- 3 5+ 216 7

S1A32° ' 1354216 157544

945447 81A27° 94

>P2. (3.89d)

Note that E is the only remaining new integration constant;
all others vanish because of the reasons mentioned in
Sec. III D.

G. Perturbations in terms of Komar quantities

The solution of the perturbation involves the free inte-
gration constants A, B, C, D, and E. These free constants
determine the Komar mass, K,,, and the Komar angular
momentum, K;, which can be found by the calculation of
(2.7) and (2.8),

A C E
m = Km 22—582—5€4+0(85), (390)
B D
L:=K, =——¢e+—¢&+0(e). (3.91)

6 6

If e=0, K,, =A/4 corresponds to the mass m, of the
unperturbed system. Furthermore, we can see that
L = O(e). This allows us to relate ¢ with the angular
momentum L of the system. To do that we have to solve the
cubic equation

D B
0:—83—€€+L

. (3.92)

for e. This equation also shows that in order to make the
substitution of & by L, we seek the solution ¢(L) = O(L).
The root of (3.92) which fulfills this requirement is

L+ 0(L%). (3.93)

Subsequent insertion of this expansion into (3.90) and
solving for A gives us
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EB-2CD

72C . 4 . .
A :4m+?L2 12592 = L*+O(LY). (3.94) subsequent expansion up to O(L*) allows us to eliminate

the integration constants C, D, and E from the perturba-

tions. This means that all integration constants are absorbed
The relations (3.93) and (3.94) allow us to substitute A into the Komar mass, m and the Komar angular momentum

and e, by the physical quantities m and L. Insertion of L. Thus the final solution is uniquely described by the two

(3.93) and (3.94) into the solution of the perturbations and ~ physical quantities m and L. This gives us

|

Py 2Py 3P\ L*
4) + O(L?), (3.95a)

RAy)=A-(2-Z24+22
*.5) (5 7 735 ) 5o

Woy) — 12" [2 4 (2 2P0L2+ 4 2 (24 2ty
Y /14 ,13 T8 sm26 2507 " \35ma  m2e )2

A
36 PY|L*+ O(L9), (3.95b)

(o )

L

m323 5m2/16 175mA’

2 | 3
mat (SP2)> L [ 35m2A7 (sP2) + <2m3/1° + 175m2/17> (SP‘I‘)]ﬁ +OL). (3959

(-
Wh(a,y) = (-%%)L 4 { “ Py (L—L> Pﬂ L3+ 0(L9), (3.95d)
(-

5mA° s 3m22>  15mA®

1 1 1 1
T P2> 12+ {_ a2 P:+ <2Om3/15 + 210m2/16> Pi} L* + O(L%), (3.95¢)

50, y) = (12 12/14 P2> L3+ 0(LY). (3.95f)

We see in (3.95) that the perturbations are determined by the mass and angular momentum; i.e. the solution has two hairs.
To show that this solution represents the Kerr solution in affine-null coordinates, we introduce the specific angular
momentum, a := L/m. In terms of a, Eqs. (3.95) read after changing to the angular coordinate 6

3m? sin* 60
R(/’{, 9) =]1- Wéﬂ + 0((16), (3963)
2 2 3m 3m?\
W(4, 9)—1__m+[;1+< AT+ o )sm%?}ﬁ
2m 10m 3m . 35m  21m*  9m’\ |
T R e P R e e E TS
3 5 35 3m?
WO, 0) = {—TTa2 n b—’? - <4—ﬂ'? n %) sinze} a4} sin@cos @ + 0(a), (3.96¢)
2m 4dm 5m  m?
W¢(/1, 6) = /1—361 |:—/1—5 </1—5 - 26 ) Sln29:| a’ + O( ) (396(1)
(1.0) msinZ0 2 9msin29+ 21m  m? 0] 4t + 0(a) (3.96¢)
=(- a - sin*0 | a a 96e
i 22 4 825 418 ’
5 OsinZ6
5(0,0) = —%cﬁ +0(ad). (3.96f)
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Comparing with [33], we find agreement for R which corresponds to their areal coordinate r. Calculation of the metric

components g,, using (3.96) gives us

2 3 2\ . 2
Guu(4,0) = =1 + Tm + Kﬂ_:n + r/;;_4> sin’0 — /1_’;1] a’
2m 10m  4m?\ . 35m  23m*  om’) |
[/1—5 - (/1—5 + /1—6> sin?6 + (4/15 toe t 10&7) s1n49] a* + 0(a®), (3.97a)
92, 0) = —1, (3.97b)
3 5 35 23m?
Guo(2,0) = { <A—T) a’ + [— /1—’11 + <T:n 10’:5 ) sin29] a4} sin@cos§ + O(a®), (3.97¢)
2 4 5 2
Gup(10) = { (— T’") a+ L—T - (TT + ’/’1’—4) sinzﬁ} a3}sin29 +0(d%), (3.97d)
msin®6 9m . 21m 3m?\ .
ggg(j., 9) = /12 —+ <— /1 >a2 + |:2_ﬂ3 sm29 - (4—ﬂ3 + W) SIH49:| 614 =+ 0((16), (3976)
5msin®6 cos 0
Gop(4,6) = <— W) @+ 0(dd). (3.97¢)
sin’6 Im . 2lm  17m?\ . :
Gpp(4.0) = {12 + (m 7 )a2 + [—2—;};5m26 + (H? + Wr/};) sm“H} a4}sm29 + 0(a®). (3.97g)

Equations (3.97) constitute our final expression for the
slowly rotating stationary and axially symmetric (Kerr)
metric adapted to null coordinates which asymptotically
match an inertial Bondi frame. At the difference of all
previous approaches, it was obtained as an explicit solution
of the Einstein equations. After comparison with Ref. [33],
we find agreement up to a typo in their equation for g,;. We
also note care should be taken when comparing the
expressions of Ref. [33] with ours. First, the authors of
Ref. [33] present a Bondi-Sachs form of the metric, while
we have an affine-null metric approaching a Bondi frame;
the difference is in the choice of radial coordinate, and the
two agree with one another only up to O(17*). Second, the
authors of Ref. [33] make a large 1 expansion while we
make a small a expansion, which results in powers of 7%
absorbed by order symbols in [33]. A slowly rotating
version of the Kerr metric in null affine coordinates at
second order in a was also obtained by Dozmorov who
made null tetrad rotations starting with the Kerr metric as
expressed in Boyer-Lindquist coordinates [40]. In the next
section we show an alternative procedure to recover the
slowly rotating Kerr metric components as expressed in
(3.97) by doing appropriate coordinate transformations.

IV. APPROXIMATED AFFINE-NULL METRIC
DERIVED FROM THE KERR METRIC

Here, starting with the Kerr metric expressed in Boyer-
Lindquist coordinates (BL) {7,7,0,¢}, we present an

[

explicit transformation to affine-null coordinates up to
fourth order in a. The Kerr metric in BL coordinates reads

ds® = gydi® + g, 3didd + gy s di* + gy di* + gpd0®

+ g5 44’ (4.1)
with
2mr
91 = —<1 _T>’ (4.2)
2ma# sin? 0
Gp=—"s (4.3)
>
==, 4.4
97 =5 (4.4)
9pp = X (4.5)

2ma*# sin? 0

5 ) sin?@,  (4.6)

934 = (?2+a2+

with A = 2 —2m# +a® and X = 7* + a®cos®d. The u
null coordinate must satisfy the eikonal equation

gV uV,u = 0. (4.7)
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Inspired by [33], we propose the following expansion for u;

2m

7 — N
- >+i21:f,»(r,6)a. (4.8)

u:?—?f—2mln<

Note that for a = 0 this expression reduces to the standard
outgoing Schwarzschild null coordinate. By replacing (4.8)
into (4.7), we obtain a set of differential equations for
f:(#,0) that can be solved iteratively. Conserving terms up
to fourth order in a we find that only the even coefficients
fou(#,0) are nonvanishing with

5 50—2m  cos20 In(1-22)
7.0) = - ; 4.
P10 = om—n t a7 o 49
A (2F+m) ., . 3In(1-22)
f4(r, 9) :WSIH (29) —T
4m? — O 4 372
m mr + 3r (4.10)

Cdm?(F - 2m)?

Similarly, affine-null coordinates {4,0,¢} can be
obtained from the requirements
|

g’V uV, ) = —1, (4.11a)
g*°V ,uV,0 = ¢’V uV,p = 0, (4.11b)
by assuming relations of the form

A=+ A0, 7, (4.12)

i=1
0=0+> 6,0.7)a'. (4.13)

i=1
p=¢+Y &i(0.7)d, (4.14)

1

and replacing into the set (4.11), the coefficient functions
A;,©;, ®; can be obtained in the same way as u. After that,
the resulting relations can be inverted in order to express the
BL coordinates in terms of the affine-null coordinates.
Following these steps up to fourth order, the final trans-
formation coordinates read

3mcos(20) + 44 —3m

In(1 -2
?:u+/1+2mln<2i—1>+ {n( ‘)+

m 2m

(44— 8m)2 ]“2

. {_ m(1752% = 224md = 12m*)(c0s(20))?  m (2522 + 64m. + 72m>) cos(20)

320(4 — 2m)2A*

160(4 — 2m)? 2

3 1n; 1m - m) N 24015 — 7200%m + iigﬁ;ﬁa 3225:12),2”3 — 96 m* + 72m5] o+ 0, 4.15)

P d waz {sinze(s (1;(; 20+3) msin2¢9(71 2}7 204 1) m25slir514e} d o). (416

b_o_ sir:éé&) 2 sin (20) (34 cos (2196)/;— mcos (20) — m) 4+ 0(a"), (4.17)
R e =

_om' - m3’12 Iﬂi’gﬁj ;ml)ifm - 12’14] @+ 0(d). (4.18)

Finally, with these transformations in hand, we obtain the
same metric components in affine-null coordinates up to
fourth order in a as given in (3.97) in the previous section.

V. LOCALIZING THE EVENT HORIZON AND
ERGOSPHERE IN AFFINE-NULL COORDINATES

In this section we show that the affine-null coordinates
for the slowly rotating Kerr metric cover the ergosphere and

|
the (past) event horizon r,. In order to find them in a
consistent way, they must be localized at O(a*). Recall that
in BL coordinates the Kerr metric has the external ergo-
sphere placed at

2

Perg = m + V m? —a*cos® 6

atcos?® a*costd
—om— - 0(a),
" T om g+ 0(@)

(5.1)
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and the event horizon at

2 P a 6

rp=m-+ m?

(5.2)
The boundary of the external ergosphere is obtained by
looking for the timelike surface I" where the stationary
Killing vector field 9, becomes a null vector field that is
where

guu'F =0. (53)
Taking into account the expression for g,, as found in the

first equation of (3.97), the ergosphere will be located at a
given A = g (6), with

2

= Zﬂerg[Zi](e)aZi + 0(a6)?
i=0

Aere (6) (5.4)

where the even expansion is a consequence of the sym-
metry assumption of Sec. II. Inserting (5.4) into (5.3), and
after reexpanding in powers of a we find

(Tcos*0—-3) ,

which gives the location of the (external) ergosphere in
affine-null coordinates. By replacing (5.5) into (4.16)
[using the inverse of (4.17) to relate 6 with 9], and after
a reexpansion in powers of a it can be checked that the
standard fourth order expression for the BL expression of
the ergosphere as given by (5.1) is recovered.

Similarly, for the (Killing) event horizon we search a
null surface X described in affine-null coordinates by
%(1,0) =1 —24(0) = 0. Hence, its normal vector N, =
V, X must satisfy N°N, = 0 which implies the following
differential equation for A4(6) =0,

Ry(0) W% (92,(0)\2
ONNy =W+ 2W0 = 4 =0.
9NNy = W o TR\ "o

(5.6)

Let us assume an expansion for 15 (6) similar to (5.4), i.e.

2
An(0) = Z’lH[Zi] (0)a* 4 0(a®) (5.7)

with Ay = 2m (the Schwarzschild value for the loca-

tion of the horizon). Introducing (5.7) into (5.6); reex-
panding again in powers of a, we find [omitting the
O(a®) term]

127cos*@ — 320m3 A4 — 84cos?0 — 3
H) a*. (5.8)

Aerg () = 2m — Ta
(51 cos* @ — 2 cos? 6 + 31)
- T a*+ 0(a®), (5.5)
|
Aup) 3cos?0+ 1
0= 2
< 2m * 16m? .
N (Anple)®  3sinfcosd B Ay _ 3(cos’0 + 1)
4m? gm? MR T g2 16m°

So that solving for the coefficient Ay and Ay gives us

1 + 3cos?0
tul0) = 2m - 1250
(29cos*0 — 78cos?0 — 31)

640m3

at+0(a®), (5.9)
which gives the location of the (past) event horizon in
affine-null coordinates. By replacing into (4.16) and after a
reexpansion in a up to fourth order, the well-known value
(5.2) for the BL radial coordinate of the event horizon is
recovered. At this location, the affine-null coordinate
system is regular.

VI. SUMMARY

We have derived high order slow rotation approximation
of the Kerr metric in affine-null coordinates. To achieve
this aim a metric in affine-null coordinates was expanded

a2 640m*

|
off a spherically symmetric background metric that corre-
sponds to a Schwarzschild metric in outgoing Eddington
Finkelstein coordinates. This quasispherical expansion was
done with respect to a general smallness parameter e.
Subject to stationarity and axial symmetry the perturbations
did not depend on the u and ¢ coordinates. Moreover,
requiring even parity of the Komar integral of stationary
(giving the mass of the system) and odd parity of the Komar
integral of axial symmetry (giving the angular momentum
of the system), we argued that, on the one hand, the metric
functions y, R, W?, and W have only even perturbations in €
while, on the other hand, the metric fields § and W% have
only odd perturbations in e. This fact significantly sim-
plifies the integration of the perturbation equations result-
ing from the quasispherical expansion of the Ricci tensor.
In addition, we find that the integration of the perturbation
equations follows an alternative hierarchical structure. This
means that with the spherically symmetric background
solution at hand, the linear perturbations only involve the
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functions 6 and W%, and its integration provides (after
application of the boundary condition of an asymptotic
inertial observer) one free integration constant B. At next
order, the quadratic perturbations turn out to be a linear
combination of the derivatives of functions y, R, W, and W
together with nonlinear terms containing the integration
constants A of the background model and the free integration
constant B of the linear perturbation. Their integration also
yields a free integration constant C. Following up the next
order, there are only differential equations involving the
cubic perturbations of § and W? as well as the integra-
tion constants A, B, and C characterizing the lower order
perturbations. This alternating scheme between the pertur-
bations of (5, W?) and those of (7, R, W?, W) continues up to
any order and is in fact a result of the symmetry assumptions.
A common feature in solving for the even and odd-parity
modes of ¢, is that at any order there is a fourth order master
equation for either the perturbation in y or the perturbation in
0. With the solution of this master equation, the remaining
perturbations can be solved by mere integration. After having
obtained the perturbed solution and calculation of the
Komar mass and Komar angular momentum, the arising
free integration constants A, B, C, ..., can be expressed by
the Komar mass and Komar angular momentum or by the
mass and specific angular momentum. Hence, the solution
depends only on two free physical parameters. The fact that
the derived solution is depending only on two parameters
goes along with the black holes uniqueness theorems stating
that any stationary and axially symmetric vacuum solution of
Einstein equations is uniquely determined by two parameters
characterizing the mass and angular momentum of the black
hole. Here we have required the solutions of occurring master
equations to be finite [see discussion around (3.23)] at the
affine parameter value A = A/2. This is the position of the
past event horizon of the nonrotating solution and similar
to Carter’s requirement of having a nondegenerate horizon
[41-43]. Since the Komar angular momentum is O(¢), it
turns out that the formal expansion parameter ¢ relates to the
specific angular momentum, and the previously made quasi-
spherical approximation is in fact a slow rotation approxi-
mation, like those of Hartle and Thorne [35,44]. By
successively solving Einstein equations, we thus derived a
slow rotation approximation of the Kerr metric up to fourth
order in the specific angular momentum. This solution is
further verified for correctness using a “standard” approach
by obtaining a different representation of a given metric in
another coordinate chart via a coordinate transformation. The
slowly rotating Kerr metric presented here also obeys the
peeling property, which can be seen considering the Weyl
scalars in (6.1),

3ma®>  15md®
‘PQ = (/1—5 +1 /16

cos 9> sin’d + 0(477),  (6.1a)

3\/§ma

=i

sin@ + 0(25), (6.1b)

m 3macosf

¥, = -5 - i+ 007). (6.10)
3v2
Y, = —i@sin&Jr 0(17%), (6.1d)
47
g, = g 0(4~%) (6.1¢)
= s . 1e
MEEYE

We can see in (6.1) that ¥, and W5 have a stronger falloff as
required by the peeling property stating that ¥, ~ 257" at
large radii. This stronger falloff is because of the requirement
of stationarity, the metric is not depending on u and the
multipole structure of the solution [45]. We recall that for a
most general spacetime satisfying the peeling property w4 ~
(020)/A where o is the gravitational strain (e.g. the gravi-
tational wave) as measured by an asymptotic observer.

Moreover it is easily checked that the (only) conserved
Newman Penrose constant [26] vanishes [33].

What is interesting to remark is that up to the
considered order of approximation of our work and those
of [33], the small a expansion and the large 4 expansion
coincide. It would be interesting to see up until which
order this is the case. Such an analysis might give insight
on the validity and universality of general small param-
eter expansions of the Kerr spacetime in relation to null
coordinates. It may also give insight if a closed form
solution of the Kerr metric with a surface forming null
coordinate can be obtained at all. The method presented
here offers the possibility to calculate any type of
approximate rotating null-metric solution that is station-
ary, is axially symmetric, and has a known spherically
symmetric background, e.g. those describing compact
matter systems or having a cosmological constant.
Indeed, the study presented here (solving the character-
istic equations in this affine-null, metric formulation for
vacuum spacetimes) is the natural starting point for
further studying the matter system under the given
symmetry assumptions. Some of such questions we are
currently investigating.
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APPENDIX A: USEFUL RELATIONS BETWEEN
LEGENDRE POLYNOMIALS

For completeness, we list some properties of the
associated Legendre differential equations and relations
between the Legendre polynomials. The associated
Legendre differential equation is

d dpm? i .
— (1 =y =L C(f+1)———| P =0, (Al
S la-m G [ -] pe =0

where P?(y) are the associated Legendre polynomials,
defined via

(=) P
(l_y )m/ dyf+rh

Pi(y) = (-1

20 (42)

In particular, if /2 = 0 we have P%(y) = P,(y), which are
the well-known Legendre polynomials. From these defi-
nitions, some useful identities can be derived

di’y[(l C P2 = [£(6 + 1) = 2(1 = ) 2PL(y),
(A3)

d (1 _ 2\2 dP%
dy[(l—w_ 2P2 =4+ 1)(€+2)(¢ = 1)Ps(y),

-y
(A4)
dpP!
PL=—(1-y})l2—= A5
=== (AS)
d*PY
P2 =(1-y")—*~, A6
d d P!
— (1 —y?)2——~L
a |17 dy (1-y*)"/?
=[2-£(¢+ D)(1=y*)"2P, (A7)
d
oy (1= PPL =22+ )P, (A8)

APPENDIX B: KOMAR CHARGES
Depending on the Killing vector X € {9,,d,}, we take

the Komar charges to be

kx
Ky = ——= ¢ Vliextlgy Bl
x= g § Vixlaz,, (B1)

with ky = 1,—1/2 for a timelike (e.g. d,) or rotational
Killing vector (e.g. d), respectively. Consider the general
null metric with the nonzero contravariant components ¢°',
g'', g", and ¢*B. The corresponding line element is

dx0\ 2 dx°
Japdxdx” = (9" + gapg'g'®) (%) +2 (%) dx!
g g
dx°
—2gapg"dx® <F> + gapdx*dx®,  (B2)

where g4cg“2 = 58. We define the null vectors [ and n
which obey “n, + 1 =141, = n,n* =0 as

1 11 1A
n— n"dd = 00 +—g—0101 +9W0A
g g

[ =19, = —g"'0;,
a | D)

(B3)

We note that / points into the future. The associated
covariant components are

) ) 1 g" dx!
l,dx* = —dx", nadx® = _EW‘M +F’ (B4)
respectively. The surface element dX;, follows as

dZ,p = 2liany/det(gap)dx*dx’ (BS)

with x4 = (x?,x) being any angular coordinates for the

units sphere. Setting g4z = R?h,p with h,p having the
determinant of the unit sphere metric g4z, (x€) :=
det(hyp). The corresponding volume element is defined
as d*q := /qdx*dx’, and we have § d*q = 4x. Hence,

dZ,, = 21,y R*d*q.

This allows us to write the Komar integral as

K(X) = —S—;%(Zl"nba[aXb])Rzaﬂq. (B6)
Since

2070, X, = 210X, , (B7)
= (1" = I’n")X, , (B8)
= ll(anh,l) - ll("bXLh) (B9)
= =" [(n"X}1) = (n"X,,)].  (B10)

we have
KO0 = & l00X,0) - (X0 RiPq. (B11)

Taking the Killing vector to be X = X“d, and specification
to an affine null metric
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P =, gl = eWA, g =w,
Joa = —R*hagWP, 9ap = R*hpp, (B12)
and € = 1 gives us
20n" 01, Xy = =W — RPhy s WAWHE] X0
+ R2(hagWEXA = 20, WEXA)
+e(X) —X%) - WX, - wAX%.  (B13)

Assuming the timelike Killing vector X = g, gives us

20100, Xy = —[W 1 — R*hy g WAWE].

Thus for the above form of the Killing vector we have the
related Komar charge using ky = 1,

1
K(0y) = 8”74(—e[w,1 — RPhygWAWE)R?d*q.  (B14)

With the rotational Killing X = 03, we have

ZI”nha[aXb] = R2h3B Wﬁ

so that the Komar charge is with ky = —%
K(03) = =1 P (R'hyyWdq.  (BIS)
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