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In violation of the generalized Lichnerowicz theorem advocated in the past, quadratic gravity admits
vacua with nonconstant scalar curvature. In a recent publication, we revitalized a program—that Buchdahl
originated but prematurely abandoned circa 1962—and uncovered a novel exhaustive class of static
spherically symmetric vacua for pure R2 gravity. The Buchdahl-inspired metrics we obtained therein are
exact solutions which exhibit nonconstant scalar curvature. A product of fourth-order gravity, the metrics
entail a new (Buchdahl) parameter k which allows the Ricci scalar to vary on the manifold. The metrics are
able to defeat the generalized Lichnerowicz theorem by evading an overly strong restriction on the
asymptotic falloff in the spatial derivatives of the Ricci scalar as assumed in the earlier theorem.
The Buchdahl parameter k is a new characteristic of pure R2 gravity, a higher-derivative theory.
By venturing that the Buchdahl parameter should be a universal hallmark of higher-derivative gravity at
large, in this paper we seek to extend the concept to the quadratic action R2 þ γðR − 2ΛÞ. We determine

that, up to the order Oðk2Þ, the quadratic field equation admits the following vacuum solution ds2 ¼
ekφðrÞ½−ΨðrÞdt2 þ dr2

ΨðrÞ þ r2dΩ2� in which ΨðrÞ ≔ 1 − rs
r −

Λ
3
r2 and the function φðrÞ obeys a linear

second-order ordinary differential equation, per 6ðr2ΨðrÞφ0ðrÞÞ0 ¼ γr2φðrÞ subject toφðr → ∞Þ ¼ 0.
Conforming with our intuition, the Ricci scalar carries the footprint of a higher-derivative characteristic
k, given by RðrÞ ¼ 4Λ − kð4Λþ γ

2
ÞφðrÞ þOðk2Þ. The Ricci scalar is nonconstant, including the

asymptotically flat case (i.e., Λ ¼ 0) as long as k ≠ 0 and γ ≠ 0. The existence of such an asymptotically
flat vacuo with nonconstant scalar curvature defeats the generalized Lichnerowicz theorem in its entirety.
Our finding thus warrants restoring the R2 term in the full quadratic action, γRþ βR2 − αCμν ρσCμν ρσ ,
when applying the Lü-Perkins-Pope-Stelle ansatz. Implications to the Lü-Perkins-Pope-Stelle solution are
discussed herein.

DOI: 10.1103/PhysRevD.107.104009

I. MOTIVATION: ESCAPES FROM THE
GENERALIZED LICHNEROWICZ THEOREM

In [1] Nelson offered a proof concerning the vacua of the
quadratic action (with α, β, γ all non-negative)

γRþ βR2 − αCμν ρσCμν ρσ: ð1Þ

His proof contains two parts: the trace part and the nontrace
part. The trace part concluded that static vacua of quadratic
gravity must be Ricci-scalar-flat, viz. R ≡ 0, if γ > 0. The
nontrace part enforced an even stronger result; it posited
that these vacua must be Ricci-flat, viz. Rμν ≡ 0. In [2,3]
Lü, Perkins, Pope, and Stelle identified crucial sign errors
which invalidate the nontrace part of Nelson’s proof.
However, these authors still retained the validity of the
trace part, i.e., R ≡ 0 identically, which has tentatively
become known as the generalized Lichnerowicz theorem.

If this “no-go”-type theorem is valid, then the constraint
R ¼ 0 that follows would nullify the contributions that
stem from the R2 term to the quadratic-gravity field
equation. Thus, for the sole purpose of finding static vacuo
configurations, the R2 term may be suppressed. With β set
equal to zero and action (1) reduced to an Einstein-Weyl
gravity, Lü et al. then proceeded to discovering the Lü-
Perkins-Pope-Stelle numerical solution, which represents a
second branch of static, spherically symmetric, and asymp-
totically flat spacetimes over and above the Schwarzschild
branch. This rather surprising result has generated consid-
erable interest [4–9]; notably, Podolský et al. have iden-
tified an exact infinite-series solution in place of the
numerical approach [4].
The generalized Lichnerowicz theorem was “proved”

again by Kehagias et al. [10] in a more limited situation, the
pure quadratic action, viz. γ ¼ 0. These authors concluded
that R ≡ const everywhere for this setup.
However, these conclusions, put forth by Nelson [1] and

reenforced by Lü et al. [2,3] and by Kehagias et al. [10],*hoang.nguyen@ubbcluj.ro
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are under serious challenge. Inspired by a seminal—yet
obscure—sixty-year-old work by Buchdahl [11], we
recently uncovered a new class of metrics that project
nonconstant scalar curvature in pure R2 gravity; the
derivation was detailed in our companion paper [12] and
the result shall be summarized momentarily below. Leaving
no stone unturned, we successfully checked these
Buchdahl-inspired metrics directly against the pure R2

field equation, thereby affirming their validity. The exist-
ence of the Buchdahl-inspired metrics is in stark defiance
of the generalized Lichnerowicz theorem.
What has gone astray with the “proofs” of the gener-

alized Lichnerowicz theorem, which at first sight seem to be
water-tight, then? It turns out that the proofs advocated in
[1–3,10] contain detrimental gaps which render the theo-
rem vulnerable for violations. Let us first expose the gaps in
these proofs.

A. The gaps in the generalized
Lichnerowicz theorem

We shall adopt the derivation of Lü et al. in [2,3]. With α,
β, γ all non-negative, the quadratic action (1) produces the
vacuo field equation

γ

�
Rμν−

1

2
gμνR

�
−4αBμν

þ2β

�
R
�
Rμν−

1

4
gμνR

�
þðgμν□−∇μ∇νÞR

�
¼ 0; ð2Þ

where the Bach tensor Bμν ≔ ð∇ρ∇σ þ 1
2
RρσÞCμν ρσ is

trace-free. The trace of (2) yields

−γRþ 6β□R ¼ 0: ð3Þ

Lü et al. then considered a static black hole metric of the
form ds2 ¼ −λ2dt2 þ hijdxidxj, where λ and hij are
functions of the spatial coordinates, and λ ≥ 0 is supposed
to vanish on the horizon. With the aid of (3), for β > 0, one
obtains the following identity:Z
V
d3x

ffiffiffi
h

p
DiðλRDiRÞ ¼

Z
V
d3x

ffiffiffi
h

p
λ

�
ðDiRÞ2 þ γ

6β
R2

�
:

ð4Þ

If the left-hand side of (4) could be made vanish, then the
non-negativity of the right-hand side of (4) would readily
enforce that

RðrÞ ≡
�
0 if γ > 0

const if γ ¼ 0:
ð5Þ

This constraint on static vacuo configurations for
action has tentatively become known as the generalized
Lichnerowicz theorem. Furthermore, restricted to the case

of α ¼ 0, the field equation (2), subject to constraint (5),
leads to

Rμν ¼
�
0 if γ > 0

1
4
gμν × const if γ ¼ 0;

ð6Þ

meaning that the only static spherically symmetric vacuo
admissible for the RþR2 action is Schwarzschild, and
likewise, the only static spherically symmetric vacuo admis-
sible for the pure R2 action is Schwarzschild–de Sitter.
To make the left-hand side of (4) vanish, in [1], with

the integrand therein being a total derivative, Nelson
applied the 3D divergence theorem to turn the integralR
V d

3x
ffiffiffi
h

p
DiðλRDiRÞ into a surface term at spatial infinity.

Next, he assumed that the derivatives DiR go to zero
sufficiently rapidly so that the surface term would vanish.
Nelson’s reasoning contains two gaps, however. First, an

actual vacuo configuration may not guarantee that DiR
decay sufficiently rapidly to make the surface term vanish.
This excessively strong requirement can be susceptible for
violations. Second, and more seriously as this point is often
overlooked, to apply the divergence theorem, the integrand
DiðλRDiRÞ must be a continuous function everywhere
within the integration volume V. If the integrand diverges
anywhere inside V, the divergence theorem would cease to
hold, and Nelson’s proof would fall apart. There is ample
evidence that the second gap is pertinent: close to a black
hole, spacetimes often project singularities at the origin
and/or at the horizon.
In [2,3] Lü et al. bypassed the second gap in Nelson’s

proof by restricting the integration volume to the exterior of
the black hole, viz. from the horizon outward to the spatial
infinity. In the exterior region, it is reasonable to expect the
integrand DiðλRDiRÞ to be well behaved. As such, the
left-hand side of (4) becomes the difference between two
surface terms, one at infinity (denoted by S∞) and one at the
horizon (denoted by Sh), namely,I

S∞

diSðλRDiRÞ −
I
Sh

diSðλRDiRÞ: ð7Þ

Lü et al.’s maneuver would seem to rescue Nelson’s proof
from the abyss. However, their walk around introduces a
third gap: whereas λ → 0 on the horizon, the terms RDiR
may diverge there and overwhelm λ, forcing the surface
term at the horizon Sh to be finite or even divergent.
In sum, due to the first gap and the third gap, the left-hand

side of Eq. (4) in principle may—and in practice can—
deviate from zero, rendering the generalized Lichnerowicz
theorem invalid.
As we shall see right below, there exists a class of non-

Schwarzschild vacua, the Buchdahl-inspired vacua, that
project nonconstant scalar curvature in stark violation
of the would-be conclusion in Eq. (5) of the generalized
Lichnerowicz theorem.
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II. THE BUCHDAHL-INSPIRED METRIC

Circa 1962 Buchdahl spearheaded a program seeking
vacuum configurations for pure R2 gravity, namely, the
action (1) with α ¼ γ ¼ 0 [11]. Therein, he was able to
show that the pure R2 vacua in general can acquire
nonconstant scalar curvature. Proceeding further, he arrived
at a nonlinear second-order ordinary differential equation
(ODE) which would prescribe all nontrivial static spheri-
cally symmetric solutions admissible in the pureR2 theory.
Unfortunately, Buchdahl deemed his ODE intractable
and prematurely discontinued his pursuit for an analytical
solution. To this day, his ODE remains untackled and his
1962 work has largely gone unnoticed by the gravitation
research community.1 Recently, in [12] we revisited
Buchdahl’s program, broke this outstanding six-decades-
old impasse, and uncovered a novel exhaustive class of
vacua for pure R2 gravity, to be summarized below.
The Buchdahl-inspired metric, as we called it as such,

takes the following compact expression

ds2¼ ek
R

dr
rqðrÞ

�
pðrÞ

�
−
qðrÞ
r

dt2þ r
qðrÞdr

2

�
þ r2dΩ2

�
; ð8Þ

in which the pair of functions fpðrÞ; qðrÞg obey the
“evolution” rules

dp
dr

¼ 3k2

4r
p
q2

; ð9Þ

dq
dr

¼ ð1 − Λr2Þp; ð10Þ

with the Ricci scalar equal

RðrÞ ¼ 4Λe−k
R

dr
rqðrÞ: ð11Þ

The most crucial element of the metric is the new (Buchdahl)
parameterk,which allows themetric to be non-Schwarzschild
and enables theRicci scalar to vary on themanifold.At largest
distances, the Ricci scalar converges to 4Λ. Metric (8)–(11) is
a bona fide enlargement of the Schwarzschild–de Sitter (SdS)
metric and duly recovers the SdS metric when k ¼ 0 (see
the subsection “The small k limit” right below). Our inves-
tigation on the phase-space fpðrÞ; qðrÞg of the evolution
rules (9)–(10) points towards very interesting new physics,
e.g., the existence of horizonless objects; our findings shall be
presented in a separate report.
To alley any lingering doubt, in [12,13], the present author

and Shurtleff successfully checked the solution (8)–(11)
against the pureR2 vacuo field equation, thereby affirming

its validity. The existence of vacua with nonconstant scalar
curvature in a quadratic theory of gravity is a direct
counterexample against the generalized Lichnerowicz theo-
rem stated in Eq. (5).
Moreover, to our surprise, despite being nonlinear, the

evolution rules (9)–(10) are fully soluble for Λ ¼ 0. In a
companion paper of this “Beyond Schwarzschild–de Sitter
spacetimes” series [14], we exploited this advantage to
derive an exact closed analytical form for a new metric,
which we called the special Buchdahl-inspired metric that
describes an asymptotically flat non-Schwarzschild R2

spacetime. The Kretschmann invariant of this metric
exhibits curvature singularities on the interior-exterior
boundary. Novel anomalous behaviors in the interior-
exterior boundary and in the Kruskal-Szekeres diagram
of pure R2 spacetime structures are discovered and
reported in our companion paper [14].

A. The small k limit

For a nonzero Λ but with a small value of k, the
Buchdahl-inspired metric (8)–(11) admits a perturbative
form which we derived in [12] and shall briefly reproduce
here for the reader’s convenience. The crux of the argument
is that since the evolution rules (9)–(10) depend on k2

instead of k, they admit the perturbative solution

pðrÞ ¼ 1þOðk2Þ; ð12Þ

qðrÞ ¼ r − rs −
Λ
3
r3 þOðk2Þ; ð13Þ

with rs being a constant. Note that the conformal factor

ek
R

dr
rqðrÞ depends directly on k, however. Plugging (12)–(13)

into (8) we obtain

ds2¼ e
k
R

dr
r2ΨðrÞ

�
−ΨðrÞdt2þ dr2

ΨðrÞþ r2dΩ2

�
þOðk2Þ; ð14Þ

with ΨðrÞ ≔ 1 − rs
r −

Λ
3
r2 and the Ricci scalar given by

RðrÞ ¼ 4Λe−k
R

dr
r2ΨðrÞ þOðk2Þ: ð15Þ

Metric (14)–(15) is applicable for pure R2 gravity up to
Oðk2Þ, with the Buchdahl parameter k measuring the
amount of deviation from being Schwarzschild–de Sitter
for the said metric. At k ¼ 0, metric (14)–(15) is nothing
but an SdS metric with a constant scalar curvature of 4Λ.

B. The purpose of this paper

Hereafter we shall concern with the following quadratic
action

R2 þ γðR − 2ΛÞ: ð16Þ

1Buchdahl’s paper has gathered a paltry sum of 40þ citations
since its inception in 1962, according to the NASA ADS and
InpireHEP databases. Yet, none of these citations attempted to
solve Buchdahl’s ODE.
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We aim to show that the perturbative metric specified in
Eq. (14) for pure R2 gravity is extendible to action (16)
upon aminormodification. Inspired by the expression (14),
we shall seek a metric in the following form:

ds2 ¼ ekφðrÞ
�
−ΨðrÞdt2 þ dr2

ΨðrÞ þ r2dΩ2

�
þOðk2Þ; ð17Þ

with ΨðrÞ still given by 1 − rs
r −

Λ
3
r2, while φðrÞ is to be

determined. The case with φðrÞ ≡ 0 is obviously the classic
SdS metric.
The rest of our paper is organized as follows. In Sec. III we

shall derive the perturbativevacuo (17) for action (16) which
is valid up toOðk2Þ, with k being a Buchdahl-like parameter
reflecting the higher-derivative nature of the action.
Lemma 1 is the central result of our paper. Next, we find
the asymptotic limits for the newmetric at spatial infinity, in
Sec. IV. We then embed the new metric in the larger context
of full quadratic-gravity theory, viz. action (1), with empha-
sis on its connection to the Lü-Perkins-Pope-Stelle solution
in Einstein-Weyl gravity, in Sec. V.

III. CONSTRUCTING A PERTURBATIVE
VACUO FOR THE R2 +R+Λ ACTION

The quadratic action in (16) has the vacuo field equation

2

�
R
�
Rμν −

1

4
gμνR

�
þ ðgμν□ −∇μ∇νÞR

�

þ γ

�
Rμν −

1

2
gμνRþ Λgμν

�
¼ 0: ð18Þ

Upon taking the trace

6□R − γðR − 4ΛÞ ¼ 0 ð19Þ

to get rid of the cumbersome □R term, Eq. (18) is
transformed into

R
�
Rμν −

1

4
gμνR

�
−∇μ∇νR

þ γ

2

�
Rμν −

1

6
gμνR −

Λ
3
gμν

�
¼ 0: ð20Þ

With the metric components dependent on r, the field
equation (20) has three remaining independent components
against one unknown function φðrÞ [while ΦðrÞ has been
fixed to be 1 − rs

r −
Λ
3
r2]. At this stage, the problem appears

to be overdetermined; this mirage will resolve itself, as we
shall see. The relevant components of the fourth-order
derivative term are2

∇0∇0R ¼ −Γ1
00R

0ðrÞ; ð21Þ

∇1∇1R ¼ −Γ1
11R

0ðrÞ þR00ðrÞ; ð22Þ

∇2∇2R ¼ −Γ1
22R

0ðrÞ: ð23Þ

The rr component involves the second derivative of R
with respect to r and is thus quite cumbersome to deal with.
Therefore, in place of the rr component of the field
equation, we shall use the trace equation as a surrogate
for it, together with the tt and θθ components in our
calculations below.
The key result is summarized in Lemma 1.
Lemma 1.—The line element

ds2 ¼ ekφðrÞ
�
−ΨðrÞdt2 þ dr2

ΨðrÞ þ r2dΩ2

�
ð24Þ

with ΨðrÞ ≔ 1 − rs
r −

Λ
3
r2 and φðrÞ obeying

6ðr2ΨðrÞφ0ðrÞÞ0 ¼ γr2φðrÞ ð25Þ

satisfies the field equation (18) up to Oðk2Þ.
Proof.—We shall use Eq. (20) in place of Eq. (18). The

tt− and θθ− components of Eq. (20) can be cast as

R00

Ψ
−
1

4

g00e−φ

Ψ
ðReφÞ þ Γ1

00

Ψ
R0

R

¼ −
γ

2R

�
R00

Ψ
−
1

6

g00e−φ

Ψ
ðReφÞ − Λ

3

g00e−φ

Ψ
eφ
�
; ð26Þ

R22

r2
−
1

4

g22e−φ

r2
ðReφÞ þ Γ1

22

r2
R0

R

¼ −
γ

2R

�
R22

r2
−
1

6

g22e−φ

r2
ðReφÞ − Λ

3

g22e−φ

r2
eφ
�
: ð27Þ

The trace equation (19) is recast as

6ðeφr2ΨR0Þ0 ¼ γr2e2φðR − 4ΛÞ: ð28Þ

In all calculations below, the ≈ sign when used means that
we keep only up to the first order terms in k. The relevant
tensor components are

R00

Ψ
¼
�
kφ00

2
þk2φ02

2
þkφ0

r

�
ΨþΨ00

2
þ
�
kφ0 þ1

r

�
Ψ0 ð29Þ

≈
�
Ψ00

2
þ Ψ0

r

�
þ k

�
φ00Ψ
2

þ φ0Ψ
r

þ φ0Ψ0
�

ð30Þ

¼ −Λþ k

�
φ00Ψ
2

þ φ0Ψ
r

þ φ0Ψ0
�
; ð31Þ

2Recall that for a scalar field ϕ: ∇μ∇νϕ ¼ ∂μ∂νϕ − Γλ
μν∂λϕ.
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R22

r2
¼ 1

r2
−
�
kφ00

2
þ k2φ02

2
þ 2kφ0

r
þ 1

r2

�
Ψ

−
�
kφ0

2
þ 1

r

�
Ψ0 ð32Þ

≈
�
1

r2
−
Ψ
r2

−
Ψ0

r

�
− k

�
φ00Ψ
2

þ 2φ0Ψ
r

þ φ0Ψ0

2

�
ð33Þ

¼ Λ − k

�
φ00Ψ
2

þ 2φ0Ψ
r

þ φ0Ψ0

2

�
; ð34Þ

Rekφ ¼ 2

r2
−
�
3kφ00 þ 3k2φ02

2
þ 6kφ0

r
þ 2

r2

�
Ψ

−
�
3kφ0 þ 4

r

�
Ψ0 −Ψ00 ð35Þ

≈
�
2

r2
−
2Ψ
r2

−
4Ψ0

r
−Ψ00

�

− k

�
3φ00Ψþ 6φ0Ψ

r
þ 3φ0Ψ0

�
ð36Þ

¼ 4Λ − k

�
3φ00Ψþ 6φ0Ψ

r
þ 3φ0Ψ0

�
; ð37Þ

R ¼ ðRekφÞe−kφ ð38Þ

≈ 4Λ − 4Λkφ − k

�
3φ00Ψþ 6φ0Ψ

r
þ 3φ0Ψ0

�
; ð39Þ

R0ekφ ¼ ðRekφÞ0 − kφ0ðRekφÞ ð40Þ

≈ − k

�
3φ00Ψþ 6φ0Ψ

r
þ 3φ0Ψ0

�0
− 4Λkφ0 ð41Þ

R0

R
≈ −kφ0 −

k
4Λ

�
3φ00Ψþ 6φ0Ψ

r
þ 3φ0Ψ0

�0
; ð42Þ

and

g00e−kφ

Ψ
¼ −1 ð43Þ

g22e−kφ

r2
¼ 1 ð44Þ

Γ1
00

Ψ
¼ k

φ0Ψ
2

þ Ψ0

2
ð45Þ

Γ1
22

r2
¼ −

�
k
φ0

2
þ 1

r

�
Ψ: ð46Þ

The left-hand side of Eqs. (26) and (27) are

R00

Ψ
−
1

4

g00e−kφ

Ψ
ðRekφÞ þ Γ1

00

Ψ
R0

R

≈ −
k
4

�
φ00Ψþ 2

φ0Ψ
r

þ φ0Ψ0
�

−
Ψ0

8Λ
k

�
3φ00Ψþ 6φ0Ψ

r
þ 3φ0Ψ0

�0
ð47Þ

¼ −
k
4

ðφ0r2ΨÞ0
r2

−
3Ψ0

8Λ
k
�ðφ0r2ΨÞ0

r2

�0
; ð48Þ

R22

r2
−
1

4

g22e−kφ

r2
ðRekφÞ þ Γ1

22

r2
R0

R

≈
k
4

�
φ00Ψþ 2

φ0Ψ
r

þ φ0Ψ0
�

þ Ψ
4Λr

k

�
3φ00Ψþ 6φ0Ψ

r
þ 3φ0Ψ0

�0
ð49Þ

¼ k
4

ðφ0r2ΨÞ0
r2

þ 3Ψ
4Λr

k

�ðφ0r2ΨÞ0
r2

�0
: ð50Þ

The bracketed terms in the right-hand side of Eqs. (26) and
(27) are

R00

Ψ
−
1

6

g00e−kφ

Ψ
ðRekφÞ − Λ

3

g00e−kφ

Ψ
ekφ

≈ k
φ0Ψ0

2
þ Λ

3
kφ ð51Þ

R22

r2
−
1

6

g22e−kφ

r2
ðRekφÞ − Λ

3

g22e−kφ

r2
ekφ

≈ −k
φ0Ψ
r

−
Λ
3
kφ: ð52Þ

The terms in the trace equation (28) are

ekφr2ΨR0 ¼ ðRekφÞr2ΨR0

R
ð53Þ

≈4Λkr2Ψ
�
−φ0−

1

4Λ

�
3φ00Ψþ6φ0Ψ

r
þ3φ0Ψ0

�0�
ð54Þ

¼ −4Λkφ0r2Ψ − 3kr2Ψ
�ðφ0r2ΨÞ0

r2

�0
ð55Þ

r2e2kφðR−4ΛÞ≈kr2
�
−4Λφ−

�
3φ00Ψþ6φ0Ψ

r
þ3φ0Ψ0

��
ð56Þ

¼ −4Λkr2φ − 3kðφ0r2ΨÞ0: ð57Þ

Up to the first order in k, Eqs. (26), (27), and (28) are
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1

4

ðφ0r2ΨÞ0
r2

þ3Ψ0

8Λ

�ðφ0r2ΨÞ0
r2

�0
¼ γ

8Λ

�
φ0Ψ0

2
þΛ

3
φ

�
; ð58Þ

1

4

ðφ0r2ΨÞ0
r2

þ 3Ψ
4Λr

�ðφ0r2ΨÞ0
r2

�0
¼ γ

8Λ

�
φ0Ψ
r

þΛ
3
φ

�
; ð59Þ

6

�
4Λφ0r2Ψ3r2Ψ

�ðφ0r2ΨÞ0
r2

�0�0
¼ γ½4Λr2φþ 3ðφ0r2ΨÞ0�;

ð60Þ

which, upon rearranging, become

6
ðφ0r2ΨÞ0

r2
− γφ ¼ −

3Ψ0

2Λ

�
6
ðφ0r2ΨÞ0

r2
− γφ

�0
; ð61Þ

6
ðφ0r2ΨÞ0

r2
− γφ ¼ −

3Ψ
Λr

�
6
ðφ0r2ΨÞ0

r2
− γφ

�0
; ð62Þ

6
ðφ0r2ΨÞ0

r2
− γφ ¼ −

3

4Λr2

�
r2Ψ

�
6
ðφ0r2ΨÞ0

r2
− γφ

�0�0
:

ð63Þ

Remarkably, all three equations (61)–(63) are automatically
satisfied if and only if φðrÞ obeys the following linear
second-order ODE

6ðr2Ψφ0Þ0 ¼ γr2φ: ð64Þ

Metric (24)–(25) is thus established. ▪
Remark 1.—Let us ignore the conformal factor in

expression (24) for the moment. The terms in the square
bracket of (24) is an SdS metric—a “seed” metric—with
a constant scalar curvature of 4Λ. The Ricci scalar of
metric (24) can be obtained via a conformal transformation
from the seed SdS metric [15], per

R ¼ e−kφð4Λ − 3ke□φÞ þOðk2Þ; ð65Þ

with the tilde denoting derivatives using the seed SdS
metric. By virtue of (25)

e□φ ¼ 1ffiffiffiffiffiffi
−g̃

p ∂r

	 ffiffiffiffiffiffi
−g̃

p
g̃rr∂rφ



ð66Þ

¼ 1

r2 sin θ
ðr2 sin θΨφ0Þ0 ð67Þ

¼ γ

6
φ: ð68Þ

The Ricci scalar (65) is thus

RðrÞ ¼ ð1 − kφÞ
�
4Λ −

γ

2
kφ

�
þOðk2Þ ð69Þ

¼ 4Λ − k

�
4Λþ γ

2

�
φðrÞ þOðk2Þ: ð70Þ

Remark 2.—Using the symbolic manipulator MAXIMA
ONLINE, we were able to verify the result in (70)
concerning the Ricci scalar. We also verified that the trace
equation (19) and the tt−, rr−, θθ− components of the
field equation (20) vanish up to Oðk2Þ.
Remark 3.—Per (70), the Ricci scalar is nonconstant,

including the case with Λ ¼ 0, as long as k ≠ 0 and γ ≠ 0.
The parameter k therefore acts as an equivalent to the
Buchdahl parameter used in metric (8)–(11) and metric
(14)–(15) in the pure R2 action.
Remark 4.—The case of γ ¼ 0 for action (16) amounts to

pure R2 gravity. From (25), we have r2Ψφ0 ¼ const,
yielding φ ¼ R

dr
r2Ψ in perfect agreement with the small-k

expansion of the Buchdahl-inspired metric, per Eq. (14).
The case of γ ¼ ∞ for action (16) amounts to the Einstein-
Hilbert action augmented with a cosmological constant.
Eq. (25) then enforces that φ ¼ 0, thence reproducing the
SdS metric as expected.
Remark 5.—The ODE (25) is of second differential

order. It entails two boundary conditions. For the case of
Λ ≤ 0, in which the radial coordinate r is in the range
ð0;∞Þ, we are at liberty to set φðr → ∞Þ ¼ 0. Since the
ODE is linear, the magnitude of φ can be absorbed into the
Buchdahl parameter k in the conformal factor of Eq. (24).

IV. LARGE-DISTANCE
ASYMPTOTIC BEHAVIOR

A. The case of Λ < 0

As r → ∞, Eq. (25) asymptotically is

2jΛjðr4φ0Þ0 ≃ γr2φ; ð71Þ

which is soluble. Substituting x ¼ ln r, the equation above
becomes

d2φ
dx2

þ 3
dφ
dx

−
γ

2jΛjφ ¼ 0; ð72Þ

which has the solution

φðxÞ ¼ ξþe

	
−3
2
þ

ffiffiffiffiffiffiffiffi
9
4
þ γ

2jΛj
p 


x þ ξ−e

	
−3
2
−

ffiffiffiffiffiffiffiffi
9
4
þ γ

2jΛj
p 


x
: ð73Þ

Since γ > 0, the first term in (73) has a growing
exponent and should be discarded. The asymptotic is left
with
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φðrÞ ≃ r−
3
2
ð1þ

ffiffiffiffiffiffiffiffiffi
1þ 2γ

9jΛj
p

Þ; ð74Þ

which vanishes at spatial infinity. The metric is asymp-
totically anti-de Sitter.

B. The case of Λ= 0

As r → ∞, Eq. (25) asymptotically is

6ðr2φ0Þ0 ≃ γr2φ: ð75Þ

Using φðrÞ ≔ χðrÞ=r, the equation for χðrÞ is soluble,
giving the asymptotic

φðxÞ ≃ e−
ffiffi
γ
6

p
r

r
; ð76Þ

which vanishes at spatial infinity. The metric is asymptoti-
cally flat.
This case is particularly interesting. The metric is

asymptotically flat; yet, in the bulk, it develops nonconstant
scalar curvature. The generalized Lichnerowicz theorem is
evaded in its entirety.

V. IMPLICATIONS FOR THE LÜ-PERKINS-
POPE-STELLE SOLUTION

In [2,3], influenced by the generalized Lichnerowicz
theorem, Lü, Perkins, Pope, and Stelle suppressed the R2

term in their exploration of black hole configurations for
quadratic gravity, viz. action (1). Their reason was that,
provided that the generalized Lichnerowicz theorem were
valid, a vanishing R would automatically kill off the terms
in the square bracket—which are associated with β—in the
second line of the field equation (2). The terms in question
are the contributions of theR2 term of action (1) to the field
equation. Accordingly, solely for the purpose of finding
static vacua, in assuming the validity of the generalized
Lichnerowicz theorem, it would have been legitimate to set
β equal to zero.3 This was indeed what Lü et al. did. They
went on to discover the Lü-Perkins-Pope-Stelle numerical
solution for the leftover Einstein-Weyl gravity. In [4]
Podolský et al. followed up with an exact infinite-series
solution in place of the numerical solution.
However, as established in our previous work [12] and in

Lemma 1 herein, the existence of the class of Buchdahl-
inspired metrics in pure R2 gravity alongside with the
perturbative vacuo in the R2 þ γðR − 2ΛÞ action denies
the generalized Lichnerowicz theorem in its entirety.
These spacetimes project nonconstant scalar curvature.
The R2 term must be restored into action (1), viz.
γRþ βR2 − αCμν ρσCμν ρσ, for the purpose of finding static

vacuo configurations. That is to say, unless one can
suppress β by some other theoretical or observational
reason, the generalized Lichnerowicz theorem—having
lost its legitimacy—is not a justifiable cause to kill off β.
With β being reinstated, an immediate consequence

would be to extend the Lü-Perkins-Pope-Stelle ansatz in
[2,3] to the full quadratic action. Equivalently, the infinite-
series approach pursued by Podolský et al. in [4] could be
suitable for an extension with β ≠ 0.
A more modest setup would be to rework the Lü-

Perkins-Pope-Stelle ansatz (or that of Podolský et al.)
for the γRþ βR2 action, i.e., by excluding the Weyl term.
This theory is ghost-free and is equivalent to the standard
Einstein gravity with one additional scalar degree of
freedom [16,17]. Regarding the Lü-Perkins-Pope-Stelle
ansatz, for the γRþβR2 action, the mass m0≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð6βÞp

of the massive spin-0 mode would stand in place for the
mass m2 ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ=ð2αÞp

of the massive spin-2 mode which is
now absent. Advantages in exploring the RþR2 action
would be to deal with a considerably simpler field equation,
and that the issues with ghosts would stay silent.
Despite the absence of the Bach tensor in its field

equation, the γRþ βR2 action should already project very
rich phenomenology. The reason is that the vacua of this
theory should inherit some properties of the Lü-Perkins-
Pope-Stelle solution and those of the Buchdahl-inspired
solution, the latter being able to participate owing to the
βR2 component in the action. Note that the two said
solutions are of complementary nature. Whereas the Lü-
Perkins-Pope-Stelle solution represents a second branch
of static, spherically symmetric, and asymptotically flat
spacetimes separate from the Schwarzschild branch, the
Buchdahl-inspired solution supersedes the Schwarzschild
branch.
For the γRþ βR2 action, the Oðk2Þ perturbative result

obtained in Lemma 1 would already provide a useful
guidepost. The full solution—yet to be determined—needs
to recover metric (24)–(25) in the limit of small k. An
important question to find out is how the Buchdahl
parameter k in (24)–(25) is translated into the built-in
degree of “non-Schwarzschildness” in the Lü-Perkins-
Pope-Stelle ansatz.
There is one serious caveat. As we briefly alluded to in

Sec. II, in the asymptotic flatness limit, the Buchdahl-
inspired metric given by Eqs. (8)–(11) admits an exact
closed analytical form, which we called the special
Buchdahl-inspired metric. Our detailed derivation is pre-
sented in our companion paper [14]. For the reader’s
convenience, we reproduce the special Buchdahl-inspired
metric below:

ds2 ¼
����1 − rs

ρ

����
k
rs

�
−
�
1 −

rs
ρ

�
dt2 þ r4ðρÞdρ2

ρ4ð1 − rs
ρÞ

þ r2ðρÞdΩ2

�

ð77Þ
3Note that for other purposes, such as finding nonstatic vacua,

β must be restored into the investigation, however.
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in which ρ is the radial coordinate and the areal coordinate
r is given by

rðρÞ ¼
ζrsj1 − rs

ρ j
1
2
ðζ−1Þ

1 − sgnð1 − rs
ρÞj1 − rs

ρ jζ
; ζ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k2=r2s

q
:

ð78Þ
It describes a static spherically symmetricR2 structure that
lives on an asymptotically flat spacetime. The structure is
found to possess singular (i.e., nonanalytic and anomalous)
behaviors across its interior-exterior boundary as well as in
its Kruskal-Szekeres diagram, with the Buchdahl parameter
k being the root cause of all these anomalies; see our
companion paper for a detailed exposition [14].
Back to the RþR2 action at hand. The full vacuo

solution to the γRþ βR2 action must approach the special
Buchdahl-inspired metric (77)–(78) in the limit of γ ¼ 0
and Λ ¼ 0 (i.e., asymptotic flatness). The Lü-Perkins-
Pope-Stelle ansatz in its current form lacks a degree of
nonanalyticity necessary to recover the special Buchdahl-
inspired metric. In order to succeed, the Lü-Perkins-Pope-
Stelle ansatz would need to have some nonanalytic built-
in ingredients to be able to accommodate the powers of
j1 − rs

ρ j in Eqs. (77) and (78).
Put another way, on the one hand, in the regime of

m0 → 0 (i.e., γ → 0while β is fixed), the singular footprints
of the special Buchdahl-inspired metric by way of j1 − rs

ρ jζ
and similar terms in (77)–(78) should manifest in the full
solution–yet to be identified–for regions close to the
interior-exterior boundary. Note that the auxiliary param-
eter ζ is not necessarily a rational number. On the other
hand, in the regime of m0 → ∞ (i.e., β → 0 while γ stays
put), the classic Schwarzschild solution should become
dominant in the full solution.
A tantalizing question arises: What is the nature of the

transition point between the two regimes, as m0 is tuned
from zero to infinity?

VI. CONCLUSIONS

Lemma 1 in Sec. III is the central result of our paper.
Inspired by the Buchdahl-inspired metric and the Buchdahl
parameter k associatedwith it in pureR2 gravity [11,12], we
carried the concept over to the quadratic action. In a broader
context, the Buchdahl parameter k should be a generic
universal characteristic of a higher-derivative theory of
gravity. For the specific action R2 þ γðR − 2ΛÞ, we
obtained a perturbative solution valid up to Oðk2Þ. The
result is expressed by metric (24)–(25). This metric pos-
sesses nonconstant scalar curvature induced by a Buchdahl
parameter k, in confirmation of our guiding intuition.
To our knowledge, considerations of metrics with non-

constant scalar curvature have been exclusively in higher
dimensions [18,19], or in a generic fðRÞ theory [20–24].

In either situation, the generalized Lichnerowicz theorem
as advocated in [1–3,10] is not applicable per se. The
theorem, stated in Eq. (5), was “proved” strictly for (i) the
quadratic action and (ii) in 3þ 1 dimensions. Our result,
summed up in Lemma 1, is thus novel. It defeats the
generalized Lichnerowicz theorem which relied on overly
strong restrictions assumed in the “proofs”; see Sec. I.
Considering the breakdown of the generalized

Lichnerowicz theorem, the R2 term should be reinstated
in the full quadratic action γðR−2ΛÞþβR2−αCμνρσCμνρσ,
in counter to the practice adopted in [2,3]; see our Sec. V
herein for discussions. It remains to be seen whether a
perturbative metric, akin to metric (24)–(25), can be
found for the full quadratic action, γðR − 2ΛÞ þ βR2 −
αCμν ρσCμν ρσ . This would be an interesting possibility for
future research.
The solution (24)–(25) obtained herein should be appli-

cable as long as ekφðrÞ ≈ 1, which means at large distances.
Close to the interior-exterior boundary r ≈ rs, the solution
should break down. The Lü-Perkins-Pope-Stelle ansatz
could be suitable for the full quadratic action in the regions
close to the interior-exterior boundary.We touched upon the
aspects–advantages and caveats–of this direction in Sec. V.
On the no-hair theorem.—As a member of the fðRÞ

family, the RþR2 action is equivalent to a scalar-tensor
theory. Within scalar-tensor theories, Sotiriou and Faraoni
[25] generalized Hawking’s proof [26] that outside of a
horizon—provided that there is one—the scalar field must
be constant (hence making the Kerr-Newman metric an
inevitable outcome of gravitational collapse). In support of
this proof, Agnese and La Camera [27] illustrated that the
Campanelli-Lousto solution [28] of Brans-Dicke gravity
lacks a horizon; instead, it represents a naked singularity or a
wormhole, depending on whether γ < 1 or γ > 1. These
results indicate that a higher-derivative Buchdahl parameter,
facilitated by a relaxed boundary condition in the quadratic
field equation, could—in qualified circumstances—turn an
RþR2 spacetime structure into a naked singularity or a
wormhole. Whether this conclusion is applicable for the
full quadratic action, γðR − 2ΛÞ þ βR2 − αCμν ρσCμν ρσ, is
an open question.
In closing, this paper is the third and final installment of

our “Beyond Schwarzschild–de Sitter spacetimes” series.
The series started by advancing the obscure six-decades-old
Buchdahl program to attain a novel exhaustive class of
Buchdahl-inspired vacua for pure R2 gravity [12]. It then
progressed to a closed analytical metric describing an
asymptotically flat non-Schwarzschild spacetime with
novel surprising properties [14]. The series closes with a
perturbative metric for the R2 þRþ Λ action, presented
in this paper. The three sets of Buchdahl-inspired space-
times, uncovered in our three papers in sequel, reveal a
host of new interesting phenomenology that transcends the
Einstein-Hilbert paradigm.
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