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In a recent publication [Phys. Rev. D 106, 104004 (2022)], we advanced a program that
Buchdahl originated but prematurely abandoned circa 1962 [Nuovo Cimento 23, 141 (1962)]. Therein
we obtained an exhaustive class of metrics that constitute the branch of nontrivial solutions to the
pure R2 field equation in vacuo. The Buchdahl-inspired metrics in general possess nonconstant scalar
curvature, thereby defeating the generalized Lichnerowicz theorem advocated in recent literature.
We found that the said theorem makes an overly strong assumption on the asymptotic falloff in the spatial
derivatives of the Ricci scalar, rendering it violable against the Buchdahl-inspired metrics.
In this paper, we shall further extend our work by showing that, within the class of Buchdahl-inspired
metrics, the asymptotically flat member takes on the following exact closed analytical expression

ds2 ¼ j1 − rs
r j

k
rsf−ð1 − rs

r Þdt2 þ ð1 − rs
r Þ−1 ρ4ðrÞ

r4 dr2 þ ρ2ðrÞdΩ2g, in which the areal coordinate ρ is related

to the radial coordinate r per ρðrÞ ¼ ζrs j1−rs
r j

1
2
ðζ−1Þ

j1−sgnð1−rs
r Þj1−rs

r jζ j
; ζ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k2=r2s

p
. The special Buchdahl-inspired

metric, as we shall call it, is characterized by a “Schwarzschild” radius rs and the Buchdahl parameter k, the
latter of which arises via the higher-derivative nature ofR2 gravity. The case k ¼ 0 corresponds precisely to
the classic Schwarzschild metric. Equipped with this exact expression, we shall investigate pure R2

spacetime structures. The asymptotically flat spacetime is split into an interior region and an exterior
region, with the boundary situated at ρ ¼ rs. We find that, except for k ¼ 0 and k ¼ −rs, the Kretschmann
invariant of this metric exhibits an additional singularity at the interior-exterior boundary. Accordingly, the
surface area of the interior-exterior boundary is found to vanish for k ∈ ð−∞;−rsÞ ∪ ð0;þ∞Þ, diverge for
k ∈ ð−rs; 0Þ, equal 4πr2s for k ¼ 0, and equal 16πr2s for k ¼ −rs. This behavior signals a naked singularity
or a wormhole. We shall also analytically construct the Kruskal-Szekeres (KS) diagram for pure R2

spacetime. The Buchdahl parameter k is found to modify the KS diagram in some fundamental way.
A striking result is that the (modified) KS diagram develops a “gulf” that sandwiches between the four
established quadrants. The gulf resides strictly on the interior-exterior boundary and does not correspond to
any domain in the physical spacetime, specified by ðt; r; θ;ϕÞ. The nature of this novel “virtual” region in
the KS diagram is an open question, related to which we make a conjecture on a possible path forward.
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I. INTRODUCTION: BUCHDAHL’S 1962
PROGRAM IN PURE R2 GRAVITY

Pure R2 gravity is among the simplest candidates for
modified gravity. Its action contains a single term,
1
2κ

R
d4x

ffiffiffiffiffiffi−gp
R2, with κ being a dimensionless parameter,

while the traditional Einstein-Hilbert term is suppressed.
The theory was considered as early as the 1960s by
Buchdahl as a parsimonious prototype of higher-order
gravity that possesses an additional symmetry—the scale
invariance [1]. There is a surge of interest in the pure R2

action of late [2–4] within a larger context of modified

gravity [5–9]. PureR2 gravity is the only theory that is both
ghost-free and scale invariant [10,11].
In a seminal—yet obscure—1962 Nuovo Cimento paper

entitled“On theGravitational Field Equations Arising from
the Square of the Gaussian Curvature” [1], Buchdahl
pioneered a program in search of static spherically sym-
metric vacua for pure R2 gravity. He established therein
that the vacua in general possess nonconstant scalar curva-
ture, as a result of the higher-derivative structure of the
theory. Surpassing several obstacles, his efforts culminated
in a nonlinear second-order ordinary differential equation
(ODE) which required being solved. The finish line was
within his striking distance: theR2 vacua Buchdahl sought
after hinged on the analytical solution—yet to be found in
his time—to the ODE he derived. Unfortunately, Buchdahl*hoang.nguyen@ubbcluj.ro

PHYSICAL REVIEW D 107, 104008 (2023)

2470-0010=2023=107(10)=104008(23) 104008-1 © 2023 American Physical Society

https://orcid.org/0000-0003-2343-0508
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.104008&domain=pdf&date_stamp=2023-05-03
https://doi.org/10.1103/PhysRevD.106.104004
https://doi.org/10.1007/BF02733549
https://doi.org/10.1103/PhysRevD.107.104008
https://doi.org/10.1103/PhysRevD.107.104008
https://doi.org/10.1103/PhysRevD.107.104008
https://doi.org/10.1103/PhysRevD.107.104008


deemed his ODE intractable and prematurely suspended his
pursuit for an analytical solution. Until our recent work [12],
his ODE had remained untackled; and to this day, his Nuovo
Cimento paper has largely gone unnoticed by the gravitation
research community.1

Recently, we have managed to bridge the remaining gap
in the Buchdahl program by identifying a compact solution
to his ODE [12]. With this impasse finally overcome, we
proceeded to accomplishing Buchdahl’s ultimate goal. The
outcome is an exhaustive class of pure R2 vacua express-
ible in a compact form, which we called the Buchdahl-
inspired solution, to be summarized below.

A. The Buchdahl-inspired solution

In [12] by reformulating Buchdahl’s original derivation
which was quite cumbersome, we obtained the Buchdahl-
inspired metric, cast in a parallel resemblance to the classic
Schwarzschild–de Sitter (SdS) metric, per

ds2¼ ek
R

dr
rqðrÞ

�
pðrÞ

�
−
qðrÞ
r

dt2þ r
qðrÞdr

2

�
þ r2dΩ2

�
: ð1Þ

The pair of functions fpðrÞ; qðrÞg obey the “evolution”
rules

dp
dr

¼ 3k2

4r
p
q2

; ð2Þ

dq
dr

¼ ð1 − Λr2Þp; ð3Þ

and the nonconstant Ricci scalar equals to

RðrÞ ¼ 4Λe−k
R

dr
rqðrÞ: ð4Þ

This metric is specified by two parameters, Λ and k,
resulted from the fourth-derivative nature of R2 gravity,
a theory that requires two additional boundary conditions
as compared with second-derivative theories, such as the
Einstein-Hilbert action. If the spacetime structures asso-
ciated with this metric are proven to be stable, then k would
stand for new higher-derivative hair that allows the Ricci
scalar to vary on the manifold, per Eq. (4). At largest
distances, the Ricci scalar converges to 4Λ, characterizing
an asymptotically constant spacetime.
To allay any lingering doubt, in [12,13] the current author

and Shurtleff independently checked that the solution given
in Eqs. (1)–(4) satisfies the pure R2 vacuo field equation

RðRμν −
1

4
gμνRÞ þ ðgμν□ −∇μ∇νÞR ¼ 0 ð5Þ

for all values of Λ ∈ R and k ∈ R, thereby affirming its
validity. We must stress that the solution presented above is
able to defeat the generalized Lichnerowicz theorem advo-
cated in [14–17] by evading an overly strong condition on the
asymptotic falloff in DiR assumed in the theorem; see our
companion papers in this “Beyond Schwarzschild–de Sitter
spacetimes” series for a detailed exposition [12,18].
The most crucial element of the metric is the new

(Buchdahl) parameter k which makes the metric non-
Schwarzschild. At k ¼ 0, the Buchdahl-inspired metric
duly recovers the SdS metric. To see this, at k ¼ 0 the
evolution rules (2) and (3) admit the solution pðrÞ≡ 1 and
qðrÞ ¼ r − Λ

3
r3 − rs, with rs being a constant, upon which

metric (1) is readily brought into the SdS form with a
constant curvature R ¼ 4Λ everywhere. A nonzero value
of k would trigger a nonlinear interplay between pðrÞ and
qðrÞ per Eqs. (2) and (3) and enable a nonconstant
curvature to manifest, per Eq. (4).
The relations between the Buchdahl-inspired metric and

the SdS metric as well as the null-Ricci-scalar spaces are
depicted by the Venn diagrams in Fig. 1. By superseding

FIG. 1. Upper panel: the Buchdahl-inspired metric family and
its subsets. Lower panel: their relation with the Ricci-scalar-flat
family. The special Buchdahl-inspired metric in the intersection
is asymptotically flat, whereas the Buchdahl-inspired metric with
Λ ≠ 0 is asymptotically constant.

1Buchdahl’s paper has gathered merely 40þ citations since its
publications in 1962, according to NASA ADS and InpireHEP
citation trackers. Yet, none of these citations attempted to solve
Buchdahl’s ODE.
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the SdS metric, the Buchdahl-inspired spacetime is a bona
fide enlargement of the SdS spacetime, suitably regarded as
a framework “beyond Schwarzschild–de Sitter” [12].

B. The curious case of Λ= 0

Also shown in Fig. 1 is the special Buchdahl-inspired
metric which is the Buchdahl-inspired metric with Λ set
equal to zero. This special metric wholly occupies the
intersection of the branch of (nontrivial) Buchdahl-inspired
metrics and the branch of (trivial) null-Ricci-scalar spaces.
Surprisingly, despite being nonlinear, the evolution

rules (2) and (3) are fully soluble for Λ ¼ 0. In this paper
we shall exploit this advantage to derive a closed analytical
expression for the special Buchdahl-inspired metric.
Equipped with this exact analytical solution, we then are

empowered to investigate the properties of R2 spacetime
structures that live on an asymptotically flat background.
These structures are described by the special Buchdahl-
inspired metric.
Our paper is organized in four major sections. Section II

is devoted to deriving the special Buchdahl-inspired metric.
Section III produces a number of surprising properties in
the Kretschmann invariant and the surface area of the
interior-exterior boundary of R2 spacetime structures.
Section IV analytically constructs a modified Kruskal-
Szekeres (KS) diagram for the special Buchdahl-inspired
metric and uncovers yet a novel feature of its KS diagram.
Finally, Sec. V discusses the potential implications of our
finding in various areas in modified gravity.

II. DERIVATION OF THE SPECIAL
BUCHDAHL-INSPIRED METRIC

This rather dense section derives the closed analytical
solution in step-by-step details, with Lemma II E being our
ultimate result. We start with solving the evolution rules (2)
and (3) for Λ ¼ 0 in Sec. II A. We then, in Sec. II B, expose
the inadequacy of the standard Schwarzschild radial coor-
dinate r for this metric, resulting in the need for a new radial
coordinate. Sections II C and II D introduce two coordinate
transformations in sequel that lead to the final solution,
described in Sec. II E.

A. Analytical solution to the evolution rules with Λ= 0

Lemma 1.—For Λ ¼ 0, the set of equations (2) and (3)
admits the following solution:

r ¼ jq − qþj
qþ

qþ−q− jq − q−j−
q−

qþ−q− ; ð6Þ

p ¼ ðq − qþÞðq − q−Þ
rq

; ð7Þ

q� ≔
1

2

�
−rs �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s þ 3k2

q �
; ð8Þ

with rs ∈ R and q� representing the two real roots of the
algebraic equation

q2 þ rsq −
3k2

4
¼ 0: ð9Þ

Proof.—For Λ ¼ 0, the evolution rules (2) and (3)
become

pr ¼
3k2

4r
p
q2

; ð10Þ

qr ¼ p; ð11Þ

which give

qrr ¼
3k2

4r
qr
q2

: ð12Þ

Upon a change of variable r ¼ ex:

qr ¼
dq
dx

dx
dr

¼ qxe−x: ð13Þ

qrr ¼
d
dx

ðqxe−xÞ
dx
dr

¼ ðqxx − qxÞe−2x: ð14Þ

Equation (12) becomes

qxx ¼
	
1þ 3k2

4q2



qx; ð15Þ

which can be recast as

d
dx

	
dq
dx



¼

	
1þ 3k2

4q2



dq
dx

; ð16Þ

or, equivalently,

d
dq

	
dq
dx



¼ 1þ 3k2

4q2
: ð17Þ

Upon integrating, it yields a first-order ODE

dq
dx

¼ q −
3k2

4q
þ rs; ð18Þ

with rs being an integration constant. Let q� ≔ 1
2
ð−rs �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s þ 3k2
p

Þ be the two real roots of the algebraic equa-
tion (9). A further integration of (18), with the integration
constant for x set equal zero without loss of generality,
produces

x ¼
Z

qdq
ðq − qþÞðq − q−Þ

ð19Þ

¼ qþ
qþ − q−

ln jq − qþj −
q−

qþ − q−
ln jq − q−j: ð20Þ
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Restoring r ¼ ex, we then obtain

r ¼ jq − qþj
qþ

qþ−q− jq − q−j−
q−

qþ−q− : ð21Þ

Additionally, from (11) and (18), together with x ¼ ln r,
we have

p ¼ qr ¼ qx
dx
dr

¼ qx
1

r
ð22Þ

¼ 1

r

	
q −

3k2

4q
þ rs



ð23Þ

¼ 1

rq
ðq − qþÞðq − q−Þ: ð24Þ

Combining Lemma 1 with Eq. (1), we arrive at the
following analytical result. ▪
Corollary 2.—For Λ ¼ 0, the Buchdahl-inspired

metric (1)–(3) is fully analytic, per

ds2 ¼ ek
R

dr
rðqÞq

�
−
pðqÞq
rðqÞ dt2 þ pðqÞrðqÞ

q
dr2 þ r2ðqÞdΩ2

�
;

ð25Þ

rðqÞ ¼ jq − qþj
qþ

qþ−q− jq − q−j−
q−

qþ−q− ; ð26Þ

pðqÞ ¼ ðq − qþÞðq − q−Þ
rðqÞq ; ð27Þ

k ¼
	
−
4

3
qþq−



1=2

: ð28Þ

Remark 3.—We shall call the Buchdahl-inspired metric
with Λ ¼ 0 the special Buchdahl-inspired metric. We shall
also choose a convention of rs > 0 in the rest of the paper.
The case of rs ¼ 0 is considered in Appendix A.
Remark 4.—Using Eqs. (26) and (27), we produce

the plots of p, r, pq, and pq=r against q, as shown in
Fig. 2. The parameters are k ¼ rs ¼ 1, making qþ ¼ 1=2,

q−¼−3=2, and r�≔ jqþj
qþ

qþ−q− jq−j−
q−

qþ−q− ¼ð27Þ1=4=2≈1.14.
In the upper left panel, the four quadrants of the p, q

FIG. 2. Plots of p, r, pq, and pq=r as functions of q. Plots are for rs ¼ 1, k ¼ rs. See Remark 4 for explanations.
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diagram are labeled (I)–(IV) counterclockwise, respec-
tively. In the other three panels, the quadrant labels (as
defined in the fp; qg plot) are attached accordingly.
Remark 5.—From Eq. (27), it is straightforward to prove

that the special Buchdahl-inspired metric supports a duality
relation:

qpðqÞ ¼ rðqþ þ q− − qÞ: ð29Þ

Remark 6.—Note that q− < 0 < qþ, by virtue of their
definitions in Eq. (8). The zeros of r and p occur at q ¼ qþ
and q ¼ q−. Furthermore,

p ¼
�
> 0 for q ∈ ðq−; 0Þ ∪ ðqþ;þ∞Þ
< 0 for q ∈ ð−∞; q−Þ ∪ ð0; qþÞ;

ð30Þ

pq ¼
�
> 0 for q ∈ ð−∞; q−Þ ∪ ðqþ;þ∞Þ
< 0 for q ∈ ðq−; qþÞ:

ð31Þ

Remark 7.—From the duality relation (29) and the
definition of q� in (8),

qpðqÞ
rðqÞ ¼ rðqþ þ q− − qÞ

rðqÞ ¼
���� q − qþ
q − q−

����
1ffiffiffiffiffiffiffiffiffiffiffi

1þ3k2=r2s

p
ð32Þ

making qp
r vanish as q → qþ and diverge as q → q−. These

behaviors account for the lower right panel in Fig. 2.
Remark 8.—As q→0�, r approaches r� ≔

jqþj
qþ

qþ−q− jq−j−
q−

qþ−q− , whereas p → ∓∞, respectively. One
can also show that, for q ∈ ðq−; qþÞ,

dr
dq

¼ −qðqþ − qÞ q−
qþ−q−ðq − q−Þ−

qþ
qþ−q− ; ð33Þ

forcing rðqÞ to peak at q ¼ 0 in the interval ðq−; qþÞ. These
behaviors explain the two upper panels in Fig. 2.

B. Problems with the Schwarzschild
radial coordinate in R2 gravity

The generic Buchdahl-inspired metric (1) is expressed in
terms of the Schwarzschild coordinate system, ðt; r; θ;ϕÞ.
This system would be problematic for metric (25)–(28)
however, as we shall see below.
Despite Lemma 1 yielding the relation rðqÞ, the inver-

sion operation to express q in terms of r using elementary
functions cannot be carried out. The reason is that the two
exponents, qþ

qþ−q−
and q−

qþ−q−
, in (6) are “out of sync” with

each other. This trouble is further complicated by the
multivaluedness of qðrÞ.
To see the multivaluedness problem, we shall replot

Fig. 2 but with a small twist; we shall replot it against
the variable r in place of q. In Fig. 3 we plot q, p, pq, and
rq as functions of r; again, with k ¼ rs ¼ 1, qþ ¼ 1=2,

q−¼−3=2, and r�≔jqþj
qþ

qþ−q− jq−j−
q−

qþ−q−¼ð27Þ1=4=2≈1.14.
The quadrant labels (I)–(IV) defined from Fig. 2 are carried
over to Fig. 3; see Remark 4. In the leftmost panel of Fig. 3,
the function qðrÞ is double valued for r > r�, and quadruple
valued for r < r�. This is the multivaluedness problem
which further handicaps the inversion of q in terms of r.
The multivaluedness means that r, despite playing the

Schwarzschild radial coordinate in metric (1)–(3), is not a
suitable variable for metric (25)–(27). However, looking
back at Fig. 2, we immediately realize that the variable q
can be a suitable coordinate because all other variables—
viz. r, p, and others—are single-valued functions of q. This
observation guides us to the first change of variable in the
next section.

C. A first change of variable

Corollary 9.—The special Buchdahl-inspired metric is
fully analytic with respect to the variable q, per

FIG. 3. Plots of q, p, pq, and rq as functions of r. Plots are for rs ¼ 1, k ¼ rs. The leftmost panel reveals the multivaluedness problem
for qðrÞ.
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ds2¼eωðqÞ
�
−
pðqÞq
rðqÞ dt2þ rðqÞ

pðqÞqdq
2þr2ðqÞdΩ2

�
; ð34Þ

rðqÞ ¼ jq − qþj
qþ

qþ−q− jq − q−j
q−

q−−qþ ; ð35Þ

qpðqÞ
rðqÞ ¼ sgn

	
q − qþ
q − q−


���� q − qþ
q − q−

����
rs

qþ−q−
; ð36Þ

eωðqÞ ¼
���� q − qþ
q − q−

����
k

qþ−q−
; ð37Þ

k ¼
	
−
4

3
qþq−



1=2

: ð38Þ

Proof.—Equation (11) gives

dr ¼ dq
p

; ð39Þ

from which, we deduce that

pr
q
dr2 ¼ r

pq
dq2: ð40Þ

Metric (25) thus can be brought into (34), with the
conformal factor

eωðqÞ ≔ ek
R

dr
rqðrÞ ¼ ek

R
dq

pðqÞrðqÞq; ð41Þ

which by combining with Eq. (27), produces Eq. (37), per

eωðqÞ ¼ ek
R

dq
ðq−qþÞðq−q−Þ ¼

���� q − qþ
q − q−

����
k

qþ−q−
: ð42Þ

Also from Eq. (27)

qp
r

¼ ðq − qþÞðq − q−Þ
r2

ð43Þ

and, by using Eq. (26) and noting that qþ þ q− ¼ rs by
virtue of (8), we arrive at Eq. (36). ▪
Remark 10.—An immediate improvement of metric (34)

over metric (25) is that, apart from the conformal factor, the
two components g00 and g11 are reciprocal of each other.
This feature resembles that in the Schwarzschild metric.

D. A second change of variable

Despite getting a step closer to the form of a
Schwarzschild metric (see Remark 10 above), the term
pq=r in metric (34) is still rather cumbersome; see Eq. (36).
It is thus desirable to find a more transparent alternative to
the coordinate q. The lower right panel in Fig. 2 suggests a
further improvement. Not only is the combination pq=r a
single-valued function of q, the reverse is also true: q is a

single-valued function of pq=r. We shall thus choose pq=r
as the radial coordinate in the replacement of q.
That is to say, let us define a new radial coordinate ρ ∈ R

such that

1 −
rs
ρ
≔

pðqÞq
rðqÞ ; ð44Þ

which, by way of (36), becomes

1 −
rs
ρ
¼ sgn

	
q − qþ
q − q−


���� q − qþ
q − q−

����
rs

qþ−q−
: ð45Þ

Remarkably, despite that q is not analytically expressible in
terms of r—a serious hindrance that we alluded to at the
beginning of Sec. II B—the relation (45) can be inverted to
express q as a analytical function of ρ. Furthermore, since r
is an analytical function of ρ per (35), r in turn can be made
an analytical function of ρ. The inversion of Eq. (45) shall
be carried out in the following Lemma.
Lemma 11.—The Schwarzschild coordinate r is express-

ible in terms of the variable ρ, per

rðρÞ ¼
ζrs

���1 − rs
ρ

���12ðζ−1Þ���1 − sgn
�
1 − rs

ρ

����1 − rs
ρ

���ζ��� ; ð46Þ

ζ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k2=r2s

q
: ð47Þ

Proof.—Denote

x ≔ 1 −
rs
ρ
; ð48Þ

then, from (45)

x ¼ sgn
q − qþ
q − q−

���� q − qþ
q − q−

����
rs

qþ−q−
: ð49Þ

Further define ζ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k2=r2s

p
≥ 1∀ k ∈ R, then from

the definition of q� in (8) we get

rs
qþ − q−

¼ rsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s þ 3k2

p ¼ 1

ζ
: ð50Þ

Case 1: For q > qþ then 0 < x < 1.
Inverting Eq. (49),

	
q − qþ
q − q−



1=ζ

¼ x ¼ jxj ð51Þ

q ¼ 1

1 − jxjζ qþ −
jxjζ

1 − jxjζ q− ð52Þ
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then

q − qþ ¼ jxjζ
1 − jxjζ ðqþ − q−Þ; ð53Þ

q − q− ¼ 1

1 − jxjζ ðqþ − q−Þ; ð54Þ

and

r ¼ ðq − qþÞ
qþ

qþ−q−ðq − q−Þ−
q−

qþ−q− ð55Þ

¼
	 jxjζ
1 − jxjζ


 qþ
qþ−q−

	
1

1 − jxjζ



− q−
qþ−q−ðqþ − q−Þ ð56Þ

¼ jxj
ζ 1ffiffiffiffiffiffiffiffiffi

r2sþ3k2
p 1

2
ð−rsþ

ffiffiffiffiffiffiffiffiffiffiffi
r2sþ3k2

p
Þ

1 − jxjζ ζrs ð57Þ

¼ ζrs
jxj12ðζ−1Þ
1 − jxjζ : ð58Þ

Case 2: For q < q− then x > 1.
Inverting Eq. (49)

	
q − qþ
q − q−



1=ζ

¼ x ¼ jxj ð59Þ

q ¼ 1

1 − jxjζ qþ −
jxjζ

1 − jxjζ q−; ð60Þ

then

q − qþ ¼ jxjζ
1 − jxjζ ðqþ − q−Þ; ð61Þ

q − q− ¼ 1

1 − jxjζ ðqþ − q−Þ; ð62Þ

and

r ¼ ðqþ − qÞ
qþ

qþ−q−ðq− − qÞ− q−
qþ−q− ð63Þ

¼
	 jxjζ
j1 − jxjζj


 qþ
qþ−q−

	
1

j1 − jxjζj



− q−
qþ−q−ðqþ − q−Þ ð64Þ

¼ jxj
ζ 1ffiffiffiffiffiffiffiffiffi

r2sþ3k2
p 1

2
ð−rsþ

ffiffiffiffiffiffiffiffiffiffiffi
r2sþ3k2

p
Þ

j1 − jxjζj ζrs ð65Þ

¼ ζrs
jxj12ðζ−1Þ
j1 − jxjζj : ð66Þ

Case 3: For q− < q < qþ then x < 0.
Inverting Eq. (49)	

q − qþ
q− − q



1=ζ

¼ −x ¼ jxj ð67Þ

q ¼ 1

1þ jxjζ qþ þ jxjζ
1þ jxjζ q− ð68Þ

then

q − qþ ¼ −
jxjζ

1þ jxjζ ðqþ − q−Þ; ð69Þ

q − q− ¼ 1

1þ jxjζ ðqþ − q−Þ; ð70Þ

and

r ¼ ðqþ − qÞ
qþ

qþ−q−ðq − q−Þ−
q−

qþ−q− ð71Þ

¼
	 jxjζ
1þ jxjζ


 qþ
qþ−q−

	
1

1þ jxjζ



− q−
qþ−q−ðqþ − q−Þ ð72Þ

¼ jxj
ζ 1ffiffiffiffiffiffiffiffiffi

r2sþ3k2
p 1

2
ð−rsþ

ffiffiffiffiffiffiffiffiffiffiffi
r2sþ3k2

p
Þ

1þ jxjζ ζrs ð73Þ

¼ ζrs
jxj12ðζ−1Þ
1þ jxjζ : ð74Þ

In all cases, we have

r ¼ ζrs
jxj12ðζ−1Þ

j1 − sgnðxÞjxjζj ; ð75Þ

which is the desired result, Eq. (46). ▪
Remark 12.—For illustration, in Fig. 4, we plot the new

variable ρ against q and r. In Fig. 5, r, q, and p are plotted
against ρ. In these figures, k ¼ rs ¼ 1. The quadrant labels
are attached accordingly.

E. The special Buchdahl-inspired metric

We are now ready for the final step of our derivation. The
Buchdahl-inspired metric with Λ ¼ 0 is provided in
Lemma 13 below.
Lemma 13.—The special Buchdahl-inspired metric is

characterized by 2 parameters, rs and k̃:

ds2 ¼
����1 − rs

ρ

����k̃
�
−
	
1 −

rs
ρ



dt2 þ

	
1 −

rs
ρ



−1 r4ðρÞ

ρ4
dρ2

þ r2ðρÞðdθ2 þ sin2θdϕ2Þ
�
; ð76Þ
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in which the Schwarzschild radial coordinate r is related to
the new radial coordinate ρ per

rðρÞ ≔
ζrs

����1 − rs
ρ

����
1
2
ðζ−1Þ

����1 − sgn

	
1 − rs

ρ


����1 − rs
ρ

����ζ
����
; ð77Þ

ζ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k̃2

p
: ð78Þ

Proof.—First, Eq. (45) leads to

����1 − rs
ρ

���� ¼
���� q − qþ
q − q−

����
rs

qþ−q−
; ð79Þ

which neatly brings the conformal factor (37) to

eωðρÞ ¼
����1 − rs

ρ

����
k
rs
: ð80Þ

Second, Eq. (79) is equivalent to

ln

����1 − rs
ρ

���� ¼ rs
qþ − q−

ln

���� q − qþ
q − q−

����: ð81Þ

Taking derivative on both sides of this equation,

	
1 −

rs
ρ



−1 rs

ρ2
dρ ¼ rs

ðq − qþÞðq − q−Þ
dq; ð82Þ

which, with the aid of Eqs. (35), (79) and rs ¼ −ðqþ þ q−Þ
per (8), yields

dq2 ¼
���� q − qþ
q − q−

����−
2rs

qþ−q−ðq − qþÞ2ðq − q−Þ2
dρ2

ρ4
ð83Þ

¼ jq − qþj
4qþ

qþ−q− jq − q−j−
4q−

qþ−q−
dρ2

ρ4
ð84Þ

¼ r4ðqÞ dρ
2

ρ4
: ð85Þ

FIG. 4. ρ as functions of q and r. Plots are for rs ¼ 1, k ¼ rs.

FIG. 5. Various variables as functions of ρ. Plots are for rs ¼ 1, k ¼ rs.
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Finally, by defining k̃ ≔ k=rs and using (44) and (85), the
components in metric (34) become

gtt ¼ −eω
pq
r

¼ −
����1 − rs

ρ

����k̃
	
1 −

rs
ρ



; ð86Þ

gρρ ¼ gqq
dq2

dρ2
¼ eω

r
pq

r4

ρ4
¼

����1 − rs
ρ

����k̃ 1

1 − rs
ρ

r4

ρ4
; ð87Þ

gθθ ¼ eωr2 ¼
����1 − rs

ρ

����k̃r2; ð88Þ

gϕϕ ¼ gθθ sin2 θ: ð89Þ

▪
Remark 14.—The rescaled Buchdahl parameter

k̃ ≔
k
rs

ð90Þ

is a dimensionless ratio.
Remark 15.—At k̃ ¼ 0, Eqs. (77) and (78) yield ζ ¼ 1

and rðρÞ≡ ρ. The recovery of the Schwarzschild metric
from metric (76) is obvious.
Remark 16.—The combination 1 − rs

ρ is universal in the
special Buchdahl-inspired metric, (76)–(78), as it is in the
classic Schwarzschild metric. The gtt component flips sign
when ρ varies across rs. The radius rs plays the role of the
“Schwarzschild” radius for pure R2 spacetime structures.
Remark 17.—In metric (76)–(78), the radial coordinate is

ρ and the physical “origin” is located at ρ ¼ 0. The usual
Schwarzschild coordinate rðρÞ is not the radial coordinate
for this metric. Rather, apart from the conformal factor
j1 − rs

ρ jk̃, it acts as an areal coordinate via the term

r2ðρÞ½dθ2 þ sin2 θdϕ2� in (76).
Remark 18.—As ρ → ∞, per (77) we have rðρÞ ≃ ρ.

Metric (76) asymptotically is

����1−rs
ρ

����k̃
�
−
	
1−

rs
ρ



dt2þ r4ðρÞdρ2

ρ4ð1− rs
ρÞ
þ r2ðρÞdΩ2

�
: ð91Þ

We thus do not obtain a Schwarzschild spacetime but a
conformally Schwarzschild spacetime, with the conformal
factor being j1 − rs

ρ jk̃. In principle, the effects of k̃ should
manifest via its influence on the orbital motion of the
massive objects, though not that of light.
Remark 19.—In (91), since j1 − rs

ρ jk̃ → 1 when r → ∞,
the special Buchdahl-inspired metric is asymptotically flat.
It can also be verified to be Ricci-scalar-flat but not Ricci
flat. Its 4 nonvanishing Ricci tensor components are

Rtt ¼
k̃ðk̃þ 1Þ

2ζ4
jxj2−2ζð1 − sgnðxÞjxjζÞ4; ð92Þ

Rρρ ¼
k̃

2ρ4jxj2
�
3k̃ − 1þ 2ζ

1þ sgnðxÞjxjζ
1 − sgnðxÞjxjζ

�
; ð93Þ

Rθθ ¼
k̃
2ζ2

ð1− sgnðxÞjxj−ζÞ

× ½ðk−1Þð1− sgnðxÞjxjζÞþζð1þ sgnðxÞjxjζÞ�; ð94Þ

Rϕϕ ¼ Rθθ sin2 θ; ð95Þ

in which x ≔ 1 − rs
ρ , ζ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k̃2

p
.

In closing of this main section, Lemma 13 is the central
result of our paper. With this exact analytical result, we are
now well equipped to study the interior-exterior boundary
and the causal structure of R2 spacetime structures in the
rest of our paper.

III. APPLICATION I: ANOMALOUS BEHAVIOR
OF INTERIOR/EXTERIOR BOUNDARY

IN R2 SPACETIME

This section explores and reports a number of novel
surprising properties of the interior-exterior boundary of
R2 spacetime, described by the special Buchdahl-inspired
metric attained in Lemma 13.
Metric (76)–(78) bears an interesting resemblance to the

Schwarzschild metric, with four departures:
(i) The conformal factor, j1 − rs

ρ jk̃.
(ii) The gρρ component contains the ratio r4ðρÞ

ρ4
.

(iii) The angular part involves r2ðρÞ instead of ρ2.
(iv) The function rðρÞ involves the signum function

sgnð1 − rs
ρÞ, thus comprising two distinct expres-

sions, one for ρ < rs and other for ρ > rs.
Across ρ ¼ rs, the components g00 and g11 flip their signs,

hence indicating an “exterior” region for ρ ∈ ðrs;þ∞Þ and
an “interior” region for ρ ∈ ð0; rsÞ. The nature of the interior-
exterior boundary can be deduced from the ζ–Kruskal-
Szekeres diagram constructed in Sec. IV D. In Fig. 13, the
boundary for k̃ ≠ 0 (viz., ζ > 1) is the four hyperbolic
branches surrounding Region (VI); the ρ ¼ rs boundary is
not a null surface in this situation. For k̃ ¼ 0, the four
hyperbolic branches degenerate into two straight lines
T ¼ �X that are null surfaces, making the ρ ¼ rs boundary
the usual Schwarzschild horizon. For all values of k̃ ∈ R,
Regions (II) and (IV) in Fig. 13 represent interior sections of
an R2 spacetime.

A. Behavior of the areal radial coordinate
in pure R2 gravity

We first start with the areal coordinate rðρÞ as a function
of the new radial coordinate ρ. The relation is given in
Eqs. (77) and (78). The plot of rðρÞ is shown in Fig. 6 for
various values of k̃. In each panel, the curve is juxtaposed
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against the benchmark rðρÞ ¼ ρ diagonal (dotted) line

which corresponds to the case k̃ ¼ 0 (viz. ζ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ3k̃2

p
¼1).

The asymptotics:
(i) As ρ → 0,

rðρÞ ≃ ζr
1
2
ð1−ζÞ
s ρ

1
2
ðζþ1Þ → 0 ∀ k̃: ð96Þ

(ii) As ρ → ∞, the areal coordinate is asymptotically

rðρÞ ≃ ρ −
k2r2s
8ρ

: ð97Þ

(iii) As ρ → rs, for k̃ ≠ 0, ζ is strictly greater than 1 and
rðρÞ ≃ ζrsj1 − rs

ρ j
1
2
ðζ−1Þ → 0. All curves with k̃ ≠ 0

have a zero at ρ ¼ rs that separates the interior
region, ρ < rs, from the exterior region, ρ > rs.

The fact that the areal coordinate rðρÞ shrinks to zero on the
interior-exterior boundary if k̃ ≠ 0 is a novel feature of pure
R2 spacetime structures.

B. Determinant of the metric

We next look into the determinant of metric (76)–(78),

− det g ¼
����1 − rs

ρ

����4k̃ r8ðρÞρ4
sin2θ ð98Þ

¼ ζ8r8s
ρ4

j1 − rs
ρ j4ðζþk̃−1Þsin2θ

ð1 ∓ j1 − rs
ρ jζÞ8

; ð99Þ

with ∓ corresponding the exterior/interior regions, respec-
tively. Figure 7 depicts a number of combinations of k̃ and ζ
to be encountered in this paper. We deduce that

ζ þ k̃ − 1 ¼
8<
:

0 if k̃ ¼ 0 or k̃ ¼ −1
> 0 if k̃ ∈ ð−∞;−1Þ ∪ ð0;þ∞Þ
< 0 if k̃ ∈ ð−1; 0Þ

: ð100Þ

Special cases:
(i) At k̃ ¼ 0

− det g ¼ ρ4 sin2 θ; ð101Þ
which is a result known in the Schwarzschild metric.

(ii) At k̃ ¼ −1

− det g ¼ 256r8s sin2θ
ρ4ð1 ∓ ð1 − rs

ρÞ2Þ8
; ð102Þ

with ∓ corresponding the exterior/interior regions,
respectively. The determinant with k̃ ¼ −1 is well-
behaved for all ρ ≠ 0.

The asymptotic at the interior-exterior boundary, ρ → rs:
Due to result (100), we then have

lim
ρ→rs

ð−detgjθ¼π
2
Þ14 ¼

8>>><
>>>:

rs for k̃¼ 0

4rs for k̃¼−1
0 for k̃≤−1 or k̃≥ 0

þ∞ for k̃∈ ð−1;0Þ

: ð103Þ

C. The Kretschmann invariant

The Kretschmann scalar is given by

K ≔ RμνρσRμνρσ ð104Þ

¼ 2

ζ8r4s
ð1− sgnðxÞjxjζÞ6jxj2−4ζ−2k̃

×f4k̃2ðk̃þ1ÞsgnðxÞjxjζþζð4k̃3−5k̃2−3Þð1− jxj2ζÞ
þð9k̃4−2k̃3þ10k̃2þ3Þð1þjxj2ζÞg ð105Þ

in which x ≔ 1 − rs
ρ .

FIG. 6. Areal coordinate r as a function of the new coordinate ρ. For k̃ ¼ �0.3;�1;�2.5. In all plots, rs ¼ 1.
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By completing the square in the curly bracket in
expression (105) in terms of jxjζ, one can show that the
Kretschmann scalar is positive definite for all ρ ∈ R and
all k ∈ R.
Special cases:
(i) At k̃ ¼ 0, i.e., ζ ¼ 1

K ¼ 12r2s
ρ6

ð106Þ

recovering the result known in the Schwarzschild
metric. It only has a curvature singularity at the
origin.

(ii) At k̃ ¼ −1, i.e., ζ ¼ 2

K ¼ 3

8r4s

	
1 ∓

	
1 −

rs
ρ



2



6

ð107Þ

with ∓ corresponding to the exterior/interior re-
gions, respectively. It also only has a curvature
singularity at the origin.

The asymptotics:
(i) As ρ → þ∞, viz. x → 1,

K ≃
12

ζ8r4s
ðk̃2 þ 1Þð3k̃2 þ 1Þ

	
1−

����1− rs
ρ

����ζ



6

ð108Þ

≃12ðk̃2 þ 1Þ r
2
s

ρ6
; ð109Þ

which decays as ρ−6 when ρ → þ∞ for ∀ k̃ ∈ R.
(ii) As ρ → 0, viz. x → ∞,

K ≃
2

ζ8r4s
jxj2ζ−2k̃þ2f4k̃2ðk̃þ 1Þjxjζ

þ ½ð−4k̃3 þ 5k̃2 þ 3Þζ
þ ð9k̃4 − 2k̃3 þ 10k̃2 þ 3Þ�jxj2ζg: ð110Þ

Since ζ ¼ ð1þ 3k̃2Þ12 ≥ 1 for ∀ k̃ ∈ R, jxj2ζ domi-
nates jxjζ as x → ∞. Hence, as ρ → 0,

K≃
2

ζ8r4s

	
rs
ρ



2ð2ζ−k̃þ1Þ

× ½ð−4k̃3þ 5k̃2þ 3Þζþð9k̃4− 2k̃3þ 10k̃2þ 3Þ�:
ð111Þ

From Fig. 7, 2ζ − k̃þ 1 > 0 ∀ k̃ ∈ R. Thus K
diverges as ρ−2ð2ζ−k̃þ1Þ when ρ → 0, for all ∀ k̃ ∈ R.

(iii) As ρ → rs, viz. x → 0, if k̃ ≠ 0 and k̃ ≠ −1

K ≃
2

ζ8r4s

����1− rs
ρ

����2ð−2ζ−k̃þ1Þ

× ½ð4k̃3 − 5k̃2 − 3Þζ þ ð9k̃4 − 2k̃3 þ 10k̃2 þ 3Þ�:
ð112Þ

From Fig. 7, −2ζ − k̃þ 1 < 0 ∀ k ∈ R. Thus K
diverges as jρ − rsj2ð−2ζ−k̃þ1Þ when ρ → rs, for k̃ ≠ 0

and k̃ ≠ −1. In sum, when ρ → rs,

K≃

8>><
>>:
12r−4s for k̃¼ 0

3
8
r−4s for k̃¼−1

jρ− rsj2ð−2ζ−k̃þ1Þ →þ∞ otherwise:

ð113Þ

The fact that, for k̃ ≠ 0 and k̃ ≠ −1, the Kretschmann scalar
exhibits an additional singularity on the interior-exterior
boundary, ρ ¼ rs, besides the usual singularity at the origin,
is another novel result.
The plot for the Kretschmann scalar is shown in Fig. 8.

For clarity, we split the curves into two groups, one with
negative k̃ (upper panel), the other non-negative k̃ (lower
panel). The curves with k̃ ¼ 0 and k̃ ¼ −1 are smooth
across the interior-exterior boundary, ρ ¼ rs. All other
curves show a divergence at ρ ¼ rs.

D. Surface area of the interior-exterior boundary
of R2 spacetime: An anomalous behavior

For metric (76) and (77), the surface area of a two-
dimensional sphere of “radius” ρ is

FIG. 7. Various combinations of k̃ and ζ, to be used in this
paper, as functions of k̃.
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A ¼ 4π

����1 − rs
ρ

����k̃r2ðρÞ
¼ 4πζ2r2s

j1 − rs
ρ jζþk̃−1

ð1 − sgnð1 − rs
ρÞj1 − rs

ρ jζÞ2
; ð114Þ

which is conveniently equal to

4πρð− det gjθ¼π=2Þ14: ð115Þ

The surface area A and the determinant of g thus share
similar behaviors. The plot of A is shown in Fig. 9, with the
dotted parabola showing the regular k̃ ¼ 0, in which case
A ¼ 4πρ2 since rðρÞ ¼ ρ. Note the plots are not symmetric
with respect to k̃.
The asymptotics:
(i) As ρ → þ∞,

A ≃ 4π

�
ρ2 − k̃rsρ −

r2s
4
k̃ðk̃ − 2Þ

�
. ð116Þ

(ii) As ρ → 0,

A ≃ 4πζ2r2sρζ−k̃þ1 ð117Þ

From Fig. 7, ζ − k̃þ 1 > 0 ∀ k̃ ∈ R. Hence, A → 0

as ρ → 0 for ∀ k̃ ∈ R.
(iii) As ρ → rs,

A ≃ 4πζ2r2s

����1 − rs
ρ

����ζþk̃−1
ð118Þ

¼

8>>><
>>>:

4πr2s if k̃¼ 0

16πr2s if k̃¼ −1
0 if k̃ ∈ ð−∞;−1Þ ∪ ð0;þ∞Þ
þ∞ if k̃ ∈ ð−1;0Þ:

ð119Þ

Remark 20.—Depending on the value of k̃, the shrinkage
or divergence of the surface area at ρ ¼ rs is evident
in Fig. 9.
Remark 21.—The interior-exterior boundary exhibits a

peculiar property. Per Eq. (119), its surface area with k̃ ≠ 0

drastically deviates from the customary 4πr2s expression,
thereby indicating that the Buchdahl parameter k “distorts”
the topology of spacetime around the interior-exterior
boundary.
Remark 22.—The anomalous behavior of the surface

area of the interior-exterior boundary occurs in tandem with
the curvature singularity at the interior-exterior boundary in
the Kretschmann invariant, Eq. (113); also see Sec. V F.

IV. APPLICATION II: CAUSAL STRUCTURE
OF PURE R2 SPACETIME

This section analytically constructs the Kruskal-Szekeres
(KS) diagram of the special Buchdahl-inspired metric
attained in Lemma II E. We adapt the usual practices that
handle Schwarzschild black holes—by finding the tortoise
coordinates, the Eddington-Finkelstein coordinates, and the
Kruskal-Szekeres coordinates [19–22]—to the case at
hand. Quantitative adjustments are needed. With met-
ric (76)–(78) involving the parameter ζ, we shall label
these said coordinates by a ζ– prefix. Figure 13 is the
outcome of our construction.

A. Constructing the ζ–tortoise coordinate
for pure R2 gravity

The ζ–tortoise coordinate ρ�ðρÞ is defined as

dρ� ≔
r2ðρÞ

ρ2ð1 − rs
ρÞ
dρ; ð120Þ

dρ� ¼ ζ2r2s
j1 − rs

ρ jζ−1ð1 − rs
ρÞ−1

ð1 − sgnð1 − rs
ρÞj1 − rs

ρ jζÞ2
dρ
ρ2

: ð121Þ

FIG. 8. Logarithm of Kretschmann invariant as a function of the
new coordinate ρ, for various value of k̃. For clarity, we plot the
curves in two panels. In all cases, rs ¼ 1.
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The integral involves a Gaussian hypergeometric function.
Let us define

z ≔ sgn
	
1 −

rs
ρ


����1 − rs
ρ

����ζ: ð122Þ

For ρ > rs:

z ¼
	
1 −

rs
ρ



ζ

> 0; ð123Þ

dz ¼ ζrs

	
1 −

rs
ρ



ζ−1 dρ

ρ2
; ð124Þ

dρ� ¼ ζrs
z−1=ζ

ð1 − zÞ2 dz; ð125Þ

giving (modulo an additive constant)

ρ� ¼ ζ2rs
ζ − 1

z1−
1
ζ
2F1

	
2; 1 −

1

ζ
; 2 −

1

ζ
; z



: ð126Þ

For 0 < ρ < rs:

z ¼ −
	
rs
ρ
− 1



ζ

< 0; ð127Þ

dz ¼ ζrs

	
rs
ρ
− 1



ζ−1 dρ

ρ2
; ð128Þ

dρ� ¼ −ζrs
ð−zÞ−1=ζ
ð1 − zÞ2 dz ð129Þ

¼ ζrs
ð−zÞ−1=ζ

ð1þ ð−zÞÞ2 dð−zÞ: ð130Þ

giving (modulo an additive constant)

FIG. 9. Surface area as a function of the new coordinate ρ. Upper panels: k̃ ¼ 0.3, 1, 2.5. Lower panels: k̃ ¼ −0.3;−1;−2.5. The
dashed line in each panel is the trivial k̃ ¼ 0 benchmark, A ¼ 4πρ2.
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ρ� ¼ ζ2rs
ζ − 1

ð−zÞ1−1
ζ
2F1

	
2; 1 −

1

ζ
; 2 −

1

ζ
; z



: ð131Þ

In combination, we have the ζ–tortoise coordinate
(modulo an additive constant) in terms of z ∈ C

ρ� ¼ ζ2rs
ζ − 1

jzj1−1
ζ
2F1

	
2; 1 −

1

ζ
; 2 −

1

ζ
; z



: ð132Þ

Furthermore, using Eq. (130), the difference

ρ�jρ¼0 − ρ�jρ¼rs ¼
Z

z¼−∞

z¼0

ζrs
ð−zÞ−1=ζdð−zÞ
ð1þ ð−zÞÞ2 ð133Þ

¼ πrs
sinðπ=ζÞ : ð134Þ

We shall choose the additive constant such that the ζ–tortoise
coordinate vanishes at ρ ¼ 0. Using (122), (132), and (134)
produces

ρ� ¼−
πrs

sinðπ=ζÞþ
ζ2rs
ζ−1

����1− rs
ρ

����ζ−1

× 2F1

	
2;1−

1

ζ
;2−

1

ζ
;sgn

	
1−

rs
ρ


����1− rs
ρ

����ζ


: ð135Þ

For k̃ ≠ 0, the variable ρ� is continuous across ρ ¼ rs and
ρ�jρ¼rs ¼ − πrs

sinðπ=ζÞ. In the complex plane z ∈ C, theGaussian

hypergeometric function 2F1ð2; 1 − 1=ζ; 2 − 1=ζ; zÞ has a
branch point at z ¼ 1; expression (135) is thus applicable for
z ∈ Rþ and k̃ ≠ 0. See Appendix B for more information on
the hypergeometric function at play.
For k̃ ¼ 0, i.e., ζ ¼ 1, the tortoise coordinate (135) duly

recovers

ρ� ¼ ρþ rs ln

���� ρ − rs
rs

����; ð136Þ

which diverges at ρ ¼ rs. See Appendix C for derivation.
Figure 10plots the ζ–tortoise coordinate for various values

of k̃. The case of k̃ ¼ 0 is the usual tortoise coordinate,
Eq. (136). Figure 11 shows the value −ρ�jρ¼rs ¼ πrs

sinðπ=ζÞ,

which asymptotes ζrs
ζ−1 for ζ ≳ 1 and ζrs for large ζ.

B. Constructing the ζ–Eddington-Finkelstein
coordinates for pure R2 gravity

Let us define the advanced and retarded ζ–Eddington-
Finkelstein coordinates, per

v ≔ tþ ρ�; ð137Þ

u ≔ t − ρ�: ð138Þ

Metric (76), expressed in these new coordinates, becomes

ds2¼
����1−rs

ρ

����k̃

×

�
−
	
1−

rs
ρ



dv2þr2ðρÞ

ρ2
ð2dvdρþρ2dΩ2Þ

�
ð139Þ

and

ds2 ¼
����1 − rs

ρ

����k̃

×

�
−
	
1 −

rs
ρ



du2 þ r2ðρÞ

ρ2
ð−2dudρþ ρ2dΩ2Þ

�
:

ð140Þ

FIG. 10. The ζ–tortoise coordinate of Eq. (135) for various
values of k̃ (with rs ¼ 1).

FIG. 11. ρ�ðρ ¼ rsÞ as function of ζ; both axes in log scale
(with rs ¼ 1). The two asymptotes are ζ=ðζ − 1Þ (for k̃ → 0) and
ζ (for k̃ → ∞). Note that ρ�ðρ ¼ rsÞ ¼ −π for k̃ ¼ 1.
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Also

dudv ¼ dt2 −
r4ðρÞ

ρ4ð1 − rs
ρÞ2

dρ2 ð141Þ

thence

ds2 ¼
����1 − rs

ρ

����k̃
�
−
	
1 −

rs
ρ



dudvþ r2ðρÞdΩ2

�
: ð142Þ

In the advanced ζ–Eddington-Finkelstein coordinate,
the null geodesics (ds2 ¼ 0) along the radial direction
amount to

dv
dρ

¼
(
0 ðinfallingÞ
2r2ðρÞ
ρ2ð1−rs

ρ Þ
¼ 2 dρ�

dρ ðoutgoingÞ; ð143Þ

thus

v ¼
�
const ðinfallingÞ
2ρ� þ const ðoutgoingÞ: ð144Þ

C. Behavior of light cones across the interior-exterior
boundary of a pure R2 spacetime

In the advanced ζ–Eddington-Finkelstein coordinates,
per (121) and (143), the outgoing null path has the slope

dv
dρ

¼ 2
dρ�

dρ
ð145Þ

¼ 2ζ2

1 − rs
ρ

	
rs
ρ



2 j1 − rs

ρ jζ−1
ð1 − sgnð1 − rs

ρÞj1 − rs
ρ jζÞ2

: ð146Þ

Thus the outgoing null path exhibits the following asymp-
totic behaviors

dv
dρ

≃

8>>><
>>>:

−2ζ2r2ð1−ζÞs ρζ → 0 as ρ → 0

þ2ζ2r2−ζs jρ − rsjζ−2 as ρ → rþs
−2ζ2r2−ζs jρ − rsjζ−2 as ρ → r−s
þ2 as ρ → ∞

: ð147Þ

Figure 12 depicts the behavior of the light cones in the
ðv; ρÞ plane. Concerning the light cone behavior across the
interior-exterior boundary, there are three cases:
Case 1: For jk̃j < 1, viz. ζ < 2

dv
dρ

→ �∞ as ρ → r�s : ð148Þ

The light cone “flips over” across the interior-
exterior boundary as usual. This case includes the
standard Schwarzschild metric, viz. k̃ ¼ 0. See the
leftmost panel in Fig. 12.

Case 2: For jk̃j > 1, viz. ζ > 2

dv
dρ

→ 0� as ρ → r�s : ð149Þ

This case is a peculiar situation. The light
cone first “flattens out” when approaching the

FIG. 12. Light cones in the ðρ; vÞ plane (with rs ¼ 1), for k̃ ¼ 0.5, 1, 2.5. We choose these values of k̃ as representatives for the three
cases discussed in the text.
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interior-exterior boundary from the exterior. Upon
passing the interior-exterior boundary, the light
cone makes sudden “collapse” to an single line,
dv ¼ 0, then gradually “re-widens” when entering
into the interior. See the rightmost panel in Fig. 12.

Case 3: For jk̃j ¼ 1, hence ζ ¼ 2,

dv
dρ

→ �8 as ρ → r�s : ð150Þ

The light cones changes its slope in a stepwise
fashion. See the middle panel in Fig. 12.

Remark 23.—From Fig. 12, in every situation, all light
paths and timelike paths inside the interior-exterior boun-
dary would eventually reach the origin; they cannot escape
from the interior. In the exterior region, the outgoing light
path can escape to infinity. These results shall be confirmed
byway of theKruskal-Szekeres diagram in Sec. IV Dbelow.

D. Constructing the ζ–Kruskal-Szekeres coordinates
for pure R2 gravity

Most of the procedure originally advanced by Kruskal
and Szekeres for Schwarzschild black holes [21,22] can be
repurposed for pure R2 spacetime. We shall consider the
exterior and interior regions separately.

1. The exterior

For ρ > rs, let us define

X ≔
1

2
ðe v

2rs þ e−
u
2rsÞ; ð151Þ

T ≔
1

2
ðe v

2rs − e−
u
2rsÞ; ð152Þ

then

X ¼ e
ρ�
2rs cosh

t
2rs

; ð153Þ

T ¼ e
ρ�
2rs sinh

t
2rs

; ð154Þ

T2 − X2 ¼ −e
ρ�
rs ; ð155Þ

T
X
¼ tanh

t
2rs

ð156Þ

and

dX ¼ e
ρ�
2rs

2rs

�
r2ðρÞ

ρ2ð1 − rs
ρÞ
cosh

t
2rs

dρþ sinh
t
2rs

dt

�
; ð157Þ

dT ¼ e
ρ�
2rs

2rs

�
r2ðρÞ

ρ2ð1 − rs
ρÞ
sinh

t
2rs

dρþ cosh
t
2rs

dt
�
; ð158Þ

hence

dT2 − dX2 ¼ e
ρ�
rs

4r2s

�
dt2 −

r4ðρÞ
ρ4ð1 − rs

ρÞ2
dρ2

�
; ð159Þ

giving

ds2 ¼
����1 − rs

ρ

����k̃

×

�
−4r2se

−ρ�
rs

	
1 −

rs
ρ



ðdT2 − dX2Þ þ r2ðρÞdΩ2

�
:

ð160Þ
2. The interior

For ρ < rs, let us define

X ≔
1

2
ðe v

2rs − e−
u
2rsÞ; ð161Þ

T ≔
1

2
ðe v

2rs þ e−
u
2rsÞ; ð162Þ

then

X ¼ e
ρ�
2rs sinh

t
2rs

; ð163Þ

T ¼ e
ρ�
2rs cosh

t
2rs

; ð164Þ

T2 − X2 ¼ þe
ρ�
rs ð165Þ

T
X
¼

	
tanh

t
2rs



−1

ð166Þ

and

dX ¼ e
ρ�
2rs

2rs

�
r2ðρÞ

ρ2ð1 − rs
ρÞ
sinh

t
2rs

dρþ cosh
t
2rs

dt

�
; ð167Þ

dT ¼ e
ρ�
2rs

2rs

�
r2ðρÞ

ρ2ð1 − rs
ρÞ
cosh

t
2rs

dρþ sinh
t
2rs

dt

�
; ð168Þ

hence

dT2 − dX2 ¼ −
e
ρ�
rs

4r2s

�
dt2 −

r4ðρÞ
ρ4ð1 − rs

ρÞ2
dρ2

�
; ð169Þ
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giving

ds2 ¼
����1 − rs

ρ

����k̃

×

�
þ4r2se

−ρ�
rs

	
1 −

rs
ρ



ðdT2 − dX2Þ þ r2ðρÞdΩ2

�
:

ð170Þ
3. Combination of both regions

The special Buchdahl-inspired metric in the ζ–Kruskal-
Szekeres (KS) coordinates is thus

ds2¼
����1−rs

ρ

����k̃

×
�
−4r2se−

ρ�
rs

����1−rs
ρ

����ðdT2−dX2Þþr2ðρÞdΩ2

�
ð171Þ

and

T2 − X2 ¼ −sgnðρ − rsÞe
ρ�
rs ; ð172Þ

T
X
¼

	
tanh

t
2rs



sgnðρ−rsÞ

: ð173Þ

Remark 24.—For the case k̃ ¼ 0, substituting ρ� ¼
ρþ rs ln j ρrs − 1j and rðρÞ ¼ ρ into (171), we get

ds2ðKSÞ ¼ −4r3s
e−

ρ
rs

ρ
ðdT2 − dX2Þ þ ρ2dΩ2; ð174Þ

which is the usual KS result for Schwarzschild black holes.

E. Features of the ζ–Kruskal-Szekeres diagram:
A new “virtual” region

Restricting to the radial direction, viz. dθ ¼ dϕ ¼ 0,
metric (171) is

ds2 ¼ −4r2se
−ρ�

rs

����1 − rs
ρ

����1þk̃
ðdT2 − dX2Þ: ð175Þ

The ζ–Kruskal-Szekeres (ζ–KS) plane for metric (175) is
shown in Fig. 13. A number of key features are

FIG. 13. Kruskal-Szekeres diagram for k̃ ≠ 0. The “gulf” shown as Region (VI) is a new feature. See text for explanations.
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(i) Similarly to the usual KS diagram, the ζ–KS
diagram is conformally Minkowski.

(ii) The null geodesics are

dX ¼ �dT: ð176Þ

Light thus travels on the 45° lines in the ζ–KS plane.
(iii) The ζ–KSdiagram retains, qualitatively, most features

of the causal structure established for the usual KS
diagram. There are quantitative changes; see below.

(iv) A constant-ρ contour corresponds to a hyperbola,
whereas the constant-t contour to a straight line
through the origin of the ðT; XÞ plane.

(v) The coordinate origin ρ ¼ 0 amounts to, per

T2 − X2 ¼ 1 ð177Þ

because ρ�ðρ ¼ 0Þ ¼ 0.
(vi) The interior-exterior boundary ρ ¼ rs amounts to

two distinct hyperbolae, one for the interior and the
other the exterior, per

T2 − X2 ¼
�
−e

− π
sinπ

ζ for exterior

þe
− π
sinπ

ζ for interior
: ð178Þ

Note that each hyperbola comprises of two separate
branches on its own.

(vii) For k̃ ¼ 0, viz. ζ ¼ 1, the hyperbolae (178) degen-
erate to two straight lines

T ¼ �X; ð179Þ

as expected for Schwarzschild black holes.
(viii) Region (I) is the exterior, mapped into the ζ–KS

plane extended up to the right branch of the hyper-

bola T2 − X2 ¼ −e
− π
sinπ

ζ .
(ix) Region (II) is the interior, mapped into the ζ–KS

plane, extended up to the upper branch of the

hyperbola T2 − X2 ¼ þe
− π
sinπ

ζ .
(x) Regions (III) and (IV) are time-reverse images of

Regions (I) and (II).
(xi) Regions (Va) and (Vb) (shaded by dots) are un-

physical, viz. ρ < 0.
(xii) What is new is Region (VI) (also shaded in dots) that

sandwiches between the four hyperbola branches
given by (178).

In Region (II), all timelike and null trajectories will
eventually hit the origin, denoted by the hyperbola, ρ¼0.
Nothing can escape from the interior. InRegion (I), outgoing
light paths would be able to escape to infinity. These
observations are in agreement with the result obtained in
Sec. IV C; see Remark 23.
Incoming light paths from Region (I) must enter Region

(II) by “bypassing” Region (VI). An infalling object (or

light wave) would hit the interior-exterior boundary
ρ ¼ rs on the side of Region (I) then reappear on the
interior-exterior boundary on the side of Region (II). The
“transit”—if there is any—within Region (VI) is not
visible, thus “virtual,” for an outside observer from afar.
Region (VI) appears as a “gulf” in the ðT; XÞ coordinate

system but it does not correspond to any region in the ðt; ρÞ
coordinate system. When k̃ → 0, the gulf shrinks toward
the 2 lines T ¼ �X. Given that the ζ–KS diagram is the
maximal extension of the specialBuchdahl-inspired metric,
the emergence of Region (VI) is a highly curious feature,
signaling potential new physics that takes place on the
interior-exterior boundary of R2 spacetime. Taken alto-
gether, the singularity on the interior-exterior boundary in
the Kretschmann invariant, the anomalous behavior of the
surface area of the interior-exterior boundary, and the gulf
in the ζ–KS diagram indicate that the topology of R2-
gravity spacetime around a mass source undergoes funda-
mental alterations when the Buchdahl parameter k is in
presence.

F. A conjecture

While the intuitions about the causal structure built for
the usual KS diagram remain intact for its ζ–KS enlarge-
ment, the appearance of the virtual Region (VI) would beg
for further examinations. We shall venture some ideas
going forward.
Let us recall that in the usual KS diagram, the tortoise

coordinate is “bifurcated” into two branches, separately for
the exterior and for the interior, per

ρ� ¼
�
ρþ rs ln ðρ − rsÞ for exterior

ρþ rs ln ðrs − ρÞ for interior:
ð180Þ

For the ζ–tortoise coordinate obtained in Sec. IVA, this
“bifurcation” issue is somewhat mitigated if k̃ ≠ 0, viz.
ζ > 1. To see this, let us recall Eqs. (122) and (132)
with the additive constant term being suppressed for
convenience:

ρ� ¼ ζ2rs
ζ − 1

jzj1−1
ζ
2F1

	
2; 1 −

1

ζ
; 2 −

1

ζ
; z



; ð181Þ

z ≔ sgn

	
1 −

rs
ρ


����1 − rs
ρ

����ζ; ð182Þ

in which z ∈ R (here, we consider ρ ∈ R unrestricted).
The Gaussian hypergeometric function 2F1ð2; 1 − 1=ζ;
2 − 1=ζ; zÞ, when extended onto the complex plane
z ∈ C, has a branch point at z ¼ 1 (corresponding to
ρ ¼ �∞). For k̃ ¼ 0, Eqs. (181) and (182) recover the
usual tortoise coordinate (see Appendix C):
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ρ� ¼ rs
1 − z

þ rs ln

���� z
1 − z

���� ð183Þ

¼ ρþ rs ln

���� ρrs − 1

����; ð184Þ

which is not analytic across z ¼ 0, a point that separates the
exterior from the interior, as alluded to above.
To proceed, let us define the following auxiliary variable

for z ∈ C,

ρ̃ ≔
ζ2rs
ζ − 1

z1−
1
ζ
2F1

	
2; 1 −

1

ζ
; 2 −

1

ζ
; z



ð185Þ

in which the z1−
1
ζ term has replaced the jzj1−1

ζ term in
Eq. (181). The ζ–tortoise coordinate is thus

ρ�ðzÞ ¼
	jzj
z



1−1

ζ

ρ̃ðzÞ ¼ e−ið1−
1
ζÞ arg zρ̃ðzÞ; ð186Þ

which, when restricted to z ∈ R, yields two separate
branches

ρ�ðzÞ ¼
� ρ̃ðzÞ exterior

e−ið1−
1
ζÞπρ̃ðzÞ interior:

ð187Þ

The variable ρ̃, when defined in the complex plane z ∈ C,
might be used to “analytically continue” from the interior
(z ∈ R−) to the exterior (z ∈ Rþ). In the meantime, the

phase factor e−ið1−
1
ζÞ arg z in Eq. (186) isolates the non-

analytical part in ρ� from the “well-behaved” ρ̃, hence
lessening the bifurcation issue mentioned above.
Concerning ρ̃, for a general value of k̃ ≠ 0, the exponent

1 − 1
ζ is strictly confined within the range (0,1); the term

z1−
1
ζ is thus multivalued and the z ¼ 0 point represents a

branch point. (N.B.: the function 2F1 itself contains another
branch point at z ¼ 1.)
We conjecture that the variable ρ̃, defined as a function of

z in the complex plane C, could serve as a tool to tackle the
gulf in the ζ–KS diagram, a topic worthwhile of future
research.
Conjecture 25.—The auxiliary variable

ρ̃ ≔
ζ2rs
ζ − 1

z1−
1
ζ
2F1

	
2; 1 −

1

ζ
; 2 −

1

ζ
; z



ð188Þ

with z ∈ CnR, viz. Imz ≠ 0, represents the virtual Region
(VI) in the ζ–Kruskal-Szekeres diagram.

V. SUMMARY AND OUTLOOKS

Lemma 13 in Sec. II E is the central result of our work,
finalizing the program that Buchdahl pioneered—but
prematurely abandoned—circa 1962 [1]. It presents an

asymptotically flat non-Schwarzschild spacetime in exact
closed analytical form, which we reproduce here for the
reader’s convenience:

����1−rs
ρ

����
k
rs

�
−
	
1−

rs
ρ



dt2þ r4ðρÞdρ2

ρ4ð1− rs
ρÞ
þ r2ðρÞdΩ2

�
: ð189Þ

The areal coordinate r is related to the radial coordinate
ρ per

rðρÞ ≔
ζrsj1 − rs

ρ j
1
2
ðζ−1Þ

j1 − sgnð1 − rs
ρÞj1 − rs

ρ jζj
; ð190Þ

with ζ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k2=r2s

p
(we have restored k ≔ k̃rs).

The special Buchdahl-inspired metric is a member of the
branch of nontrivial solutions, viz. the class of Buchdahl-
inspired metrics with Λ ∈ R, obtained in our preceding
work for pure R2 gravity [12]; also see Eqs. (1)–(4)
in this current paper. Figure 1 on p. 3 summarizes the
state of affairs: the generic Buchdahl-inspired metric with
Λ ∈ R supersedes the Schwarzschild–de Sitter metric and
the special Buchdahl-inspired metric supersedes the
Schwarzschild metric. Both of the superseding instants
occur when the Buchdahl parameter k is sent to zero.2

A. Higher-derivative characteristic

The asymptotically flatR2 spacetime, described by met-
ric (189) and (190), is characterized by a Schwarzschild
radius rs and the Buchdahl parameter k, the latter of which
stems from the higher-order nature of the quadratic theory.
If R2 spacetime structures shall eventually have been
proven to be stable [23–25], then the Buchdahl parameter
k would represent new higher-derivative characteristic in
addition to the mass of the source (encoded by rs).

3

Furthermore, being a signature of higher-order theory,
the Buchdahl parameter k should leave its footprints in
higher-derivative gravity at large. In the companion
paper [18], we confirm this intuition by carrying the
concept of a Buchdahl parameter over to the quadratic
action R2 þ γðR − 2ΛÞ; therein we found a new vacuo
which depends on k as a perturbative parameter. The
Buchdahl parameter therefore should be a generic universal
hallmark of several modified theories of gravity.

B. Relevance of the metric

A metric that is merely Ricci-scalar flat is an automatic
trivial solution to the pureR2 vacuo field equation. Such as
metric is underdetermined, though, as it is subject to only

2In comparison, the Lü-Perkins-Pope-Stelle solution in
Einstein-Weyl gravity is a second branch separate from the
Schwarzschild branch [15,16].

3The angular momentum and electric charge of the source are
not active in our consideration here.

BEYOND SCHWARZSCHILD–DE SITTER …. II. AN EXACT … PHYS. REV. D 107, 104008 (2023)

104008-19



one single constraint, viz.R ¼ 0, which is not sufficient to
determine the full gμν metric. Examples of null-Ricci-scalar
metrics hence are in abundance; some are given, e.g.,
in [26].
Yet, despite its null Ricci scalar, the special Buchdahl-

inspired metric (189) and (190) acquires its structure by
being a member of the class of nontrivial solutions, the
Buchdahl-inspired metrics given in Eqs. (1)–(4). The Venn
diagrams in Fig. 1 on p. 3 depict the relations among the
various metrics in question.
The special Buchdahl-inspired metric describes asymp-

totically flat spacetimes, a situation with theoretical appeal
in and of itself. Yet it remains of relevance for asymptoti-
cally constant spacetimes in general. For a generic Λ ≠ 0,
in the range of r ≪ jΛj−1

2, the Λr2 term in the evolution
rule (3) would be suppressed. This means that the special
Buchdahl-inspired metric still works well deep inside the
bulk for a generic Buchdahl-inspired spacetime with Λ ≠ 0.
That is to say, in all practical situations, pure R2 structures
(whether they live on an asymptotically flat or an asymp-
totically constant background) are well described by
metric (189) and (190), and the anomalous properties of
R2 spacetime, discovered herein and summarized below,
remain valid as long as jΛr2s j ≪ 1.
Asymptotically flat non-Schwarzschild solutions that

are nontrivial (in the sense of not being underdetermined)
in modified gravity are a rare bread. An intriguing example
is the Lü-Perkins-Pope-Stelle solution in Einstein-Weyl
gravity [15,16]. In [27] Kalita and Mukhopadhyay also
reported numerical indications of an asymptotically flat
vacuo for an fðRÞ theory with the Einstein-HilbertR being
the leading term. The special Buchdahl-inspired metric,
found in our current paper, is a newest member of this scant
roster.

C. Anomalous behavior in the surface area
of the interior-exterior boundary

Equipped with the exact analytical solution (189)
and (190), we then examined asymptotically flat R2

spacetime structures. We found that, except for k ¼ 0,
the areal radius rðρÞ shrinks to zero at the interior-exterior
boundary. See Sec. III A.
Crucially, we also found that the surface area of the

interior-exterior boundary, by including the conformal
factor j1 − rs

ρ j
k
rs , vanishes for k ∈ ð−∞;−rsÞ ∪ ð0;þ∞Þ,

diverges for k ∈ ð−rs; 0Þ, equal 4πr2s for k ¼ 0, and equal
16πr2s for k ¼ −rs. See Sec. III D.
At the same time, the Kretschmann invariant exhibits

curvature singularities on the interior-exterior boundary
provided that k ≠ 0 and k ≠ −rs. The usual singularity the
origin persists, but it gets modified in the presence of k. See
Sec. III C.
Taken altogether, these anomalous properties of the

interior-exterior boundary suggest that the topology of

R2 spacetimes undergo fundamental changes around mass
sources.

D. A virtual region in the
ζ–Kruskal-Szekeres diagram

We proceeded by analytically construct the KS diagram
for metric (189) and (190). The techniques developed for
the regular KS diagram [19–22] are extendable to the case
at hand. We employed them to design the ζ–tortoise
coordinate, the ζ–Eddington-Finkelstein coordinates, and
the ζ–Kruskal-Szekeres coordinates, accordingly.
The ζ–tortoise coordinate ρ� is expressible in terms of a

Gaussian hypergeometric function. We found modifica-
tions in the flip over phenomenon of light cones across the
interior-exterior boundary. See Secs. IVA and IV C.
The ζ–KS diagram is shown in Fig. 13 on p. 27. The

ζ–KS plane is conformally flat. The causal structure of the
regular KS diagram remains intact in the ζ–KS diagram. In
the interior, null and timelike geodesics will eventually hit
the origin; namely, no physical objects can escape the
interior. In the exterior, outgoing light paths can escape to
infinity, whereas incoming light paths must fall into the
interior. See Sec. IV D.
Yet there emerges a very surprising feature in the ζ–KS

diagram. Sandwiching between the four known quadrants
(I)–(IV) is an virtual domain which cannot be mapped to
any region in the original manifold specified by ðt; ρ; θ;ϕÞ.
Transits of physical objects from the exterior into the
interior must bypass this gulf unaffected, at least at the
classical level.
Given that the ζ–KS diagram is the maximal extension of

metric (189) and (190), the gulf that emerges is a tantalizing
aspect, deserving further investigation. We put forth a
conjecture that the “virtual gulf” could be accounted for
by embedding the ζ–tortoise coordinate into the complex
plane. See our Conjecture 25.

E. Questioning the validity of techniques based
on series expansions around the

interior-exterior boundary

The nonanalyticity of the special Buchdahl-inspired
metric across the interior-exterior boundary is self-evident
in the singularities of the Kretschmann scalar, the anoma-
lous properties of the surface area of the interior-exterior
boundary, and the appearance of a virtual gulf in the ζ–KS
plane. This metric therefore cannot be attained by any
technique that is based on an analytic perturbative expan-
sion around the interior-exterior boundary.
In a larger context, for the full quadratic gravity, viz.

γRþ βR2 − αCμνρσCμνρσ, as the generalized Lichnerowicz
theorem has been evaded, one must restore the R2 term,
namely, permitting β ≠ 0; see [18]. Solutions with non-
analytic behaviors across the interior-exterior boundary
should be possible. At the very least, the limit of α ¼ γ ¼ 0
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must recover the special Buchdahl-inspired metric together
with its anomalies. The Lü-Perkins-Pope-Stelle ansatz
made in [15,16] would need augmenting with nonanalytic
built-ins in order to find these solutions in the full quadratic
action. See our companion paper for discussions [18].

F. Non-Schwarzschild structures
in pure R2 spacetime

The divergence of the Kretschmann invariant at the
interior-exterior boundary, ρ ¼ rs, for k ≠ 0 and k ≠ −rs
signals the formation of a naked singularity or a wormhole.
Given that pure R2 gravity is equivalent to a scalar-tensor
theory, it would be natural to consider the special
Buchdahl-inspired metric in conjunction with exact sol-
utions in Brans-Dicke gravity, viz. the Brans and
Campanelli-Lousto solutions which are known to possess
naked singularities or wormholes, depending on the value
of the Brans-Dicke parameter [28–32]. The no-hair theo-
rem first proved by Hawking [33] and later generalized by
Sotiriou and Faraoni [34] for scalar-tensor gravity should
also be taken in account. We plan to investigate this
direction in future research.
What is surprising is that pure R2 gravity is a parsimo-

nious theory, containing only one single term in the action.4

It does not involve exogenous terms, torsion, nonmetricity,
metric-affine hybrid, or nonlocality [5–8]. It operates
within the vanilla local metric-based formalism. Yet,
despite its simplicity, it already produces novel behaviors,
reported herein, that are yet encountered in the Einstein-
Hilbert theory. Moreover, pure R2 gravity admits the
Buchdahl-inspired vacua with nonconstant scalar curva-
ture, per Eq. (4). The asymptotic scalar curvature 4Λ and
the Buchdahl parameter k are two endogenous degrees of
freedom that are only accessible in a fourth-order theory, as
opposed to a second-order theory such as the Einstein-
Hilbert action.
It is the Buchdahl parameter k that enriches R2 gravity

with phenomenology which transcends the Einstein-Hilbert
paradigm.

VI. CLOSING WORDS

In this second installment of our three-paper Beyond
Schwarzschild–de Sitter spacetimes series [12,18], we
reported an exact closed analytical solution that serves
as a bona fide enlargement of the Schwarzschild solution. It
encloses the Schwarzschild spacetime as a limiting case
(when the Buchdahl parameter k is sent to zero). We
achieved this result by advancing an unfinished program in
search of pureR2 vacua, a program that was originated but
“forsaken” by Buchdahl circa 1962, and largely “forgotten”
by the gravitation research community in the past sixty

years [1]. Novel intriguing theoretical properties of R2

spacetime structures are uncovered and reported herein,
suggesting that the Buchdahl-inspired spacetimes may fall
outside of the Einstein-Hilbert paradigm. They may well
belong to a separate Buchdahl-inspired framework, war-
ranting further explorations.
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APPENDIX A: THE CASE OF rs = 0

From Lemma 1 and Corollary 9, we have

q� ¼
ffiffiffi
3

p

2
jkj; ðA1Þ
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����q2 − 3

4
k2
����
1
2
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The metric is thus

ds2¼
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����dΩ2

�
:

ðA6Þ

APPENDIX B: GAUSSIAN HYPERGEOMETRIC
FUNCTION

The Gaussian hypergeometric function involved in the
ζ–tortoise coordinate, 2F1ða; b; c; zÞ in terms of series

4Besides its parsimony, virtues of this theory are in being
ghost-free and scale invariant [2,10,11].
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2F1ða;b;c;zÞ¼1þ ab
c:1!

zþaðaþ1Þbðbþ1Þ
cðcþ1Þ:2! z2þ… ðB1Þ

Generally speaking, this series converges in the unit circle
jzj < 1. For the ζ–tortoise coordinate (modulo an additive
constant)

ρ� ¼ ζ2rs
ζ−1

z1−
1
ζ
2F1

	
2;1−

1

ζ
;2−

1

ζ
;sgn

	
1−

rs
ρ



z



; ðB2Þ

in which z ≔ j1 − rs
ρ jζ, or equivalently, ρ > rs=2 (note that

ζ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3k̃2

p
> 1 for k̃ ≠ 0).

For 0 < ρ < rs=2, in order to continue using a hyper-
geometric function defined via a series, we would need to
“invert” the variable z. Recall the ODE for ρ� (for ρ < rs),

dρ� ¼ þζrs
z−1=ζ

ð1þ zÞ2 dz: ðB3Þ

Let us substitute z ≔ y−1, then

dρ� ¼ −ζ
y1=ζ

ð1þ yÞ2 dy ðB4Þ

accepting the solution (modulo an additive constant)

ρ� ¼ −
ζ2rs
ζ þ 1

z−1−
1
ζ
2F1

	
2; 1þ 1

ζ
; 2þ 1

ζ
;−z−1



; ðB5Þ

which converges for ρ < rs. Note that it is nothing but the
original solution with ζ replaced by −ζ (including the ζ in
the definition of z).

APPENDIX C: THE k → 0 LIMIT OF THE
ζ–TORTOISE COORDINATE

In the limit of k → 0, viz. ζ → 1,

jzj1−1
ζ ¼ 1þ ln jzj
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Equation (132) gives

ρ�

rs
¼ ζ

ζ − 1
þ ζ

1− z
− ln j1− zj þ ln jzj þO

	
1−

1

ζ



: ðC7Þ

Note that ρ� was determined up to an additional constant. In
the limit ζ → 1, we are thus left with

ρ�

rs
¼ 1

1 − z
þ ln

����1þ 1

z − 1

����: ðC8Þ

Taking into account Eq. (122), viz. z ¼ sgnð1 − rs
ρÞ ×

j1 − rs
ρ jζ ¼ 1 − rs

ρ for ζ ¼ 1, we finally have

ρ� ¼ ρþ rs ln

���� ρ − rs
rs

���� ðC9Þ

in agreement with the usual tortoise coordinate.
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