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Bigravity is one of the natural extensions of general relativity and contains an additional massive
spin-2 field which can be a good candidate for dark matter. To discuss the production of spin-2 dark
matter, we study fixed-point solutions of the background equations for axisymmetric Bianchi type-I
universes in two bigravity theories without a Boulware-Deser ghost, i.e., Hassan-Rosen bigravity and the
minimal theory of bigravity. We investigate the local and global stabilities of the fixed points and classify
them. Based on the general analysis, we propose a new scenario where spin-2 dark matter is produced by
the transition from an anisotropic fixed-point solution to an isotropic one. The produced spin-2 dark
matter can account for all or a part of dark matter and can be directly detected by laser interferometers in
the same way as gravitational waves.
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I. INTRODUCTION

Dark matter is an unknown matter component that
accounts for more than 20% of the total energy density of
the current Universe [1]. Its true nature is still unknown
and has been actively explored from both theoretical and
observational perspectives. On the theoretical side, plen-
tiful dark matter models with a broad mass range have
been proposed, and various detection methods for each
model have been suggested [2]. For example, an ultralight
bosonic field is one of the candidates for dark matter. One
scalar field candidate with a lightest mass scale around
Oð10−21Þ eV is fuzzy dark matter, and it is expected to
solve the small-scale problems such as the core-cusp
problem. The QCD axion, which was originally intro-
duced to solve the strong CP problem [3], is also a scalar-
type dark matter candidate, and is especially well
motivated in the very light mass range m ≪ 1 eV.
Since the typical intrinsic characteristics of bosonic

particles are mass and spin, it is natural to consider
ultralight dark matter with nonzero spin. One such exten-
sion is the dark photon, which is a vector-type ultralight
dark matter. Unlike scalar-type ultralight dark matter, dark
photons include helicity-1 modes. Recently, the phenom-
enology of the dark photon was investigated, including its
production mechanisms [4–9], superradiance [10–12], etc.

Furthermore, the tensor-type dark matter model called
spin-2 dark matter was proposed in Refs. [13–16]. Some
production mechanisms of spin-2 dark matter have been
investigated so far, such as generation by primordial
magnetic fields [14], bubble collision in the preheating
era [13], and the misalignment mechanism [17].
Ultralight dark matter is also interesting from an obser-

vational point of view. Some ultralight dark matter models
are expected to produce signals that are detectable by
gravitational-wave interferometers; for example, axion-like
particles coupling to electromagnetic fields can cause
birefringence of the interferometer laser beams [18–20].
The ultralight dark photon can also generate signals by
accelerating the mirrors of gravitational-wave detectors
when it couples to baryonic matter [21–24]. Spin-2 dark
matter can also be observed by gravitational-wave detectors
by changing the effective length of the arm in a similar way
to usual gravitational waves [25].
Spin-2 dark matter is closely related to massive gravity

since it has a nonzero mass and couples to the matter fields
as the usual graviton. Massive gravity has a long history,
beginning with the pioneering work of linear massive
gravity by Fierz and Pauli in 1939 [26]. This theory can
be generalized to the nonlinear level, but Ref. [27] found
that nonlinear massive gravity suffers from a ghost insta-
bility, which is often called the Boulware-Deser ghost. In
2010, the first ghost-free nonlinear massive gravity (dRGT)
theory was proposed [28,29], and it possesses five degrees
of freedom. Motivated by difficulties in the cosmology of*manita@tap.scphys.kyoto-u.ac.jp
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massive gravity [30], some extensions of dRGT theory
have been explored. For example, the minimal theory of
massive gravity reduces the number of degrees of freedom
to only two by imposing constraints [31]. A more recent
development is the extension of Lorentz-invariant massive
gravity, called generalized massive gravity and projected
massive gravity [32,33]. They can describe cosmic expan-
sion without the initial strong coupling problem [34,35].
Massive gravity with a single graviton can be a candidate
for the origin of the accelerated expansion of the Universe,
but it is difficult to construct a viable model of spin-2 dark
matter based on massive gravity that satisfies the strong
mass constraint m≲ 1.2 × 10−22 eV from gravitational-
wave observations of a binary black hole merger [36].1

On the other hand, spin-2 dark matter can originate
from bigravity, which is a gravity theory with two
dynamical metrics. The first proposal of bigravity without
the Boulware-Deser ghost was called Hassan-Rosen
bigravity [39] and was obtained by extending dRGT
massive gravity [28,29]. Hassan-Rosen bigravity has seven
degrees of freedom because it can be regarded as a
nonlinear theory in which massive and massless gravitons
interact with each other. On the other hand, the minimal
theory of bigravity [40] is a ghost-free bigravity with only
four degrees of freedom, which is constructed by extend-
ing the minimal theory of massive gravity [31].
In dRGT theory, Ref. [41] found that the background

equations in a Bianchi type-I universe possess a fixed-point
solution, and they discussed an anisotropic Friedmann-
Lemaître-Robertson-Walker (FLRW) universe, in which
each of the physical and fiducial metrics is homogeneous
and isotropic but they do not share the same rotational
Killing vectors and thus the system as a whole breaks the
isotropy. In this paper, by extending the previous work, we
find a fixed point with relatively large anisotropy for both
Hassan-Rosen bigravity and the minimal theory of bigrav-
ity. Moreover, by using this fixed point, we discuss a new
scenario to produce spin-2 dark matter from the large
anisotropy in the early Universe. Since in bigravity the
anisotropic perturbation of an FLRW universe can be
regarded as spin-2 dark matter [14,42], if the early universe
is anisotropic, it may give an initial amplitude for the spin-2
dark matter.
This paper is organized as follows. In Sec. II we introduce

two bigravity theories without the Boulware-Deser ghost,
i.e., Hassan-Rosen bigravity and the minimal theory of
bigravity. In Sec. III we consider a Bianchi type-I universe as
an example of the anisotropic Universe, and show that the
background equations are the same for both bigravity
theories. We then find the anisotropic fixed-point solutions,

in which each metric is homogeneous and isotropic but
they do not share the same rotational Killing vectors.
In Sec. IV we classify the fixed points by their local
stability and investigate their global stability by drawing
the phase portraits around them. In Sec. V, as an implication
of the anisotropic fixed point in bigravity, we discuss the
production of spin-2 dark matter and its detectability by
gravitational-wave interferometers. Section VI is devoted to
conclusions.

II. BIGRAVITY

Bigravity is one of the extensions of general relativity
that has two dynamical metrics gμν and fμν that interact
with each other. The action of bigravity is given by

Sg ¼
1

2κ2g

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ þ 1

2κ2f

Z
d4x

ffiffiffiffiffiffi
−f

p
RðfÞ

þm2

κ2

Z
d4xLint½gμν; fμν�; ð1Þ

where RðgÞ and RðfÞ are the Ricci scalars for gμν and fμν,
respectively. The first and second terms are the Einstein-
Hilbert terms of the g sector and f sector with the
gravitational constants κ2g and κ2f. The third term represents
interactions between the gmetric and f metric,m denotes a
mass parameter, and κ2 is defined by κ2 ≔ κ2g þ κ2f. For later
convenience, we also introduce the ratio of the gravitational
constants,

α ≔
κg
κf

: ð2Þ

The interaction term depends on the model. At least two
bigravity models without the Boulware-Deser ghost have
been proposed so far: Hassan-Rosen bigravity (HRBG) [39]
and the minimal theory of bigravity (MTBG) [40]. In this
section, we briefly review these bigravity theories.

A. Hassan-Rosen bigravity

HRBG is a ghost-free bigravity constructed by extending
dRGT massive gravity [39]. The interaction term for
HRBG is given by

Lint ¼
ffiffiffiffiffiffi
−g

p X4
n¼0

bnenðKÞ ¼
ffiffiffiffiffiffi
−f

p X4
n¼0

b4−nenðK̃Þ; ð3Þ

with constant parameters bk. Here Kμ
ν is defined as the

root of

Kμ
αKα

ν ¼ gμαfαν; ð4Þ

K̃μ
ν is its inverse satisfying

1The graviton mass bound for single massive gravity was
summarized in Ref. [37] (see also Ref. [38]). Some of them are
stronger than the gravitational-wave constraint but are model
dependent.
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K̃μ
αKα

ν ¼ δμν ¼ Kμ
αK̃

α
ν; K̃μ

αK̃
α
ν ¼ fμαgαν; ð5Þ

and enðMÞ denote the elementary symmetric polynomials
of degree n in the matrix Mμ

ν,

e0ðMÞ ¼ 1; ð6Þ

e1ðMÞ ¼ ½M�; ð7Þ

e2ðMÞ ¼ 1

2!
ð½M�2 − ½M2�Þ; ð8Þ

e3ðMÞ ¼ 1

3!
ð½M�3 − 3½M�½M2� þ 2½M3�Þ; ð9Þ

e4ðMÞ ¼ 1

4!
ð½M�4 − 6½M�2½M2� þ 8½M�½M3�

þ 3½M2�2 − 6½M4�Þ; ð10Þ

where square brackets is symbolize the trace: ½M� ¼
Mμ

μ; ½M2� ¼ Mμ
νMν

μ, and so on. The interaction term
(3) is unique to avoid the Boulware-Deser ghost under
Poincarè invariance [39].
HRBG possesses 2þ 5 physical degrees of freedom,

corresponding to the massless graviton and the massive
graviton. The massless graviton has two degrees of freedom
as in general relativity, while the massive graviton has five
degrees of freedom corresponding to the helicity modes 0,
�1, and �2.

B. Minimal theory of bigravity

Although a massive spin-2 field has five degrees of
freedom under Lorentz invariance, the physical degrees of
freedom can be reduced to only two by breaking Lorentz
symmetry. The resultant theory is known as the minimal

theory of massive gravity [31] and MTBG is its bigravity
extension [40]. Similarly to HRBG, MTBG possesses one
massless graviton and one massive graviton, but the
massive state only has two tensorial degrees of freedom
in MTBG.
To construct the action of MTBG, we first adopt the

Arnowitt-Deser-Misner decompositions for both metrics,

gμνdxμdxν¼−N2
gdt2þ γgijðNi

gdtþdxiÞðNj
gdtþdxjÞ; ð11Þ

fμνdxμdxν¼−N2
fdt

2þγfijðNi
fdtþdxiÞðNj

fdtþdxjÞ; ð12Þ

where Ng and Nf are the lapse functions,Ni
g and Ni

f are the

shift vectors, and γgij and γfij are the induced metrics on the
constant-time hypersurface. We define the covariant deriv-
atives on the constant-time hypersurface, Dg

i and Df
i ,

associated with the g- and f-induced metrics γgij and γfij.
The extrinsic curvatures are then

Kg
ij ¼

1

2Ng
ð∂tγgij −Dg

i N
g
j −Dg

jN
g
i Þ; ð13Þ

Kf
ij ¼

1

2Nf
ð∂tγfij −Df

i N
f
j −Df

jN
f
i Þ: ð14Þ

The interaction Lagrangian in MTBG is composed of the
precursor part and the constraint part,

Lint ¼ Lint;prec½γgij; γfij; γijg ; γijf ; Kg
ij; K

f
ij�

þ Lint;const½γgij; γfij; γijg ; γijf ; Kg
ij; K

f
ij�: ð15Þ

They are explicitly given by

Lint;prec½γgij; γfij; γijg ; γijf ; Kg
ij; K

f
ij� ¼ −

1

2

�
Ng

ffiffiffiffi
γg

p X3
n¼0

bnenðKÞ þ Nf

ffiffiffiffiffi
γf

q X3
n¼0

b4−nenðK̃Þ
�
; ð16Þ

Lint;const½γgij; γfij; γijg ; γijf ; Kg
ij; K

f
ij� ¼ −

1

2

� ffiffiffiffi
γg

p
U i

jD
g
i λ

j − β
ffiffiffiffiffi
γf

q
Ũ i

jD
f
i λ

j þ ðλþ γijg D
g
iD

g
j λ̄Þ

ffiffiffiffi
γg

p
Uk

lγ
lm
g Kg

mk

− ðλ − γijfD
f
iD

f
j λ̄Þ

ffiffiffiffiffi
γf

q
Ũk

lγ
lm
f Kf

mk þ
m2

gðλþ γijg D
g
iD

g
j λ̄Þ2

4Ng

ffiffiffiffi
γg

p �
½U2� − 1

2
½U�2

�

þm2
fðλ − γijfD

f
iD

f
j λ̄Þ2

4Nf

ffiffiffiffiffi
γf

q �
½Ũ2� − 1

2
½Ũ�2

��
; ð17Þ

where λ; λi; λ̄; λ̄i are the Lagrange multipliers, β is a constant parameter, and

mg ≔ m
κg
κ
¼ αmffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ; mf ≔ m

κf
κ
¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p : ð18Þ
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The matrix Ki
j and its inverse K̃i

j are the roots of

Ki
kKk

j ¼ γikg γ
f
kj; K̃i

kK̃
k
j ¼ γikf γ

g
kj; ð19Þ

and U i
j and Ũ i

j are the derivatives of the symmetric
polynomials,

U i
j ≔

1

2

X3
n¼0

bn

�
∂enðKÞ
∂Kj

i
þ γikg γ

g
jl
∂enðKÞ
∂Kk

l

�
; ð20Þ

Ũ i
j ≔

1

2

X3
n¼0

b4−n

�
∂enðK̃Þ
∂K̃j

i
þ γikf γ

f
jl
∂enðK̃Þ
∂K̃k

l

�
: ð21Þ

The precursor part possesses a structure similar to the
interaction term of HRBG, while the constraint part is
added to eliminate the scalar and vector modes of the
massive graviton. MTBG is constructed in such a way that
background equations for a homogeneous universe coincide
with those in HRBG. In Ref. [40], this was checked only for
the FLRW case. In the next section, we will show that the
background equations are also identical for a Bianchi type-I
universe.

III. ANISOTROPIC UNIVERSE

Let us investigate a homogeneous and anisotropic uni-
verse in both HRBG and MTBG. For simplicity, we study
an axisymmetric Bianchi type-I universe in vacuum. We
first show that the background equations are identical in
HRBG and MTBG, which means that our following
analysis can be applied to both bigravity theories. Then,
we describe the generic structure of the equations of
motion. These equations have several fixed points, which
we discuss in this section. The stability of the fixed points
will be studied in the next section.

A. Equations of motion

For both the g and f metrics, we choose the Bianchi
type-I spacetime that describes a homogeneous and aniso-
tropic universe,

gμνdxμdxν ¼ −N2
gdt2 þ a2g½e4βgdx2 þ e−2βgðdy2 þ dz2Þ�;

ð22Þ

fμνdxμdxν ¼ −N2
fdt

2 þ a2f½e4βfdx2 þ e−2βfðdy2 þ dz2Þ�;
ð23Þ

where the lapse functions fNg;Nfg, scale factors fag; afg,
and anisotropies fβf; βfg are functions of time t. The g and
f Hubble expansion rates and the shears are defined by

Hg ≔
_ag

agNg
; Hf ≔

_af
afNf

; ð24Þ

σg ≔
_βg
Ng

; σf ≔
_βf
Nf

: ð25Þ

For simplicity, we study vacuum solutions in the following.
The minisuperspace action in HRBG is given by [42]

SmHRBG ¼ V
2κ2g

Z
dta3gNg

× f−6ðH2
g − σ2gÞ − 6α2rξ4ðH2

f − σ2fÞ
þm2

g½b0 þ b1ξðrþ e−2β þ 2eβÞ
þ b2ξ2½2e−β þ e2β þ rðe−2β þ 2eβÞ�
þ b3ξ3½1þ rð2e−β þ e2βÞ� þ b4rξ4�g; ð26Þ

where

ξ ≔
af
ag

; r ≔
agNf

afNg
; β ≔ βg − βf; ð27Þ

and V ≡ R
d3x formally represents the comoving volume

of the system. Varying the action with respect to
X ¼ fNg;Nf; ag; af; βg; βfg, we obtain the background
equations in the form EX ¼ 0:

ENg
≔ 3ðH2

g − σ2gÞ −m2
g½b0 þ b1ðe−2β þ 2eβÞξ

þ b2ð2e−β þ e2βÞξ2 þ b3ξ3�; ð28Þ

ENf
≔ 3ðH2

f − σ2fÞ −m2
f½b4 þ b3ð2e−β þ e2βÞξ−1

þ b2ðe−2β þ 2eβÞξ−2 þ b1ξ−3�; ð29Þ

Eag ≔
2 _Hg

Ng
þ 3ðH2

g þ σ2gÞ

−
m2

g

3
f3b0 þ b1ξð3rþ 2e−2β þ 4eβÞ

þ b2ξ2½2rð2eβ þ e−2βÞ þ ðe2β þ 2e−βÞ�
þ b3rðe2β þ 2e−βÞξ3g; ð30Þ

Eaf ≔
2 _Hf

Nf
þ 3ðH2

f þ σ2fÞ −
m2

f

3rξ3
fb1ðe−2β þ 2eβÞ

þ b2ξ½rðe−2β þ 2eβÞ þ 2ðe2β þ 2e−βÞ�
þ b3ξ2½2rðe2β þ 2e−βÞ þ 3� þ 12b4rξ3g; ð31Þ

Eβg ≔
1

a3g

d
dt

ða3gσgÞ þ κ2g
∂U
∂β

; ð32Þ
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Eβf ≔
1

a3g

d
dt

ða3fσfÞ − κ2f
∂U
∂β

; ð33Þ

where we have defined the potential of the anisotropy as

U ≔
m2

6κ2
½ξð2eβ þ e−2βÞðb1Ng þ b2NfÞ

þ ξ2ðe2β þ 2e−βÞðb2Ng þ b3NfÞ�: ð34Þ

As shown in the Friedmann equations (28) and (29), the
cosmic expansion is driven by the anisotropic shears σg
and σf and the graviton mass term. By using Eag ¼ 0 and

Eβg ¼ 0, we can eliminate _Hg and _σg from _ENg
¼ 0 and

then obtain the constraint equation C ¼ 0, with

C ≔ Hg½3b1 þ 2b2ξð2eβ þ e−2βÞ þ b3ξ2ðe2β þ 2e−βÞ�
−Hfξ½3b3ξ2 þ 2b2ξðe2β þ 2e−βÞ þ b1ð2eβ þ e−2βÞ�
− 2ξðe−β − e2βÞ½σfðb1e−β þ b2ξÞ þ σgðb2e−β þ b3ξÞ�:

ð35Þ

The same constraint equation is obtained by using
_ENf

¼ 0; Eaf ¼ 0, and Eβf ¼ 0 instead.
The minisuperspace action of MTBG is composed of the

precursor part SmMTBG
pre and the constraint part SconstmMTBG,

where the precursor part agrees with the minisuperspace
action of HRBG [Eq. (26)] in a Bianchi type-I universe.
The spatial homogeneity concludes that the spatial deriv-
atives vanish, and then the minisuperspace action does not
depend on λ̄ and λi. Then, the contribution of the constraint
part to the minisuperspace action is given by a functional of
X ¼ fNg;Nf; ag; af; βg; βfg and λðtÞ:

SconstmMTBG ¼ m2V
2κ2

Z
dta3g

�
−λC½X� þ 1

2
λ2D½X�

�
; ð36Þ

where C is given in Eq. (35) and D is

D ≔
m2

fe
−4β

4Ngrξ2
ðb1 þ 2b2eβξþ b3e2βξ2Þ

× ½b1ð3α2re4βξ2 þ 4e3β − 1Þ
þ 2b2eβξ½α2reβðe3β þ 2Þξ2 þ 2e3β þ 1�
þ b3e2βξ2½3 − α2reβðe3β − 4Þξ2��: ð37Þ

The equations of motion are obtained by the variations of
the total minisuperspace action SmMTBG ¼ SprecmMTBG þ
SconstmMTBG with respect to X and λ. Since the precursor part
is identical to the minisuperspace action of HRBG, the
equations of motion for X ¼ fNg; Nf; ag; af; βg; βfg take
the form

EX þ Econst
X ¼ 0; ð38Þ

where Econst
X is the contribution from the constraint part,

while the equation of motion for λ is

Eλ ¼ λD − C ¼ 0: ð39Þ

One can easily conclude that λ ¼ 0 is a solution to the
equations of motion. When λ ¼ 0 is substituted in, we find
Econst
X ¼ 0 and Eλ ¼ −C. As we have explained, the con-

straint C ¼ 0 is obtained by combining equation EX ¼ 0

and canceling the time-differentiated variables such as _Hg

and _σg; then, the equation of motion for λ is consistently
solved. Note that this analysis does not exclude the
existence of other solutions, but the other solutions do
not work as well, at least in an isotropic universe (see
Appendix A). Hence, the background equations of motion
in MTBG are reduced to those of HRBG.

B. Structure of equations of motion

By the use of the freedom of the time reparametrization,
t → t0ðtÞ, we impose the gauge condition Ng ¼ 1. The
independent equations of motion are

ENg
¼ 0; ENf

¼ 0; C ¼ 0; ð40Þ

Eβg ¼ 0; Eβf ¼ 0; ð41Þ

which determine the dynamics of the five variables
fNf; ag; af; βg; βfg. The equations in Eq. (40) are under-
stood as constraints since they do not contain second
derivatives, whereas those in Eq. (41) are the equations
of motion for the anisotropies.
To solve Eqs. (40) and (41), it is convenient to regard

fHg;Hf;ξ;r;βg;βfg as independent variables. Equations
(40) and (41) are closed within fHg;Hf; ξ; r; βg; βfg.
However, while there are six variables, only five equations
exist and an additional equation is required. The time
derivative of ξ ¼ af=ag is expressed as

_ξ ¼ −ξHg þ rξ2Hf: ð42Þ

By taking the time derivative of C ¼ 0 and using
Eqs. (30)–(33) and (42), we obtain

_C ¼ _CðHg;Hf; ξ; r; β; _βg; _βfÞ ¼ 0: ð43Þ

Hence, we have six equations,

ENg
¼ 0; ENf

¼ 0; C ¼ 0; _C ¼ 0;

Eβg ¼ 0; Eβf ¼ 0; ð44Þ
which are closed within the six variables fHg;Hf;
ξ; r; βg; βfg. Once the solutions to Eq. (44) are found,
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the dynamics of fag; af; Nfg can be solved by using
_ag ¼ Hgag and Eq. (27).
The variables fHg;Hf; ξ; rg are algebraically deter-

mined by fβg; βf; _βg; _βfg, although explicit solutions can-
not be found due to the nonlinearity of the constraints. We
only consider a branch such that Hg > 0, namely, an
expanding universe. The variables βg and βf obey a couple
of second-order differential equations [Eq. (41)]. The
present system requires 2 × 2 initial conditions for inte-
gration, corresponding to one physical degree of freedom
of the massless graviton and that of the tensor mode of the
massive graviton, respectively. The equations (41) give

_Σ0 þ 3HgΣ0 ¼ 0; ð45Þ

where

Σ0 ≔ σg þ α2ξ3σf: ð46Þ

The solution to Eq. (45) is immediately found to be
Σ0 ∝ a−3g , which is the same as the decaying law of the
shear in general relativity. Hence, Σ0 can be interpreted as
the massless mode of the shear. On the other hand, βg and βf
always appear in the equations of motion in the combination
β ¼ βg − βf which can be interpreted as the massive mode.
(Hence, the number of physically meaningful initial con-
ditions is three rather than four. The redundant initial
condition is the freedom associated with the global rescaling
of the spatial coordinates, x → e2cx; y → e−cy; z → e−cz,
with a constant parameter c.) However, the differential
equation for β cannot be expressed in a simple form.

C. Fixed points

As explained above, the equations are nonlinear differ-
ential equations and their generic properties are not easily
deduced. Therefore, by following Ref. [41], we first look
for solutions under the condition

β̈g ¼ β̈f ¼ _βg ¼ _βf ¼ 0: ð47Þ

Since fHg;Hf; ξ; rg are determined by the algebraic
equations, the above condition (47) implies

_Hg ¼ _Hf ¼ _ξ ¼ _r ¼ 0; ð48Þ

and then all of the variables fHg;Hf; ξ; r; βg; βfg remain
constant. Hence, the condition (47) yields fixed-point
solutions. At the fixed points, the g and f spacetime
themselves are isotropic because of the absence of the
shear, while the ratio gμαfαν is anisotropic when β ≠ 0. We
call solutions with β ¼ 0 isotropic fixed points and those
with β ≠ 0 anisotropic fixed points.

Under the fixed-point conditions (47) and (48), both
equations for the anisotropy [Eqs. (32) and (33)] are
reduced to the same equation,

ðeβ − e−2βÞ½b1 þ b2ðeβ þ rÞξþ b3eβrξ2� ¼ 0; ð49Þ

while the Friedmann equation for the g metric [Eq. (28)]
that for the f metric [Eq. (29)], and the constraint equation
become, respectively,

− 3h2g þ b0 þ b2e−βðe3β þ 2Þξ2
þ b1ðe−2β þ 2eβÞξþ b3ξ3 ¼ 0; ð50Þ

b1 þ ½b2ðe−2β þ 2eβÞ − 3α2r−2h2g�ξ
þ b3ξ2ðe2β þ 2e−βÞ þ b4ξ3 ¼ 0; ð51Þ

b3½−3þ rð2e−β þ e2βÞ�ξ2
− 2b2½ð2e−β þ e2βÞ − rð2eβ þ e−2βÞ�ξ
− b1ðe−2β þ 2eβ − 3rÞ ¼ 0; ð52Þ

where we have defined a dimensionless combination hg ≔
Hg=mg and have used the relations

Hf ¼ Hg

rξ
; Nf ¼ rξ; ð53Þ

following from Eqs. (27) and (48).
We first consider the isotropic case β ¼ 0. The constraint

equation (52) is reduced to

ðr − 1Þðb1 þ 2b2ξþ b3ξ2Þ ¼ 0: ð54Þ

This equation has two branches. The first branch r ¼ 1 is
called the normal branch and it leads to the relation
Hf ¼ ξHg. In this branch, eliminating hg from the
Friedmann equations (50) and (51), and using β ¼ 0,
we obtain

− α2b3ξ4 þ ð4b4 − 3α2b2Þξ3 þ 3ðb3 − α2b1Þξ2
þ ð3b2 − α2b0Þξþ b1 ¼ 0; ð55Þ

which is an algebraic equation for ξ and can be solved for ξ.
Substituting the root ξ into the Friedmann equation (50), the
Hubble parameter hg is fixed in terms of the coupling
constants of the theory. On the other hand, the second
branch b1 þ 2b2ξþ b3ξ2 ¼ 0 is called the self-accelerating
branch. By using a root of b1 þ 2b2ξþ b3ξ2 ¼ 0, the
Hubble parameter hg and the ratio r are determined by
Eqs. (50) and (51). In particular, r is given by

r ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðb3ξ3 þ 3b2ξ2 þ 3b1ξþ b0Þ
b4ξ3 þ 3b3ξ2 þ 3b2ξþ b1

s
: ð56Þ
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In the case of HRBG, the self-accelerating branch
would suffer from a nonlinear instability as with the
dRGT theory [30]. The normal branch is stable when the
Hubble parameter is sufficiently small, while the scalar
mode of the massive graviton becomes a ghost, known as
the Higuchi ghost, when the Hubble parameter exceeds a
critical value [43,44] (see also Refs. [45–48]). On the other
hand, MTBG can avoid both instabilities thanks to the
absence of the dynamical scalar mode [40].
Next, we consider the anisotropic fixed points, β ≠ 0.

Eliminating b3 from Eqs. (49) and (52), we obtain

ð1 − eβÞðb2eβξþ b1Þðr − eβÞðr − e−2βÞ ¼ 0; ð57Þ

where −3þ rðe−2β þ 2eβÞ ≠ 0 is assumed. Note that the
isotropic limit β → 0 leads to −3þ rðe−2β þ 2eβÞ →
−3ð1 − rÞ, so the anisotropic extension of the normal branch
does not have to satisfy Eq. (57). There are in principle four
ways to satisfy Eq. (57), defining up to four different
branches. The branch eβ ¼ 1 corresponds to the isotropic
self-accelerating branch, while the other three branches,

eβ ¼
�
−

b1
b2ξ

; r; r−1=2
�
; ð58Þ

may lead to anisotropic fixed points. As in dRGT
theory [41], either eβ ¼ −b1=ðb2ξÞ or eβ ¼ r does not give
interesting solutions, and nontrivial anisotropic fixed points
can be found in the third branch eβ ¼ r−1=2. In the
following, we discuss them in order.
Branch 1. Substituting the solution eβ ¼ −b1=ðb2ξÞ into

Eq. (49), we obtain

ðb32ξ3 þ b31Þðb22 − b1b3Þ ¼ 0: ð59Þ

The first solution ξ ¼ −b1=b2 gives β ¼ 0 and thus this
solution is not anisotropic. The second solution b22 −
b1b3 ¼ 0 requires a parameter tuning. In this case, the
equations of motion yield

ξr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2b2ðb32 − b0b23Þ
b23ðb23 − b2b4Þ

s
; ð60Þ

hg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2ð−b32 þ b0b23Þ
3b23ð1þ α2Þ

s
; ð61Þ

hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2b4 − b23
b2ð3α2 þ 1Þ

s
; ð62Þ

eβ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðb23 − b2b4Þ
α2ðb32 − b0b23Þ

s
; ð63Þ

where the variables r, ξ, and β are not completely deter-
mined, that is, the fixed point is not isolated. Therefore, we
shall not discuss this branch further.
Branch 2. We then consider the solution r ¼ eβ.

Substituting this into the equation for anisotropy [Eq. (49)],
we obtain

b3e2βξ2 þ 2b2eβξþ b1 ¼ 0; ð64Þ

which is solved by

ξ ¼ e−βð−b2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 − b1b3

p
Þ

b3
: ð65Þ

Then, the Friedmann equations (50) and (51) give

h2g ¼
2b32 − 3b1b2b3 þ b21b4 � 2ðb22 − b1b3Þ3=2

3b23
; ð66Þ

0¼−2b22b4þb2b23þb1b3b4þα2ð2b32− 3b1b2b3þb0b23Þ
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22−b1b3

q
½ðb23−b2b4Þþα2ðb22 −b1b3Þ�: ð67Þ

The first equation determines the Hubble parameter in terms
of the coupling constants, while the second equation
imposes a constraint on the coupling constants rather than
determining the value of eβ. Hence, this branch is not of our
interest.
Branch 3. Finally, we discuss the third branch r ¼ e−2β.

With this solution, the anisotropy equation (49) and a
combination of Eqs. (50) and (51) gives algebraic equations
for ξ and eβ:

b3e−βξ2 þ b2ðe−2β þ eβÞξþ b1 ¼ 0: ð68Þ

b3α2ξ4 þ ½b2α2ð2e−β þ e2βÞ − b4e−4β�ξ3
þ ½b1α2ðe−2β þ 2eβÞ − b3ð2e−5β þ e−2βÞ�ξ2
þ ½b0α2 − b2ðe−6β þ 2e−3βÞ�ξ − b1e−4β ¼ 0: ð69Þ

We can further combine Eqs. (68) and (69) to find an
expression linear in ξ,

ξ¼−
b1½b23 −b2b4þα2ðb22−b1b3Þe3β�ðe2β þ e5βÞ

Q0þQ1e3β þQ2e6β þQ3e9β
; ð70Þ

and a quartic-order algebraic equation for e3β,

C0 þ C1e3β þ C2e6β þ C3e9β þ C4e12β ¼ 0; ð71Þ

where the coefficients are given by

Q0 ¼ b2ðb23 − b2b4Þ; ð72Þ
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Q1 ¼ b2b23 − 2b22b4 þ b1b3b4 þ α2b2ðb22 − b1b3Þ; ð73Þ

Q2 ¼ b2ðb23 − b2b4Þ þ α2ð2b32 − 3b1b2b3 þ b0b23Þ; ð74Þ

Q3 ¼ α2b2ðb22 − b1b3Þ; ð75Þ

and

C0 ¼ ðb22 − b1b3Þðb23 − b2b4Þ; ð76Þ

C1 ¼ −2b4b32 þ b23b
2
2 þ 4b1b2b3b4 − 2b1b33 − b21b

2
4

þ α2ðb42 − 2b1b22b3 þ b0b22b4 − b0b2b23

− b21b2b4 þ 2b21b
2
3Þ; ð77Þ

C2 ¼ ðb22 − b1b3Þ½b23 − b2b4 þ α2ð2b22 − 4b1b3 þ 2b0b4Þ
þ α4ðb21 − b0b2Þ�; ð78Þ

C3¼α2ðb42−2b1b22b3þb0b22b4−b0b2b23−b21b2b4þ2b21b
2
3Þ

þα4ð−2b31b3þb21b
2
2þ4b0b1b2b3−2b0b32−b20b

2
3Þ;
ð79Þ

C4 ¼ α4ðb21 − b0b2Þðb22 − b1b3Þ: ð80Þ

Since Eq. (71) is quartic order in e3β, there are four
independent roots of the algebraic equation, in general.
Once a root is chosen, ξ and h2g are uniquely determined by
Eqs. (70) and (50). Hence, unlike the other branches, all of
the variables fr; ξ; β; hgg are fixed without any fine-tuning
of the coupling constants. We thus focus on this branch in
the following.

IV. STABILITY OF FIXED POINTS

In this section, we study the stability of the fixed points
obtained in the previous section. As we have explained, the
system involves one massless degree of freedom and one
massive degree of freedom. In particular, the massless
mode Σ0 decays as a−3g and can be ignored as the universe
expands. Since our interest is in the dynamics of the
massive mode, we shall assume

Σ0 ¼ σg þ α2ξ3σf ¼ 0; ð81Þ

in which the dimension of the phase space is reduced to
two. In principle, the equations of motion can be reduced to
a single second-order differential equation for β ¼ βg − βf
(or a couple of first-order differential equations) when the
constraints are solved. In practice, however, the constraints
are nonlinear and cannot be solved explicitly. Hence,
we classify the fixed points based on the stability against
small perturbations by which the equations are linearized.

The global stability is then examined by using two-
dimensional phase portraits.

A. Local stability

Equations (32) and (33) yield

0 ¼ Eβ ≔ β̈ þ ðrþ 3α2ξ2ÞHg þ 2r2ξHf − _r

rþ α2ξ2
_β

þ m2

3ð1þ α2Þξ ðe
β − e−2βÞðrþ α2ξ2Þ

× ½b1 þ b2ðeβ þ rÞξþ b3eβrξ2�; ð82Þ

where Σ0 ¼ 0 is used. We consider perturbations around
the fixed points as

Hg ¼ mgðhg0 þ ϵhg1ðtÞÞ; ð83Þ

Hf ¼ mg

�
hg0
r0ξ0

þ ϵhf1ðtÞ
�
; ð84Þ

ξ ¼ ξ0 þ ϵξ1ðtÞ; ð85Þ

r ¼ r0 þ ϵr1ðtÞ; ð86Þ

β ¼ β0 þ ϵβ1ðtÞ: ð87Þ

Here, the quantities with the subscript 0 are the fixed-point
solutions which are determined in terms of the coupling
constants, while fhg1; hf1; ξ1; r1; β1g represent the pertur-
bations, and we have introduced a small parameter ϵ to
keep track of orders of perturbations. The linearized
equation for β is given by

Eð1Þ
β ¼ β̈1 þ 3Hg0

_β1 þ Eð1Þ
ββ β1 þ Eð1Þ

βr r1 þ Eð1Þ
βξ ξ1 ¼ 0; ð88Þ

where Hg0 ¼ mghg0 and the coefficients Eð1Þ
ββ ; E

ð1Þ
βr ; E

ð1Þ
βξ are

computed for each fixed-point solution. As we have
explained, fHg;Hf; ξ; rg are fixed by the constraints.
Thanks to the linearization, the constraints can be explicitly
solved for hg1; hf1; ξ1, and r1, although the exact expres-
sions are lengthy. We then obtain a second-order differ-
ential equation for β1.
In the case of the isotropic fixed points, β0 ¼ 0, the

coefficients Eð1Þ
βr and Eð1Þ

βξ vanish, and then we do not need
to solve the constraints explicitly. The equation for β1 is
given by

β̈1 þ 3Hg0
_β1 þM2

Iβ1 ¼ 0; ð89Þ

with
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M2
I ¼

m2ðr0 þ α2ξ20Þ½b1 þ b2ξ0ðr0 þ 1Þ þ b3r0ξ20�
ð1þ α2Þξ0

: ð90Þ

The values of r0 and ξ0 are fixed by choosing the branch: ξ0
is a root of Eq. (55) and r0 ¼ 1 in the normal branch, while
ξ0 is a root of b1 þ 2b2ξþ b3ξ2 ¼ 0 and r0 is given by
Eq. (56) in the case of the self-accelerating branch.
At the anisotropic fixed points, on the other hand, the

coefficients Eð1Þ
βr and Eð1Þ

βξ do not vanish and the constraints
need to be solved. We recall that the anisotropic fixed
points satisfy

r0 ¼ e−2β0 ; b3e−β0ξ20 þ b2ðe−2β0 þ eβ0Þξ0 þ b1 ¼ 0;

ð91Þ
which can be used to simplify the expressions. Using
Eq. (91) to eliminate r0 and b1, we finally obtain

β̈1 þ 3Hg0
_β1 þM2

Aβ1 ¼ 0; ð92Þ

where the mass squared is given by

M2
A ¼ m2d1d2d3e−5β0 ½−d1d2 þ 6α2e6β0h2g0�

ð1þ α2Þ½d1d22 þ 2α2e6β0h2g0ð3d2 þ 2d3eβ0Þ�
; ð93Þ

with

d1 ≔ ðe3β0 − 1Þð1þ α2e2β0ξ20Þ; ð94Þ

d2 ≔ eβ0b3ξ0 þ b2; ð95Þ

d3 ≔ b2e2β0 þ b3ξ0: ð96Þ

Therefore, in either case, the linearized equation for β
takes the form

β̈1 þ 3Hg0
_β1 þM2β1 ¼ 0; ð97Þ

where M2 is either M2
I (isotropic fixed points) or M2

A
(anisotropic fixed points). This equation is consistent with
the linear equation of the tensor modes of the massive
graviton as long as the gradient term is ignored, at least
around the isotropic fixed point. Thus, the masses M are
considered as the graviton mass since Eq. (97) is identical
to the superhorizon limit of the linear equation of the tensor
modes, at least around the isotropic fixed point.

We then split the second-order differential equation (97)
into a couple of first-order differential equations:

_v ¼ Kv; v ¼
�Σm1

β1

�
; ð98Þ

with

K ¼
�
−3Hg0 −M2

1 0

�
: ð99Þ

The properties of the fixed points are classified by the
eigenvalues of the matrix K,

λ� ≔
1

2
ð−3Hg0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9H2

g0 − 4M2
q

Þ; ð100Þ

which we summarize in Table I.2 Recall that we are
interested in an expanding universe, Hg0 > 0. In the case
ofM2 < 0, both eigenvalues are real and satisfy λþ > 0 and
λ− < 0. Therefore, a fixed point with M2 < 0 is a saddle
point. When M2 > 0, the fixed point is locally stable
because the real parts of both eigenvalues are always
negative. Depending on the sign of 9H2

g0 − 4M2, the stable
fixed points are divided into stable spirals ð9H2

g0 − 4M2 <
0Þ and stable nodes ð9H2

g0 − 4M2 > 0Þ. The anisotropy β is
overdamping due to a large Hubble friction around the
stable nodes; the eigenvalues are complex around the stable
spirals and the anisotropy exhibits damped oscillation. All
cases can be realized in both isotropic fixed points and
anisotropic fixed points when the coupling constants are
appropriately chosen.

B. Global stability

In our scenario, a stable spiral (a damped oscillation of
the anisotropy) explains the dark matter component of the
current Universe. On the other hand, the initial condition is
not necessarily in the vicinity of the stable spiral. Let us
then discuss the global structure of the system by using
phase portraits.

TABLE I. Classification of the fixed points.

Stable spiral (damped-oscillation) Stable node (over-damping) Saddle point (unstable)

M2 þ þ −
9H2

g0 − 4M2 − þ þ
Phase portraits

Isotropic: Fig. 1(a) Isotropic: Fig. 1(b) Isotropic: Fig. 1(c)
Anisotropic: Fig. 1(d) Anisotropic: Fig. 1(e) Anisotropic: Fig. 1(f)

2Strictly speaking, there are other cases such as nonisolated
fixed points at the boundary of the classifications. Since the fine-
tuning of the coupling constants is required, we shall not discuss
these cases in this paper.
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The set of independent equations is given in Eq. (44). At
each point in the phase space ðβ;ΣmÞ, where Σm ¼ _β, their
time derivatives are computed by solving Eq. (44) com-
bined with the condition Σ0 ¼ 0. However, due to the
nonlinearity of the equations, there are multiple branches
and we have to choose the correct branch. We first choose a
fixed point and then consider the vicinity of the fixed point.
The branch of the solutions in the vicinity is then chosen so
that the solution is continuously connected to the fixed
point, which is numerically achieved by employing the
Newton-Raphson method. Iterating this procedure, we can
obtain a phase portrait around each of the fixed points.
Figure 1 shows the phase portraits around the isotropic

fixed points and anisotropic fixed points. Although only
the phase portraits of the self-accelerating branch are
shown for the isotropic fixed points, similar figures can
be obtained for the normal branch as well. We also integrate

the equations (44) numerically. The trajectories of the
numerical solutions are shown as the black curves in
Fig. 1. The solutions indeed behave as classified in the
perturbative analysis even at a finite distance away from the
fixed point.
For a given value of the coupling constants, the equations

may have several fixed points which can or cannot be
connected through a dynamical evolution. We find that the
anisotropic fixed point can be continuously connected to
the self-accelerating branch of the isotropic fixed point.
Figure 2 shows three phase portraits which exhibit flows
from saddle points to stable fixed points. In Fig. 2(a), the
isotropic universe is unstable. Even if the initial condition is
isotropic, the universe typically moves toward the aniso-
tropic fixed point when β < 0. Hence, these parameters
realize a spontaneous growth of the anisotropy from a tiny
anisotropy. On the other hand, Figs. 2(b) and 2(c) are the
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FIG. 1. Examples of phase portraits around fixed points: stable spirals (left), stable nodes (middle), and saddle points (right). The
black points in the top panels represent the isotropic fixed points (self-accelerating branch) and the red points in the bottom panels
are the anisotropic fixed points. The black curves are the trajectories of numerical solutions. The parameters are chosen as specified:
fb0; b1; b2; b3; b4g ¼ f9.32;−0.0162;−0.0479; 0.0122; 0.00549g in (a), f6.61;−0.0542;−0.00258; 0.00320; 0.00357g in (b),
f50; 1; 8.15;−12.0; 26.6g in (c), f−6.8; 4;−1.9; 0.95;−1g in (d), f50; 1; 8.15;−12.0; 26.6g in (e), f9.32;−0.0162;−0.0479; 0.0122;
0.00549g in (f) with α ¼ 1 for all panels.
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cases with stable isotropic universes. Although the solutions
go away from the isotropic stable point if the initial value of
β is largely negative, the solutions generically approach the
isotropic universe under a wide range of initial conditions.
In particular, the anisotropy oscillates with a decreasing
amplitude around the isotropic universe in Fig. 2(c) and
behaves as a dark matter component of the universe.
Therefore, when the coupling constants are appropriately

chosen, the spin-2 dark matter scenario is stably realized
under generic initial conditions.

V. DARK MATTER PRODUCTION

In the previous section, we have found that the isotropic
universe can be unstable and one of the endpoints of the
instability is the anisotropic fixed point. This solution may
be used for a novel production mechanism of spin-2 dark
matter which we shall discuss in this section.
So far we have assumed the vacuum configuration, but

to discuss a realistic cosmological scenario, we have to add
matter components such as radiation and an inflaton. In
general, the graviton mass squared M2 is expected to
depend on the matter field through the complicated
constraint equations. As a simple example, let us consider
a scalar field ϕ as a matter field and promote the coupling
constants bi to be functions of ϕ. In particular b0ðϕÞ [or
b4ðϕÞ] is nothing but a potential of the scalar field
minimally coupled to the g metric (or the f metric).
The theory with ϕ-dependent coupling constants b1, b2,
b3 is known as chameleon bigravity [49,50] (see also
Ref. [51] as well as a similar setup in minimal theory of
massive gravity [52,53]). As ϕ evolves in time the coupling
constants biðϕÞ also change, which may realize a
phase transition from a Fig. 2(a)–type phase diagram to a
Fig. 2(c)–type phase diagram.Wewill not discuss a concrete
realization of this scenario in the present paper because it
would be strongly model dependent. However, we have
confirmed that there indeed exists a one-parameter change of
the coupling constants biðϕÞ that realizes an adiabatic
transition from Figs. 2(a) to 2(b) and then Fig. 2(c).
In the first stage [Fig. 2(a)], the isotropic universe is

unstable due to a tachyonic mass M2
I < 0 and a nonzero

value of β can be spontaneously produced (when the
Hubble friction is not too large). Then, β eventually reaches
the vicinity of the anisotropic fixed point. After the phase
transition from Figs. 2(a) to 2(b), the anisotropic fixed point
turns into an unstable one by changing the sign ofM2

A, and
then β starts to deviate from the vicinity of the anisotropic
fixed point. As the graviton mass increases (or the Hubble
expansion rate Hg decreases), the phase diagram further
changes from Figs. 2(b) to 2(c). As a result, β behaves as a
dark matter component of the universe around the isotropic
fixed point.
In this scenario, the dark matter abundance is roughly

estimated by the value of the anisotropic fixed point and
the time of phase transition. For simplicity, we assume that
the evolution of β in the second stage [Fig. 2(b)] is
negligible and MA does not significantly change after
the transition. Provided that the phase transition occurs at
HgðatraÞ ∼MAðatraÞ ∼m, the present amount of dark
matter is computed in the same way as the misalignment
mechanism [17,54–56] by replacing the initial amplitude
with the fixed-point value. Here we assume that the
coupling constants biðϕÞ are of order unity at the
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FIG. 2. Global structure of phase portraits. Top: the isotropic fixed
point is unstable and the universe evolves towards the anisotropic
fixed point. Middle: the universe generically approaches the
isotropic fixed point without oscillation. Bottom: the universe
moves towards the isotropic fixed point with oscillation. The
parameters are chosen as α ¼ 1 and fb0; b1; b2; b3; b4g ¼
f50; 1; 8.15;−12.0; 26.6g, f6.61;−0.0542;−0.00258; 0.00320;
0.00357g, f9.32;−0.0162;−0.0479; 0.0122; 0.00549g from top
to bottom.
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transition time, and hence β and ξ are also approximately
of order unity.
By assuming that the transition occurs during the

radiation-dominated era, the scale factor at the transition
time is estimated as

atra ∼Ω1=4
r;0

�
H0

HgðatraÞ
�

1=2
∼ Ω1=4

r;0

�
H0

m

�
1=2

; ð101Þ

where Ωr;0 is the current density parameter of the radiation
components. The energy density of spin-2 dark matter
at the transition time can be roughly estimated as
ρgðatraÞ ∼M2

Plm
2
g. Then, the current density parameter of

spin-2 dark matter is

Ωg;0 ¼
ρgðatraÞ
ρc;0

a3tra ∼
α2

1þ α2
Ω3=4

r;0

�
m
H0

�
1=2

: ð102Þ

This is consistent with the result in Ref. [17]. The fraction
of the density of spin-2 dark matter to the total dark matter
is given by

fg ≡ Ωg;0

ΩDM
∼

α2

1þ α2
Ω3=4

r;0

�
m
H0

�
1=2

: ð103Þ

Since the spin-2 dark matter couples to matter fields in
the same way as the massless graviton, a signal caused by
the oscillating spin-2 dark matter can be probed by the

gravitational-wave detectors. As detailed in Appendix B,
the signal depends on the combination fgα2 and the
graviton mass MI. In Fig. 3, we show the detectability
of fgα2 for spin-2 dark matter by Advanced LIGO,
DECIGO, and LISA.
In our scenario, when the fraction is fixed, we obtain a

relation between the graviton mass MI ∼m and the ratio of
the gravitational constants α by using Eq. (103). The values
of fgα2 for several fixed fg are shown as black dashed
lines in Fig. 3. The signal of our scenario is detectable
even if the massive spin-2 field only contributes to a small
fraction of the total dark matter density in the mass range
m≲ 10−10 eV.

VI. SUMMARY AND DISCUSSION

In the present paper, we have considered the Bianchi
type-I solution in the two kinds of bigravity theories without
the Boulware-Deser ghost: Hassan-Rosen bigravity and the
minimal theory of bigravity. First, we identified the back-
ground equations for a Bianchi type-I universe, and found
that the background equations are the same in the two
theories. Furthermore, we found fixed points of the back-
ground equations with relatively large anisotropy and
classified them by local stability. We also investigated the
global stability around the fixed points by showing the
phase portraits for all patterns of the local stability.
One of the interesting applications of the anisotropic

fixed point is the production of spin-2 dark matter. The
production of spin-2 dark matter corresponds to the pro-
duction of the initial anisotropy β in the universe. One way
to generate the initial amplitude of β is a phase transition
that changes the stability of anisotropic and isotropic fixed
points. The phase transition can be achieved by introducing
a matter field. Our scenario is somewhat similar to the axion
dark matter [54–56]. In the misalignment mechanism of the
axion dark matter, the initial amplitude of the axion is
generated by a misalignment away from the bottom of the
potential in the early universe. In our scenario, on the other
hand, the “misalignment” is spontaneously generated by the
instability of the isotropic fixed point even if its initial
amplitude is negligibly small, and the size of the “misalign-
ment” is fixed when the model is given. The rough
estimation of the abundance from this production mecha-
nism shows that spin-2 dark matter can account for all or a
part of dark matter. As shown in Fig. 3, gravitational-wave
detectors are expected to be able to search for ultralight
spin-2 dark matter in a certain range of the graviton mass
even if its fraction with respect to all dark matter is small.
External fields can affect the stability of fixed

points and play a crucial role in the production of dark
matter via anisotropic phase transitions. One approach is
to add minimally coupled matter, such as inflation and
radiation. Another approach is to introduce nonminimal
coupled external fields, which is achieved in chameleon

10�19 10�18 10�17 10�16 10�15 10�14 10�13 10�12 10�11
10�26
10�24
10�22
10�20
10�18
10�16
10�14
10�12
10�10
10�8
10�6
10�4
10�2
100

MI[eV]

f g
2

aLIGO

DECIGO
LISA

fg=1

fg=10�3

fg=10�6

FIG. 3. Constraints on spin-2 dark matter from current and
future experiments. The green, blue, and orange regions represent
the estimates of the detectability of the spin-2 dark matter with
fgα2 by Advanced LIGO, DECIGO, and LISA, respectively. In
this figure, we use the sensitivity curve from Refs. [57–59], and
assume 2 years of observation time (see Appendix B). The black
dashed lines represent the rough estimate of fgα2 in our
production mechanism by using Eq. (103). They are given by
fixing the fraction of the spin-2 dark matter density to the total
dark matter density as fg ¼ 1; 10−3; 10−6 in our scenario. The
plotted sensitivity of Advanced LIGO is consistent with the
“optimized sensitivity” in Ref. [25].
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gravity [49,50]. In this method, the graviton mass changes
with the density of the environment. The original moti-
vation for introducing chameleon bigravity was to avoid
the gradient instability that occurs when using accelerated
expansion in HRBG. In chameleon bigravity, the graviton
mass can depend on the density of the environment, thus
avoiding the instability. The first application of chameleon
bigravity to spin-2 dark matter was done in Ref. [60]. In
any case, the addition of external fields requires an
extension of the fixed-point argument to include external
field effects, which may improve our understanding of
spin-2 dark matter production by the anisotropic fixed
point, which we leave as a future topic.
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APPENDIX A: HAMILTONIAN FORMULATION
OF MINIMAL THEORY OF BIGRAVITY

In this appendix, we derive the background equation in a
Bianchi type-I universe for the minimal theory of bigravity
through the Hamiltonian formalism. The minimal theory of
bigravity was originally constructed with the Hamiltonian to
impose an appropriate constraint, and thus it looks relatively
simple in the Hamiltonian formalism. We define the
canonical momentum associated with ag, af, βg, and βf as

Pg ¼
∂L
∂ _ag

; Pf ¼
∂L
∂ _af

; ðA1Þ

Qg ¼
∂L

∂ _βg
; Qf ¼

∂L

∂ _βf
: ðA2Þ

The minisuperspace Hamiltonian in a Bianchi type-I uni-
verse is obtained by a Legendre transformation of the
Lagrangian in Eq. (36) as

H ¼ Pg _ag þ Pf _af þQg
_βg þQf

_βf − L

¼ CNg
Ng þ CNf

Nf þ Cλλ; ðA3Þ

where

CNg
¼ −

m4M2
Pla

3
gλ

2

8N2
g

½−3b23 − 4b2b3ðe−2β þ 2eβÞξ − 2ð2b22 þ b1b3Þð2e−β þ e2βÞξ2 − 12b1b2ξ3 þ b21ðe4β − 4eβÞξ4�

þm2M2
Pla

3
g

2
½b4 þ b3ðe−2β þ 2eβÞξþ b2ð2e−β þ e2βÞξ2 þ b1ξ3� þ

−a2gP2
g þQ2

g

12M2
Pla

3
g

; ðA4Þ

CNf
¼ m4M2

Pla
3
gλ

2

8α2N2
fξ

½b23ð−e−β þ 4e−βÞ þ 12b2b3ξþ 2ð2b22 þ b1b3Þðe−2β þ 2eβÞξ2 þ 4b1b2ð2e−β þ e2βÞξ3 þ 3b21ξ
4�

×
m2M2

Pla
3
g

2
½b3 þ b2ðe−β þ 2eβÞξþ b1ð2e−β þ e2βÞξ2 þ b0ξ3� þ

−a2gξ2P2
f þQ2

f

12α2M2
Pla

3
gξ

3
; ðA5Þ

Cλ ¼ −
m4M2

Pla
3
gλ

4α2NgNfξ
ðb3 þ 2b2eβξþ b1e2βξ2ÞfNg½b3ð−e−4β þ 4e−βÞ þ 2b2ðe−3β þ 2Þξþ 3b1e−2βξ2�

− α2Nfξ½−3b3 − 2b2ð2e−2β þ eβÞξþ b1ð−4e−β þ e2βÞξ2�g

þ m2ag
12α2ξ

f½b3e−2β þ 2b3eβ þ 2b2ð2e−β þ e2βÞξþ 3b1ξ2�Pf − α2ξ½3b3 þ 2b2ðe−2β þ 2eβÞξþ b1ð2e−β þ e2βÞξ2�Pgg

þm2ðeβ − e−2βÞ
6α2ξ2

½ðb3 þ b2eβξÞQf þ α2ξ3ðb2 þ b1eβξÞQg�: ðA6Þ

Then, we immediately get the constraint equations CNg
≈ 0; CNf

≈ 0, and Cλ ≈ 0. We can also obtain the canonical
equations illustrated by
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_Pg ¼ −
∂H
∂ag

; _Pf ¼ −
∂H
∂af

; ðA7Þ

_ag ¼
∂H
∂Pg

; _af ¼ ∂H
∂Pf

; ðA8Þ

_Qg ¼ −
∂H
∂βg

; _Qf ¼ −
∂H
∂βf

; ðA9Þ

_βg ¼
∂H
∂Qg

; _βf ¼ ∂H
∂Qf

: ðA10Þ

The consistency of the constraint equation requires that
time derivatives of the constraint equations have to vanish.
Substituting Eqs. (A6), (A8), and (A10) into _CNg

≈ 0, we
obtain

λF1½λ; ag; af; βg; βf; Pg; Pf;Qg;Qf� ¼ 0: ðA11Þ

The function is linear in λ, and thus we get two branches of
the solution: λ ≈ 0 and F1 ≈ 0. Similarly, _CNg

≈ 0 gives

λF2½λ; ag; af; βg; βf; Pg; Pf;Qg;Qf� ¼ 0: ðA12Þ

Then, this in principle gives two branches of the solution:
λ ≈ 0 and F1 ≈ 0 ∧ F2 ≈ 0. AlthoughMTBG is intended to
give the same background equations as HRBG in a
homogeneous universe, F1 ≈ 0 ∧ F2 ≈ 0 leads to an addi-
tional constraint on the background. Furthermore, it can be
shown that the background solution with F1 ≈ 0 ∧ F2 ≈ 0
does not work well at least for an isotropic universe, and
thus we select λ ≈ 0. Since the differences in the equations
from Hassan-Rosen bigravity are terms with λ, we now
confirm that the equations of the minimal theory of
bigravity are identical to those of Hassan-Rosen bigravity.

APPENDIX B: PROBING SPIN-2 DARK MATTER
WITH GRAVITATIONAL-WAVE DETECTORS

In this appendix, we briefly show the detectability of
spin-2 dark matter. The main result is shown in Fig. 3. Our
analysis is similar to that in Ref. [25].

1. Perturbations around the Minkowski spacetime

We will consider the action of bigravity with a matter
field ψm that only couples to the g metric:

S ¼ Sg þ Sm½ψm; gμν�; ðB1Þ

where Sg is defined by Eq. (1). In order to analyze the
responses of the gravitational-wave detector, we define the
metric perturbations around the Minkowski spacetime by

δgμν ≔ gμν − ημν; ðB2Þ

δfμν ≔ fμν − ημν: ðB3Þ

Note that either δgμν or δfμν is not a mass eigenstate. At the
linear order, the mass eigenstate is given by

hμν ≔
κf
κgκ

δgμν þ
κg
κfκ

δfμν; ðB4Þ

φμν ≔
1

κ
ðδgμν − δfμνÞ: ðB5Þ

The quadratic-order action is then

S2 ¼
Z

d4x

�
LEH½h� þ LEH½φ� þ LFP½φ�

þ 1

2MPl
hμνT

μν
m þ 1

2MG
φμνT

μν
m

�
; ðB6Þ

where

Mpl ≔
κ

κgκf
; MG ≔

κ

κ2g
¼ κf

κg
MPl; ðB7Þ

and for an arbitrary χμν we define

LEH½χ� ≔
1

8
½ð2∂νχμρ − ∂ρχμνÞ∂ρχμν

þ ð∂μχ − 2∂νχ
μνÞ∂μχ�; ðB8Þ

LFP½χ� ≔
M2

8
ðχ2 − χμνχμνÞ; ðB9Þ

with the mass of spin-2 dark matter M, and we have used
the notation χ ¼ χμμ. Ultralight spin-2 dark matter in our
Galaxy is modeled by

φij ¼
X
λ

φ0;λeλij cosðωt − k · xþ δτðtÞÞ; ðB10Þ

where δτðtÞ is a time-dependent phase factor, which evolves
on the coherent time scale τ ¼ 2π=ðMv2DMÞ. Since the
typical dark matter velocity in our Galaxy is vDM ∼ 10−3,
we can use the nonrelativistic approximation ω ∼M. In this
model, the dark matter density is given by

ρg ¼
1

4
h _φij _φiji ≃

M2

4

X
λ

hφ2
0;λi; ðB11Þ

where the symbol h� � �i denotes the spacetime average.
We have used the fact that hcos2ðMtÞi ¼ 1=2 and
eλije

λ0
ij ¼ 2δλλ

0
. In the following, we assume a massive

graviton with only helicity two modes:
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φ0 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hφ2

0;þi
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hφ2

0;×i
q

¼
ffiffiffiffiffiffiffi
2ρg

p
M

; ðB12Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
hφ2

0;xi
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hφ2

0;yi
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
hφ2

0;bi
q

¼ 0: ðB13Þ

2. Signal in a gravitational-wave detector

The g metric, which is coupled to the matter fields, is
given by

gμν ¼ ημν þ
hμν
MPl

þ φμν

MG
: ðB14Þ

The signal for the gravitational-wave detector from the
massive graviton is obtained by multiplying the spin-2 dark
matter (B10) by the detector tensor Dij ¼ ðx̂ix̂j − ŷiŷjÞ=2,

hðtÞ ¼ 1

MG
Dijφij

¼ αφ0

MPl
½Fþðθ;ϕ;ψÞ þ F×ðθ;ϕ;ψÞ�

× cosðωt − k · xþ δτðtÞÞ; ðB15Þ

where Fþ; F×; � � � are antenna pattern functions which
depend on the sky location ðθ;ϕÞ and polarization angle
ψ . For Advanced LIGO, the antenna pattern functions are
given by

Fþðθ;ϕ;ψÞ ¼
1

2
ð1þ cos2 θÞ cosð2ϕÞ cosð2ψÞ

− cos θ sinð2ϕÞ sinð2ψÞ; ðB16Þ

F×ðθ;ϕ;ψÞ ¼
1

2
ð1þ cos2 θÞ cosð2ϕÞ sinð2ψÞ

þ cos θ sinð2ϕÞ cosð2ψÞ: ðB17Þ

The sky/polarization averages of the squared antenna
pattern functions are given by

R ¼ hF2þi ¼ hF2
×i ¼

1

5
; hFþF×i ¼ 0; ðB18Þ

where the brackets h� � �i denote

h� � �i ¼ 1

4π2

Z
π

0

dψ
Z

2π

0

dϕ
Z

π

0

dθ sin θð� � �Þ: ðB19Þ

For LISA, the antenna pattern functions depend on
the frequency, and their sky/polarization average R is
given by [59]

R ¼ 3

10
−

507

5040

�
f
f�

�
þ � � � ; ðB20Þ

where f� ¼ 19.09 mHz is the peak frequency.
The threshold of the detection signal can be estimated by

hh2i ¼ SnðM2πÞ
Teff

; ðB21Þ

where Sn is the one-sided noise spectrum of each detector,
and Teff is the effective observation time that takes into
account the coherent time scale τ [61],

Teff ¼
�
Tobs ðTobs < τÞ;ffiffiffiffiffiffiffiffiffiffi
τTobs

p ðTobs ≥ τÞ: ðB22Þ

Here, the time-averaged signal is

hh2i ¼ 2α2fgρDM
5M2

PlM
2
; ðB23Þ

where ρDM ≃ 0.3 GeV=cm3 is the local dark matter density,
and fg ¼ ρg=ρDM is the spin-2 dark matter fraction of the
total dark matter density. Plugging in Tobs ¼ 2 years and
the noise spectra given in Refs. [57–59], we obtain the
sensitivity curves for α2fg shown in Fig. 3.
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