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We investigate the evaporation of an uncharged and nonrotating black hole in vacuum by taking into
account the effects given by the shrinking of the horizon area. These include the backreaction on the metric
and other smaller contributions arising from quantum fields in curved spacetime. Our approach is
facilitated by the use of an analog accelerating moving mirror. We study the consequences of this modified
evaporation on the black hole entropy. Insights are provided on the amount of information obtained from a
black hole by considering nonequilibrium thermodynamics and the nonthermal part of Hawking radiation.
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I. INTRODUCTION

Despite the impressive efforts spent on black hole (BH)
thermodynamics [1–8], it is still a challenge to know how a
BH’s mass changes in time. In the latter scenario, BH
evaporation may cause a backreaction on the underlying
spacetime metric. Consequently, several attempts to
describe BH metrics encompassing backreaction effects
have been recently developed [9–11], leading to no
unanimous consensus on how backreaction occurs.
Naively if a BH radiates, the horizon area shrinks and

thermal Hawking radiative power would increase.
However, even the opposite perspective may be plausible,
see, e.g., [12], as quantum gravitational effects are not fully
employed [13–16]. In addition, the modification of BH
particle production is also associated with other effects, i.e.,
due to horizon shrinking [17], where, for instance, the
evolution in time of the background spacetime provides a
nonzero small particle count [18].
In these scenarios, analog systems mimicking BHs,

namely BH mimickers [19–21], are helpful to overcome
the mathematical difficulties related to time-dependent
thermodynamic quantities, e.g., mass, temperature, entropy,

and so forth. Among all possibilities, perfectly reflecting
moving mirrors in (1þ 1)-dimensional flat spacetime, char-
acterized by a given trajectory, see, e.g., [22–25], can
reproduce thermal Hawking radiation.1

A net advantage of mirrors consists in studying BH
radiation properties, e.g., Hawking radiation, thermody-
namics, etc., without considering an underlying spacetime
associated with the BH itself2 as analog systems. As a
consequence, by using mirrors, one can deal with BH
radiation models without having a precise description of the
(apparent) horizon area and/or of the BH surface gravity.3

In this work, we investigate the thermodynamic proper-
ties of a mass-varying BH adopting the BH analog provided
by a thermal moving mirror. We focus in particular on the
mass evolution of an evaporating BH in vacuum. The
mathematical simplification of moving mirrors easily
describes the mass evolution through a differential equation
that can be numerically solved. We find corrections to
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1On the other hand, semitransparent moving mirrors may
exhibit quite different energy emission and particle creation
[22,25–35].

2Attempts towards investigating metrics considering the varia-
tion of its mass can be found in [36–39].

3For evaporating BHs, there is no Killing horizon and the
concept of surface gravity is controversial. The definition of a
surface gravity in these contexts is an ongoing subject of study
(see, e.g., [40]).
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Hawking radiation without postulating the horizon area
and/or the surface gravity. Those corrections are related to
the effects that the evaporation is expected to cause to the
radiation, above all, mimicking the backreaction effect on
the metric. We compare the results that we infer with those
in Ref. [23], where qualitative arguments for the evapora-
tion have been discussed in view of mirrors. We debate how
the expected small corrections to Hawking radiation,
obtained as the BH evaporates, are of primary importance
to help understand BH information loss [41–43]. Indeed, if
BH radiation is not precisely thermal, then it carries some
information from inside to outside the event horizon.
Hence, nonthermality of BH radiation represents a land-
scape for the information paradox.4 We work out the
hypothesis of quasistatic processes to approximate the first
thermodynamics principle by means of an effective non-
equilibrium temperature. In this respect, we show that the
deviations from Hawking radiation is initially small,
becoming larger as BHs evaporate. This causes a decrease
of a BH’s lifetime by a factor ∼3=8. Thus, since the effects
of BH evaporation drastically affects Hawking radiation,
mirrors may confirm quantum tunneling models for
Hawking radiation [13,14], showing the emitted radiation
to be less entropic than the one predicted in the literature
[2,49–53]. This may be interpreted by assuming part of the
information can be transmitted by BH radiation.
Furthermore, we emphasize in our treatment, it is possible
to construct an argument for the BH age from its mass and
Hawking radiation.
The paper is organized as follows. In Sec. II we explain

how moving mirror radiation emulates BHs. In Sec. III we
use this analogy to study BH radiation and its mass
evolution from its creation to its complete evaporation.
In Sec. IV we study the nonequilibrium thermodynamics of
BH evaporation, adopting the quasistatic approximation.
Finally, Sec. V is devoted to conclusions and perspectives
of our scheme. Throughout the paper, we use Planck
units c ¼ G ¼ ℏ ¼ kB ¼ 1.

II. BLACK HOLES FROM MIRROR ANALOGY

Here we briefly review the radiation emitted by BHs
and by moving mirrors. We confirm that a trajectory for a
ð1þ 1ÞD mirror exactly reproduces Hawking radiation
emitted by a ð3þ 1ÞD BH. We limit our analysis to the
emission of scalar massless particles. The discussion is split
into two subsections focusing on BHs first and then the
moving mirror analog.

A. Black hole radiation

By quantum field theory in curved spacetime, particle
creation occurs whenever the background spacetime
evolves in time [26]. This particle production is easy to
quantify when a spacetime is flat in the infinite past and
infinite future. Indeed, in this case, the normal modes of the
scalar field in the infinite future (or output modes) fϕout

ω gω
could be obtained from the ones in the infinite past (or input
modes) fϕin

ωg through the following Bogoliubov trans-
formation:

ϕout
ω ¼

Z
∞

0

ðαωω0ϕin
ω0 þ βωω0ϕin�

ω0 Þdω0: ð1Þ

The nontrivial Bogoliubov coefficients βωω0 are not zero,
indicating that particle creation occurs from the vacuum5

[26,56]. The spectrum of particles produced is given by

Nω ¼
Z

∞

0

jβωω0 j2dω0: ð2Þ

Hawking calculated [1] the Bogoliubov coefficients relative
to a spacetime where a star collapses into a black hole. In
this context, Eq. (1) holds by considering the output modes
fϕout

ω gω as the modes outgoing from the collapsing star and
the input modes fϕin

ωgω as the modes ingoing towards it.
The Bogoliubov coefficient βBHωω0 arising from a star
collapsing into a black hole, with mass MBH reads

βBHωω0 ¼
ffiffiffiffiffi
ω0

ω

r
Γð1 − 4iMBHωÞðiω0Þ−1þ4iMBHω; ð3Þ

where Γ is the Euler gamma function. By applying the
modulus square of Eq. (3) we obtain

jβBHωω0 j2 ¼ 2MBH

πω0
1

e8πMBHω − 1
; ð4Þ

leading to the known thermal spectrum with temperature

T ¼ 1

8πMBH
: ð5Þ

The spectrum of particles radiated, obtained from Eq. (2), is
divergent because BH mass evaporation is not considered,
so that the BH continues to emit forever. This is the model
for what is now called an eternal BH with exact thermal
emission. Nevertheless, by making use of wave packets, we
can localize the input and output modes in a finite range of
time and frequencies. In this way, Hawking proved that [1],
in a finite range of time, the collapsing star emits a finite
number of particles, following a thermal spectrum with
temperature 1=8πMBH. The astonishing result is that this

4In particular, by considering BH evaporation effects, quantum
tunneling models for Hawking radiation provide a significant
deviation from the thermal spectrum [13–16], which cause a
reduction of the total BH entropy similar to the one predicted by
quantum gravity [14,16,44–46]. Moreover, there exist a model-
independent argument proving that the nonthermal part of
Hawking radiation cannot be omitted [47,48]. 5For relevant cosmological applications see, e.g., [54,55].
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radiation is always constant in time, with exact Planck-
distributed particles originating from the collapsed star.
The fact that a BH continues to emit even when the BH is

created is justified by the presence of the horizon when
considering vacuum fluctuations near it [1,2]. Finally, the
renormalized stress energy tensor in presence of an emit-
ting BH was also calculated [28,57]. From it, one can find
the flux of energy (power) radiated by a BH as

FBH ¼ 1

768πM2
BH

¼ π

12
T2: ð6Þ

The conclusion is that, following the first quantumBHmodel
[1,2,28,57] an eternalBHemits as a 1D black body6 [59]. It is
worth specifying that the radiation studied until now is valid
as long as the BH does not evaporate. As a consequence, this
kind of BH (eternal BH) is an open system, as it continues
emitting forever without losing mass.
Let us now consider the black hole evaporation. By

applying the adiabatic approximation, one assumes that the
flux emitted by the BH remains the thermal one, as in
Eq. (6), despite the mass loss. In this case, if we impose
energy conservation, then the flux of energy radiated by a
BH should drain the BH mass, namely _MBH ¼ −FBH. By
considering the flux (6) we have

_MBH ¼ −
1

768πM2
BH

; ð7Þ

providing

MBHðtÞ ¼
�
M3

0 −
t

256π

�1
3

; ð8Þ

where M0 ¼ MBHðt ¼ 0Þ. Following this model, the BH
evaporates completely in a time

tHev ¼ 256πM3
0: ð9Þ

In this case, the system is closed, since the total energy
emitted is the black hole mass.

B. Mirrors and black hole analogy

Another physical system providing particle production is
given by an accelerating mirror. In particular, the radiation
by perfectly reflecting accelerating mirrors comes from the
acceleration of the boundary condition imposed by perfect
reflection, providing the well-known dynamical Casimir
effect [26–28,60].

Let us consider a ð1þ 1ÞD mirror with mass Mm and a
generic trajectory zðtÞ. The Lagrangian of the system
including this mirror coupled with a scalar field ϕ is [61]

L ¼ −ðMm þ γϕ2ðzðtÞ; tÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _zðtÞ

p
þ 1

2

Z �
_ϕðx; tÞ2 − ϕ02ðx; tÞ

�
dx; ð10Þ

where the dot indicates a time derivative and the 0 the
derivative with respect to x. The parameter γ indicates that
the coupling between the moving mirror and the scalar
field. If the mirror is at rest [zðtÞ ¼ 0], then γ is related to
the reflection coefficient of the mirror RðωÞ, which is
dependent on the frequency of the incident particles ω,
through

RðωÞ ¼ −
iγ

ωþ iγ
: ð11Þ

As a consequence, the mirror is transparent for frequencies
ω ≫ γ and reflecting for frequencies ω ≪ γ. A perfectly
reflecting mirror is obtained in the limit γ → ∞.
For the mirror, we impose a classical trajectory zðtÞ. To

do that, the indeterminacy on the mirror position, zðtÞ, must
be negligible. This condition is reached as γ ≪ Mm (see
Sec. VI of Ref. [61]). If the mirror is perfectly reflecting,
then the latter condition is unreachable unless we consider a
mirror with an infinite mass. Nevertheless, if the spectrum
of particles produced by the dynamical Casimir effect
vanishes for high frequencies, then the mirror behaves as
transparent for those frequencies. In this occurrence, we
can assign a finite γ even for a perfectly reflecting mirror,
representing an ultraviolet frequency cutoff. Hence, it is
even possible to assign to the mirror a finite mass Mm ≫ γ
such that its trajectory can be considered classical.
From now on, for simplicity, we consider a perfectly

reflecting mirror, evaluating later if we can assign to it a
finite or infinite mass Mm. Each normal mode, reflected
back by a mirror with frequency ω, i.e., ϕout

ω , can be written
as a combination of the normal modes incoming to the
mirror fϕin

ωgω as Eq. (1).
The Bogoliubov coefficient βωω0 is [24,62]

βmωω0 ¼ 1

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z þ∞

−∞
exp ð−iðωþ ω0Þtþ iðω − ω0ÞzðtÞÞ

× ððωþ ω0Þ_zðtÞ − ωþ ω0Þdt: ð12Þ

Using the renormalized stress energy tensor [28] one can
derive the flux of energy radiated by the mirror, say to its
right, as

6To model the BH as an n-dimensional black body, it is
sufficient to modify the prefactor 1

768π from Eq. (6) according to
the n-dimensional Stefan-Boltzmann constant [58] and appro-
priate temperature scaling.
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Fm ¼ ⃛zð_z2 − 1Þ − 3_z̈z2

12πð_z − 1Þ4ð_zþ 1Þ2 ;

¼ 1

12π

�
⃛z

ð_z − 1Þ3ð_zþ 1Þ − 3
_z̈z2

ð_z − 1Þ4ð_zþ 1Þ2
�
: ð13Þ

In order to investigate whether the system turns out to be
open or closed, we may consider the force strength, say F,
one requires to apply to the mirror itself to preserve its
trajectory, zðtÞ. Thus, from Ref. [61], this force can be
written by

F ðtÞ ¼
�
Mm þ γ

2
ϕ2ð0Þ

�̈
zðtÞ þ Fm

_zðtÞ : ð14Þ

The first term represents the mechanical force, while the
second term is the force needed to compensate the recoil the
mirror would undergo while emitting the flux of energy Fm.
We remind the reader that the trajectory could be consid-
ered as classical only if γ ≪ Mm. If the mirror is perfectly
reflecting and no ultraviolet frequency cutoff could be
imposed, then we have no choice but an infinite mass Mm.
In this case, the external force F ðtÞ diverges and the system
is clearly open.
The Carlitz-Willey trajectory corresponds to a (1þ 1)D

trajectory and represents a simple approach to model
thermal mirror trajectories. It reads

zðtÞ ¼ −t −
1

κ
Wðe−2κtÞ; ð15Þ

where W is the Lambert function and κ a free constant
related to mirror acceleration [22]. If a mirror has this
trajectory, then by Eq. (12) we get

βmωω0 ¼ −
1

2πκ

ffiffiffiffiffi
ω

ω0

r
e−

πω
2κΓ

�
i
ω

κ

��
ω0

κ

�
−iωκ

; ð16Þ

and its modulus square is

jβmωω0 j2 ¼ 1

2πκω0
1

e2πω=κ − 1
: ð17Þ

The spectrum of particles produced by this mirror is
divergent even for high frequencies. So, it is straightfor-
ward that an ultraviolet frequency cutoff cannot be
imposed. The mass of this mirror Mm is then infinite
and so is the magnitude of the external force needed to keep
the mirror trajectory (15).
By computing from Eq. (13) the flux of energy that a

mirror with trajectory (15) radiates to its right we obtain

Fm ¼ κ2

48π
: ð18Þ

By comparing Eq. (4) with (17), we get jβBHωω0 j2 ¼ jβmωω0 j2 by
putting κ ¼ 1

4MBH
. In this case, from Eqs. (6) and (18), we

get also FBH ¼ Fm.

Hence, a (1þ 1)-dimensional mirror with a trajectory
given by Eq. (15) exactly reproduces the Hawking radiation
from a (3þ 1)-dimensional Schwarzschild BH with mass
1
4κ: both in terms of particles produced and in terms of
energy radiated. The analogy between a Carlitz-Willey
accelerated mirror and an eternal black hole is confirmed
also by the fact that both the systems are open.
Considering an appropriate modification of the Carlitz-

Willey trajectory (15), it is possible to find an analog mirror
emulating the particle production properties of a Kerr BH
[32], a Reissman-Nordstrom BH [29] and a de Sitter/
anti–de Sitter BH [34]. The exact eternal thermal emission
of the Carlitz-Willey moving mirror is given by the late-
time emission of the Schwarzschild mirror [25].
Since the modulus square of the Bogoliubov coefficients

(4) and (17) are the same when MBH ¼ 1
4κ, the Bogoliubov

coefficients (3) and (16) are the same up to a phase. In the
mirror framework, a phase factor on the Bogoliubov
coefficient is related to a translation of the trajectory, which
does not change the particle production (17). As a conse-
quence, a mirror can emulate all the BH properties related
to its Bogoliubov coefficients, e.g., localized wave packets
particle production [24], quantum communication proper-
ties [63], etc.
The Carlitz-Willey accelerated mirror has also a horizon

representing the BH event horizon, i.e., from Eq. (15), we
can see that the mirror approaches z ¼ −t as t → ∞. This
means that no particle can reach the mirror after t ¼ 0 and
be reflected back by it. As a consequence, the information
on the input particle disappears, as does the information of
a particle sent to a BH. In other words, at t ¼ 0, the mirror
creates its horizon, as it happens for the creation of the
event horizon of the BH the mirror wants to emulate.
We can notice that the energy radiated, Eq. (6), does not

depend upon time. Namely, the same flux arises even when
the horizon is not created yet. This is due to an approxi-
mation performed in Ref. [1]. A more realistic model
should involve radiation which turns on smoothly after the
creation of the horizon. The simplest of these models arises
by modeling the BH as a collapsing null shell, see, e.g.,
Ref. [64] for a review.
The mirror emulating its spectrum and its energy radiated

is given by the Schwarzschild mirror trajectory [25]

zðtÞ ¼ −t −
1

2κ
Wð2e−2κtÞ: ð19Þ

From Ref. [25], for t < 0, the spectrum of particles and the
flux of energy radiated by the mirror drops to zero exponen-
tially as t decreases. On the contrary, for t > 0, both those
quantities go exponentially to theHawkingones, Eqs. (3) and
(6), respectively, as t increases. The deviation with respect to
the particle spectrum and energy radiated, Eq. (6), predicted
byHawkingdrops as∼e−t=MBH .Hence, the radiation couldbe
considered as completely “turned on” when t≳MBH.
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In the next section, for simplicity, we consider a BH
starting to evaporate only when t≳MBH, or fully turned
on. We see that, if the initial mass of the BH is large
enough, the turning on period occurs in a time negligible
with respect to the evaporation period, justifying why this
approximation may hold.

III. BLACK HOLE EVAPORATION

In the following, we generalize the Carlitz-Willey
trajectory of Eq. (15) by taking κ time dependent. Thus,
from the BH mirror analogy, κ ¼ 1

4MBH
, a variation of κ

induces a variation over the BH mass and also represents a
class of trajectories quite different from the standard
Carlitz-Willey trajectory.
By imposing energy conservation, we can thus find

MBHðtÞ, with the corresponding flux deviating from Eq. (6)
as due to the time dependence of κ.
This deviation can be easily related to the effects

expected to slightly modify Hawking radiation during
BH evaporation, such as the backreaction on the metric
or the shrinking of the horizon modifying local boundary
conditions. In all these situations, we expect departures
from genuine equilibrium thermodynamics, in favor of
nonequilibrium effects that we will discuss later in the text.

A. Modeling BH evaporation with mirrors

As discussed at the end of Sec. II B, the black hole
radiation turns on smoothly once the black hole is created.
For simplicity, we consider that the black hole starts to
evaporate once the radiation is fully turned on. In this way,
we can consider the analog mirror to follow a generaliza-
tion of the standard Carlitz-Willey trajectory, Eq. (15),
namely

zðtÞ ¼ −t − 4MBHðtÞWðe− t
2MBHðtÞÞ: ð20Þ

The time t ¼ 0 corresponds to the time at which the BH
starts to evaporate—this makes t ∼ −4M0 the time at which
the BH has been created (see the discussion at the end of
Sec. II B).

We defineM0 ¼ Mðt ¼ 0Þ as the initial mass hold by the
underlying BH. To generalize the flux, we should plug
Eq. (20) and its time derivatives into Eq. (13). In this way,

we can obtain a general expression for the flux7 Fm ¼
Fmðt;MBH; _MBH; M̈BH;M

…

BHÞ radiated by a mirror with
trajectory (20). We now ansatz the black-hole-mirror
analogy. In other words, since for MBH constant (i.e., for
an eternal black hole) we have seen that Fm ¼ FBH, we
impose the same equality also in the case of a time-
dependent MBH. In so doing, from the energy conservation
_MBH ¼ −FBH ¼ −Fm, we can study the evaporation of the
black hole. In particular, we get a third order ordinary
differential equation:

_MBH ¼ −Fmðt;MBH; _MBH; M̈BH;M
…

BHÞ; ð21Þ

giving the evolution of the mass MBHðtÞ from t ¼ 0 to the
complete evaporation time tev, defined as the time in which
MBHðtevÞ ¼ 0. From now on, for the sake of simplicity we
omit the label “BH” when referring to the mass MBH ≔ M
and the flux FBH ≔ F, which always refer to the black hole.
The study of the mirror trajectory, mass and the forces
needed to keep its trajectory (20) is provided in Sec. III E.
To simplify the flux expression Fðt;M; _M; M̈;M

…Þ, we
employ two ranges of time:
(1) 0 ≤ t ≤ t0, where we consider negligible the devia-

tions from the Hawking flux (6).
(2) t0 < t < tev, where the corrections to the Hawking

flux (6) given by the BH evaporation becomes non-
negligible.

The time t0 is fixed as t0 ≫ 2M0, implying t ≫ 2MðtÞ for
t0 < t < tev, since MðtÞ decreases in time as the BH
evaporates.
Hence, in the generalized Carlitz-Willey trajectory, we

may approximate Wðexpð−t=MðtÞÞÞ ∼ expð−t=MðtÞÞ.
Thus, for t ≤ t0 we easily recover the Hawking flux of
Eq. (6), whereas for t > t0 the flux can be computed from
Eq. (13), applying the approximation t ≫ 2MðtÞ. Hence,
the flux of energy radiated from t ¼ 0 to t ¼ tev is

8<
:

F ¼ 1
768πM2 for 0 < t ≤ t0;

F ¼ 1

192πð1− _M
MtÞ2

�
3 M̈2

M2 t2 þ 1
4M2

�
1 − _M

M t
�
4 þ 2M

…

M t
�
1 − _M

M t
�
− 12 M̈ _M

M2 t
�

for t > t0
: ð22Þ

To apply this simplification, we must ensure _M to be negligible for t ≤ t0, i.e., − _Mðt0Þ ≪ Mðt0Þ.

7The expression is not explicitly reported because it is too cumbersome.
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Since, for t ≤ t0, Eq. (8) is valid, then at t ¼ t0 we obtain

j _Mðt0Þj ¼
1

768πM2ðt0Þ
≪ Mðt0Þ: ð23Þ

From Eq. (8), which is valid for t ≤ t0, we can therefore
evaluate Mðt0Þ. Thus, the condition − _Mðt0Þ ≪ Mðt0Þ
becomes

t0 ≪ 256πM3
0 −

1

3
: ð24Þ

Summing up, we need to choose a time, t0, such that
2M0 ≪ t0 ≪ 256πM3

0 −
1
3
. So, in order to have a t0

satisfying this condition, we need an initial mass, M0,
large enough.8

B. Evaluating the mass evolution

Afterwards, to evaluate the functionMðtÞ we impose the
energy condition, _MðtÞ ¼ −F.

In this way, Eq. (22) becomes a third order, nonlinear
differential equation

8>>><
>>>:

_M ¼ 1
768πM2 for 0 < t < t0

_M ¼ − 1

192πð1− _M
MtÞ2

�
3 M̈2

M2 t2 þ 1
4M2

�
1 − _M

M t
�
4 þ 2M

…

M t
�
1 − _M

M t
�
− 12 M̈ _M

M2 t
�

for t > t0

Mðt ¼ 0Þ ¼ M0

: ð25Þ

The numerical solution of Eq. (25) is drawn in Fig. 1,
where t0 ¼ 200M0 and M0 ¼ 10 were considered, having
t0 ∼ 2000. The period of time 0 < t < t0, in which the
evaporation effects on the radiation are neglected, is very
small with respect to the overall evaporation period, i.e.,
one part over a thousand. This is what we wanted, since we
want to study the deviations from the Hawking radiation (6)
in a period of time as large as possible.
In Sec. II B, the “turning on period,” namely the period in

which the radiation turns on after BH creation, is ∼4M0,
being very small than periods of time here considered.
Consequently, we can ignore the turning on period,
identifying the time t ¼ 0 as the time at which the horizon
of the BH originates as consequence of star collapse.
From the numerical solution in Fig. 1, a sudden drop of

the mass occurs at t ¼ tc, namely at a critical time,
unavoidable for any initial mass value. To analytically
explain this sharp behavior, we now approximate Eq. (25)
at the range of times t0 < t < tc.
To do so, we first estimate the magnitude of _M, M̈, and

M
…

when there are no evaporation effects on the radiation.
Using Eq. (7), we get

8>><
>>:

_M ∼ 10−3=M2
0

M̈ ∼ 10−6=M5
0

M
…

∼ 10−9=M8
0

: ð26Þ

Considering the evaporation effects on radiation, the
derivatives of the mass (26) are expected to increase in
magnitude. However, from Fig. 1, we see that such increase
is relatively small. Bearing this in mind, we study the orders
of the terms at the rhs of Eq. (25), as t > t0, using Eqs. (26).
(1) The term proportional to M̈2t2

M2 has order ∼10−8=M6
0.

The denominator ð1 − _M
M tÞ2 decreases the magnitude

of this term as t increases.9 The same thing is valid
for the third and last term, respectively.

(2) The second term is ∼1=M2
0 and simplifies as

1
M2 ð1 − _M

M tÞ2 with the denominator, increasing de
facto with time.

(3) The third term has order 10−7=M7, with magnitude
decreasing as time increases.

(4) The last term has order 10−7=M6, with magnitude
decreasing as time increases.
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FIG. 1. Plot of the numerical solution of MðtÞ from Eq. (25)
(continuous line) and Hawking solution for MðtÞ following
Eq. (8) (dashed line) considering M0 ¼ 10 and t0 ¼ 200M0.

8For instance, M0 ∼ 5 ensures the existence of a t0 which is
100 times smaller than 256πM3

0 and 100 times larger than 2M0,
making the approximation valid.

9Consider that _M is forced to be negative, so ð1 − _M
M tÞ is

always larger than 1, increasing as time increases.
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From this analysis, since M0 cannot be small, we
conclude that the second term, i.e., 1

4M ð1 − _M
M tÞ2 is dom-

inant before tc, leading to an approximation of Eq. (25) of
the kind:

_M ¼ −
1

768πM2

�
1 −

_M
M

t

�2

: ð27Þ

The validity of Eq. (27) before tc is confirmed in Fig. 2,
where the solutions of Eqs. (25) and (27) effectively
coincide before tc.

C. Interpreting the critical time

The issue of inferring the physical consequences of the
above-defined critical time is challenging but it helps to
justify the existence of critical time via the use of the
simplified differential Eq. (27). Indeed, Eq. (27) can be
written as

_M ¼ −
384πM4

t2
þM

t
þ 384πM4

t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t
192πM3

r
; ð28Þ

whose solution exists if t ≤ 192πM3ðtÞ. So, as
t → 192πM3, M̈ðtÞ diverges as ∼ð1 − t

192πM3Þ−1=2. As a
consequence, also the third time derivative of the mass
diverges. So, in a neighborhood of t ¼ 192πM3ðtÞ, the
first, third, and fourth terms at the right-hand side of the
second of Eq. (25) suddenly increase, becoming dominant
and making MðtÞ to drop sharply as Fig. 1 shows.
At this point, we can associate tc to the time at which the

square root of Eq. (28) nullifies. Further, we define the
critical mass as Mc ≔ MðtcÞ, having this relation:

tc ¼ 192πM3
c: ð29Þ

Figure 3 shows that the critical point lies on the curve t ¼
192πM3 confirming the relation (29) between critical time tc
and critical massMc. Numerically, taking a sample of initial

masses stepping by ΔM0 ¼ 1 from M0 ¼ 10 to M0 ¼ 50,
the critical mass becomes Mc∼0.7937M0≃2−1=3M0.
With this information, we can give a value to the critical

time and mass:

Mc ≃
M0ffiffiffi
23

p ⇒ tc ≃ 96πM3
0 ¼

3

8
tHev; ð30Þ

where tHev is the evaporation time predicted by Hawking (9).
After the critical time tc, the mass drops to zero in a finite

but very short time, that we can neglect. Thus, the new
evaporation time of the BH is modified as tev ∼ 3

8
tHev,

demonstrating the BH evaporates faster than the standard
Hawking case when accounting for the mass evaporation
effects on the radiation. This fact reduces the evaporation
time by a factor ∼3=8.
The mass behavior after tc requires a physical

interpretation.
(1) For instance, a possible justification may include

quantum gravity effects. Indeed, since _M increases
sharply after the critical time, j _Mj quickly reaches
order M and likely, as this fact occurs, quantum
gravity effects cannot be neglected. Hence, our
modeling predicts that, when considering the mass
evaporation of a black hole in vacuum and the effects
the evaporation induces to the metric, quantum
gravity effects have to be considered when the black
hole mass reaches 2−1=3 of its initial value.

(2) Analytically, the sharp mass drop is due to the
sudden increasing of −M̈, i.e., of the mass loss
acceleration, analyzed after Eq. (28). It appears
evident that the accelerated behavior resembles a
jetlike form, similar to Fermi processes [65], where
the mass loss acceleration does not smoothly be-
have, leading to uncontrolled astrophysical proc-
esses. This interpretation may be framed in more
practical physical scenarios related to a compact
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FIG. 2. Comparison between the solution of the approximated
Eq. (27) (thick line) and the solution of Eq. (25) (dashed line).
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FIG. 3. This figure shows that the critical point of the solution
of Eq. (25) for M0 ¼ 10 (thick line) satisfies the relation (29),
since the critical point ðtc;McÞ lies on the curve t ¼ 192πM3

(dashed line).
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object, leaving open the possibility to model those
objects by accelerated mirrors.

We give these explanations for the sake of completeness,
however they lie beyond the main purposes of our work,
however interesting they may be for future investigations.

D. Mass evolution at early times

In this subsection, we provide an approximation for the
differential Eq. (28) valid when t≳ t0. In this way, we
obtain an analytic expression for MðtÞ, providing an
explanation for how the mass evaporation of the black
hole modifies the Hawking radiation at early times.
From the condition (24), by considering t≳ t0 we expect

also t ≪ 192πM3ðtÞ. Hence, the square root in the right-
hand side of Eq. (28) can be expanded up to third order as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t
192πM3

r
∼ 1 −

t
384πM3

−
2t2

9 · ð256πÞ2M6

−
4t3

27 · ð256πÞ3M9
þ…: ð31Þ

Considering the first two terms of the expansion (31),
Eq. (28) becomes _M ¼ 0, i.e., the case in which there is no
evaporation. Considering the first three terms of (31) we get
exactly the known differential equation (7) with the known
solution (8). To provide a first correction on MðtÞ given by
the evaporation effects, we can consider also the fourth
term of the expansion (31). In this case Eq. (28) becomes

_M ¼ −
1

768πM2
−

2t
9 · ð256πÞ2M5

: ð32Þ

This can be rewritten in terms of tðMÞ:

dt
dM

¼ −
768πM2�
1þ t

384πM3

� : ð33Þ

By considering ð1þ t
384πM3Þ−1 ∼ 1 then the solution (8) is

restored. Hence, to study its first order deviation, we
expand the latter to first order for t ≪ 256πM3, namely
ð1þ t

384πM3Þ−1 ∼ 1 − t
384πM3. In this way, Eq. (33) becomes

the linear differential equation:

dt
dM

−
2t
M

¼ −768πM2: ð34Þ

From Eq. (25), for 0 < t ≤ t0, the mass evolution is given
by Eq. (8). Since Eq. (34) is valid for t≳ t0, the initial
condition for it is defined using Eq. (8) at t0, i.e.,

t

��
M3

0 −
t0

256π

�
1=3

�
¼ t0: ð35Þ

The solution of Eq. (34) with the condition (35) is

tðMÞ¼ 1

M2

�
2

5
t0þ

768πM3
0

5

��
M3

0−
t0

256π

�
2=3

þ768πM3

5
:

ð36Þ

Here, t0 is arbitrary, but since t0 ≪ tHev we expand the two
factors in Eq. (36) depending on t0:�

2

5
t0 þ

768πM3
0

5

��
M3

0 −
t0

256π

�
2=3

¼ 768πM5
0

5

�
1þ t0

384πM3
0

��
1 −

t0
256πM3

0

�
2=3

∼
768πM5

0

5

�
1þO

��
t0
tHev

�
2
��

;

proving that t0 ≠ 0 provides a second order deviation from
the Hawking case. However, since we have considered only
first deviations from the Hawking mass evolution (8), we
can neglect the contribution of t0 ≠ 0. In this way, the
solution of (34) becomes

tðMÞ ¼ 768π

5

�
M5

0 −M5

M2

�
: ð37Þ

In contrast, the one without evaporation effects (8) reads

tðMÞ ¼ 256πðM3
0 −M3Þ: ð38Þ

Summarizing, Eq. (37) expresses the correct behavior of
the mass in time when t ≪ tev, i.e., when evaporation
effects are small but different than 0. One can study further
corrections of Eq. (8) by considering higher orders of the
expansion (31).

E. Dynamical behavior of mirrors
at intermediate stages

By virtue of the general mass loss behavior, Eq. (25), one
can infer how the mirror trajectory evolves throughout the
evolution of our dynamical system.
For our purposes, the trajectory of themirror (20) has been

defined only in the restricted range of times 0 < t < tev as a
modification of the Carlitz-Willey trajectory [22], Eq. (20),
with M being time dependent and following the differential
Eq. (25). The modification of the Carlitz-Willey trajectory is
shown in Fig. 4. In our trajectory, the mirror approaches the
asymptote z ¼ −t faster than the normal Carlitz-Willey
trajectory. However, the difference between the two is
vanishingly small, namely, of an order e−2t=M0 − e−2t=MðtÞ.
Now,we can arguewhich consequences occur to themirror at
the critical time tc. To do so, we know that, near tc, M̈
suddenly increases proportionally to ð1 − t=tcÞ−1=2. Thus,
using Eq. (20) and t ≫ 2MðtÞ, we can compute the mirror
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velocity and accelerationwith respect to an external observer,
respectively, as

_zðtÞ ∼ −1þ 2

�
1 −

_M
M

t

�
e−

t
2M; ð39Þ

̈zðtÞ ∼ −2
�
M̈
M

tþ 1

2M

�
1 −

_M
M

t

�2�
e−

t
2M: ð40Þ

Looking at Eq. (40), the acceleration drops always as an
exponential e−2κt. As t approaches tc, the first term of
Eq. (40) dominates and the acceleration of the mirror
becomes proportional to

̈zðtÞ ∝ e−
M
2tffiffiffiffiffiffiffiffiffiffiffi

1 − t
tc

q : ð41Þ

For t≲ tc, the acceleration of themirror is vanishingly small.
However,e−t=2M nevergoes precisely to 0, but the square root
in the denominator does. As a consequence, when tc − t is
really close to zero, the acceleration, from being vanishingly
small, suddenly diverges. As this happens, themirror reaches
its asymptote z ¼ −t suddenly. In particular, this occurs
when the BH completely evaporates, namely forM → 0)—
as it can be easily verified from Eq. (15). This is consistent
with the fact that, at the moment of the evaporation tev, both
the BH horizon and the mirror horizon disappear (see the
discussion in Sec. II B on the horizon analogy).
Once the BH has evaporated, the mirror should be static

in order to reproduce a flat spacetime where signals are not
redshifted [23,30,66]. In particular, the trajectory of the
mirror is given by Eq. (20) when t < tev, and zðtÞ ¼ −tev
when t > tev. This implies that _zðtevÞ should be zero, but
this means that we can assert the behavior of _M when M
approaches zero. In fact, taking the velocity of the mirror as
Eq. (39) and imposing it to be null at t ¼ tev, we obtain

_M ¼ −
M
tev

�
e

t
2M

2
− 1

�
: ð42Þ

In conclusion, in the limit M → 0, _M diverges to −∞
asymptotically to

_M ∼ −
M
tev

e
tev
2M: ð43Þ

Since this condition makes the mirror velocity _zðtÞ con-
tinuous at t ¼ tev, it ensures also that the mirror accel-
eration ̈zðtÞ is finite (but not continuous) at t ¼ tev.
Comparing the behavior of our mirror with respect to

Ref. [23], the deceleration of our mirror to become static is
very fast. As a future perspective, one can try to use the
formalism of Ref. [23] to slow down the mirror deceleration
after tc.
Finally, since the total energy radiated by the mirror is

finite and equal to M0, the system is expected to be closed.
To confirm that, we study the force applied to the mirror to
keep its trajectory. First of all, let us study if we can assign a
finite mass Mm to the mirror. As we just said, since the
mirror is static after the time tev, it emits a finite total energy
Etot. The latter, in general, can expressed in terms of the
spectrum of particles produced Nω as

Etot ¼
Z

∞

0

ωNωdω: ð44Þ

For the integral on the right-hand side of Eq. (44), in order
to be convergent at ω → ∞, we need that Nω ∝ ω−x, where
x > 2, in the limit ω → ∞. As a consequence, it is possible
to insert a finite ultraviolet cutoff γ for the frequency ω
leaving the physics unchanged. Hence, the mirror can be
considered as semitransparent with a reflectivity γ. Finally,
the mass of the mirrorMm can be considered finite and still
satisfying Mm ≫ γ.
At this point, one can evaluate the total external force the

mirror undergoes through Eq. (14). Despite the acceleration
(40) is very high when t is close to tc, the mirror becomes
static before the latter reaches infinity. As a consequence, the
acceleration is very high but finite, meaning that the forceF
that should be applied to the mirror is always finite. This
means that the system involving this kind of mirror is closed,
as well as a completely evaporating black hole. For the sake
of completeness, we must say that in Eq. (14) we have not
considered the loss ofmass of themirror due to thedynamical
Casimir effect emission (13). However, to make this loss
negligible in our context, it is sufficient to consider
Mm ≫ MBH, so that the mirror mass after tev becomes
Mm −MBH ∼Mm.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

–15

–10
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0

t

ln
(z
(t
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t)

FIG. 4. Trajectory (20) of the mirror emulating an evaporating
BH (thick line) and trajectory (15) emulating an eternal BH
(dashed line). The numbers on the axes x and y are in powers of
105 and 103, respectively.
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IV. MIRROR THERMODYNAMICS AND BLACK
HOLE ANALOGY

In this section, we would like to study the thermody-
namics of the evaporating BH modeled in Sec. III. We aim
to know if the entropy released by the BH during its
evaporation is less than the one predicted by Bekenstein
and Hawking [1,3].
Eternal BH Hawking radiation has a thermal spectrum,

and the radiation of the BH modeled in Sec. III deviates
from the thermal one. We expect the nonthermal part of the
radiation to contain some information, unavailable other-
wise, about the BH. It is worth pointing out that, with the
mirror model, we cannot find exact results for the thermal-
ity of the spectrum of particles radiated.10 However, the
expressions obtained in the previous section allow a
physically reliable assumption for the nonthermal part of
the flux radiated. The price to be paid is that the final results

are dependent on an unknown index. Nevertheless, we are
able to restrict this parameter to a small range by putting
ourselves in a quasistatic regime.

A. Nonthermality

From Sec. II, the flux of energy radiated by an evapo-
rating black hole, i.e., its power, is given by Eq. (22). When
0 ≤ t ≤ t0, the power radiated is exactly the one predicted
by Hawking, Eq. (6). For this reason, we can suppose
the radiation to be completely thermal in this range of
times. When t0 < t < tev, the radiation deviates from the
Hawking one (6), by

ΔF ¼ F −
1

768πM2
: ð45Þ

By Eq. (22) we have in particular

8<
:

ΔF ¼ 0 for 0 < t ≤ t0

ΔF ¼ 1

192πð1− _M
MtÞ2

�
3 M̈2

M2 t2 þ 2M
…

M t
�
1 − _M

M t
�
− 12 M̈ _M

M2 t
�
þ 1

768πM2

�
_M2

M2 t2 − 2
_M
M t

�
for t > t0

: ð46Þ

We notice that ΔF nullifies whenever _M ¼ 0, whereas
when ΔF ¼ 0 the spectrum turns out to be exactly thermal.
So, the nonthermality of Hawking radiation is expected to
be proportional to ΔF. In particular we state that the BH
power is composed of a thermal contribution Fth and a
nonthermal one Fno−th. We thus have

F ¼ Fth þ Fno−th: ð47Þ

We know that the Hawking flux 1=ð768πM2Þ gives an
exact thermal contribute, so that this term is included in Fth.
However, the possibility that part of ΔF gives a small
thermal contribute cannot be excluded.11 Since the non-
thermality of the spectrum must be proportional to the
deviation from Hawking radiation ΔF, we write

Fno-th ¼ αΔF; ð48Þ

where α ∈ ½0; 1� is an unknown parameter that acts to
quantify how much the deviations from Hawking power are
nonthermal. The thermal part of the radiation (the one
giving the thermal spectrum) is then

Fth ¼
1

768πM2
þ ð1 − αÞΔF: ð49Þ

Thus, without considering the Bogoliubov coefficients to
study the spectra of particles radiated [24], the BH
thermodynamics is then studied considering the above
parameter α, restricted to be close to unity in order to
fulfill the quasistatic regime, as we clarify in the subsection
below.

B. Temperature and entropy of an evaporating BH

Consider the first law of thermodynamics, dE ¼
dQ − dΘ, where Θ is a generic quantity associated with
a loss of energy and not given by heat exchange (indicated
by Q). The rate of heat released in time by the BH can be
associated with the thermal part of the power radiated,
namely

dQ ¼ −Fthdt: ð50Þ

Moreover, in the equilibrium thermodynamics context, the
thermal part of the spectrum is associated with the BH
temperature through the (1þ 1)-dimensional Stefan-
Boltzmann law:

10Indeed, the Bogoliubov coefficient βωω0 [Eq. (12)] gives the
spectrum of the overall particles radiated during the evaporation,
without time dependence. Moreover, Ref. [24] shows that, in the
mirror context, the study of time-dependent particle production
through localized wave packets may give controversies.

11We can imagine the overall spectrum of particles radiated as
the superposition between the thermal one given by 1=ð768πM2Þ
and an unknown contribution given by ΔF. However, the
unknown contribution can modify the thermal spectrum created
by 1=ð768πM2Þ such that another thermal spectrum, with a
different temperature, arises.
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Fth ¼
π

12
T2: ð51Þ

However, the Stefan-Boltzmann law, Eq. (51), and the
temperature holds in the thermodynamics of equilibrium
only, leaving unclear how to define the concept of temper-
ature, i.e., of entropy when those quantities depend upon
time.
To overcome this issue, we follow the standard pro-

cedure of defining a thermodynamic quasistatic approxi-
mation, imposing that, for a short time interval, the
equilibrium is realized only locally. Obviously, the latter
cannot be realized after the critical time, tc, where the mass
suddenly drops.
Hence, we restrict in the interval of times given by

0 < t < tc, where the second time derivatives of the mass
can be neglected, see Fig. 2, and the flux can be approxi-
mated by

F ¼ 1

768πM2

�
1 − 2

_M
M

tþ
_M2

M2
t2
�
: ð52Þ

From Eq. (52), by using Eqs. (47) and (48), we have for the
nonthermal and thermal counterparts, respectively:

Fno-th ¼
α

768πM2

�
−2

_M
M

tþ
_M2

M2
t2
�
; ð53aÞ

Fth ¼
1

768πM2
þ 1 − α

768πM2

�
−2

_M
M

tþ
_M2

M2
t2
�
: ð53bÞ

So, in this range of times, the temperature defined from
the Stefan-Boltzmann law, Eq. (51), is

T ¼ 1

8πM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − αÞ

�
−2

_M
M

tþ
_M2

M2
t2
�s
: ð54Þ

C. Effective temperature

To study nonequilibrium thermodynamics in a quasi-
static regime, we may define an effective temperature, valid
for quite short time intervals, by

TeffðtÞ ¼
1

Δt

Z
tþΔt

t
Tðt0Þdt0; ð55Þ

where T is the temperature defined from the Stefan-
Boltzmann law, Eq. (54).
A plot of Teff is provided in Fig. 5 for different values of

α, close to unity to guarantee the quasistatic regime. To
check whether our quasistatic approximation is suitable, we
compare the effective temperature, Teff , with the equilib-
rium temperature, namely the Bekenstein temperature [1,3]
given by THW ¼ 1

8πM, as prompted in Fig. 5.

To certify the goodness of our hypothesis toward the
quasistatic approximation, the effective temperature can be
easily recast by

Teff ¼ THW þ δT; ð56Þ

reproducing it in terms of a small deviation, globally
vanishing, of the Hawking temperature, that is slightly
significant for small intervals of time. A numerical study of
δT=THW is performed in Table I for different times and for
different α. Since with Teff we want to approximate a
thermodynamic equilibrium situation, Teff should be close
to the equilibrium temperature THW, i.e., δT ≪ THW. As
we can see from Fig. 5 and Table I, this occurs when α is
close to 1, as anticipated above.
Another relevant fact, evident from Fig. 5 and Table I, is

that δT increases as t approaches tc. From Table I, in
particular, we can notice that the quasistatic approximation
turns out to be still acceptable at t ¼ 0.95tc, as long as α is
close to 1. After tc, giving the sudden increasing of the
power radiated, the quasistatic approximation breaks down.

D. Consequences on thermodynamics

Once defined as a quasistatic temperature, we rewrite
the first law of thermodynamics through the following
assumption

0.0 0.5 1.0 1.5 2.0 2.5 3.0

4.0

4.2

4.4

4.6
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5.2

t

Teff

FIG. 5. Plot of the effective temperature of the BH in function
of time [by Eq. (55)] for different values of α. The numbers in the
axes x and y are in powers of 105 and 10−3, respectively. In
particular α ¼ 1 (thick line), α ¼ 0.95 (dashed line), α ¼ 0.9
(dotted line), and α ¼ 0.85 (dot-dashed line). The integration
time Δt was chosen as Δt ¼ 1000.

TABLE I. Values of δT=THW, in percentage, for specific values
of α (indicated in the first column) and for different times t
(indicated in the first row).

α t ¼ 0.25tc t ¼ 0.5tc t ¼ 0.75tc t ¼ 0.95tc

0.95 0.1423% 0.4699% 1.023% 2.820%
0.90 0.3286% 0.9559% 2.096% 5.567%
0.85 0.5146% 1.440% 3.158% 8.245%
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dE ¼ TeffdS − dΘ; ð57Þ

which resembles the usual version of first thermodynamics
principle, but with Teff , which replaces the equilibrium
temperature, as given by Eq. (55) with a corresponding
net entropy,12 say S.
Using Eq. (50) and dQ ¼ TeffdS we obtain an expres-

sion for the rate of entropy loss of the BH as it evaporates:

dS
dt

¼ −
Fth

Teff
: ð58Þ

Integrating the last over a period of time, we obtain the
entropy that the BH loses during this period. In particular,
since the quasistatic thermodynamics approach is not
possible after tc, we study the entropy released by the
BH from its creation t ¼ 0 (corresponding to the massM0)
to tc (corresponding to the mass Mc), namely

SrelðM0∶McÞ ¼ −
Z

tc

0

Pth

Teff
: ð59Þ

To compare the latter with the Bekenstein-Hawking
entropy 4πM2

0, it is useful to write

SrelðM0∶McÞ ¼ βπM2
0: ð60Þ

Taking various values for α, the corresponding findings for
β, obtained from Eq. (60), are shown in Table II. As we can
see from this table, the more the spectrum is nonthermal
(the more is α), the less is the entropy lost by the BH during
the period 0 < t < tc (the less is β).
We can make the reasonable assumption that the entropy

of the particles radiated by the BH is proportional through a
constant, say γ, to the one lost by the BH itself, i.e., dSraddt ¼
−γ dSrel

dt (see, e.g., [49–53] for more information about the
value of γ). In this case, from Table II, we conclude that the
more nonthermal the spectrum the less entropic the BH
radiation.
This result seems to be consistent with the fact that part

of the information swallowed by the BH is retrievable in the

eventual nonthermal part of the radiation, slightly sug-
gesting some resolution of BH information loss.

E. Consequences on entropy

Lastly, we compare the entropies we have computed in
Table II SrelðM0∶McÞ ¼ βπM2

0 with the one released from
an evaporating BH following the evaporation predicted by
Hawking (8), i.e., without considering evaporation effects
on the radiation, until the mass of the BH reaches Mc. The
entropy of such a BH is given by the Bekenstein-Hawking
entropy [3], S ¼ 4πM2. Using the indicative value of Mc
provided in Eq. (30), we obtain

β ¼ SrelðM0∶McÞ
πM2

0

∼ 1.48: ð61Þ

This means that, by considering the same mass evaporated
M0 −Mc, i.e., the same amount of radiation, the Hawking
radiation is more entropic than our findings in Sec. II.
By looking at the expressions (53b) and (53a) for the

thermal and nonthermal parts of the power radiated, respec-
tively, we can explain qualitatively what is the further
information retrievable from a BH in our case, with respect
to the Hawking case. To do so, we summarize our steps here:
(1) First, as we stressed, radiation is not fully thermal.

By considering, for instance, the photon evaporation
[1,49,53], we expect that the radiated photons are no
longer completely unpolarized. So, part of the
information swallowed by the BH could be encoded
in the polarization of the radiated photons. We
confirm this fact by looking at Table II, in which
we show that the more nonthermal the radiation, the
less entropy radiated as stated above. Consequently,
the more the photons are polarized.

(2) Suppose that we retrieve the radiated BH energy
within a finite period of time while knowing its mass
MðtÞ. In Hawking’s case, the observed power
radiated is ð768πM2Þ−1. This contains information
only about the mass MðtÞ, which we are observing.
Hence, as expected, in the Hawking case we do not
retrieve further information by observing Hawking
radiation. Instead, by considering our model, the
power radiated, in its explicit form, using Eq. (28), is
given by

F ¼ 384πM4

t2
−
M
t
−
384πM4

t2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

t
192πM3

r
: ð62Þ

From this expression, by observing the mass of the
BH and its energy radiated, we are able to retrieve
the parameter t, giving the time passed since the BH
started to evaporate. As a consequence, while with-
out evaporation effects on the radiation only the
mass of the BH is retrievable from Hawking radi-
ation, by considering these effects, we are able to

TABLE II. Values of β [indicating the entropy released during
the evaporation from M0 to Mc from Eq. (60)], for different
values of α, indicating the nonthermality of the spectrum, by
Eq. (53b).

α β

0.95 1.098
0.90 1.107
0.85 1.112

12For the sake of clearness, one would require to add a
subscript “eff” to the entropy also. However, we leave S without
any subscripts in order to simplify the notation.
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retrieve the history of the BH mass, i.e., MðtÞ. The
latter implies also the information about Mðt ¼ 0Þ,
i.e., of the mass of the BH once it was created, and
on t, the black hole age. This gives a decrease of the
degrees of freedom of the microstates composing the
BH mass, reducing the entropy as confirmed by
comparing the values in Table II and Eq. (61).

V. OUTLOOKS

We have studied the analogy between moving mirrors
and BHs, with particular attention devoted to the mass
evolution of an evaporating BH in vacuum and to the
corresponding nonequilibrium thermodynamics.
In particular, we adopted mirror analogs to BHs since

these objects provide simplified descriptions of the time-
evolving BH nature, indicating how BHs can evaporate. We
described the mass evolution by means of numerical
solutions obtained in the framework of Carlitz-Willey
trajectory of mirrors. Consequently, we obtained suitable
corrections to Hawking radiation without assuming a
horizon area and/or surface gravity. We showed that these
corrections are related to evaporation and we argued about
possible deviation effects that appeared similar to those
induced by backreaction on the metric, investigated in
previous literature. We inferred (small) corrections to
Hawking radiation, obtained as the BH evaporates, and
we proposed a view of the BH information paradox in light
of our findings. Moreover, in the case of not-fully thermal
radiation, we studied the nonequilibrium thermodynamics

associated with BHs, passing through mirror analogs and
showing, again, how to relate these outcomes to the
information paradox. To do so, we worked out the
hypothesis of quasistatic processes, leading to an approxi-
mate version of the first principle of thermodynamics.
Deviations from Hawking radiation were computed, show-
ing at the same time a decrease of a BH’s lifetime by a
factor ∼3=8. The entropy decrease was interpreted by
assuming that part of information can be retrieved by
BH radiation. Consequences about the role of an effective
temperature, in view of revising the first principle of
thermodynamics, has been discussed critically.
For future perspective, several aspects related to our

work could be developed. One example is the role of
Bogoliubov transformations in the context of mirrors, while
another is the role of thermodynamics. Further applications
of accelerating mirrors as BH analogs with different
trajectory classes could also be pursued.
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