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Gravitational signatures of black hole superradiance are a unique probe of ultralight particles that are
weakly coupled to ordinary matter. The existence of an ultralight boson would lead spinning black holes
with size comparable to the Compton wavelength of the boson to become superradiantly unstable to
forming an oscillating cloud, spinning down the black hole, and radiating gravitational waves in the
process. However, maximizing the chance of observing such signals or, in their absence, placing the
strongest constraints on the existence of such particles, requires accurate theoretical predictions. In this
work, we introduce a new gravitational waveform model, SUPERRAD, that models the dynamics, oscillation
frequency, and gravitational wave signals of these clouds by combining numerical results in the relativistic
regime with fits calibrated to analytical estimates, covering the entire parameter space of ultralight scalar
and vector clouds with the lowest two azimuthal numbers (m ¼ 1 and 2). We present new calculations of
the gravitational wave frequency evolution as the boson cloud dissipates, including using fully general-
relativistic methods to quantify the error in more approximate treatments. Finally, as a first application, we
assess the viability of conducting follow-up gravitational wave searches for ultralight vector clouds around
massive black hole binary merger remnants. We show that LISA may be able to probe vector masses in the
range from 1 × 10−16 to 6 × 10−16 eV using follow-up gravitational wave searches.
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I. INTRODUCTION

The advent of gravitational wave (GW) astronomy has
brought a powerful tool to probe new physics in regimes
that have been inaccessible to previous experiments.
Illusive, weakly coupled ultralight bosons beyond the
Standard Model of particle physics have been conjectured
to solve various problems in high energy physics and
cosmology. However, terrestrial experiments require suffi-
ciently strong coupling to the Standard Model for a direct
detection. Therefore, gravitational signatures, which
assume only that these ultralight particles gravitate, are
ideal for efficiently probing the weak-coupling parameter
space inaccessible to other observational efforts. Namely,
black hole (BH) superradiance provides a purely gravita-
tional mechanism through which ultralight bosonic par-
ticles extract rotational energy from spinning BHs with
observable consequences.
Bosonic waves whose frequencies satisfy the super-

radiance condition are amplified when scattering off a
rotating BH [1,2], extracting rotational energy in a type of
Penrose process [3]. If the underlying bosonic particle is

massive, there is an instability associated with superra-
diance, leading to the formation of exponentially growing,
oscillating bound states—superradiant clouds—around
the BH. Assuming self-interactions and couplings to other
matter are sufficiently weak, the instability saturates gravi-
tationally as the BH loses energy and angular momentum,
and is spun down. At this point, the system transitions from
an exponentially growing phase to a phase characterized by
quasimonochromatic GW emission which causes the cloud
to slowly dissipate. Therefore, the presence of the super-
radiant cloud leaves observational signatures in the BH spin
distribution and the GW emission.
This observational window allows us to probe various

well-motivated extensions to the Standard Model [4].
For scalar bosons, the QCD axion (solving the strong
CP problem), axion dark matter (solving the dark matter
problem), and various quantum gravity motivated axionlike
particles, are ultralight candidates capable of forming
superradiant clouds [4–10]. The dark photon is a viable
candidate to make up a significant fraction of the dark
matter, or could emerge in the low-energy limits of
quantum gravity [11,12]. Ultralight spin-2 fields are a
possible modification of general relativity [13]. Hence,
a wide variety of models could be constrained, or
discovered via this observational window; addressing

*nsiemonsen@perimeterinstitute.ca
†weast@perimeterinstitute.ca

PHYSICAL REVIEW D 107, 104003 (2023)

2470-0010=2023=107(10)=104003(22) 104003-1 © 2023 American Physical Society

https://orcid.org/0000-0001-5664-3521
https://orcid.org/0000-0002-4237-3134
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.104003&domain=pdf&date_stamp=2023-05-01
https://doi.org/10.1103/PhysRevD.107.104003
https://doi.org/10.1103/PhysRevD.107.104003
https://doi.org/10.1103/PhysRevD.107.104003
https://doi.org/10.1103/PhysRevD.107.104003


fundamental questions in particle physics, cosmology, and
high energy physics.
To leverage the observational potential of ground- and

space-based GW detectors, accurate predictions for the
involved spin-down timescales, as well as GW frequency
and amplitudes, are required. Much effort has gone into
determining these for scalar bosons [14–23], vector bosons
[24–32], and spin-2 fields [33,34] (seeRef. [35] for a review).
Scalar bosons exhibit the longest spin-down timescales, as
well asweakest and longestGWsignal after cloud formation.
Vector bosons, on the other hand, are amplified more
efficiently, leading to faster cloud growth rates and stronger,
but hence shorter, GW emissions. In modified theories of
gravity, massive spin-2 fields grow the fastest around BHs.
Using these results, various search strategies have been

employed to constrain parts of the ultralight boson param-
eter space. Electromagnetic spin measurements of stellar
mass and supermassive BHs [36–38] have been used to
disfavor ultralight scalars [20,27,39,40] and vectors [28] in
certain mass ranges. Similarly, measurements of spins of
the constituents of inspiraling binary BHs [41–43] and BH
population properties were used in Refs. [44–46] to exclude
a small scalar mass range. Stochastic GW searches from a
population of BH-cloud systems were used to constrain the
scalar [39,47,48] and vector [49] masses, while various
directed and blind continuous GW search techniques lead
to constraints [50–57]. The presence of a cloud around a
constituent BH within a binary could also affect the inspiral
dynamics, leaving observable signatures in the emitted
GW waveform [31,58–60].
The methods used to determine the observable conse-

quences of superradiance for a given BH of mass M are
classified by their regime of validity for the dimensionless
gravitational fine structure constant,

α ≈ 0.075

�
M

10M⊙

��
M

10−12 eV

�
; ð1Þ

where M is the mass of the ultralight particle. Analytic
techniques are most accurate for α ≪ 1, the regime where
the boson cloud is farther away from the BH and can be
treated nonrelativistically. However, numerical approaches
are required for systems with α ∼Oð1Þ, where the cloud
sits close to the BH, and relativistic effects are important.
Analytic estimates have been pushed to high orders in an
expansion around small α, while numerical techniques have
been refined to include large parts of the parameter space.
Despite this progress, and the significant impact of gravi-
tational probes, most gravitational and electromagnetic
wave search campaigns for signatures of BH superradiance
have employed lower-order, potentially inaccurate, predic-
tions, leaving the most favorable parts of the parameter
space unexplored.
Here, we introduce SUPERRAD, an open source

BH superradiance waveform model incorporating

state-of-the-art theoretical predictions for BH spin-down
and GW observables across the entire relevant parameter
space in a simple, ready-to-use PYTHON package.1 A
primary goal is to provide a tool to efficiently and
accurately interpret GW search results of current and future
ground- and space-based GW observatories. As part of
this work, we present new calculations of the frequency
evolution of the boson cloud oscillations and attendant
GWs due to the changing mass of the boson cloud. We
compare the analytic frequency evolution in the nonrela-
tivistic limit to both approximate quasirelativistic calcu-
lations, as well as fully general-relativistic ones, to
determine their accuracy in the relativistic regime.
As a first application, we use SUPERRAD to show that

the Laser Interferometer Space Antenna (LISA) should in
principle be able to probe ultralight boson masses from
1 × 10−16 to6 × 10−16 eVbyperforming follow-up searches
for GWs from boson clouds arising around the remnants of
massive BH binary mergers. Such follow-up searches have
been previously discussed in the context of stellar mass BH
mergers [53,61,62], and are especially promising because
the observation of the binary BH merger waveform gives
definitive information on the properties of the remnant BH,
allowing one to place constraints in the absence of a signal
without further assumptions. By contrast, other search
methods outlined above rely on further assumptions and
are subject to various uncertainties: electromagnetic spin
measurements are contingent on astrophysical uncertainties
and may be invalidated by weak couplings of the ultralight
boson to the Standard Model [63], spin measurements of
constituents of inspiraling binary BHs have large statistical
uncertainties, and constraints based on blind continuous
waves and stochastic gravitational wave background
searches rely on BH population assumptions.
We begin in Sec. II by providing a broad overview over

the expected GW signals from BH superradiance of scalar
and vector clouds. In Sec. III, we discuss in detail how
SUPERRAD determines the cloud’s oscillation frequency and
the superradiance instability timescales. Furthermore, we
analyze the frequency shift due to the finite self-gravity of the
cloud around the BH in Sec. IV using Newtonian, quasir-
elativistic, and fully relativistic approaches. The GWampli-
tude andwaveform is discussed in Sec. V. Following this, we
outline the linear evolution of the cloud as well as the
accompanying GW signature in Sec. VI, and close with the
application of SUPERRAD to analyze the prospects of follow-
up searches with LISA in Sec. VII. We useG ¼ c ¼ 1 units
throughout.

II. OVERVIEW AND EXAMPLE

We begin with an example to illustrate the expected GW
signal from superradiant clouds, and give an overview of

1This is available at https://www.bitbucket.org/weast/superrad.
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the different effects that go into calculating it. We consider
parameters consistent with the remnant from a GW150914-
like binary BHmerger. In particular, we consider a BH with
mass M ¼ 62M⊙ and dimensionless spin2 a� ¼ 0.67 at a
distance of 410 Mpc [64] and determine the resulting GW
signal if there were an ultralight boson—scalar or vector—
with mass M ¼ 3.6 × 10−13 eV (hence α ≈ 0.17). For
simplicity, here we assume the angular momentum points
in the direction of the observer—hence both GW polar-
izations are equal—and ignore redshift effects. The GW
strain and frequency calculated with SUPERRAD for both the
scalar boson case and the vector case are shown in Fig. 1.
There are a number of different parts that go into these

calculations. First, one determines the superradiant insta-
bility timescale by solving for the fastest growing mode of
the massive scalar or vector equations of motion on the BH
spacetime as described in Sec. III. This gives the timescale
over which the boson cloud mass, and hence the GW
amplitude, grows exponentially in time. From Fig. 1, it can
be seen that the e-folding time of the cloud mass (half
the e-folding time of the field τI) is much slower for the
scalar case (τI=2–10 days) compared to the vector case
(τI=2 ∼ 3 minutes). Taking into account the resulting
decrease in the mass and spin of the BH as the boson
cloud grows, as described in Sec. VI, the instability
timescale becomes longer and longer as the horizon
frequency of the BH approaches the oscillation frequency
of the cloud. As the instability saturates, and the cloud mass
reaches its maximum value, the dissipation of the cloud
through gravitational radiation becomes dominant, leading
to a slow decrease in cloud mass. The rate at which energy
is lost through gravitational radiation PGW, as well as
the two strain polarizations hþ and h×, are calculated by
solving for linearized metric perturbations on the BH
spacetime, sourced by the oscillating cloud solution, as
described in Sec. V. As can be seen in Fig. 1, in the scalar
case the decay of GW amplitude is negligible on any
reasonable observing timescale, taking on the order of
104 years, while in the vector case, the cloud mass and GW
amplitude decrease on timescales of days.
The gravitational frequency shown in Fig. 1 exhibits an

increase or “chirp” in frequency, first as the BH loses mass
and the cloud grows exponentially, and then more slowly as
the boson cloud dissipates. Calculating this frequency shift
requires accounting for the self-gravity of the boson cloud,
which slightly redshifts the oscillation frequency of the
cloud, and hence the gravitational waves (which have twice
the frequency of the cloud oscillations), as described in
Sec. IV. Though the change in frequency is small, because
the GW signal persists for many cycles, this is still an
important effect.

III. CLOUD PROPERTIES

In this section,we outline the superradiant cloudproperties
relevant for observational signatures such as BH spin-down
or GW emission. This includes a brief discussion of how
estimates for the superradiant instability timescale τI and the
emitted GW frequency fGW are obtained for different values
of the BH mass, spin, and the gravitational fine structure
constant α. We defer the analysis of the dependency of the
cloud frequency on cloud mass, and the cloud dynamics to
Secs. IV and VI, respectively. SUPERRAD combines analytic
and numerical predictions, valid for α ≪ 1 and α ∼Oð1Þ,
and utilizes numerically calibrated higher-order expansions
to interpolate between the two regimes.
In most of the following calculations, we assume a fixed

Kerr BH spacetime gμν, and consider scalar and vector

FIG. 1. The GW strain h and frequency fGW as a function of
time for a BH with M ¼ 62M⊙ and a� ¼ 0.67 at a distance of
410 Mpc subject to the superradiant instability of a boson with
mass 3.6 × 10−13 eV. The top set of panels shows the scalar
boson case, while the bottom set shows the vector case. Note the
difference in timescales shown, since in the scalar (vector) case
the cloud grows on timescales of ∼5 years (9 hours) and decays
through GW radiation on timescales of ∼9000 years (1 day).
Time is measured since the BH was formed, assuming the cloud
started as a single boson.

2The dimensionless spin is defined by the ratio of angular
momentum J to the mass square of the BH: a� ¼ J=M2.
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bosonic fields, as well as linear metric (GW) perturbations
on this background. The exception to this is the calculation
of the frequency shift due to the self-gravity of the boson
cloud. We will discuss the validity of this assumption
further in Secs. V B and IV. Furthermore, we neglect field
self-interactions and nonminimal couplings to the Standard
Model throughout, which have been investigated in
Refs. [65–70]. Depending on the coupling strength, these
can alter the superradiance dynamics. However, here we
assume that we are in the weak coupling limit, which
reduces to the purely gravitational case. Therefore, the
relevant field equations to solve in order to obtain the
desired observables are the scalar and vector massive wave
equations on the spacetime gμν, which are given by

ð□g − μ2SÞΦ ¼ 0; ∇μFμν ¼ μ2VA
ν; ð2Þ

whereMS ¼ ℏμS andMV ¼ ℏμV are the scalar and vector
boson masses, respectively. Because of various symmetries
of the Kerr spacetime, solutions to the field equations (2)
can be written in the form

Aμ;Φ ∼ e−iðωt−mφÞ; ð3Þ

where we introduced the azimuthal mode number m and
complex frequency ω. Here, and in the following, we refer
to the Boyer-Lindquist time, radius, polar and azimuthal
coordinate as t, r, θ, and φ. Without loss of generality, we
assume the azimuthal index to satisfy m ≥ 0 throughout.
Lastly, we label all quantities defined both for scalar and
vector fields with σ ∈ fS; Vg. The fields Aμ and Φ are
susceptible to the superradiance instability, if the super-
radiance condition,

0 < ωR < mΩH; ð4Þ

is satisfied, where ΩH is the horizon frequency of the BH.
In the ansatz (3), the frequencyω ¼ ωR þ iωI encodes both
the oscillation frequency of the cloud, which is half of the
characteristic GW frequency fGW ¼ 2ωR=ð2πÞ (up to self-
gravity corrections), and the instability growth timescale
τI ¼ 1=ωI. For fixed mode number mσ, these observables
(in units ofM) depend only on α and spin a�, i.e., ωðα; a�Þ.
In what follows, we begin by outlining SUPERRAD’S

coverage of the ðα; a�Þ parameter space in Sec. III A, and
then we illustrate how analytic and numerical results are
used to calibrate SUPERRAD in the intermediate regime in
Secs. III B and III C.

A. Parameter space

In Fig. 2, we show the parameter space for the mV ¼ 1
massive vector as an illustrative example. For a given
quantity qðα; a�Þ ∈ fωR;ωI; ∂tωRg (in units of M), we
numerically calculate its value in the relativistic regime, but
for computational reasons, do not extend our calculations

deep into the small-α regime. We want to match to analytic
results qN that are valid only in the Newtonian limit, when
α ≪ 1. We do this by dividing the parameter space in
ðα; a�Þ into two regions. In the relativistic regime, labeled
Dint, we merely interpolate between the numerically
computed points using the interpolation polynomial
IRðα; a�Þ. In the regime where α is smaller, labeled Dfit,
we use a subset of the numerical results in Dint (corre-
sponding to the red points in Fig. 2) and fit the difference
between these results and the analytic ones in a way that is
guaranteed to recover the latter at sufficiently small α. That
is, we let

qðα; a�Þ ¼
�
qNðα; a�Þ þ gðα; a�Þ; ðα; a�Þ ∈ Dfit;

IRðα; a�Þ; ðα; a�Þ ∈ Dint:
ð5Þ

where g is a fitting function chosen to give qNðα; a�Þ þ
gðα; a�Þ → qNðα; a�Þ as α → 0. The specific choices ofDfit
and Dint depend on the field and azimuthal mode in
question, and are determined by the accuracy of the
underlying methods (these are defined in Appendix C).
Note also that we are only interested in the part of the
parameter space where ωR ≤ mσΩH, since outside this
range the cloud will be exponentially decaying through
absorption by the BH.

FIG. 2. The parameter space of the superradiant mV ¼ 1 vector
mode. It is made up of relativistic regime Dint, where SUPERRAD

employs interpolation functions based on the numerical data
(labeled ND) to determine a given quantity qðα; a�Þ and a lower α
region Dfit, where numerical calibration is necessary to augment
the expressions valid in the Newtonian limit α → 0 (indicated by
a red line). For illustration purposes, we show only 402 of the
3202 data points used in SUPERRAD. The gray dashed line marks
the saturation point of the superradiance instability, i.e.,
ωR ¼ ΩHða�Þ. In this case, the red data points are used for
calibration in Dfit.
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In the relativistic part of the parameter spaceDint, a set of
3202 waveforms are generated for the azimuthal modes
mσ ¼ 1 and 2, and for both the scalar and the vector case.
The grid of waveforms is uniformly spaced in the coor-
dinates ðy; a�Þ, with y ∈ ½0; 1�, defined by

y ¼ α − α0
α1 − α0

; ð6Þ

where αmσ¼1
0 ¼ 0.05 and αmσ¼2

0 ¼ 0.25, while α1 is the
solution to

βα1

�
1 −

α21
2n2σ

�
¼ mσMΩHða�Þ; ð7Þ

with β ¼ 0.9, and nσ is the cloud’s principle number
defined below in (10). This choice of α1 is made so as
to guarantee that y ¼ 1 lies outside the superradiant regime,
and thus that the saturated state ωR ¼ mσΩH lies within the
grid. The boundary y ¼ 1 corresponds to the large-α
boundary of the numerical data in Fig. 2, beyond the
superradiant saturation.

B. Oscillation frequencies

The real part of the superradiantly unstable field’s
frequency determines the cloud’s oscillation about the BH,

Aμ;Φ ∼ cosðωRtÞ; ð8Þ

and also sets the characteristic GW frequency fGW ¼ ωR=π
(up to self-gravity corrections). Because of the BH’s
gravitational potential, a bound massive particle has a
frequency ωR < μ. Expanding (2) to leading order in α
yields a Schrödinger-type equation with potential U ∼ α=r,
at a radius r away from the BH. In this regime, the solutions
are simple hydrogenlike bound states for scalar and vector
fields [16,26]. The scalar states are characterized by their
angular momentum quantum number lS, as well as
azimuthal mode number −lS ≤ mS ≤ lS and radial node
number n̂S ≥ 0, while the vector states are identified by an
analogous definition of radial node number n̂V ≥ 0, angular
momentum number lV and azimuthal indexmV , in addition
to the polarization state Ŝ ∈ f−1; 0; 1g. With this, the
oscillation frequencies of the scalar and vector clouds
are, in the nonrelativistic limit,

ωR ¼ μ

�
1 −

α2

2n2σ
þ Cσ½α�

�
; ð9Þ

whereCσ½α� includes higher order corrections. In particular,
we include terms of up to Oðα5Þ, obtained by keeping
subleading contributions in α when solving (2) [31], with
the full expressions for Cσ given in Appendix B [in
particular (B2) and (B9)]. The state label nσ depends on
the intrinsic spin of the field and is given by

nS ¼ lS þ 1þ n̂S; nV ¼ mV þ n̂V þ Ŝþ 1: ð10Þ

Notice, in the case of the scalar field, we follow the
conventions of Ref. [31], while in the vector case, we
follow Ref. [71]. In the language of the previous section,
the expressions (9) are the Newtonian estimates qNðα; a�Þ.
We numerically estimate ωR using the methods dis-

cussed in Appendix B, without assuming an expansion in
small α. These estimates are calculated for mσ ∈ f1; 2g for
both scalar and vector fields. Here, we simply summarize
that our numerical methods are more accurate and precise
than the analytic estimates everywhere in Dint. The wave-
form model provides accurate values for ωR in Dfit using a
fit to the numerical results. We perform this fit using the
ansatz

ωR

μ
− 1þ α2

2n2σ
− Cσ½α� ¼

X
q;p

αpâp;qð1 − a2�Þq=2; ð11Þ

with appropriately chosen ranges for p and q, to the
numerical data in a subset of Dint (see Appendix C for
details). The right-hand side of (11) corresponds to
gðα; a�Þ, defined in the previous section. This ansatz
explicitly assumes the analytic estimates in the α ≪ 1
regime. Within SUPERRAD, we combine all three of these
ingredients as described in (5) to determine ωR in the
parameter space. Therefore, we ensure that SUPERRAD

provides the most accurate and precise estimate for
frequencies of a given superradiant bosonic field around
a fixed Kerr BH background across the entire parameter
space. The correction of these frequency estimates due to

FIG. 3. The relative difference DR, between the prediction for
ωR provided by SUPERRAD, and purely analytical nonrelativistic
estimates given in (9) together with (B2) and (B9). Dotted lines
indicate the Dint region in SUPERRAD. We focus on a few
representative cases.
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the self-gravity of the superradiant cloud is discussed
in Sec. IV.
In Fig. 3, we compare the available analytic estimates,

given in (9) [together with (B2) and (B9)], with those
provided by SUPERRAD. As expected, the relative difference
between the analytic estimates and SUPERRAD’s decay as∼α6
[the order of the leading-in-α unknown coefficient in the
expansion of (9)] in theNewtonian regime. For large spinsa�
and large α, i.e., in the relativistic regime, the analytic
estimates have relative errors up to DRðωRÞ≲ 10−2. In
comparison to the vector results, the analytic estimates for
ωS
R are more accurate in the most relativistic regime.

C. Instability timescales

The imaginary part of the frequency ωI sets the super-
radiant instability timescale τI ¼ 1=ωI of the bosonic cloud,

Aμ;Φ ∼ eωI t: ð12Þ

In the nonrelativistic limit α → 0, the cloud sits far away
from the BH and the flux across the horizon, and hence the
instability growth rate, tends towards zero. For small, but
nonzero α, the rates scale with a characteristic power κ, i.e.,
ωIM ∼ ακ. This scaling depends on the type of field (scalar
or vector) and the mode considered. Furthermore, at
saturation, i.e., when ωR ¼ mσΩH, the ultralight particles
cease extracting rotational energy from the BH, such that the
growth rate vanishes. Combining these two limits, the
general behavior of the instability growth rates for both
the scalar and the vector cases is

ωIM ¼ ακðωR −mσΩHÞ2rþGσða�; αÞ: ð13Þ

Here, Gσða�; αÞ is a function of the BH spin, as well as α,
and determines the leading order and subdominant-in-α
contributions to ωI . The scaling powers κ, for scalar and
vector fields, are [16,25]

κS ¼ 4mS þ 5; κV ¼ 4mV þ 2Ŝþ 5; ð14Þ

for the fastest growing configurations,3 and depend on the
azimuthal index mσ and the vector polarization state Ŝ.
The leading order contributions in the scalar case [16] and
the vector case [24,26,28,31] to Gσða�; αÞ that we use are
given in Appendix B [in particular (B4) and (B12),
respectively]. These are Newtonian estimates that we
use [qNðα; a�Þ in the language of Sec. III A] for the
imaginary frequency.
Similarly to the previous section, we utilize numerical

techniques to obtain accurate predictions for ωI in the
relativistic regimeDint of the parameter space. The methods
and their accuracy are outlined in Appendix B. Here, we

simply note again that the numerical predictions are more
accurate than the analytic Newtonian expressions every-
where in Dint. Similar to the real part of the cloud’s
frequency, the analytic results obtained in the Newtonian
limit are connected with the numerical estimates in the
α ∼ 1 regime by fitting4 the ansatz,

ωIMα−κG−1
σ ða�; αÞ

2rþðωR −mσΩHÞ
− 1

¼
X
p;q

αp
�
b̂p;qa

qþ1
� þ ĉp;qð1 − a2�Þq=2

�
; ð15Þ

with appropriately chosen ranges for p and q, to the
numerical data obtained in Dint (see Appendix C for
details). The right-hand side of (15) serves as gðα; a�Þ in
the construction (5) for ωI. Analogously to the oscillation
frequency, with this construction we ensure SUPERRAD

provides the most accurate and precise estimates for the
superradiance growth rate ωI everywhere in the cloud’s
parameter space.
In Fig. 4, we illustrate the relative differences between

the analytic estimates using only (13) together with (B4)
and (B12), and the estimates provided by SUPERRAD. In the
Newtonian regime, the relative difference approaches zero,
while in the relativistic regime, the relative error in the
analytic estimates becomes DRðωIÞ ∼Oð1Þ in both the
scalar and the vector cases. Hence, using nonrelativistic
analytic estimates in the relativistic regime can lead to large
systematic uncertainties in the instability rate. We indicate

FIG. 4. The relative difference DR between the prediction for
ωI provided by SUPERRAD, and purely analytical nonrelativistic
estimates given in (13) together with (B4) and (B12). Dashed
lines indicate the Dint region in SUPERRAD. We show the same
representative cases as in Fig. 3.

3Notice, in the relativistic regime, it is nontrivial to identify the
most unstable mode. 4Notice a typo in Eq. (A.2) of [32]; it is fixed by Cm → 2Cmrþ.
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the leading-in-α scaling of the difference for eachmσ . An ∼
α1 scaling is expected in principle for both mσ ¼ 1 and
mσ ¼ 2, however, due to our choices of p and q in (15) (see
also Appendix C), the leading power is> 1 for α ≪ 1 in the
mσ ¼ 2 case. For α≳ 0.1, the scaling decreases to the
expected ∼α1.

IV. FREQUENCY SHIFT

So far, we have considered calculations that assume the
bosonic field can be treated as a test field on a Kerr
background. Even for cases where the boson cloud mass
reaches Mc ∼ 0.1M, treating the spacetime as Kerr, with
quasiadiabtically changing parameters, gives a good
approximation to the nonlinear treatment [30,72].
However, in this section, we address the effect of the self-
gravity of the cloud, focusing in particular on how it causes
the characteristic increase in frequency of the cloud oscil-
lation, and hence the frequency of the emitted GW radiation.
Though the cloud-mass induced shift in the frequency is
small, it will change as the cloud slowly dissipates through
gravitational radiation, affecting how long theGWsignal can
be coherently integrated without taking this effect into
account. Quantitatively estimating the contribution to the
frequency from the finite cloud mass

ΔωðMcÞ ¼ ωðMcÞ − ωðMc ¼ 0Þ ð16Þ

(whichwewill assume to be real) is the subject of this section.
We employ aNewtonian approach, recovering and extending
known results in the literature.We then compare these results
in the scalar case to a fully nonlinear approach using
synchronized complex fields around BHs.

A. Newtonian approach

The Newtonian approach, utilized to estimate the cloud
mass correction to the frequency in Refs. [28,53,67],
exploits the fact that in the nonrelativistic limit, the energy
density5 ρ is spread out over large scales away from the BH,
minimizing curvature effects. In this limit, the cloud itself
sources a Newtonian gravitational potential Ψ, which
follows the Poisson equation:

ΔflatΨ ¼ 4πρ; ΨðrÞ ¼ −
Z

d3r0
ρðr0Þ
jr − r0j : ð17Þ

Here, the coordinates r can be identified with spatial slices
of Kerr, where gauge ambiguities disappear in the α ≪ 1

limit. Furthermore, while one might choose d3r0 ¼ ffiffiffi
γ

p
d3x0,

with the determinant of the metric of a spatial slice of Kerr,

a priori this is not more consistent than simply setting
γ → γflat, which is our choice. In this weak-field limit, the
scalar wave equation (2) is given by

ðω − μSÞΦðrÞ ≈
�
−
∇2

2μS
−
μSM
r

þ μSΨ
�
ΦðrÞ; ð18Þ

with r ¼ jrj. Taking the usual approximation that the shift
in frequency at leading order in α is given by evaluating the
perturbed operator on the unperturbed eigenfunction, the
self-gravity of a cloud with mass Mc ¼

R
d3rρðrÞ contrib-

utes a shift in frequency of

Δω
Mc

μ
≈
Z

d3rρΨ

¼ 2

Z
d3r

Z
jr0j<jrj

d3r0
ρðrÞρðr0Þ
jr − r0j ¼ 2W: ð19Þ

We used the nonrelativistic approximation that ρ ≈ μ2jϕj2,
and in the last line introduced the total potential energy W
in the cloud. We note that this factor of 2 (from restricting
the inner integral) is missing from some references [28,53],
but included in Ref. [67]. An equivalent derivation gives the
same expression (19) in the vector case as well.
We can further simplify the frequency shift calculation

by considering a low multipole approximation. The denom-
inator of (19) can be expanded in terms of spherical
harmonics YlmðΩÞ, where ðΩÞ ¼ ðθ;φÞ describes the
angular dependence, as

1

jr − r0j ¼
X∞
l¼0

Xl
m¼−l

r0l

rlþ1

4π

2lþ 1
YlmðΩÞȲlmðΩ0Þ; ð20Þ

assuming jr0j < jrj. If we keep only the monopolar, i.e., the
l ¼ 0, component of the density, which we can write
in terms of the radial mass function mcðrÞ ¼R
dΩ0 R r

0 dr
0r02ρðr0Þ, then (19) simplifies to

Δω ¼ −
2μ

Mc

Z
d3r

mcðjrjÞρðrÞ
jrj : ð21Þ

In general, there are nonvanishing higher order multi-
poles due to the nontrivial azimuthal and polar dependen-
cies of the cloud’s energy densities that are neglected
above. However, for themS ¼ 1, the error in the calculation
ofW associated with making this monopole approximation,
as opposed to considering higher multipole corrections, is
≈2% at leading order in α.6 In the mV ¼ 1 case, all higher-
order multipolar contributions are subleading in α, since the
Newtonian energy density is spherically symmetric. While
the cloud states with larger azimuthal number have strong5In a spacetime, like Kerr, with asymptotically timelike Killing

field ξμ and time-slice normal vector nμ, the energy density is
defined as ρ ¼ nαξβTαβ through the scalar or vector field’s
energy-momentum tensor Tαβ.

6At leading order in α, only the quadrupole l ¼ 2 contributes
nontrivially.
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polar dependencies, the corrections from high-order multi-
poles is moderate. For the mV ¼ 2 state, the quadrupolar
contribution is ≈2% of the monopolar piece, at leading
order in α. The frequency shift Δω is then calculated for
different modes of the nonrelativistic solutions to (18) for
scalar clouds, and for corresponding nonrelativistic vector
cloud solutions. Expressions for Δω, valid for any azimu-
thal index mσ, as well as a table listing the first few values,
are given in (D1) and in Table I, respectively.

B. Quasirelativistic

These analytic expressions (D1) are accurate in the
Newtonian limit, i.e., α ≪ 1. Here, we extend the validity
to the α ∼Oð1Þ regime, with the caveat that a more
accurate nonlinear treatment, discussed in the next section,
is ultimately necessary. Within SUPERRAD, we compute the
frequency shift in the relativistic regime Dint in a quasir-
elativistic approximation, as in Ref. [32]. We take the
relativistic field configurations (derived in Appendix B) in
Boyer-Lindquist coordinates and use them to compute the
energy density ρ, which we then use to compute the
frequency shift Δω using the monopolar Newtonian
expression (21). This approach explicitly assumes a linear
dependence of the frequency shift on the cloud mass:
Δω ∼Mc. Given these quasirelativistic results in the
relativistic regime of the parameter space, we follow the
approach taken in Secs. III B and III C, to calibrate a fit that
assumes the analytic expressions (D1) against the quasir-
elativistic results in Dint. The fit ansatz is

M2Δω
−α3Mc

þ Fσ ¼
X
p≥1

αpd̂σp; ð22Þ

where Fσ contains the leading-in-α contribution, computed
above and explicitly given in Appendix D.
As a figure of merit for comparing how relevant this will

be in GW observations of boson clouds, we can calculate
the extra accumulated phase shift due to the frequency drift,
using that ωGW ¼ 2ωR,

ΔϕGW ¼ 2

Z
tmaxþτ

tmax

½ωRðtÞ − ωRðtmaxÞ�dt; ð23Þ

where tmax is the time the cloud mass is at its maximum. We
show this for the scalar and vector case in Fig. 5, taking the
total time τ ¼ minðτGW; 1 yrÞ to be either the characteristic
time over which the GW signal decays τGW, or one year,
when τGW > 1 yr (assuming a 50M⊙ BH). From the figure,
we can see that ΔϕGW ≫ 1 across the parameter space,
except for the scalar case when α≲ 0.1. Thus, properly
accounting for this frequency shift is important to be able to
coherently integrate the GW signal. The diverging behavior
of the τ ¼ τGW curves in Fig. 5 at low α is due to the steeper
α scaling of the GW timescales compared with the
frequency shift’s scaling.

C. Comparison to fully relativistic approach

To gauge the error in the quasirelativistic frequency
shifts described above, we compare them to numerically
constructed, fully relativistic solutions. Following Herdeiro
and Radu [73], we construct stationary and axisymmetric
spacetime solutions to the full Einstein-Klein-Gordon field
equations consisting of a massive complex scalar field
cloud with Φ ∼ eimSϕ−iωRt around a BH, satisfying the
synchronization condition ωR ¼ mSΩH. These can be
thought of as oscillation (or, equivalently, azimuthal angle)
averaged versions of the scalar cloud solutions. By calcu-
lating how the frequency of the solution changes withMc at
fixedM and α, we can obtain a fully relativistic estimate for
the frequency shift Δω. The frequency shift is the part of
the real frequency that is dependent on the boson cloud
mass, ωðMcÞ ¼ ωðMc ¼ 0Þ þ ΔωðMcÞ. For the values of
cloud mass relevant to superradiance, Δω is, to a good
approximation linear in Mc, as expected from the non-
relativistic results above. Therefore, here we compute a
numerical estimate of ∂ω=∂Mc at Mc ¼ 0 and fixed α
(which is ≈Δω=Mc, to within ∼1% for Mc < 0.04M). In
Fig. 6, we show how this compares, for mS ¼ 1, to the
nonrelativistic and quasirelativistic results for the frequency
shift. From there it can be seen that the quasirelativistic
estimate used by SUPERRAD is slightly more accurate than
the nonrelativistic expressions, but still noticeably under-
estimates the frequency decrease, by ≈32%, for α ¼ 0.4.
For small α, all three calculations give similar results, as
expected. In particular, for α < 0.15, the difference in the
quasirelativistic versus the fully relativistic calculation
is < 7%.

FIG. 5. The additional accumulated GW phase ΔϕGW due to
the increase in frequency as the boson cloud mass decreases
[defined in (23)] for scalar (blue curves) and vector (orange
curves) bosons. This phase is calculated beginning from when the
cloud mass is maximum for a duration of τGW (solid curves) and
for one year (when τGW > 1 yr; dotted curves). We assume a BH
with M ¼ 50M⊙ and a� ¼ 0.99.
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We plan to include the fully relativistic frequency
corrections in a future version of SUPERRAD, and we defer
details on constructing the BH-complex boson cloud
solutions, as well as the massive vector case (where we
expect comparable, if somewhat larger, relativistic correc-
tions) to upcoming work [74]. We note that with such
relativistic solutions, there is still theoretical error associ-
ated with taking a complex instead of real field (and hence
axisymmetric spacetime). However, we can estimate this by
comparingΔω calculated from (19) using the axisymmetric
energy density calculated from the complex scalar field
solution, to the same quantity calculated from just taking
the real part, scaled to give the same energyΦ →

ffiffiffi
2

p
Re½Φ�.

We find the relative difference to be 5 × 10−5, indicating
the theoretical error in the frequency shift should be
< 0.01% for these relativistic results.

V. GRAVITATIONAL WAVES

In the previous sections, we focused primarily on the
conservative sector, neglecting GW dissipation from the
system. In what follows, we outline the computation of
the GW strain from the oscillating boson cloud in the
source frame. The general procedure is to consider super-
radiant solutions to the field equations (2) as sources for the
linearized Einstein equations. These source linear metric
perturbations around the BH, which then propagate on an
(approximately) fixed Kerr spacetime towards the observer.
Analogous to the approach outlined in Sec. III, we use

numerical calculations of the emitted GWs that are valid in
the relativistic regime, and combine those with input from
analytic calculations that are valid in the Newtonian regime,
α ≪ 1, to cover the entire parameter space. In contrast,
however, to the quantities calculated in Sec. III, in several
cases only the leading order scaling of the GW power and
strain with α is known, while the coefficient can be fixed
accurately only with numerical methods.
In the following, we begin by outlining the conventions

used in the literature and in SUPERRAD in Sec. VA. We then
discuss the emitted GW energy flux and the polarization
waveform, as well as the GW modes in the source frame in
Sec. V B.

A. Conventions

At a large distance r away from the source, the GWs in
the source frame are captured by the polarization waveform

h ¼ hþ − ih× ¼ A
r
e−iϕGWðtÞψðθÞeimGWφ: ð24Þ

The GW frequency is just twice the cloud oscillation
frequency, hence

ϕGWðtÞ ¼ 2

Z
ωRðtÞdt: ð25Þ

As discussed in Sec. IV, the frequency will change over time
as the cloud first grows exponentially, and then decays
through GW dissipation. The azimuthal dependence is fixed
exactly by that of the cloud in question: jmGWj ¼ 2mσ ,
whereas the polar contribution ψðθÞ is dominated by the
lGW ¼ mGW spin-(−2)-weighted spherical harmonic mode,
except in the relativistic regime of the parameter space. The
overall amplitudeA of the signal scales with a leading power
in the gravitational fine structure constant of the system:
A ∼ αq. This amplitude is approximately independent of BH
spin and is proportional to the cloud’s mass: AðtÞ ∝ McðtÞ.
We decompose the polarization waveform h into

GW modes hlm with −2Ylmðθ;φÞ ¼ −2SlmðθÞeimφ, the
−2-weighted spherical harmonics,7 leading to

hlm ¼
Z
S2
dΩh−2Ȳlmðθ;φÞ: ð26Þ

Here, and in the following, we drop the subscripts “GW”
on the GW mode labels ðl; mÞ for brevity, and distinguish
these from the corresponding cloud labels by referring to
the latter with ðlσ; mσÞ. The polarization waveform can be
reconstructed as

FIG. 6. A comparison of different approximations of the
frequency shift due to the boson cloud’s self-gravity for a
scalar field with mS ¼ 1. We compare the nonrelativistic
(see Sec. IVA) and quasirelativistic (see Sec. IV B) ap-
proximations to the (leading order in Mc part) fully relativistic
(labeled “relativistic”) relative frequency shift. In particular, we
show, for fixed α, ð∂ω=∂McÞðMc ¼ 0Þ ≈ Δω=Mc, where the
equality is exact for the nonrelativistic and quasirelativistic
approximations.

7These functions are normalized
R
dcosθ−2S̄lmðθÞ−2SlmðθÞ¼1.
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hþ ¼ 1

r

X
l≥m

jhlmj½−2Slm þ ð−1Þl−2Sl−m�

× cosðϕGW þmφþ ϕ̃lmÞ;

h× ¼ −
1

r

X
l≥m

jhlmj½−2Slm − ð−1Þl−2Sl−m�

× sinðϕGW þmφþ ϕ̃lmÞ; ð27Þ

where we used hl;−m ¼ ð−1Þlh̄lm, and defined ϕ̃lm as the
complex phase offsets between different hlm. Finally, the
total GW energy flux is

PGW ¼
Z

dΩ
r2ð2ωRÞ2jhj2

16π
; ð28Þ

and can be decomposed into the power emitted in each polar
GW l mode as

PGW ¼ Pl¼m
GW þ Pl¼mþ1

GW þ Pl¼mþ2
GW þ � � � : ð29Þ

Because of the amplitude scalingA ∝ Mc, it is convenient to
factor out the dependence on the cloud’s mass, and quote
results only for the rescaled GW power:

P̃GW ¼ PGWM2=M2
c: ð30Þ

B. Gravitational wave power and strain

There are two main avenues to determine the strain h in
the context of BH superradiance. On the one hand, there are
frequency-domain approaches, solving a type of differ-
ential eigenvalue problem that assumes a BH background
with linear perturbations, while on the other hand, there
are time-domain numerical methods, which solve the full
nonlinear Einstein equations. The former are readily
extended across the entire relevant parameter space, but
do not capture nonlinear effects, while the latter make no
approximations, but carry relatively large numerical uncer-
tainties, and are not easily extended to cover large parts of
the parameter space. In this work, we mainly leverage
frequency-domain methods, and validate these against
time-domain estimates, where applicable. These fre-
quency-domain methods can be classified into the “flat”
and the “Schwarzschild” approximations, as well as what
we call the “Teukolsky” approximation. The former two are
analytic estimates, valid only in the nonrelativistic regime,
α ≪ 1, while the last named is a numerical approach, which
is computationally efficient only when α is not too small.
The details of these approximations are given in
Appendix E. Ultimately, as done above, SUPERRAD com-
bines the best of both worlds and provides the most
accurate estimates across the entire parameter space.
In the nonrelativistic limit, the currently available results

are of the form

P̃GW ¼ Hαη: ð31Þ

The respective α scalings for the GW power from scalar and
vector superradiant clouds are [18,19,22,28]

ηS ¼ 4mS þ 10; ηV ¼ 4mV þ 6; ð32Þ

while the numerical coefficient H depends on the type of
approximation employed. We quote all available results in
Appendix E, and focus here solely on those associated with
mσ ¼ 1 cloud states. The Schwarzschild approximation has
been studied only in the mσ ¼ 1 case, resulting in [22,28]

ðHSÞmS¼1
Schw ¼ 484þ 9π2

23040
; ðHVÞmV¼1

Schw ¼ 60: ð33Þ

These overestimate the true emitted GW power, while the
“flat” approximation [19,28]

ðHSÞmS¼1
flat ¼ 1

640
; ðHVÞmV¼1

flat ¼ 32

5
; ð34Þ

is expected to underestimate the total energy flux. From
comparing the Schwarzschild with the flat approximation,
it is clear that the nonrelativistic approximations have
systematic uncertainties of roughly 1 order of magnitude.
Hence, even for α ≪ 1, numerical techniques are required
to reduce the uncertainty in the coefficient H.
For this reason, and to extend the validity of the GW

power and strain predictions of SUPERRAD to the part of the
parameter space with the loudest signals, we utilize
frequency-domain numerical techniques in the Teukolsky
approximation. We outline the methods we use in
Appendix E. Here, we simply state that our numerical
results are more accurate than either of the analytic
approximation techniques, even for moderately small α.
As evident from (31), the GWemission is independent of

the BH spin a� in the Newtonian regime, while in the
relativistic regime, the GWs exhibit mild spin dependence
[19,32]. To simplify the parameter space, we restrict to
clouds in the saturated state; that is, we assume
ωR ¼ mσΩH,

8 removing the spin dependence from the
parameter space. As in the discussion in Sec. III, there
exists a relativistic regime, D̃int, in which accurate numeri-
cal predictions can be obtained. For α ≪ 1, the function

P̃GW ¼ bαη þ cαηþ1 þ � � � ð35Þ

is used to fit against the numerical results. In general,
b ≠ Hσ; that is, we fit even the leading order coefficient
from the numerically obtained Teukolsky estimates.
However, we check explicitly that ðHσÞflat<b< ðHσÞSchw.

8The validity of this last condition is discussed below in
Sec. VI.
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for both the scalar and vector mσ ¼ 1 cloud states in the
α ≪ 1 regime. SUPERRAD employs cubic-order interpolation
in D̃int, and uses fits of the type (35) for α ∈ D̃fit.
In Fig. 7, we compare the various calculation of the GW

power to the predictions by SUPERRAD. In the Newtonian
limit, SUPERRAD differs from (31) due to the fit (35),
allowing different leading-α coefficients. The underlying

numerical results are more accurate (see Appendix E for
details), allowing us to conclude that the estimates provided
by SUPERRAD are more accurate than the Schwarzschild or
flat approximations. The analytic estimates for P̃GW are
worse for mσ ¼ 2; we use those results only to inform the
leading-α scaling behavior. We also show time-domain
results from evolving the full nonlinear Einstein-Proca
equations [29,30] for a few points. These agree with the
Teukolsky calculations to within the numerical error of the
simulations.
In Fig. 8, we show the GW modes provided by

SUPERRAD, as defined in (26), over the entire parameter
space, assuming the saturation condition. As expected from
the nonrelativistic results, the quadrupolar contribution h22
dominates throughout most of the parameter space, except
in the most relativistic regime, where h32 increases in
importance (and equivalently for h44 and h54). This
behavior implies a constant phase shift between the two
involved multipolar components. Hence, there is an α range
where jh22j ∼ jh32j (and jh44j ∼ jh54j), which means that the
phase difference ϕ̃22 (and ϕ̃44), defined in (27), introduces a
nontrivial phase offset between the two involved
polar modes.

VI. GROWTH AND DECAY OF BOSON CLOUD

In this section, we address how the superradiant insta-
bility and GW calculations can be combined to calculate
the evolution of the boson cloud, which determines the
evolution of the amplitude and frequency of the GW signal.
A boson cloud around a spinning BH evolves as the

cloud extracts energy and angular momentum from the BH
through the superradiant instability. During this process,
the cloud also loses energy and angular momentum to
gravitational radiation. In a quasiadiabatic approximation,
the evolution of this system is given by

_Mc ¼ 2ωIMc þ PGW;

_M ¼ −2ωIMc;

_J ¼ −
2mσωI

ωR
Mc; ð36Þ

where ωR, ωI , and PGW are functions of the cloud mass and
BH mass and spin. The evolution of the boson cloud can be
roughly divided into two phases. In the first phase, the
cloud grows exponentially, with the mass going like
Mc ∼ expð2ωItÞ, with the growth eventually saturating as
the BH is spun down and ωI becomes small as mσΩH
decreases towards ωR. This is followed by the gradual
dissipation of the boson cloud through gravitational radi-
ation. Since during this time − _Mc ≈ PGW ∝ M2

c,

McðtÞ ≈
M̄c

1þ ðt − tmaxÞ=τGW
; ð37Þ

FIG. 8. We show the magnitudes of the GW modes hlm,
defined in (26), which are sourced by mσ ¼ 1 and 2 scalar and
vector boson clouds at saturation (ωR ¼ mσΩH) as functions of α.
Notice that l ≥ 2mσ .

FIG. 7. We show the mass-rescaled GW power P̃GW, defined in
(30), emitted by the scalar and vector clouds with azimuthal
number mσ ¼ 1 and 2 at the saturation point, ωR ¼ mσΩH,
comparing the Schwarzschild “Schw.” and the flat approxima-
tions to SUPERRAD (colored lines), and time-domain estimates
obtained in [29,30]. Dash-dotted colored lines indicate where
SUPERRAD uses interpolation of numerical results over fits of the
type (35).
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where the cloud mass reaches a maximum M̄c at t ¼ tmax

and τGW ≔ M̄c=PGW.
In Fig. 9, we plot an example of the evolution of the

cloud mass for both scalar and vector bosons. In both cases,
τI ≪ τGW, so that the exponential growth phase takes place
on a much shorter timescale than GW dissipation.
However, the ratio τI=τGW is markedly smaller in the
scalar case compared to the vector one. In addition to the
full evolution of the cloud as determined by (36), in Fig. 9
we also plot a simple approximation where the maximum
cloud mass is determined by solving for the BH parameters
where ωR ¼ mσΩH, and the evolution of Mc after the
maximum is given solely by gravitational radiation, and the
evolution of Mc before the maximum is given by expo-
nential growth with a fixed value ωI given by the initial
parameters.
The SUPERRAD waveform model implements options for

both the full cloud evolution and the matched approxima-
tion. While the latter approximation is less computationally
expensive, as can be seen in Fig. 9, it slightly overestimates
the maximum cloud mass (by ≈0.04% and 0.8%, respec-
tively, for the scalar and vector cases shown in the figure),
and underestimates the time for the cloud to reach its
maximum. Thus, the more accurate full cloud evolution is
appropriate for scenarios when the signal before the time
when the cloud reaches saturation makes a non-negligible
contribution. However, as noted above, our calculation of

P̃GW assumes mσΩH ¼ ωR, which is not strictly valid
before the saturation of the instability. Hence, there will
be a discrepancy in the BH spin used for the computation of
the GW power. This discrepancy is negligible (i.e., below
the numerical error of the methods, discussed in
Appendix E) for mσ ¼ 2, and for mσ ¼ 1 assuming
a� < 0.9. It should be noted that this affects the GW
emission before saturation only, and also only systems with
initial spin a� ≳ 0.9. In the vector mV ¼ 1 case, the largest
discrepancy occurs for α ≈ 0.46 and extremal spins, where
the relative error from assuming the saturation condition in
the mass-rescaled GW power P̃GW is ≈55% (see Fig. 7 in
[32]). For the scalarmS ¼ 1 case this discrepancy is at most
≈24% around α ≈ 0.36.

VII. LISA FOLLOW-UP SEARCHES

The two main observational signatures of superradiant
clouds, BH spin-down and GW emission, are sensitive to
various systematic and statistical uncertainties. Spin mea-
surements have been used to exclude scalar and vector mass
ranges. Most of these constraints, however, rely on BH-spin
estimates from electromagnetic observations with signifi-
cant systematic uncertainties. Spin measurements of BHs in
inspiraling binaries using GWs exhibit large statistical
uncertainties and make assumptions about the proceeding
history of the binary. Constraints from the stochastic GW
background, assuming a population of BH-cloud systems,
rely on assumptions regarding the BH mass and spin
population, in addition to position and distance uncertain-
ties. Lastly, searches for GWs from existing BHs observed
in the electromagnetic channel make assumptions about the
past history of the observed BH, introducing large sys-
tematic uncertainties. Clearly all of these methods rely on
modeling or assumptions with potentially substantial sys-
tematic uncertainties.
One search strategy for GWs from superradiant clouds,

however, evades these assumptions: BH merger follow-up
searches. These searches target BH remnants of previously
detected compact binary coalescences. The key advantages
are the knowledge of the complete past history of the
targeted BH, as well as measurements of sky position, spin,
mass, and distance. Given these quantities, accurate pre-
dictions of the subsequent superradiance instability and
GW emission are possible, enabling a targeted search for
the latter in the days/weeks/years following the merger.
This removes the assumptions affecting other search
strategies, reduces the uncertainties to those coming from
the merger GW signal measurement of the remnant, and
those of the waveform model (discussed in the case of
SUPERRAD below), and enables one to put confident
constraints on relevant parts of the ultralight boson param-
eter space, or potentially to make a confident discovery.
In the context of the current generation of ground-based

GW detectors, follow-up searches for GWs from scalar
superradiant clouds are likely infeasible due to the small

FIG. 9. An example evolution of the boson cloud mass as a
function of time for scalars (s ¼ 0) and vectors (s ¼ 1) with α ¼
0.15 and a� ¼ 0.7. The plot compares the evolution determined
by evolving the full equations (36) (solid lines, labeled “full”), to
an approximation that matches together constant exponential
growth to GW-dominated decay (dotted and dashed lines, labeled
“matched”). Time is normalized by the gravitational dissipation
timescale in either case, and the offset adjusted so that the
maximum value of Mc occurs at zero for the full evolution cases,
and the matching value of Mc is obtained for the corresponding
matched evolution cases. The inset shows an enlarged view of the
end of the exponential growth phase for the scalar case (in
particular the full evolution).
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strain amplitudes [53]. On the other hand, because of their
faster growth rates and orders of magnitude stronger
signals, vector boson clouds are ideal candidates for these
types of searches [75]. At design sensitivity, the advanced
LIGO [76], advanced Virgo [77], and KAGRA [78]
observatories will in principle be sensitive to systems
out to ∼1 Gpc at a typical remnant BH spin of a� ¼ 0.7
and masses ofM ∼ 100M⊙ [62,75]. Undertaking follow-up
searches targeting BHs falling into this parameter range
could target vector boson masses roughly in the range of
MV ∈ ð1 × 10−11; 1 × 10−13Þ eV [see Eq. (1)]. In a similar
fashion, LISA could be sensitive to GWs from vector boson
clouds with boson masses in the MV < 10−15 eV regime,
inaccessible by ground-based detectors.
In the following, we analyze the prospects of follow-up

searches for GWs from vector superradiant clouds around
supermassive binary BH merger remnants with LISA. The
fundamental assumption of follow-up searches is that a new
superradiant cloud forms around the remnant after merger.
If either of the constituents already possesses a superradiant
cloud, it is expected to be depleted before or during merger
for nearly equal mass-ratio (q ∼ 1) systems [79]. Even for
q > 1, depending on α, clouds around the constituents of
the binary are efficiently removed before merger [79–82].
LISA is expected to see at least a handful of such mergers
over the mission lifetime of four years [83,84]. Therefore,
to estimate the detection horizon, we assume a fiducial
supermassive binary BH merger remnant detection that
occurs one year into the mission. After merger at redshift z,
residual ultralight vector densities around the remnant, or
quantum fluctuations, trigger the superradiance instability9

leading to the complete cloud formation, and hence the
peak of the GW signal, on timescales of at most tc ≈ τIð1þ
zÞ logðMc=MVÞ=2 in the detector frame. Over most of the
parameter space, these signals will last for longer than the
remaining three years of the LISA mission, leaving an
observing time of Tobs ¼ 3 − tc years. We determine the
maximum detection horizon of GWs from vector super-
radiant clouds by considering the optimal signal-to-noise
ratio (SNR) ρSNR with the LISA sensitivity curve (details
can be found in Appendix A). Making these assumptions,
we illustrate the detection horizon of LISA for such events
in Fig. 10.
From Fig. 10, we conclude that parts of the vector boson

mass parameter space can be probed with idealized follow-
up GW searches from supermassive binary BH remnants.
Even for moderate initial spins of a�;i ¼ 0.7, GWs can be
detected up to z≲ 0.8, while for slightly more favorable
initial spins of a�;i ¼ 0.8, the GW emission is observable
out to z≲ 8. The merger rate of massive BH binaries is
expected to peak around M ∼ 106M⊙ for equal mass ratio
systems, q≲ 1, and at z ≈ 2 [85–87]. For initial BH masses

Mi > 106M⊙, the cloud formation timescales are larger
than the mission duration, tc > 3 years, leading to a drop in
SNR. At high redshifts, the sensitivity of LISA is primarily
limited by the short effective observation times in the detector
frame. Larger BH masses (lower boson masses) can be
accessed only with larger initial spins, or significantly longer
mission durations. Consulting (1), vector boson masses
roughly aroundMV ∈ ð1 × 10−16; 6 × 10−16Þ eV arewithin
reach of these follow-up search strategies with LISA.
These prospects are subject to a few caveats. First, we

determined the detection horizon and sensitivity of LISA to
GW from vector clouds around remnant supermassive BHs
using the optimal matched filter SNR. What fraction of this
total available SNR could be recovered from the data by a
realistic search algorithm is an open question, even for
ground-based detectors [75]. Second, the merger rate of
massive BH binaries has large uncertainties. If the true
merger rate were peaked at redshifts of z > 5, a realistic
follow-up search would require a very favorable initial BH
spin a�;i > 0.8 to access a meaningful part of the vector
boson parameter space directly, or an outlier event much
closer.

VIII. DISCUSSION

We have introduced a new BH superradiance gravita-
tional waveform model called SUPERRAD. This provides the
superradiance instability growth timescale τI , the cloud
oscillation frequency ωR, the GW frequency fGWðtÞ and
strain h×=þ in the source frame as a function of time,
the GW power PGW, and the evolution of the boson cloud.

FIG. 10. We show the SNR (contour lines and color) of GWs
from vector superradiant clouds around a fiducial BH of initial
remnant source frame mass of Mi and spin a�;i ¼ 0.8 as a
function of luminosity distance dL and redshift z, assuming a
standard ΛCDM cosmology and α ¼ 0.2. For comparison, we
also consider an initial spin of a�;i ¼ 0.7 showing the ρSNR ¼ 10

contour (dashed black line), assuming α ¼ 0.15.

9Notice, an equal-mass, nonspinning binary BH merger results
in a remnant BH with a� ≈ 0.7.
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The SUPERRAD model makes use of all available analytic
and numerical estimates for these observables, and
calibrates analytic fits against the numerical data to extend
the applicability across the entire parameter space of the
m ¼ 1 and 2 scalar and vector superradiant clouds. The
waveform model SUPERRAD can be used to inform and
interpret the results of GW searches for ultralight scalar
and vector BH superradiance. This includes both blind and
targeted searches for resolved continuous wave signals, as
well as searches for a stochastic GW background from
BH-boson cloud systems. It can also be used when interpret-
ing BH spin measurements using GW or electromagnetic
observations. Importantly, SUPERRAD is accurate in the
relativistic regime where the observable signals will be the
strongest.
As the ultralight boson cloud dissipates through gravi-

tational radiation, there is a small increase in the frequency
of the GWs due to the changing self-gravity contribution of
the cloud. As illustrated above, even though this frequency
drift is small, because of the large number of GW cycles
that make up a typical superradiance signal, not properly
accounting for it can lead to the signal model going out of
phase in a fraction of the observing time. Fully including
this second-order effect within BH perturbation theory is
challenging, and the results in SUPERRAD for the frequency
evolution of the GW signal use nonrelativistic approxima-
tions. By comparing these to fully relativistic numerical
calculations for the scalar boson case, we found that
the former underestimates the value of _fGW by ∼30%
for the most relativistic [i.e. α ∼Oð1Þ] cases, though the
differences are smaller for more typical parameters. In
future work, we plan to include the fully relativistic results
for the cloud-mass contribution to the frequency for both
scalar and vector bosons in SUPERRAD. Though, given the
stringent accuracy requirements imposed by the typical
signal timescales (see Fig. 5), it is likely that fully coherent
signal analysis techniques (e.g., match filtering) will still
not be feasible in much of the parameter space, better
predictions for the GW frequency evolution are never-
theless important in guiding the application of semicoher-
ent techniques.
Furthermore, we investigated the viability of follow-up

searches for GWs from ultralight vector superradiant
clouds with LISA targeting remnants of observed massive
binary BH mergers. We found that these searches are
confident probes of the ultralight vector boson parameter
space around M ∈ ð1 × 10−16; 6 × 10−16Þ eV. With cur-
rent estimates of the merger rate of massive BH binaries,
LISA will be sensitive to GWs from vector boson clouds
around remnants of these mergers out to redshift z≲ 8 at
mass ratio q ≲ 1 and remnant black hole masses of roughly
M ∈ ð6 × 104; 2 × 105ÞM⊙. Our basic analysis leaves vari-
ous questions unanswered. We assumed the total available
signal-to-noise ratio can be recovered by a realistic search
algorithm, which is an overestimate even in the case of

ground-based detectors [75]. As well, a more detailed study
folding in massive black hole binary merger rates with
superradiant cloud growth timescales and emitted GW
luminosities could provide an estimate for the expected
number and mass ranges of merger events where LISA
would be sensitive to the GW signal from an ultralight
vector boson.
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APPENDIX A: LISA SIGNAL-TO-NOISE RATIO

For a given initial BH spin and mass, as well as ultralight
boson mass, SUPERRAD provides predictions for the GW
strain hþ=×ðt; R; θ;ϕÞ at time t, (luminosity) distance r, and
angles ðθ;φÞ in the source frame. In the case of LISA, the
detector response functions X̃þ=×ðΘ;Φ;ψ ; fÞ relate the
GW strain in the source frame to the strain in the detector.
The latter depend on the source’s sky position ðΘ;ΦÞ,
polarization ψ , and frequency10 f. Hence, the GW ampli-
tude in the detector, h̃detðfÞ, in the frequency domain is
given by

h̃detðfÞ ¼ X̃þh̃þðfÞ þ X̃×h̃×ðfÞ; ðA1Þ

where h̃þ=×ðfÞ are theFourier transformsofhþ=×ðt; R; θ;φÞ.
Let h� � �i be the sky/polarization average over Θ, Φ, and ψ ,
and let RðfÞ be the frequency-dependent transfer function
defined by the sky/polarization average of the detector
response hh̃�deth̃deti ¼ RðfÞ½jh̃×ðfÞj2 þ jh̃þðfÞj2�. Then
the SNR ρSNR is (see e.g., Refs. [88,89])

ρ2SNR
4

¼
Z

∞

0

df
hh̃�deth̃deti
SnðfÞ

¼
Z

∞

0

df
jh̃×ðfÞj2 þ jh̃þðfÞj2

ShðfÞ
;

ðA2Þ

where SnðfÞ is the noise power spectral density of LISA, and
ShðfÞ ¼ SnðfÞ=RðfÞ is the LISA sensitivity curve. For all

10We neglect the motion of LISA and the source with respect to
each other.
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estimates, we use the conservative six months confusion
noise projections.
Since SUPERRAD provides the time domain GW strain in

the source frame, we add the appropriate redshift factors
and use fast-Fourier-transform algorithms to numerically
transform into the frequency domain. This is feasible for
shorter signals considered in follow-up searches. However,
it becomes increasingly computationally expensive with
longer signals at smaller α.

APPENDIX B: SUPERRADIANT FIELD
SOLUTIONS

In this Appendix, we briefly summarize the numerical
methods we use to obtain the scalar and vector estimates for
the oscillation frequencies ωR and instability growth rates
ωI discussed in Secs. III B and III C, respectively. We also
provide bounds on the precision of our methods, and
comment on the resulting uncertainties.

1. Scalar field

The real massive scalar wave equation (2) has been
extensively studied in the context of asymptotically flat
BHs. On a Kerr background of massM and spin parameter
a, Detweiler [16] first derived expressions for the super-
radiance instability rates and oscillation frequencies. These
results were refined in various other works, e.g.,
Refs. [17,19,31]. In this subsection, ω, l, n, and m refer
exclusively to the scalar mode numbers; hence, we drop the
subscripts used throughout the main text, for brevity.
Generally, due to the background symmetries, the

most convenient scalar field ansatz is of the form
Φ ¼ Re½RsðrÞSsðθÞe−iðωt−mφÞ�. With this ansatz, the field
equations separate into a pair of polar and radial second-
order ordinary differential equations. The polar equation
can be identified with the spheroidal harmonic equation of
spin weight s ¼ 0 and spheriodicity c2 ¼ −k2a2, with
k2 ¼ μ2S − ω2; the solution to this equation is the set of
spheroidal harmonics, sS̃lmðθ; cÞ, of spin weight s ¼ 0.
Hence, the polar solution is simply the spheroidal harmonic
SsðθÞ ¼ 0S̃lmðθ; cÞ associated with the polar eigenvalue
AlmðcÞ that reduces to Almðc → 0Þ ¼ lðlþ 1Þ in the
Schwarzschild limit (see, for instance, Ref. [90]). The
radial equation turns out to be the source-free s ¼ 0 radial
Teukolsky equation,

d
dr

�
Δ
dRs

dr

�
þ
�ðr2 þ a2Þω − am

Δ
− λlm − μ2Sr

2

�
Rs ¼ 0;

ðB1Þ

where λlm ¼ Alm þ a2ω2 − 2amω depends on the radial
eigenvalue ω ¼ ωR þ iωI , and Δ ¼ r2 − 2Mrþ a2.
The radial eigenvalue ω can be obtained, together with

the radial solution RsðrÞ satisfying ingoing boundary

conditions at the horizon, and asymptotically flat boundary
conditions at spatial infinity. At leading order in α, the
above radial equation reduces to a type of Laguerre
equation, yielding hydrogen-like radial states, together
with the associated energy spectrum ω [16,17]. Higher
order corrections at the level of the radial and polar
equations are solved for in an order-by-order fashion
perturbatively around α ¼ 0. Solving the eigenvalue prob-
lem in this way leads to the higher order corrections to the
real part of the superradiantly unstable scalar modes,
defined in (9) [31],

CS½α� ¼ −
α4

8n4
þ fSnlα

4

n3
þ hSla�mα5

n3
þOðα6Þ; ðB2Þ

where

fSnl ¼ −
6

2lþ 1
þ 2

n
;

hSl ¼ 16

2lð2lþ 1Þð2lþ 2Þ : ðB3Þ

The corresponding instability growth rates, defined in (13),
are [16]

GSða�; αÞ ¼
24lþ1ðnþ lÞ!

n2lþ4ðn − l − 1Þ! k
S
nlg

S
ml

kSnl ¼
�

l!
ð2lÞ!ð2lþ 1Þ!

�
2

;

gSml ¼
Yl
o¼1

h
o2ð1 − a2�Þ þ ða�m − 2rþωRÞ2

i
; ðB4Þ

for the most unstable mode in the nonrelativistic limit. The
principle quantum number n is defined in (10).
In this work, we compute the eigenvalue ω ¼ ωR þ iωI

numerically in the relativistic regime Dint where the
analytic methods break down. The typical approach
employed to solve differential eigenvalue problems of this
type goes back to Leaver [91], and was applied to massive
scalar fields in Kerr spacetime in Refs. [17,19]. There, the
radial solution is assumed to be written in power series
form as

RðrÞ ¼ ðr − rþÞ−iβðr − r−Þiβþγ−1
X
n≥0

an

�
r − rþ
r − r−

�
n
; ðB5Þ

with β ¼ 2Mrþðω −mΩHÞ=ðrþ − r−Þ and γ ¼ Mð2ω2−
μ2SÞ=k. Plugging this into the radial equation (B1), one
obtains a recurrence relation between the coefficients an.
This relation is used to obtain a continued fraction
constraint on the frequency ω for each fl; m; a; μSg.
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This constraint is an implicit equation for the eigenvalues
ωR and ωI, which can be solved for numerically using a
minimization algorithm over the complex ω plane. With the
recurrence relation and ω, the radial solution is constructed
using (B5). Details can be found in Refs. [17,19]. In the
nonrelativistic limit, we found that a total number of N ≥
5000 terms in the series expansion is necessary for our
desired accuracy, while in the relativistic regime, a lower
number, i.e., N ≤ 1000, is sufficient. We construct the
spheroidal harmonics 0Slmðθ; cÞ and associated eigenval-
ues Alm using QNM, a PYTHON implementation of a Leaver-
like continued fraction method developed in Ref. [92].
In order to estimate the numerical uncertainty of this

method, we determine the frequency ω in a range of α and
fixed BH spin, using the above approach with successively
increasing N, up to the Nmax ¼ 8000 used throughout the
entire parameter space in SUPERRAD. The numerical error is
then estimated by

N RðωÞ ¼
jωNmax

− ωNmax=2j
ωNmax

: ðB6Þ

The results are shown in Fig. 11. We ensure that the
minimization algorithm has termination conditions at the
floating point level. The real part of the frequency is
obtained to one part in ∼1014, whereas the imaginary part is
determined less precisely. However, even for α ≳ 0.05, the
latter is more precise or comparable to the theoretical
uncertainty of the analytic estimates in (9) together with
(B2). This establishes the numerical uncertainties of the
methods used to extend SUPERRAD into the relativistic
regime. However, it does not show the overall uncertainty
of SUPERRAD in this regime due to interpolation error,
which is discussed in Appendix C.

2. Vector field

The massive vector wave equation (2) has been studied
more recently in [26,27,71,93]. The nonseparability of the
vector field equation was a fundamental problem until a
series of works by Lunin [94] and Frolov et al. [93]. There,
an ansatz, referred to as FKKS in the following, was
constructed that separates the polar and radial parts of the
field equation (2), and hence, significantly simplifies the
problem. We briefly summarize this ansatz and quote
analytic results for the oscillation frequency and instability
growth rates, ω ¼ ωR þ iωI, obtained with it. Similarly to
the previous subsection, we drop the subscripts of ω;l; n,
and m, used in the main text, and use these exclusively for
vector modes and frequencies.
The FKKS ansatz exploits a hidden symmetries of Kerr

spacetime gμν. This symmetry is captured by a Killing-
Yano two-form k, with tensor components that satisfy
∇αkβγ ¼ 2gα½βξγ�. Using this, the vector field ansatz takes
the form

Aμ ¼ Bμν∇νZ; Z ¼ RVðrÞSVðθÞe−iðωt−mφÞ; ðB7Þ

with polarization tensor Bμνðgνγ þ iνkνγÞ ¼ δμγ and angular
eigenvalue ν. Plugging this ansatz into (2) yields ordinary
differential equations for the radial and polar dependencies,
respectively. The angular equation is a deformed spheroidal
harmonic equation for spin weight s ¼ −1 that does not,
a priori, possess known solutions. In the Schwarzschild
limit, a → 0, the solutions reduce the usual spherical
harmonics SVðθÞ ¼ YlmðθÞ, with a relation between the
polar eigenvalue Λ ¼ lðlþ 1Þ and the separation constant
ν → νl (see Ref. [71] for details). In this limit, the spatial
components of the vector field are then given by
Ai
a→0 ∝ Yi

j;jmðθÞ, where Yi
j;jmðθÞ are the vector spherical

harmonics with j ¼ l − Ŝ (see Ref. [95]).When theBH spin
is nonzero, there is a mixing of the polar mode number l,
such that, in generalSVðθÞ¼Y jmj;mðθÞþb1Y jmjþ1;mðθÞþ���.
The radial equation for RVðrÞ takes the form

Dν;ω;m;aRVðrÞ ¼ 0; ðB8Þ

with a second order differential operatorDν;ω;m;a [71,93]. In
the a → 0 limit, and at leading order in α, this equation
reduces to a Schrödinger-type equation for RVðrÞ with the
eigenvalue spectrum (9) [28]. This FKKS ansatz was used
in [31] to go beyond the leading orders in both a and α. They
found the subleading corrections to the spectra (9) to be

CV ½α� ¼ −
α4

8n4
þ fV

nlŜ
α4

n3
þ hV

lŜ
a�mα5

n3
þOðα6Þ; ðB9Þ

with

FIG. 11. The relative numerical error N R, defined in (B6), of
the real and imaginary parts of the frequency of the scalar m ¼ 1
and m ¼ 2 superradiant states around a BH of spin a� ¼ 0.985.
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fV
nlŜ

¼ −
4ð6lðl − Ŝþ 1Þ − 3Ŝþ 2Þ

ð2l − ŜÞð2l − Ŝþ 1Þð2l − Ŝþ 2Þ þ
2

n
; ðB10Þ

hV
lŜ

¼ 16

ð2l − ŜÞð2l − Ŝþ 1Þð2l − Ŝþ 2Þ : ðB11Þ

The corresponding instability growth rates (13) are [31,67]

GVða�; αÞ ¼
24l−2Ŝþ1ðnþ lÞ!
n2lþ4ðn − l − 1Þ! k

V
lŜ
dV
lŜ
gV
lŜ

kV
lŜ

¼
�

l!

ð2l − ŜÞ!ð2l − Ŝþ 1Þ!

�
2

;

dV
lŜ

¼
�
1þ 2ð1þ ŜÞð1 − ŜÞ

2l − Ŝ

�2
;

gV
lŜ

¼
Yl−Ŝ
o¼1

h
o2ð1 − a2�Þ þ ða�m − 2rþωRÞ2

i
; ðB12Þ

for the most unstable mode in the nonrelativistic limit,
l ¼ mþ Ŝ and Ŝ ¼ −1.
In this work, we obtain numerical data in the relativistic

regime Dint by solving (B8) and the associated polar
equation numerically following Refs. [32,71]. To that
end, the angular equation is expanded in regular spherical
harmonics 0Slmðθ; c ¼ 0Þ, while the radial equation is
integrated numerically outwards from the horizon to large
distances. Therefore, as long as a sufficient number of
terms is considered in the polar sector, the numerical
uncertainties are dominated by the integration method used
in the radial sector. We make use of the BHPToolkit to
construct spherical and spheroidal harmonics [96]. In order
to obtain estimates for the numerical uncertainty, we vary

the step size of the radial numerical integration. In Fig. 12,
we show upper bounds on the relative numerical uncer-
tainty of the method described above to obtain the
frequencies ω. As in the scalar case, the numerical
uncertainty of the underlying numerical methods is below
the interpolation error of SUPERRAD discussed in the next
section.

APPENDIX C: INTERPOLATION AND
EXTRAPOLATION ERROR OF SUPERRAD

The uncertainties associated to the values of τI ¼ 1=ωI
and fGW ¼ ωR=π provided by SUPERRAD come from an
interplay of interpolation errors, numerical errors, trunca-
tion errors of analytic expressions, and the theoretical
assumptions made. Furthermore, due to the combination
of methods involved, the overall uncertainty of SUPERRAD

varies across the parameter space. In this Appendix, we
provide justifications for accuracy claims made in the main
text, as well as establish upper bounds for uncertainties of
the observables contained in SUPERRAD.
As we show below, we find the interpolation and

extrapolation error to be the dominant source of error
for the waveform model, subdominant to the truncation
error described in the previous section, and shown in
Figs. 11 and 12. As described in the main text, and shown
in Fig. 2, in the relativistic regime labeled Dint, SUPERRAD
uses linear interpolation functions to interpolate based on a
grid of 3202 data points. We quantify the interpolation error
by directly computing the value of ωR and ωI at inter-
mediate value to these data points using the methods
outlined in the previous section, and compare them to
the interpolated value. Similarly, we can directly compute
the values of ωR and ωI in the nonrelativistic regime Dfit,
again using the accurate numerical methods from the
previous section, and compare them to their extrapolated
values obtained using the fits.
In Figs. 13 and 14, we show the relative error in

interpolating or extrapolating ωR and ωI to a given point
in SUPERRAD, compared to directly computing the value at
that point URðxÞ ¼ jx − xnumj=xnum. We show this for two
fiducial spin values a� ∈ f0.605; 0.95g across the α-param-
eter space from a region inDfit to the entireDint at that spin.
The uncertainty is relatively low in the relativistic regime
Dint, spanning from αmσ¼1 ¼ 0.05 and αmσ¼2 ¼ 0.25 to
maximal α. There, the relative uncertainty in the frequency
ωR does not exceed ∼10−5, while in the case of the growth
rates ωI , it is bounded by ∼10−2. In the extrapolated region
Dfit, spanning from αmσ¼1 ¼ 0.05 and αmσ¼2 ¼ 0.25
towards small α, the uncertainty URðωRÞ of the frequencies
is well under control and decreases in the Newtonian limit.
The growth rates, on the other hand, show larger uncer-
tainties transitioning from Dint towards smaller α. The
fitting procedure, in this case, is more complex, which is
reflected in the choices of p and q required for (15) (noted

FIG. 12. The relative numerical error N R of the real and
imaginary parts of the frequency of the vector m ¼ 1 and m ¼ 2
superradiant states around a BH of spin a� ¼ 0.985.

MODELING THE BLACK HOLE SUPERRADIANCE … PHYS. REV. D 107, 104003 (2023)

104003-17



below) to be below or comparable to the difference between
the purely analytic expressions and the numerical expres-
sions obtained in parts of Dfit. The fit functions and the
purely analytic estimates for ωI have comparable accuracy
for α ≲ 0.05 and α≲ 0.25 for mσ ¼ 1 and mσ ¼ 2, respec-
tively. The uncertainties are, by construction, decreasing at
sufficiently small α, while there remains an intermediate
regime around α ≈ 0.02 for mσ ¼ 1 and α ≈ 0.2 for
mσ ¼ 2, where the uncertainties first increase. This is a
result of the lack of accurate analytical or numerical
modeling in this regime. Lastly, since all numerical errors
discussed in the previous Appendices are below the
uncertainties presented here, the latter can be understood
as the overall uncertainties of the waveform model.
Furthermore, comparing the uncertainties UR presented
here to the relative differences in Figs. 3 and 4, we see that
the latter is always smaller or comparable to the former. We
comment on the uncertainties in the GW emission in
Appendix E. As can be seen in the temporal evolution
of the GW frequency emitted by an mS ¼ 1 scalar cloud in
Fig. 1, the quantities (frequencies, timescales, frequency
drifts etc.) exhibit a small discontinuity at the interface of
Dfit and Dint. This is important only when the system is
evolved adiabatically using (36), not when the saturation
condition ωR ¼ mσΩH is used to set the GW amplitude.
For completeness, we list the different domainsDint used

in SUPERRAD here. These domains are all bounded by the
superradiance saturation condition ωR ¼ mσΩHða�Þ at
sufficiently large α, and by a� ¼ 0.6 and a� ¼ 0.995. At
small α the regions Dint are bounded by αmσ¼1 ¼ 0.05 and
αmσ¼2 ¼ 0.25 for both the scalar and the vector clouds. The
fit functions for ωR in (11) contain the following terms: For
mV ¼ 1 and 2 and mS ¼ 1 and 2, we set q ∈ f0; 1;…; 3g
and p ∈ f6; 7; 8g. In all four cases, we added the term
α5a�ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

p
− 1Þ. The fit functions for ωI in (11) contain

the following terms: FormV ¼ 1, we set p ∈ f1; 2;…; 10g,
and q ∈ f0; 1g; for mV ¼ 2 we set p ∈ f5; 6;…; 10g and
q ∈ f0; 1g; for mS ¼ 1 we set p ∈ f1; 2; 3g and
q ∈ f0; 1;…; 3g; for mS ¼ 2 we alter the fit function
slightly with ĉp;q → δq;1ĉp and b̂p;q → α2b̂p;q=a� with p ∈
f12;…; 22g and q ∈ f0; 1;…; 3g. These were fit against
the numerical data in Dint with α < αbound, where α

mσ¼1
bound ¼

0.25 and αmσ¼2
bound ¼ 0.6.

APPENDIX D: FREQUENCY SHIFT

In this Appendix, we briefly discuss the leading-in-α
contribution to the shift in frequency due to the self-gravity
of the cloud Δωσ ¼ α3McFσ=M2, where Fσ is defined in
(22), as described in Sec. IV. For the scalar and vector
boson clouds, these are given by

FS ¼ F̄½mS�;
FV ¼ F̄½mV − 1�; ðD1Þ

FIG. 13. We show a set of representative frequencies ωR
of a mσ ¼ 1 and 2 scalar (top) and vector (bottom) mode (with
lS ¼ mS and Ŝ ¼ −1, respectively), assuming a BH spin of
a� ∈ f0.605; 0.95g, obtained by SUPERRAD. We also plot the
relative interpolation/extrapolation error UR of these predictions
(see the main text for discussion).

FIG. 14. We show a set of representative growth rates ωσ
I of a

mσ ¼ 1, 2 scalar (top) and vector (bottom) mode (with lS ¼ mS

and Ŝ ¼ −1, respectively), assuming a BH spin of a� ∈ f0.6;
0.95g, obtained by SUPERRAD. We also plot the relative inter-
polation/extrapolation error UR of these predictions (see the main
text for discussion).
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where

F̄½b� ¼ −
2ðbþ 1Þ ffiffiffi

π
p

Γð2ðbþ 1ÞÞ − Γ
�
2bþ 5

2

	
2ðbþ 1Þ3 ffiffiffi

π
p

Γð2ðbþ 1ÞÞ : ðD2Þ

In Table I, we present explicit values for mσ ¼ 1;…; 5
for both the scalar and vector cases. The frequency shift
monotonically decreases with increasing mσ. The shift
depends (to leading order in α) only on the lσ mode
number of the considered field, i.e., the Bohr radius of these
nonrelativistic solutions, which determines Fσ, is depen-
dent on the lσ mode number only.

APPENDIX E: GRAVITATIONAL WAVES

In this Appendix, we outline the frequency-domain meth-
ods used in the literature and this work to determine the GWs
emitted from a superradiant cloud after the saturation of the
instability, i.e., assuming ωR ¼ mσΩHða�Þ. In the context of
the Teukolsky formalism for linear perturbations on a fixed
Kerr spacetime gμν, finding the GWpower and strain reduces
to finding the Weyl-Newman-Penrose scalar Ψ4 at large
distances. To that end, the field equations for linear metric
perturbations on gμν are solved using a separation ansatz
similar to the one used in the previous sections. The polar
equation is the defining equation for spin-weighted spheroi-
dal harmonics, while schematically the sourced radial
Teukolsky equation takes the form [97]

Da;M
lmωRlmωðrÞ ¼ T̂lmωðrÞ; ðE1Þ

with sources T̂lmω. In this Appendix, l; m, and ω refer
exclusively to modes characterizing the metric perturbations,
not the states of the superradiant clouds. The second order
radial differential operator Da;M

lmω, for a Kerr spacetime of
massM and spin parameter a, is of Sturm-Liouville type and,
hence, allows for the generic construction of a Green’s
function to solve the inhomogeneous problem (T̂lmω ≠ 0)
given the set of homogeneous solutions RH

lmω satisfying
purely ingoing and purely outgoing boundary conditions at
the horizon, r ¼ rþ, and infinity, r → ∞, respectively.

At large distances r, the solution to the radial Teukolsky
equation is

Rlmωðr → ∞Þ ¼ r3eiωr�

2iωBlmω

Z
∞

rþ
dr0

T̂lmωRH
lmω

Δ2

¼ Z∞
lmr

3eiωr� : ðE2Þ

Here, r� is theTortoise coordinate of r, andwedefined a set of
variables Z∞

lm containing information about the source (see,
e.g., Ref. [32], for details). With this in hand, the GWs at
infinity can be calculated as

Ψ4 ¼
1

r

X
l;m

Z∞
lmffiffiffiffiffiffi
2π

p eiωðr�−tÞ−2Slmðθ; c ¼ aωÞeimφ: ðE3Þ

Notice, the summation in (E3) is over spheroidal l, rather
than spherical l as done in Sec. VA. Here, we are using the
normalization

R
d cos θj−2Slmðθ; cÞj2 ¼ 1. To recover the

spherical harmonic GW modes hl
0m0
, we rewrite the above,

using

h ¼ −
2Ψ4

ð2ωRÞ2
; ðE4Þ

leading to

reiωthl
0m0 ¼

X
l;m

−2Z∞
lmffiffiffiffiffiffi

2π
p ð2ωRÞ2

Cl0m0
lm ¼ −2Z̃∞

l0m0ffiffiffiffiffiffi
2π

p ð2ωRÞ2
; ðE5Þ

with

Cl0m0
lm ¼

Z
S2
dΩ−2Ȳl0m0 ðΩÞ−2Slmðθ; c ¼ aωÞeimφ: ðE6Þ

Note that when c ¼ 0, Cl0m0
lm ¼ 2πδl

0
l δ

m0
m . The total emitted

gravitational energy flux is

PGW ¼
X
l0;m0

jZ̃∞
l0m0 j2

8π2ð2ωRÞ2
: ðE7Þ

Therefore, determining the GWs emitted depends on finding
homogeneous solutions to the radial Teukolsky equation, as
well as integrating these over the cloud sources T̂lmω. The
three distinct approximations mentioned in the main text—
flat, Schwarzschild, and Teukolsky—all emerge from (E2) by
dropping certain terms. In the flat approximation, the spin is
neglected, a ¼ 0, and the source equations are expanded to
leading order in α, implying M → 0. In this limit, both the
homogeneous solutions and source functions can be con-
structed and integrated over analytically. In the Schwarzschild
approximation, one also expands in α to leading order and
assumes a ¼ 0. However, one includes the gravitational
potential terms present in the SchwarzschildGreen’s function,

TABLE I. We list the first few leading-in-α contributions to the
frequency shift Δωσ ¼ α3McFσ=M2 for the oscillation frequency
of scalar and vector clouds.

mV mS M2Δωσ=ðMcα
3Þ

1 −5=8
2 1 −93=512
3 2 −793=9216
4 3 −26333=524288
5 4 −43191=1310720
6 5 −1172755=50331648
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i.e.,M ≠ 0. For l0 ¼ m0 ¼ 2, the flat ansatz generally under-
estimates the emitted GW flux, while the Schwarzschild
approximation overestimates the power. Solving the
equation (E1) numerically making no assumptions about α
or a (referred to as the Teukolsky approximation in the main
text) provides the most accurate predictions for PGW and h,
and is expected to give values intermediate to the flat and the
Schwarzschild approximations. More details can be found in,
for instance, Refs. [28,39].
For l0 ¼ m0 > 2, i.e., mσ > 1, the GW energy flux has

been computed analytically only in the flat approximation.
In the scalar case, the total GW power emitted from a cloud
with ðnS;mSÞ and lS ¼ mS is given by [19]

PGW ¼ CnSmS
αQS

M2
c

M2
; ðE8Þ

where QS ¼ 4mS þ 10 and

CnSmS
¼ 16mSþ1mSð2mS − 1Þ

n4mSþ8
S ðmS þ 1ÞΓðmS þ 1Þ4

×
Γð2mS − 1Þ2ΓðmS þ nS þ 1Þ2

Γð4mS þ 3ÞΓðnS −mSÞ2
: ðE9Þ

In the vector case, for m0 > 1, the GW power emitted from
a Ŝ ¼ −1 superradiant state in the α ≪ 1 limit is [28]

PGW ¼ KmV
αQV

M2
c

M2
; ðE10Þ

where QV ¼ 4mV þ 6, K2 ¼ 1=126; K3 ¼ 6 × 10−6;
K4 ¼ 2 × 10−9, and K5 ¼ 4 × 10−13.
The specifics of the methods we use to numerically

solve (E1) are discussed in detail in Ref. [32] (we make use
of the BHPToolkit [96]). It involves constructing the sources
T̂lmω from the numerical superradiant solutions to (2), and
integrating (E2) numerically. In Fig. 15, we present upper
bounds on the numerical error of these methods across the
entire parameter space, assuming a mV ¼ 1 and 2 vector

cloud (analogous upper bounds are expected for scalar
clouds). The bounds are obtained from varying the reso-
lution of the underlying superradiant vector field solution
together with the radial step size of the numerical integra-
tion of (E2). The relative difference between estimates of
P̃GW with two different resolutions decreases with increas-
ing resolution. The upper bounds shown in Fig. 15 are the
relative difference between the default resolution used
throughout, and half that resolution. As for the GW power
calculation, the GW strain h is calculated from the solutions
to (E2), through (E5). Since h ∼

ffiffiffiffiffiffiffiffiffi
PGW

p
, the values for

N RðP̃GWÞ can be interpreted as an estimate for the error
N Rðh×;þM=McÞ for the amplitudes of the polarization
waveform.
Lastly, the numerical data regimes D̃int (defined in

Sec. V B) are bounded at large α by the maximal α
satisfying the superradiance saturation condition ωR ¼
mσΩH at the corresponding spin a�. From below, it is
bounded by αmS¼1

low ¼ 0.2 and αmS¼2
low ¼ 0.34, for scalars and

the two lowest azimuthal numbers, and αmV¼1
low ¼ 0.17 and

αmV¼2
low ¼ 0.45, for vectors with the two lowest azimuthal

numbers.
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