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Scale dependence of fundamental physical parameters is a generic feature of ordinary quantum field
theory. When applied to gravity, this idea produces effective actions generically containing a running
Newtonian coupling constant, from which new (spherically symmetric) black hole spacetimes can be
inferred. As a minimum useful requirement, of course, the new metrics should match with a Schwarzschild
field at a large radial coordinate. By further imposing to the new scale dependent metric the simple request
of matching with the Donoghue quantum corrected potential, we find a not yet explored black hole
spacetime, which naturally turns out to describe the so-called Planck stars.
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I. INTRODUCTION

In many of the existing approaches to quantum gravity
(for an incomplete list see e.g. [1–7] and references therein)
the fundamental parameters that enter the action, such as
Newton’s constant, electromagnetic coupling, the cosmo-
logical constant etc., become scale dependent quantities.
This looks quite natural, since scale dependence at the level
of the effective action is a generic feature of ordinary
quantum field theory. In particular, in theories of gravity,
the scale dependence is expected to modify the horizon, the
thermodynamics, and the quasinormal modes spectra of
classical black hole backgrounds [8–14]. In the large class of
approaches basedon scale-dependent gravity (SDG), among
the theories beyond classical general relativity (GR), we find
also the particular method usually known as asymptotically
safe gravity (ASG) [15–30]. In this scenario the Newton’s
constant G is actually seen as a “running” Newton’s
coupling GðkÞ, which is constructed by integrating the
differential equation for the beta function of the gravitational
coupling. Therefore G depends on some arbitrary renorm-
alization energy scale k. Furthermore, in concrete black hole
models, usually a link between the energy scale k and the
radial coordinate r is established. Finally, the composite
function GðkðrÞÞ is inserted back into the classical black
hole solution. A modified lapse function is thus obtained,
and these modified black hole metrics are thought to
automatically incorporate and describe the effects of quan-
tum gravity. Other different black hole metrics, in particular

metrics not affected by a central singularity, can be found
e.g. in Refs. [31–35], although those examples may not be
directly connected with a SDG program.
Generic examples of SDG theories, in particular scale-

dependent black hole solutions, can be found in literature, see
for exampleRefs. [8,10,14].As for the subclassASG,a specific
well-known example (see e.g. Refs. [15,36]) is defined by the
“running” Newton’s coupling GðkÞ and function kðrÞ

GðkÞ¼ G
1þ ω̃Gk2=ℏ

with kðrÞ¼ℏ

�
rþγGM

r3

�
1=2

; ð1Þ

where we take the conventions c ¼ kB ¼ 1 and we retain ℏ.
Here ω̃ and γ are dimensionless numerical parameters.
Combined together the above functions yield the scale-
dependent Newton’s constant

GðrÞ ¼ Gr3

r3 þ ω̃Gℏðrþ γGMÞ : ð2Þ

In the context of ASG literature, the parameter ω̃ is always
assumed to be positive, ω̃ > 0. In fact, considering the
running Newton’s coupling GðkÞ in Eq. (1), we see that
dG=dk < 0 only if ω̃ > 0. In other words, in order to keep
gravity “asymptotically safe” from divergences, we need to
have not only GðkÞ → 0 for k → ∞, but also GðkÞ ≥ 0 and
finite for any k ≥ 0. Therefore, only when ω̃ > 0 we are
properly in the realm of an asymptotically safe gravity theory.
On the contrary, if we allow ω̃ < 0, then GðkÞ diverges

for k ∼ kPlanck, becomes negative for k > kPlanck, and
GðkÞ → 0− when k → ∞. This behavior of GðkÞ is clearly
outside the specific spirit of ASG theory. Nevertheless,
a theory with ω̃ < 0 can still be classified as a
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scale-dependent gravity (SDG) theory. In the following we
will see that this is actually our present case.
A different, well-known research line, pursued by John

Donoghue and other authors [37–45], considers the reformu-
lation of general relativity as an effective quantum field theory
of gravity at low energies. Along the years, these authors
established a solid prediction of the quantum corrections to
the Schwarzschild metric, and therefore to the Newtonian
potential, at least at the first order in ℏ. According to a vast
literature, away to determine the free parameters appearing in
a SDG theory, and in particular in an ASG metric (see e.g.
Refs. [15–30]), consists in comparing the effectiveNewtonian
potential predicted by the SDG/ASG approach with the one
computed in the framework of GR as an effective QFT. By
following that path,we are led to investigate, for the first time,
a negative value for the parameter ω̃, unlike previous early
studies (see e.g. Refs. [15,26]).1

As said above, this classifies our approach outside a
standard ASG theory, instead closer to a more general SDG
theory. Quite surprisingly, we will see that the negative ω̃
leads directly, without further assumptions, to a specific
metric which is able to describe important features of the
so-called Planck stars. It is remarkable that, while Planck
stars were introduced in Ref. [47] on the grounds of
plausible, general physical considerations, here on the
contrary they appear as a possible direct consequence of
a scale-dependent gravity approach.
The paper is organized as follows. In the next section we

shortly recall the main results leading to a SDG/ASG-
modification of the Schwarzschildmetric. In Sec. III we give
a precise evaluation of the SDG/ASGparameters. Section IV
is devoted to discuss the features of the SDG-modified
Schwarzschild metric, and then Sec. V discusses the
“prediction” of the Planck star model. In Secs. VI–IX we
study, respectively, temperature, specific heat, emission rate
equation, and thermodynamic entropyof this SDG-modified

Schwarzschild/Planck star metric. The last section contains
some quick hints to the phenomenology of these objects
(and related references) and the conclusions.
Here we work in units where c ¼ kB ¼ 1, and the Planck

length lP is defined asGℏ ¼ l2
P. Then of course the Planck

mass mP satisfies 2GmP ¼ lP and ℏ ¼ 2mPlP.

II. BLACK HOLE METRICS FROM RUNNING
NEWTONIAN COUPLING

As we said, according to the literature on the topic, once
we constructed the running coupling GðrÞ (through the
steps detailed e.g. in Refs. [15,36]), then the basic idea of
the SD/AS gravity approach, in order to obtain a “renorm-
alization improved” (classical Newtonian, or general rela-
tivistic) solution, is to replace everywhere the numerical
Newton constant G with the “running constant” GðrÞ,
whose explicit form is given by Eq. (2).
The line element for the spherically symmetric,

Lorentzian metric preserves the usual form, that is

ds2 ¼ FðrÞdt2 − FðrÞ−1dr2 − r2dΩ2; ð3Þ
where r is the radial coordinate, and dΩ2 ¼ dθ2þ
sin2 θdϕ2 is the line element of the unit two-sphere. But
now, according to the above prescriptions, the lapse function
FðrÞ of our SDG-improved Schwarzschild geometry reads

FðrÞ ¼ 1 −
2MGðrÞ

r
¼ 1 −

2GMr2

r3 þ ω̃Gℏðrþ γGMÞ ; ð4Þ

with GðrÞ given by (2) andM the mass of the black hole. Of
course, we suppose ω̃ ≠ 0, otherwise we would go back to
the standard Schwarzschild metric. Two very important
limiting cases should be considered.
The first corresponds to the low energy scales (r → ∞,

or k → 0), which implies

Fðr → ∞Þ ≃ 1 −
2GM
r

; ð5Þ
so the standard Schwarzschild metric at large distances is
recovered, and this behavior is independent from the values
of ω̃ and γ.
The second corresponds to the high energy scales

(r → 0, or k → ∞). Here we have to distinguish two
subcases. If γ ≠ 0, then

Fðr → 0Þ ≃ 1 −
2r2

ω̃γGℏ
; ð6Þ

and thus the lapse function corresponds to a de Sitter
(ω̃γ > 0) or an anti–de Sitter (ω̃γ < 0) core of our metric,
depending on the sign of ω̃γ.
If γ ¼ 0, then

FðrÞ ¼ 1 −
2GMr

r2 þ ω̃Gℏ
; ð7Þ

1Herewe should at leastmention the ongoing lively debate among
the communities working on GR as an effective field theory (EFT),
and those on theASG approach. The focus is about “if” and “towhat
extent” the results obtained on ASG-improved metrics by the ASG
community can be compared with the results on the quantum
corrected metrics obtained by the GR-EFT community (see e.g.
Refs. [45,46]). Here, of course, we cannot enter in details. However,
after a long period during which this matching has been carried out
almost routinely, without particular problems, quite recently, doubts
have arisen about the effective comparability of the calculations of
the two communities and the conceptual correctness of such
comparison. In particular, it would seem that the two different
frameworks effectively consider, and implement, different classes of
Feynman diagrams in order to get their final (quantum corrected)
metric expressions. Of course, including or not including certain
subclasses of diagrams could change the sign of the parameters
involved. Thus, the overall feeling is that at present a comparison
betweenGR-EFTandASG results could even be not well grounded,
and in any case the available calculations are notyet able to clarify the
situation. This however looks to us as an even stronger motivation to
explore the physical consequences of a negative ω̃ parameter.
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and therefore

Fðr → 0Þ ≃ 1 −
2Mr
ω̃ℏ

; ð8Þ

so in this case we have a conic singularity at the origin.
Clearly, the presence of ℏ signals the quantum character of
the correction that the SDG/ASG approach gives to the core
of the standard Schwarzschild metric. In both cases the
central singularity has disappeared.

III. POSSIBLE VALUES OF THE PARAMETERS
ω̃ AND γ

Aswe said in Sec. II, the SDG/ASG-modified Newtonian
potential can be obtained from the standard Newton formula

VðrÞ ¼ −
GMm
r

ð9Þ

by simply replacing the experimentally observed Newton
constantGwith the running couplingGðrÞ given in Eq. (2).
Thus we get

VSDGðrÞ ¼ −
GðrÞMm

r
¼ −

GMmr2

r3 þ ω̃Gℏðrþ γGMÞ ; ð10Þ

which can be expanded for large r as

VSDGðrÞ ¼ −
GMm
r

�
1 −

ω̃Gℏ
r2

−
γω̃G2ℏM

r3
þO

�
G2ℏ2

r4

��
:

ð11Þ

Clearly, the corrections to the standard Newtonian potential
predicted by the SDG/ASG approach are all of quantum
nature. This is suggested by the presence of ℏ in each term of
correction. In fact, there are no correction terms of classical
origin, coming from some kind of post-Newtonian approxi-
mation. On the other hand, corrections of quantum origin to
the classical Newtonian potential have been elaborated by
several researchers [37–45] in the last three decades or so. In
particular, it was pointed out by Donoghue [38,41] that the
standard perturbative quantization of Einstein gravity leads to
a well-defined, finite prediction for the leading large distance
quantum correction toNewtonian potential (the effective field
theory approach mentioned in the Introduction). The numeri-
cal coefficients of the quantum expansion have undergone a
certain evolution over the years [39,40], but the result today
accepted by the community [41,42] reads

VQGRðrÞ ¼ −
GMm
r

�
1þ 41

10π

Gℏ
r2

þ…

�
: ð12Þ

This is an expansion at first order in ℏ (and at second order in
1=r), where the first correction term represents a genuine
quantum correction proportional to ℏ.

The comparison of the two expansions (11) and (12)
allows us to fix the parameter ω̃, which results as

ω̃ ¼ −
41

10π
: ð13Þ

The parameter γ cannot be fixed by these considerations. To
this aim, we refer the reader to the arguments originally
developed in Ref. [15], and then taken up also by other
authors (e.g. [26]). Those classical general relativistic argu-
ments fix γ ¼ 9=2. Different kind of considerations, based
on the generalized uncertainty principle (see Ref. [36]; see
also Refs. [48]), lead to the value γ ¼ 0. In this paper wewill
assume always that γ ≥ 0, and in some specific cases we
shall comment on the special value γ ¼ 0. However, most of
the results will be qualitatively the same for all γ > 0.
As we said in footnote 1, the last couple of years have

witnessed the raising of some doubts against the conceptual
correctness of a comparison between the SDG/ASG-modi-
fied Newtonian potential (11), with the GR-EFT quantum
corrected Newtonian potential (12). Without supporting
here one side or the other of this not yet settled down
question, it is however perfectly legitimate to explore the
physical consequences of the case ω̃ < 0, as on the other
hand the above Eq. (13) strongly suggests.
We emphasize that the sign of ω̃ is crucial for the physics

of SDG-modified black hole. In the standard, strict, ASG
approach, only metrics with ω̃ > 0 have been studied. This
choice of course has implied black holes where the central
singularity is wiped out, in favor of a de Sitter or an anti–de
Sitter core, as can be easily inferred from Eqs. (4) and (6),
and is also widely discussed in the above references. In the
next sections, on the contrary, starting from a more general
SDG point of view, we shall explore metrics with a negative
ω̃. This choice, as we will see, will have deep consequences
on the structure and the physics of the black hole metric (4)
considered.2

2From a historical point of view, it is interesting to note that, until
quite recently, many authors of ASG community (e.g. [15,26,27]),
in order to fix the ω̃ parameter, have relied on a direct comparison
between the two expressions (11) and (12). The sign of the ω̃
parameter has therefore changed according to the sign of the first
order correction term in ℏ in the expansion (12). For example, Duff,
in his first calculation [37] of 1974 obtained an expansion of the
same kind of (12), with a positive coefficient of the ℏ term (and
therefore a negative ω̃). The ASG community has instead actually
considered, until few years ago, the early calculations performed by
Donoghue and others [38,39] in the period 1994–1995, where the ℏ
coefficient obtained was negative. As a consequence, the ASG
authors got a positive value of ω̃. However, during the years, the
analytical techniques used in GR as an effective QFT have been
refined, and the results now accepted by the GR-EFT community
are those expressed, initially, in Refs. [41,42], and then confirmed in
Refs. [43], as well as in the very recent Ref. [44]. All these results
coherently point to apositiveℏ coefficient in the expansion (12) (and
hence to a negativevalue of ω̃, if the above comparison is effectively
considered).
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IV. STUDY OF THE NEW SDG-MODIFIED
SCHWARZSCHILD METRIC

The key suggestion coming from the previous section is
to consider the possibility of a negative ω̃. This, as we will
see, represents a major change in respect to others modified
(but regular) Schwarzschild metrics present in literature
[10,14,15,32–34]. Instead, some contact with our results
can be found in Ref. [49], although there the authors do not
deal with SDG models. So, according to the previous
section, we consider here the case

ω̃ < 0 ⇒ ω̃ ¼ −jω̃j; γ > 0: ð14Þ

The lapse function (4) can therefore be written as

FðrÞ ¼ 1 −
2GMr2

r3 − jω̃jGℏðrþ γGMÞ : ð15Þ

While for ω̃ > 0 the lapse (4) is regular everywhere
when r > 0 (see e.g. Ref. [15]), here, with ω̃ < 0, the
scenario is very different. First, we notice that the
behavior of FðrÞ at r → ∞ remains that described by
Eq. (5), namely a standard Schwarzschild metric for large r.
At r → 0 we have an anti–de Sitter core, namely
FðrÞ ≃ 1þ 2r2=ðjω̃jγGℏÞ. But now the denominator
DðrÞ appearing in (15) can develop zeros. Luckily, a
simple graphical analysis is sufficient to clarify the sit-
uation. In Fig. 1, we compare the two lines

y1 ¼ r3;

y2 ¼ jω̃jGℏðrþ γGMÞ ð16Þ

for various values of M > 0, the mass of the central body.
As we see, since D ¼ y1 − y2, there is always only one
single zero for DðrÞ when r > 0, let us call it r0. So

DðrÞ > 0 for r > r0;

DðrÞ ¼ 0 for r ¼ r0;

DðrÞ < 0 for 0 < r < r0:

In the unphysical region r < 0, DðrÞ can develop two
distinct zeros, or two coincident zeros, or no real zeros at
all. On the ground of the above situation, we can develop a
straightforward analysis of the function FðrÞ, valid for
any M > 0:

lim
r→þ∞

FðrÞ ¼ 1−; lim
r→rþ

0

FðrÞ ¼ 1 −
2GMr20
0þ

¼ −∞;

lim
r→r−

0

FðrÞ ¼ 1 −
2GMr20
0−

¼ þ∞; lim
r→0þ

FðrÞ ¼ 1þ;

FðrÞ ∼ 1þ 2r2

jω̃jγGℏ for r ∼ 0; F0ðrÞ ¼ 2GMðr4 þ jω̃jGℏr2 þ 2jω̃jγG2MℏrÞ
ðr3 − jω̃jGℏr − jω̃jγG2ℏMÞ2 > 0 for r > 0:

The information collected above allows us to draw a
general graph (Fig. 2) of the lapse function FðrÞ in the
region r > 0, valid for any γ > 0 and of course M > 0. As
we see, there is one single positive zero r ¼ rh of FðrÞ,
which is the horizon of the SDG-modified black hole
metric (15). There is also an essential singularity at
r ¼ r0 > 0. The most relevant difference with the standard
Schwarzschild metric is the fact that the essential (ineli-
minable) singularity is at r0 > 0, instead of being at r0 ¼ 0.
It is also clear that it is always r0 < rh, for any M > 0. So
the singularity is always protected by the event horizon.

The singularity is never naked, in full accordance with the
cosmic censorship conjecture.
We now examine the asymptotic behavior of the horizon

rh and of the singularity r0 in the physical relevant limits of
large M and small M.

A. Horizon rh
The only real positive zero of FðrÞ, the horizon, must be

a solution r ¼ rh of the equation

r3 − 2GMr2 − jω̃jGℏr − γjω̃jG2ℏM ¼ 0: ð17Þ

FIG. 1. Comparison of the two lines y1ðrÞ, y2ðr;MÞ for
increasing values of M ≥ 0. See Eq. (16).
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The classical limit, ℏ → 0, of the above equation reads as
r3 − 2GMr2 ¼ 0, whose positive solution is r ¼ 2GM.
Therefore, to get an approximate solution of (17) for large
M, we pose

r ¼ 2GM þ ε ð18Þ

and we perturb around the classical solution 2GM by
keeping only the first order terms in ε.3 In so doing, we get a
linear equation for ε, from which results in

ε ¼ ð2þ γÞjω̃j
4

ℏ
M

; ð19Þ

and finally the behavior of the horizon for large M,
M → ∞, is

rh ≃ 2GM þ ð2þ γÞjω̃jℏ
4M

; ð20Þ

so the usual Schwarzschild expression for the horizon is
recovered in the large M limit.
We can also investigate the behavior of the horizon in the

small M limit. For M → 0, Eq. (17) reads

r3 − jω̃jGℏr ≃ 0 ⇒ rðr2 − jω̃jGℏÞ ≃ 0: ð21Þ

The last equation has solutions r1=2 ¼ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffijω̃jGℏp
and

r3 ¼ 0. We can perturb around these solutions by posing

r1=2 ¼ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffijω̃jGℏp þ ε, r3 ¼ 0þ ε and setting them back
into Eq. (17). Under the hypothesis

jεj ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃jGℏ

p
; ð22Þ

we can retain the first order in ε only, then we arrive at a
linear equation in ε, and from that finally we get

r1=2 ≃ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃jGℏ

p
þ
�
1þ γ

2

�
GM; r3≃−γGM: ð23Þ

Clearly, the only acceptable solution is r2, since r2 > 0
always. So we have the behavior of the horizon for
small M as

rh ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃jGℏ

p
þ
�
1þ γ

2

�
GM: ð24Þ

However from the physical point of view, this solution is
practically meaningless, since the condition (22) implies

GM ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃jGℏ

p
∼ lP; ð25Þ

which means that this solution is valid when M ≪ mp, i.e.
when the collapsing mass is much smaller than the Planck
mass. Equivalently, the correction ε should be smaller than
the Planck length, which again would mean that ε has no
definite physical meaning.

B. Singularity r0
As we have seen, the singularity of the metric (15) is

located at the only positive root r ¼ r0 of the equation

r3 − jω̃jGℏr − γjω̃jG2ℏM ¼ 0: ð26Þ

Here also we have a look at the behavior of the solution for
M small and for M large.
For M → 0, the equation is again of the form

r3 − jω̃jGℏr ¼ 0; ð27Þ

which has the exact solutions r1=2 ¼ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffijω̃jGℏp
and

r3 ¼ 0. Perturbing around them, namely posing

r1=2 ¼ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃jGℏ

p
þ ε; r3 ¼ 0þ ε; ð28Þ

and substituting them back into (26), we get, under the
usual condition jεj ≪ ffiffiffiffiffiffiffiffiffiffiffiffiffijω̃jGℏp

,

r1=2 ≃ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃jGℏ

p
þ γ

2
GM; r3 ≃ −γGM: ð29Þ

Repeating similar considerations as before we can say that
the only acceptable solution is r2 (because r2 > 0 always),

FIG. 2. Lapse function FðrÞ: physical region for r > 0, singu-
larity at r ¼ r0, horizon at r ¼ rh, where FðrhÞ ¼ 0.

3An alternative derivation is the following. Since Gℏ ¼ l2
P,

Eq. (17) reads as r3 − 2GMr2 − jω̃jl2
Pr − γjω̃jl2

PGM ¼ 0,
which, in the limit of large M, approximately becomes
r3 − 2GMr2 − γjω̃jl2

PGM ≃ 0. The last term is suppressed by
the factor l2

P, so finally the large M limit of the horizon equation
is r3 − 2GMr2 ≃ 0, whose positive solution is r ¼ 2GM. There-
fore we look for an approximate solution of Eq. (17)
by perturbing around the classical Schwarzschild solution,
namely we pose r ¼ 2GM þ ε, and we keep only the first order
terms in ε.
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so the behavior of the radial coordinate of the singularity
for small M is

r0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jω̃jGℏ

p
þ γ

2
GM: ð30Þ

However, the above condition on ε once again implies
jεj ≪ lP, or M ≪ mp, which makes such mathematical
solutions of little, if any, physical interest.
Instead, for M → ∞ the situation is much more interest-

ing. The large M limit of the singularity equation (26) is

r3 − γjω̃jG2ℏM ≃ 0; ð31Þ

so the real positive solution is r ¼ ðγjω̃jG2ℏMÞ1=3. We
perturb around it by posing

r ¼ ðγjω̃jG2ℏMÞ1=3 þ ε ð32Þ

and under the usual condition jεj ≪ ðγjω̃jG2ℏMÞ1=3, we get
for large M

r0 ≃ ðγjω̃jG2ℏMÞ1=3 þ jω̃jGℏ
3ðγjω̃jG2ℏMÞ1=3 : ð33Þ

An important physical consideration can now be stated. As
it was already suggested by the initial analysis, the
singularity results to be always protected by the horizon.
Namely, by comparing Eqs. (20), (33) for large M, or
instead by comparing Eqs. (24), (30) in the small M limit,
we always have

r0 < rh; ð34Þ

so there are no naked singularities. For sake of clarity, in
Fig. 3 the reader can find the plots of the mass function
MðrhÞ for the horizon (red dashed line)

GMðrhÞ ¼
r3 − jω̃jl2

Pr
2r2 þ jω̃jl2

Pγ

����
r¼rh

; ð35Þ

the mass function Mðr0Þ for the singularity (blue dot-
dashed line)

GMðr0Þ ¼
r3 − jω̃jl2

Pr
jω̃jl2

Pγ

����
r¼r0

; ð36Þ

and the standard Schwarzschild horizon GM ¼ rSCH=2
(green solid line). Any horizontal line (black dashed)
representing an arbitrary M > 0 intersects first the blue
line and then the red line, namely r0ðMÞ < rhðMÞ for any
M > 0. Notice that both the horizon and the singularity

mass functions have a simple zero at

r ¼ rc ¼
ffiffiffiffiffiffi
jω̃j

p
lP; ð37Þ

with r2c ¼ jω̃jl2
P.

V. A METRIC FOR THE PLANCK STARS

It is of the greatest interest to examine the core of the
black hole metric we obtained. For masses M larger than
the Planck mass mp, M ≫ mp, the central hard singularity
is located at r ¼ r0, and it has, in fact, a finite positive size
r0 ≃ ðγjω̃jG2ℏMÞ1=3 > 0, contrary to what happens in the
standard Schwarzschild black hole, where the singularity is
pointlike. Observe that this finite size is completely of
quantum origin: in fact, r0 → 0 if we take the classical
limit ℏ → 0.
But most importantly, if we presume that the whole

collapsing mass M is concentrated into the central hard
sphere of radius r0, then we can compute the (noncovariant)
volume of this sphere, and hence the density of this matter
(as seen by an observer at infinity), which will be finite, and
precisely

r0 ¼ ðγjω̃jl2
PGMÞ1=3 ¼ ðγjω̃j=2Þ13

�
M
mp

�1
3

lP

⇒ ϱ ¼ M
Vcore

¼ 3

2π

mp

γjω̃jl3
P
≃

mp

2γjω̃jl3
P
¼ ϱPlanck

2γjω̃j ; ð38Þ

where we used the definitions Gℏ ¼ l2
P, 2Gmp ¼ lP, and

ϱPlanck ¼
mp

l3
P
: ð39Þ

So the central hard kernel of our black hole results to have a
finite size, and a density of the order of the Planck density.

FIG. 3. Horizon mass function MðrhÞ (red dashed line),
singularity mass function Mðr0Þ (blue dot-dashed line), and
Schwarzschild mass function (green solid line). The horizontal
black dashed line represents an arbitrary M > 0, and always
intersects blue and red lines at r0ðMÞ < rhðMÞ, namely there are
no naked singularities.
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These are exactly the characteristics of the so-called Planck
stars, first proposed in Ref. [47], on the ground of general
qualitative considerations. Many of the general properties
described in [47] (see also Ref. [50]) can now be repeated
for our black hole. The finite positive size of the central
core, being of pure quantum origin, is presumably due to
the action of the Heisenberg uncertainty principle, which
prevents matter from being arbitrarily concentrated into a
geometrical point of size zero. The central kernel can
presumably keep trace of all the information swallowed by
the black hole: we see here a possible way out of the
information paradox. Of course, all the above consider-
ations make sense only for γ > 0 strictly.
The original proposal [47] contains a certain amount of

qualitative considerations, including an educated guess on
the form of the metric able to describe a Planck star. Such a
metric was initially chosen to be the Hayward metric [32]

FðrÞ ¼ 1 −
2GMr2

r3 þ 2GML2
; ð40Þ

where L is a parameter with dimensions of a length. No
particularly compelling argument, from the physical point
of view, was exhibited for that choice, with the exception,
perhaps, that the Hayward metric is a well-known example
of a singularity-free metric. For large M the metric (40)
develops two horizons, one inner

r− ≃ Lþ L2

4GM
; ð41Þ

and one outer

rþ ≃ 2GM −
L2

2GM
: ð42Þ

However, no specific indication is contained in the
Hayward metric (40) about the size of the hard kernel of
a Planck star. Even identifying such hard kernel size with
r−, certainly it does not increase in size with M, as instead
Eq. (38) suggests for r0 [compare with Eq. (41)]. Even
worse, the Hayward metric per se is unable to mimic the
well-established quantum correction to the Newtonian
potential [41] that occurs at low energies. This is due to
the lack of a term 1=r3 in the expansion of the metric (40).
The authors of Ref. [51] found a smart way to cure this
shortcoming, but at the price of introducing a further metric
function HðrÞ, determined through a bunch of additional
constraints, so that their “modified Hayward” metric now
reads

ds2 ¼ −HðrÞFðrÞdt2 þ 1

FðrÞ dr
2 þ r2dΩ2; with

HðrÞ ¼ 1 −
βGMα

αr3 þ βGM
; ð43Þ

where β is a parameter that in Ref. [51] plays the role of our
jω̃j. The above metric4 finally contains the 1=r3 term
necessary to mimic the Donoghue modified Newtonian
potential [41] for large r.
Although smart and working, the above solution is

undeniably contorted and intricate. On the contrary, within
the formalism of the “renormalization improved” and
“running” coupling constants, the mathematical structure
of the metric is dictated by the general properties of the SD/
AS gravity, and its lapse function (15) results clearly
simpler than the above product HðrÞFðrÞ. Our SDG metric
(15) already contains the right terms to match, at large
distances, the quantum corrected Newtonian potential.
Moreover, and this is quite astonishing, by simply imposing
that match, the final form of the metric is uniquely fixed,
and it automatically displays the correct size of the central
hard kernel of the Planck star.
In the following, we shall therefore study the thermo-

dynamic properties of the metric (15).

VI. HAWKING TEMPERATURE

According to the celebrated works of Hawking (see e.g.
Ref. [52]), a generic Lorentzian black hole metric as (3)
with a lapse function FðrÞ bearing an horizon [namely a
simple zero at some r ¼ rh, with FðrhÞ ¼ 0; F0ðrhÞ ≠ 0],
displays on the horizon a Hawking-Bekenstein temperature
given by

TBH ¼ ℏ
4π

F0ðrhÞ: ð44Þ

Therefore, reminding Gℏ ¼ l2
P and jω̃jl2

P ¼ r2c, from (15)
we can compute

4π

ℏ
T ¼ F0ðrÞ ¼ 2GMr

r3 þ r2crþ 2γGMr2c
ðr3 − r2cr − γGMr2cÞ2

; ð45Þ

where we take r ¼ rh, namely r should satisfy the identity
FðrÞ ¼ r3 − 2GMr2 − r2cr − γGMr2c ¼ 0. We can use this
to simplify r3 − r2cr − γGMr2c ¼ 2GMr2 and get

F0ðrÞ ¼ 1

2GM

�
1þ r2c

r2
þ 2γGMr2c

r3

�
: ð46Þ

4A further requirement imposed by the authors on the function
HðrÞ is that HðrÞ should allow for a time delay between a clock
sitting at the center of the collapsed object (r ¼ 0) and a clock at
infinity (put a clock at r ¼ 0 is in principle conceivable, just
because the Hayward metric is regular at r ¼ 0). To get this, the
authors demand that Hðr ¼ 0Þ ¼ 1 − α. They justify this further
request by saying that it“is a physically unmotivated restriction”
to leave Hð0Þ ¼ 1. In any case, we do not have this kind of
problem with the SDG metric (15), since the center r ¼ 0 cannot
be reached, being protected by the singularity at r ¼ r0 > 0.
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The above expression is exact. Now we study its limits,
namely the limits of TðMÞ for M large and for M small.
Repeating twice the procedure which led us to (20), for

M → ∞, we can arrive to write the expansion of rhðMÞ to
the third order in 1=M

r ¼ rh ≃ 2GM þ ðγ þ 2Þr2c
4GM

þ ðγ þ 2Þr4c
16G3M3

þ…: ð47Þ

Inserting this back into (46) we get finally

4π

ℏ
TðMÞ ¼ F0ðrÞ ¼ 1

2GM

�
1þ γ þ 1

4

�
rc
GM

�
2

−
ðγ þ 2Þð3γ þ 2Þ

32

�
rc
GM

�
4

þ…

�
: ð48Þ

We recover here the standard behavior TBH ¼ ℏ=8πGM of
the Bekenstein-Hawking temperature for large M, when
our black hole looks even more like a Schwarzschild one.
Moreover, notice that the horizon mass function (35) is an
odd function MðrhÞ, therefore its inverse rhðMÞ is an odd
function, and its expansion can hence contain odd powers
of M only, which in fact results in Eq. (47). Besides, the
expression in round brackets in (46) must be an even
function ofM, since rhðMÞ is odd, and therefore we find in
its expansion (48), square brackets, only even powers
of 1=M.
For smallM, first we note that, clearly, the horizon mass

function MðrhÞ, diagram Fig. 3, does not have a positive
minimum, Mmin > 0. So the Hawking evaporation can in
principle proceed until M → 0. Remembering Eq. (24), we
can write for small M

rhðMÞ ¼ rc þ
�
1þ γ

2

�
GM þ…; ð49Þ

where we suppose GM ≪ rc. Inserting this rhðMÞ back
into (46) we get

4π

ℏ
TðMÞ ¼ F0ðrÞ ¼ 1

2GM

�
2þ ðγ − 2Þ

�
GM
rc

�

þ 3ðγ þ 2Þð2 − 3γÞ
4

�
GM
rc

�
2

þ…

�
: ð50Þ

We see here again a behavior similar to that of standard
Hawking temperature for the standard Schwarzschild black
hole, namely TðMÞ → ∞whenM → 0. However, for small
M we see that our SDG-modified black hole displays a
temperature double of that of the standard Hawking,
namely TðMÞ ≃ 2TBHðMÞ for small M.
At this point, for the forthcomingdevelopments, it is useful

to observe that for a metric with a lapse function Fðr;MÞ,
the Hawking temperature can be expressed in two different
ways, either T as a function of M, T ¼ TðMÞ, or instead

T as a function of r, T ¼ TðrÞ. In fact, usually we write

4π

ℏ
TðMÞ ¼ ∂Fðr;MÞ

∂r

����
r¼rðMÞ

; ð51Þ

where rðMÞ≡ rh is a solution of the equation
FðrðMÞ;MÞ ¼ 0. However, the equation Fðr;MÞ ¼ 0 in
respect to r can be complicated, containing radicals, etc., as
actually it is in our present case, where we have the third
degree equation (17). It is much easier to consider T as a
function of r as

4π

ℏ
TðrÞ ¼ ∂Fðr;MÞ

∂r

����
M¼MðrÞ

; ð52Þ

whereMðrÞ is a solution ofFðr;MðrÞÞ ¼ 0, namelyMðrÞ is
the mass function, MðrÞ≡MðrhÞ. Mathematically, r ¼
rðMÞ and M ¼ MðrÞ are just the same implicit function,
locally defined by the equation Fðr;MÞ ¼ 0. Of course, the
equation Fðr;MÞ ¼ 0 is usually much easier to be solved in
respect to M than in r, being usually an equation of first
degree in M.
Following the above considerations, we insert the mass

function expression (35) into Eq. (46), and we get

8π

ℏ
TðrÞ ¼

�
2r2 þ γr2c
r3 − r2cr

��
1þ r2c

r2

�
þ 2γr2c

r3
; ð53Þ

where as usual r2c ¼ jω̃jl2
P, and r≡ rh is the only real

positive solution of the horizon equation (17). As expected,
we obtain here an exact, simple, rational expression of T as
a function of r, with no radicals displayed. Notice that we
can compute the behavior of TðrÞ for large r (correspond-
ing to M → ∞), or for r → rc (corresponding to M → 0),
and we get, respectively,

TðrÞ≃ ℏ
4πr

for r→∞; TðrÞ→∞ for r→ rc: ð54Þ

The above confirms the behavior of TðMÞ showed,
respectively, in Eqs. (48), (50).

VII. SPECIFIC HEAT

We can now proceed swiftly to the computation of the
specific heat capacity. In general, it is defined as
Cs ¼ dE=dT, where E is the total energy of the system
under consideration. As usual we identify the total energy
of our SDG black hole with its total mass M (c ¼ 1) (see
Ref. [15]). Once again, as above, the “best” analytical
parameter through which express the mass and the temper-
ature of our black hole is not its mass M, but rather its
gravitational radius rh ¼ r [positive solution of Eq. (17)].
So we have

Cs ¼
dMðrÞ
dTðrÞ ¼ M0ðrÞ

T 0ðrÞ : ð55Þ
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For agility of calculation, let us rename the horizon mass
function (35) as

GMðrÞ ¼ r3 − r2cr
2r2 þ γr2c

≕NðrÞ; ð56Þ

with r2c ¼ jω̃jl2
P, then Eq. (53) reads

8π

ℏ
TðrÞ ¼ 1

NðrÞ
�
1þ r2c

r2

�
þ 2γr2c

r3
: ð57Þ

Therefore we have

Cs¼−
8π

Gℏ
N0ðrÞNðrÞ2

½N0ðrÞð1þr2c=r2Þþ2NðrÞr2c=r3þ6NðrÞ2γr2c=r4�
:

ð58Þ

We can easily verify that NðrÞ > 0, and N0ðrÞ > 0, for
r > rc (being γ ≥ 0). Therefore

CsðrÞ < 0 for any r > rc; ð59Þ

namely the specific heat is negative for any r > rc, i.e.
when M > 0. This behavior is analogous to the
Schwarzschild black hole. More specifically, sinceNðrcÞ ¼
0 and N0ðrcÞ ¼ 2=ðγ þ 2Þ > 0, we have CsðrcÞ ¼ 0, or,
more precisely,

CsðrÞ ≃ −
4π

Gℏ

�
2

2þ γ

�
2

ðr − rcÞ2 þ…: ð60Þ

Summarizing, when r → rc then

MðrÞ → 0; TðrÞ → ∞; CsðrÞ → 0 ð61Þ

in perfect analogy with the Schwarzschild black hole.
When instead r → ∞, we have r ≃ 2GM and therefore

CsðrÞ ≃ −
2π

Gℏ
r2 ≃ −

8π

ℏ
GM2; ð62Þ

which coincides with the behavior of Cs for a large M for
the Schwarzschild black hole.

VIII. EMISSION RATE EQUATION

We can investigate how long it takes a black hole with an
initial massM to reduce to a final massMf via the Hawking
radiation. In our case we have seen that the black hole can
evaporate until Mf ¼ 0. The Stefan-Boltzmann law allows
us to write an emission rate differential equation, which,
once integrated, yields the above lifetime for the black hole
considered. The mass/energy loss per unit proper time
of an infinitely far away static observer is approximately
given by

−
dM
dt

¼ σAT4; ð63Þ

where σ is a constant (related to the Stefan-Boltzmann
constant) and A is the area of the event horizon. In the
standard Hawking calculation for a Schwarzschild black
hole we haveA ∼ r2h ∼M2, and T ∼ 1=M. Therefore we get
a lifetime tlife ∼M3. As before, for the description of our
system the variable r≡ rh [positive solution of the horizon
equation (17)] appears analytically more viable than the
mass M. So we consider everything as a function of r,
namelyMðrÞ, AðrÞ, TðrÞ, and the above equation becomes
an evolution equation for the gravitational radius

−
dr
dt

¼ σ
AðrÞTðrÞ4
M0ðrÞ : ð64Þ

Inserting AðrÞ ¼ 4πr2, and MðrÞ, TðrÞ from Eqs. (56),
(57), respectively, we arrive at

−
dr
dt

¼ 4πGσ

�
ℏ
8π

�
4 r2

N0ðrÞ
�

1

NðrÞ
�
1þ r2c

r2

�
þ 2γr2c

r3

�
4

:

ð65Þ

This equation does not look very expressive, although it can
be integrated, in principle, without a particular effort (a
rational function and a quite tedious calculation). However,
it can be used to check the two important limits of our
physical system, namely r → ∞ and r → rc.
When r → ∞, then NðrÞ ≃ r=2 and N0ðrÞ ≃ 1=2. Hence

−
dr
dt

≃
σGℏ4

32π3
1

r2
for r → ∞: ð66Þ

Since in this approximation r ∼M, then we recover here
the standard Hawking result, namely −dM=dt ∼ 1=M2.
Therefore, in this approximation, for the lifetime of black
hole of initial mass M, the above equation once integrated
gives tlife ∼M3, as expected.
When r → rc, from Eq. (56) we get the behavior of NðrÞ

as

GMðrÞ ¼ NðrÞ ≃ 2

2þ γ
ðr − rcÞ þ…: ð67Þ

Therefore the rhs of the emission rate equation (65)
diverges badly as

−
dr
dt

≃ 2πGσ

�
ℏ
8π

�
4 ð2þ γÞ5r2c
ðr − rcÞ4

→ þ∞; ð68Þ
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which can be expressed in terms of the M → 0 as

−
dM
dt

≃
σℏr2c
G

�
ℏ

4πG

�
3 1

M4
: ð69Þ

Here the divergence is worse than in the standard Hawking
calculation, where −dM=dt ∼ 1=M2 → þ∞ when M → 0.
Although trusting Eq. (69) to its very end appears risky and
perhaps incorrect, nevertheless its behavior signals as
well an explosive character of the last instants of life of
a SDG-modified black hole.

IX. ENTROPY OF THE PLANCK STAR

We consider here the computation of the thermodynamic
entropy of our system, while we leave to future work any
possible statistical mechanics interpretation of such an
entropy through the counting of “microscopic” states
(maybe inaccessible to our observation). Therefore, by
identifying, as usual, the energy of our system with the
mass M of the black hole (c ¼ 1), we can write from
general thermodynamics

dS ¼ dM
T

; ð70Þ

where of course T is the Hawking temperature of the hole.
The standard calculation proceeds by considering T as a

function of M, and then computing TðMÞ, SðMÞ. On the
contrary in our case, as widely illustrated above, the positive
solution r of Eq. (17), namely the radius of the event
horizon, is an analytical variable better viable than M.
Therefore we shall write

dS ¼ M0ðrÞ
TðrÞ dr: ð71Þ

Hence, using Eqs. (56), (57), we can write

dS
dr

¼M0ðrÞ
TðrÞ ¼ 8π

Gℏ
N0ðrÞNðrÞ

�
1þr2c

r2
þ2γr2c

r3
NðrÞ

�−1
: ð72Þ

In principle, as before, we can integrate exactly the above
equation, but this step does not seem to give us any
particularly useful information. It appears more clever to
expand the above expression around the two significant
limits r → ∞ and r → rc, and then integrate.
For r → ∞, then NðrÞ ≃ r=2 and N0ðrÞ ≃ 1=2. Hence

dS
dr

¼ 2π

Gℏ
r; ð73Þ

which can be integrated to give

SðrÞ − SðΛÞ ¼
Z

r

Λ

2π

Gℏ
ρdρ ¼ 4πr2

4l2
P
−
4πΛ2

4l2
P
; ð74Þ

where we inserted a large (infrared) cutoff Λ to take into
account the fact that we are integrating Eq. (72) in a region

of large r [where (72) takes the form of (73)]. Once again,
we recover for large r the well-known behavior of the
entropy of a Schwarzschild black hole

SðrÞ ∼ Area
4l2

P
: ð75Þ

When on the contrary r → rc, then Eq. (67) holds, and
N0ðrÞ ≃ 2=ð2þ γÞ, hence

dS
dr

≃
4π

Gℏ

�
2

2þ γ

�
2

ðr − rcÞ; ð76Þ

which integrated yields

SðrÞ − SðrcÞ ≃
2π

Gℏ

�
2

2þ γ

�
2

ðr − rcÞ2: ð77Þ

SðrcÞ could be interpreted as the entropy of the central core
(after complete evaporation), which may in the end account
for the information swallowed by the black hole, and
therefore perhaps represent a way out of the information
paradox (although a “zero mass” remnant remains at the
moment a puzzling object).

X. CONCLUSIONS

In this paper we have described the main features of a
spherically symmetric black hole metric suggested by a
SDG approach. Respect to previous studies carried
out in the ASG framework, the decisive novelty of the
present work is that we investigated a negative value
of the free parameter ω̃. This was suggested by a com-
parison between the SDG/ASG corrected Newtonian
potential, with the analog quantum corrections recently
computed by Donoghue, Khriplovich, and collaborators
[41–43] using the approach to GR as a low energy effective
Quantum Field Theory (QFT).
The fact ω̃ < 0 completely changes the geometry of the

SDG “modified” black hole metric. Previously unexplored
aspects of this metric have been studied, the most relevant
one being the presence of a finite-size singularity at the core
of the black hole. Surprisingly, the size of this “black core”
turns out to be exactly what is needed to describe the so-
called Planck stars. These objects were introduced years
ago on the basis of semiqualitative arguments [47], while in
our context they appear as a quite natural mathematical
consequence of the SDG metric with a negative ω̃
parameter (see also e.g. [53]).
Hawking temperature, specific heat, emission rate equa-

tion, and thermodynamic entropy have been studied for our
Planck star metric, and they yield illuminating insights. It is
worth mentioning that the phenomenology of these objects
could be quite rich, and presents both astrophysical and
cosmological signatures, in particular in the realm of
(primordial) black hole evaporation [54]. Since a Planck
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star evaporates with a hard kernel of finite positive size,
then the final explosion may occur at a “macroscopic”
scale, namely at a much bigger scale than the Planck scale.
So, Planck star explosions could be naturally associated
with some of the measured short gamma-ray bursts [55]. In
Ref. [56] the authors estimated that several short gamma-
ray bursts per day, around 10 MeV, with an isotropic
distribution, can be expected coming from a region of a few
hundred light years around us. On the other hand, also fast
radio bursts, strong signals with millisecond duration,
which are probably of extragalactic origin, have been
shown in Ref. [57] to have wavelengths not far from the
expected size of the exploding hole.

On the theoretical side, further investigations related to
this kind of metric are currently being carried out and are
aimed to better understand Penrose diagrams, energy
conditions, singularity theorems, quasinormal modes, as
well as a statistical interpretation of entropy and informa-
tion paradox.
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