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Compensated isocurvature perturbations (CIPs) are perturbations to the primordial baryon density that
are accompanied by dark-matter-density perturbations so that the total matter density is unperturbed. Such
CIPs, which may arise in some multifield inflationary models, can be long-lived and only weakly
constrained by current cosmological measurements. Here we show that the CIP-induced modulation of the
electron number density interacts with the electron-temperature fluctuation associated with primordial
adiabatic perturbations to produce, via the Biermann-battery mechanism, a magnetic field in the post-
recombinaton Universe. Assuming the CIP amplitude saturates the current BBN bounds, this magnetic
field can be stronger than 10−15 nG at z ≃ 20 and stronger by an order of magnitude than that (produced at
second order in the adiabatic-perturbation amplitude) in the standard cosmological model, and thus can
serve as a possible seed for galactic dynamos.
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I. INTRODUCTION

Our current cosmological model is consistent with the
idea of a period of inflationary expansion in the early
Universe that generated the primordial density perturba-
tions that seeded the growth of cosmic large-scale structure.
The canonical model is, however, no more than a toy
model, and so efforts are aimed to seek new relics in
primordial perturbations, beyond the nearly scale-invariant
Gaussian adiabatic perturbations predicted in the simplest
models. Possibilities include various types of non-
Gaussianity, departures from scale invariance, and assorted
type of isocurvature perturbations [1–14].
Included among these possibilities are compensated

isocurvature perturbations (CIPs), perturbations to the
dark-matter density that are compensated by baryon-
density perturbations in such a way that the isocurvature
part of the total matter perturbation vanishes [15–17]. CIPs,
which can arise in some multi-field models [15,16,18–22]
or during baryogenesis [23] are particularly intriguing as

CIPs induce (at linear order) no temperature fluctuations in
the cosmic microwave background (CMB). The fluctua-
tions remain frozen until shortly after recombination due to
CMB drag. The subsequent evolution is triggered by the
baryon-gas pressure, which is small, thus affecting pertur-
bations only on very small scales. Constraints to CIPs on
large scales come from higher-order effects on the CMB
power spectrum [24–28] and the CMB trispectrum [29–31]
while CIPs on small distance scales may be manifest in
CMB spectral distortions [32,33] or the recombination
history [34]. Still, these effects arise only at higher order in
perturbation theory and so are fairly weakly constrained.
The effects of CIPs have also been considered for baryon
acoustic oscillations [35–37]; 21-cm fluctuations [16];
velocity acoustic oscillations [38,39] in the 21-cm power
spectrum [40]; scale-dependent bias [41,42]; and kSZ
tomography [43–45].
Here we show that CIPs induce magnetic fields by

interacting with primordial adiabatic perturbations during
the dark ages, after recombination but before the epoch of
reionization. The CIP gives rise to an isothermal perturba-
tion to the electron number density that then interacts, via*jordanf@post.bgu.ac.il
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the Biermann-battery mechanism [46], with the electron-
temperature gradients associated with the adiabatic pertur-
bation to generate a magnetic field. A similar mechanism
operates in the standard cosmological model at second
order in the adiabatic-density-perturbation amplitude [46]
and generates magnetic fields weaker than Oð10−15 nGÞ at
the redshifts, z ≃ 20, at which the first structures become
nonlinear. As the CIP amplitude may be four orders of
magnitude larger than the adiabatic-perturbation amplitude,
one might expect that the CIPs can induce magnetic fields
of order 10−11 nG at redshifts z ∼ 20 and thus possibly
detectable by 21-cm measurements [47,48]. Yet, our
analysis shows that cancelations in the amplitude of the
fluctuations in the electron number-density suppress that
enhancement.
The remaining parts of this paper are organized as

follows. In Sec. II we discuss large- and small-scale
constraints on the CIP amplitude and relate those to the
amplitude of the CIPs-induced free-electron-density fluc-
tuations. We then derive, in Sec. III, the magnetic fields that
could have arisen from the CIPs. We conclude with a
discussion on our results in Sec. IV.
In this work we have adopted the cosmological param-

eters from the best-fit of Planck 2018 [49], that is a Hubble
constant h ¼ 0.6736, a primordial curvature amplitude
As ¼ 2.1 × 10−9 with a spectral index ns ¼ 0.9649, and
total matter and baryons density parameters Ωm ¼ 0.3153,
Ωb ¼ 0.0493.

II. COMPENSATED ISOCURVATURE
PERTURBATIONS

We describe the CIP field ΔðxÞ ¼ δρbðxÞ=ρ̄b to be the
isocurvature fractional perturbation to the baryon density.
This field is then accompanied by a fractional isocurvature
perturbation δρcðxÞ=ρ̄c ¼ −fbΔðxÞ to the cold-dark-matter
density, where fb ¼ Ωb=Ωc is the ratio of the baryon and
dark-matter densities. We take the primordial CIP field to
be a realization of a random field with a power spectrum
∝ kα with the wave number k. The time evolution of the
CIP field is simple. The absence of any density perturbation
implies no curvature perturbations (at least at linear order)
and thus no gravitational acceleration. The pressure gra-
dients in the baryon-photon fluid introduced by the baryon
fluctuation are extremely small. The baryon isocurvature
perturbation then remains frozen through radiation drag,
which ends at redshift z ≃ 800, when the baryon temper-
ature is roughly 0.2 eV and the baryon sound speed thus
cs ∼ 1.3 × 10−5c. At this point, the baryons then spread out
at the sound speed, thus smoothing fluctuations on comov-
ing distance scales smaller than ∼2 × 10−2 Mpc, compa-
rable to the Jeans scale.
If the power-law index α > −3, then the perturbations

are largest at small wavelengths (high k). If the perturbation
amplitude is large, it will affect the agreement between
observed light-element abundances and the predictions of

big-bang nucleosynthesis (BBN). If the dependence of
light-element abundances on the baryon density is perfectly
linear, then there will be no change to the abundances after
averaging over small-scale fluctuations. The dependence of
the deuterium abundance on the baryon density is, how-
ever, not linear; it is approximated by ðD=HÞ ∝ Ω−3=2

b [50].
Tthe deuterium abundance will thus be shifted at quadratic
order in Δ by ð1þ ΔÞ−3=2 ≈ 1 − 3

2
Δþ 15

8
Δ2, and after

averaging over many small-scale fluctuations the fractional
variation in the deuterium abundance is δðD=HÞ=ðD=HÞ∼
2hΔ2i. The ∼1% precision of the current deuterium
abundance [51] then suggests hΔ2i≲ 5 × 10−3.
If on the other hand α ≤ −3, the baryon density is

smooth on small scales but varies on large scales. The rapid
Compton interactions prior to recombination will imprint
these large scales fluctuations in the baryon density field
into large scales fluctuations in the CMB, which would be
observed as a difference between the CMB power spectrum
on one half of the sky and that on the other half. Current
CMB constraints indicate that hΔ2i≲ 4 × 10−3 [28].
The Biermann-battery mechanism will depend on

the fractional free-electron-density perturbation δeðxÞ≡
δneðxÞ=n̄e. The free-electron-density ne at any given point
in the post-recombination Universe will be the product of
the baryon density and the free-electron fraction xe. After
recombination, the free-electron fraction is proportional to
ð1þ ΔÞ−1.05 (for small values of Δ), an approximation that
we have verified with detailed calculations from HYREC

[52,53]). Due to an Oð%1Þ correction from the helium
abundance [50], the induced electron-density perturbation
by the CIPs is therefore

δeðxÞ ≈ −0.06ΔðxÞ≡ −ξΔðxÞ; ð1Þ
as we have verified numerically with HYREC, see Fig. 1.
Ultimately, the suppression by ξ will generate weaker
magnetic fields, even though the CIP amplitude can be
four orders of magnitude stronger than the adiabatic
perturbations.
For simplicity, we will take the free-electron power

spectrum to be in the form of a power law,

PeðkÞ ¼ Aek−3maxðk=kmaxÞαΘðkmax − kÞΘðk − kminÞ; ð2Þ

parameterized in terms of an amplitude Ae and power-law
index α. For a slow-roll inflation, a scale-invariant CIP
power-spectrum is usually considered (with α ¼ −3), a
choice that is also consistent with the latest Planck CMB
analysis [28]. Here we work with a general index α to allow
comparison of our results with other CIP probes in the
literature. In our model, the CIPs power vanishes at Fourier
modes below kmin, which essentially corresponds to the
horizon scale, and above kmax. For kmax we shall adopt as
our fiducial value the Jeans scale at the end of the drag
epoch, i.e. kmax ∼ 400 Mpc−1.
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The BBN bound on hΔ2i implies an electron-density
variance hδ2ei ¼ ð2π2Þ−1 R k2dkPeðkÞ ≲ 5 × 10−3ξ2. We
thus constrain

Ae ≲ ð5 × 10−3ξ2Þ × 2π2ð3þ αÞ ðα > −3Þ: ð3Þ

To derive the CMB bounds on Ae, we consider the CIP
variance, smoothed on a sphere of radius R,

hΔ2iR ¼ 1

2π2

Z
k2dk

�
3j1ðkRÞ

kR

�
2

PΔðkÞ; ð4Þ

where j1ðxÞ is the spherical Bessel function of order 1.
The CIPs power spectrum is obtained from Eq. (1),
PΔðkÞ¼ ξ−2PeðkÞ. By taking R¼RCMB∼125Mpc [26,45],
the CMB constraints on the CIP variance imply

Ae ≲ ð4 × 10−3ξ2Þ=Iα ðα ≤ −3Þ; ð5Þ

where

Iα ¼
1

2π2

Z
kmax

kmin

k2þαdk
k3þα
max

�
3j1ðkRCMBÞ

kRCMB

�
2

: ð6Þ

III. BIERMANN BATTERY MECHANISM

We now consider the magnetic fields produced in the
postrecombination Universe by the interaction of electron-
density fluctuations, with k ≤ kmax, with primordial adia-
batic density perturbations. In the standard cosmological

model these density perturbations are characterized by the
ΛCDM power spectrum. Right after recombination, the
growth of perturbations to the baryon density are sup-
pressed by Compton drag, but at later times, z≲ 800, the
baryons freely fall and later acquire the same distribution as
dark matter, but only for Fourier modes with wavelengths
longer than the baryon Jeans scale [55]. The gas is adiabatic
and so baryon-temperature perturbations (and thus elec-
tron-temperature perturbations) have an amplitude 2=3
times the density-perturbation amplitude. This linear-
theory evolution proceeds until a redshift z ∼ 20 at which
point fluctuations are suppressed at scales smaller than the
Jeans scale1,2 kJ ≃ 200 Mpc−1. We thus here calculate the
generation of magnetic fields at redshifts 20≲ z≲ 800
after baryon drag and before nonlinear structures form.
Nonlinear evolution is likely to amplify the magnetic fields,
perhaps considerably, and so the magnetic-field strengths
we obtain should be considered conservative lower bounds.
Magnetic fields are generated in the Biermann-battery

mechanism if there is a component of the gradient of the
electron temperature that is perpendicular to the gradient
of the electron density. The evolution of the cosmic
magnetic field B is related to the electric field E through
Faraday’s law, ∂B=∂t ¼ −c∇ ×E, with c being the
speed of light. Taking the pressure term to be the dominant
term in the generalized Ohm’s law [57], the electric field is
E ¼ −∇pe=ðneeÞ, where pe is the electron pressure and e
is the electron charge. Accounting for the expansion of the
Universe, the evolution of the magnetic field is then [58]

d
dt

ða2BÞ ¼ −
c
en2e

∇ne × ∇pe

¼ −
ckB
ene

∇ne ×∇T; ð7Þ

where aðtÞ is the scale factor and the second line follows
the equation of state of collisionless electrons, pe ¼ nekBT,
with kB the Boltzmann constant and T the electron temper-
ature. After defining δT ≡ δT=T̄ to be the fractional
electron-temperature perturbation and T̄ the mean electron
temperature (which we take to be the mean baryon temper-
ature), in the lowest order of perturbation theory we arrive
at [46]

FIG. 1. Fluctuations in the fractional free-electron-density at
z ¼ 20 as a function of the CIP amplitude. This figure was made
by running CLASS [54] (which inherently runs HYREC) with
different values of Ωb and Ωc that are controlled by the CIP
amplitude Δ. As CLASS and HYREC return ne=nH, where nH is the
hydrogen-number-density, that quantity was multiplied by
nH ∝ Ωbð1 − YHeÞ, where YHe is the helium-mass-ratio (a quan-
tity that is interpolated by CLASS given the cosmological
parameters).

1Strictly speaking, the comoving Jeans scale at z ¼ 20 is
∼900 Mpc−1. To reduce clutter though, we refer to kJ ≃
200 Mpc−1 as the scale where the temperature fluctuations are
suppressed by k−2 compared to the baryons-density fluctuations
[56].

2In addition, in our analysis we neglect effects from the relative
velocity between baryons and cold-dark-matter vbc. We antici-
pate, based on the treatment in Ref. [46], the including of vbc
would result an Oð1Þ correction of the induced magnetic field, as
well as to an extension of the magnetic field power spectrum to
larger wave numbers.
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d
dt

ða2BÞ ¼ −
ckBT̄
e

∇δe × ∇δT: ð8Þ

The Fourier components B̃ðk; tÞ of the magnetic field
induced between some initial time ti and time t are given by

B̃ðk; tÞ ¼ ckB
a2ðtÞe

Z
t

ti

dt0T̄ðt0Þ

×
Z

d3k1
ð2πÞ3 ½k1× ðk−k1Þ�δ̃eðk1; t0Þδ̃Tðk−k1; t0Þ:

ð9Þ
As there is no gravitational attraction in the linear order of
the CIP theory, we approximate the electron isocurvature-
density fluctuation as constant in timeover the relevantwave-
lengths after recombination, and the electron-temperature
perturbation scales as the linear-theory growth factor DðzÞ
(normalized to unity today) which varies as DðzÞ ∝ 1=ð1þ
zÞ over the relevant redshifts. The electron temperature
T̄ðzÞ ∝ ð1þ zÞ2 and the time is t ≃ ð2=3ÞðΩmH2

0Þ−1=2ð1þ
zÞ−3=2 at these redshifts. The redshift (or time) dependence
then factorizes and allows us to write the magnetic-field
power spectrum at redshift z as

PBðk; zÞ ¼ ½FBðzÞ�2
Z

d3k1
ð2πÞ3 ½k1 × ðk − k1Þ�2

× Peðk1ÞPTðjk − k1jÞ; ð10Þ
where

FBðzÞ ¼
2ckBT̄ðzÞDðzÞ
e

ffiffiffiffiffiffiffi
Ωm

p
H0

ð1þ zÞ1=2: ð11Þ

The scalings of T̄ðzÞ and DðzÞ with z imply that FBðzÞ ∝
ð1þ zÞ3=2. This scaling is slower than the ð1þ zÞ2 scaling
for a static comoving magnetic field, indicating that the
comoving magnetic field is generated primarily at late times.
Our rough treatment of the evolution of the baryon temper-
ature at early times is thus justified and we hereafter adopt
kmin ¼ 3 × 10−4 Mpc−1, corresponding to the horizon scale
at z ¼ 20. Numerically, the baryon temperature is
T̄ðz ¼ 20Þ ≃ 10 K, and Dðz ¼ 20Þ ≃ 0.06, and then

FBðzÞ ≃ 4.1 × 10−27 GMpc2
�
1þ z
21

�
3=2

: ð12Þ

The magnetic-field variance then becomes

hB2i ¼
Z

d3k
ð2πÞ3 PBðkÞ

¼ ½FBðzÞ�2hsin2θi

×

�Z
d3k
ð2πÞ3 k

2PeðkÞ
��Z

d3k
ð2πÞ3 k

2PTðkÞ
�
; ð13Þ

where hsin2 θi ¼ 2=3 is the angle between k1 and k
averaged over all directions. The first integral in Eq. (13)
evaluates to Aek2max½2π2ð5þ αÞ�−1j1 − ðkmin=kmaxÞαþ5j. We
evaluate the second integral using CLASS [54], cutting off the
integral at the Jeans scale kJ ≃ 200 Mpc. It comes out to
2.2 × 105ðkJ=200 Mpc−1Þ2 Mpc−2, where the scaling with
kJ arises given that the integral is dominated by the high-k
limit where PmðkÞ varies very slowly with k.
We thus find an rms magnetic-field strength

hB2i1=2 ≃ 2.9 × 10−15 nG

�
Ae

ð2 × 10−5Þ2π2j5þ αj
�

1=2

×
kJ

200 Mpc−1
kmax

400 Mpc−1

�
1þ z
21

�
3=2

×

����1 −
�
kmin

kmax

�
5þα

����1=2; ð14Þ

at redshifts z ≃ 20. A few comments: (1) The scaling with
redshift is expected to break down for redshifts z≲ 20 for
several reasons. First, small-scale perturbations will go
nonlinear, violating the assumption of linearity. Second,
the formation of stars will heat the gas and increase the
temperature. Moreover, we expect that the motions of
magnetized gas that winds up in gravitationally bound
systems will lead, through the dynamo mechanism, to
magnetic fields within halos that are far stronger than the
seed fields provided by our analysis. (2) The behavior of
the small-scale power spectrum, on scales smaller than the
Jeans scale, can be calculated, as we show in the appendix.
Here we have modeled it as a strict cutoff for simplicity and
to help indicate the uncertainty on this small-scale physics.
Yet, we find that Eq. (14) is accurate to the order of
Oð10%Þ when we compare it to numerical calculations
with a more refined modeling of the suppression at small
scales, as we discuss next.

IV. DISCUSSION

In Fig. 2 we plot the magnetic-field power spectrum for
values of −5 ≤ α ≤ 5, in each case taking Ae to be the
maximum value allowed by the BBN constraint for α > −3
[Eq. (3)] and by the CMB bound for α < −3 [Eq. (5)]. As
above, the CIP power spectrum is assumed here to be
cut off at kmax ¼ 400 Mpc−1; this cutoff gives rise to the
sharp drop in PBðkÞ at this value of k, mostly evident at
α ¼ −5. In this calculation, though, we use the standard
ΛCDM power spectrum from CLASS [54], with best-fit
Planck cosmological parameters [49]. We then extend it
to smaller scales (higher k) with the BBKS approxi-
mation [59] with the baryon correction of Ref. [60]. We
then continue the matter power spectrum to k > kJ, above
the Jeans scale, with a suppression ðk=kJÞ−4 [55,56],
for k > kJ ¼ 200 Mpc−1, relative to the BBKS power
spectrum.
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The magnetic-field power peaks in all cases at k ≃ kmax,
but is a bit more broadly distributed to lower k for α < −3
(see derivation in the appendix for the power-law behavior
at small and large scales). For α > 0 the power at the
vicinity of k ∼ kmax surpasses 10−15 nG. In all cases, the
magnetic-field energy density is negligible compared
with the thermal energy density in the gas at these redshifts
(this would require B ∼ nG), and so it is dynamically
unimportant. It also follows, from this figure, that this
mechanism is not constrained by upper limits of ∼nG to
intergalactic magnetic fields [61–63] nor strong enough to
be relevant for the magnetic fields suggested by interpre-
tation of variability of gamma-ray sources [64–66], which
reach as small as B ∼ 10−8 nG. If the CIP amplitude is
close to its BBN upper bounds, as we have assumed in this
calculation, the field strengths may be suitable to account
for seed fields for galactic dynamos [67], which in some
models can be as small as 10−21 nG at the time of galaxy
formation [68]. The magnetic-field strengths we obtain can
be higher than those that arise at quadratic order in the
primordial density perturbation [46].
In conclusion, in this work we have studied the spectrum

and strength of magnetic fields that could have been
generated via the Biermann-battery mechanism, where
the fluctuations in the electron number-density are sourced
by the CIP field. Our main result is Eq. (14). As a first study
on this effect, we favored simplicity over precision in order
to estimate the strength of the CIP-induced magnetic fields.
Although the analysis presented in this paper can be
improved by performing a full perturbation analysis that
includes also the relative velocity between baryons and

cold-dark-matter, as was done in Ref. [46], we do not
expect these improvements to alter the qualitative features
of the magnetic fields we obtained, certainly not by orders
of magnitude.
At first, one may have surmised that CIP-induced

magnetic fields could be up to a few orders of magnitude
larger, given that the CIP amplitude can be orders of
magnitude larger than the adiabatic-perturbation amplitude.
Much of that gain is erased, however, by the near
cancellation between the fluctuations in the free-electron
fraction and the baryon density in the CIP. Our calculation
shows that, when all the dust has settled, the CIP allows for
a larger magnetic field, but not much.
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APPENDIX: ANALYTICAL APPROXIMATIONS
FOR THE MAGNETIC FIELD

POWER SPECTRUM

Equation (10) can written in the following form,

PBðkÞ ¼ ½FBðzÞ�2IðkÞ; ðA1Þ

where

IðkÞ ¼
Z

d3k1
ð2πÞ3 jk1 × kj2Peðk1ÞPTðjk − k1jÞ

¼ Aek7þα

4π2k3þα
max

Z
1

−1
dμð1 − μ2ÞIxðk; μÞ; ðA2Þ

and

Ixðk; μÞ ¼
Z

xmax

xmin

dxx4þαPT ½kβðx; μÞ�; ðA3Þ

where βðx; μÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 − 2xμ

p
, xmin ≡ kmin=k and

xmax ≡ kmax=k. For simplicity, we model the temperature
power spectrum as follows

PTðkÞ ¼
4

9
PmðkÞ ×

�
1 k ≤ kJ
x4J k ≥ kJ

; ðA4Þ

FIG. 2. The magnetic-field power spectrum as a function of
wave number for different values of the electron-density spectral
index α. For values of α > −3 (α ≤ −3), the normalization of the
CIP power spectrum is taken to be the maximum allowed by the
BBN (CMB) constraint, Eq. (3) [Eq. (5)]. The vertical lines
indicate the assumed Jeans wave number kJ ¼ 200 Mpc−1 and
the cutoff kmax ¼ 400 Mpc−1 in the electron-density power
spectrum.
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where PmðkÞ is the linear matter power spectrum
and xJ ≡ kJ=k.
Below we examine IðkÞ in two limits. Throughout the

derivation, we assume k ≫ keq ≈ 0.01 Mpc−1 and assume
that the matter power spectrum scales as PmðkÞ ∝ kns−4 (we
ignore small logarithmic corrections). We also assume that
kJ and kmax are of the same order and limit ourselves to
α ≥ −5. The final expressions for IðkÞ, Eqs. (A11) and
(A14) capture very well the power-laws behavior seen in
Fig. 2 and provide a good order of magnitude estimation.

1. First limit: k ≪ kJ < kmax (1 ≪ xJ < xmax)

In the limit where xmax ≫ 1, we split the integral
of Ixðk; μÞ into two regimes, Ixðk; μÞ ¼ Ixmin→1

x ðk; μÞ þ
I1→xmax
x ðk; μÞ. For the first piece, Ixmin→1

x ðk; μÞ, we approxi-
mate βðx; μÞ ≈ 1, which yields

Ixmin→1
x ðk; μÞ ¼ 4

9
PmðkÞCð1Þ

α ðkÞ

≈
4

9
PmðkmaxÞCð1Þ

α ðkÞx4−nsmax : ðA5Þ

where Cð1Þ
α ðkÞ is an Oð1Þ factor (assuming α ≥ −5)

Cð1Þ
α ðkÞ ¼

(
1−x5þα

min
5þα ≈ 1

5þα αþ 5 ≠ 0

− ln xmin αþ 5 ¼ 0
: ðA6Þ

For the second piece, I1→xmax
x ðk; μÞ, we approximate

βðx; μÞ ≈ x. Thus, in the range 1 ≤ x ≤ xmax,

PT ½kβðx; μÞ� ≈
4

9
PmðkmaxÞ

�
x

xmax

�
ns−4

×

�
1 1 ≤ x ≤ xJ
ðx=xJÞ−4 xJ ≤ x ≤ xmax

; ðA7Þ

Then, the calculation of I1→xmax
x ðk; μÞ is straightforward,

I1→xmax
x ðk; μÞ ¼ 4

9
PmðkmaxÞCð2Þ

α

�
xαþ5
max αþ ns þ 1 ≥ 0

x4−nsmax αþ ns þ 1 < 0
;

ðA8Þ

where Cð2Þ
α is another Oð1Þ constant,

Cð2Þ
α ¼

8>>><
>>>:

ðαþnsþ1Þxαþns−3
max=J −4

ðαþnsþ1Þðαþns−3Þ x
αþnsþ1
max=J αþ ns þ 1> 0

lnxJ þ
1−x−4max=J

4
αþ ns þ 1¼ 0

− 1
αþnsþ1

αþ ns þ 1< 0

; ðA9Þ

where xmax =J ≡ xmax=xJ ¼ Oð1Þ.
Because xmax ≫ 1, xαþ5

max ≫ x4−nsmax for αþ ns þ 1 ≥ 0

and therefore I1→xmax
x ≫ Ixmin→1

x , while I1→xmax
x and Ixmin→1

x

are comparable for αþ ns þ 1 < 0. Thus

Ixðk; μÞ ¼
4

9
PmðkmaxÞ

×

(
Cð2Þ
α xαþ5

max αþ ns þ 1 ≥ 0

ðCð1Þ
α ðkÞ þ Cð2Þ

α Þx4−nsmax αþ ns þ 1 < 0
;

ðA10Þ

Since Ixðk; μÞ does not depend on μ, the μ integral in
Eq. (A2) gives 4=3, and we have

IðkÞ ¼ AB

(
Cð2Þ
α ð k

kmax
Þ2 αþ ns þ 1 ≥ 0

ðCð1Þ
α ðkÞ þCð2Þ

α Þð k
kmax

Þαþnsþ3 αþ ns þ 1< 0
;

ðA11Þ

where

AB ≡ 4AePmðkmaxÞk4max

27π2

≈ 2 × 10−6
�

Ae

10−4

��
kmax

400 Mpc−1

�
ns

Mpc−1: ðA12Þ

2. Second limit: kJ < kmax ≪ k (xJ < xmax ≪ 1)

In the limit where xmax ≪ 1, we approximate βðx; μÞ ≈ 1
and therefore

Ixðk; μÞ ¼
4

9
PmðkÞx4JCð1Þ

α ðkmaxÞx5þα
max

≈
4

9
PmðkmaxÞx−4max =JC

ð1Þ
α ðkmaxÞx13þα−ns

max : ðA13Þ

Again, the μ integral in Eq. (A2) gives 4=3, and we have

IðkÞ ¼ ABC
ð1Þ
α ðkmaxÞx−4max =J

�
k

kmax

�
ns−6

: ðA14Þ
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