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We consider two models which couple derivatives of the inflaton to ordinary matter, both to fermions and
to scalars. Such couplings induce changes to the inflaton kinetic energy, analogous to the cosmological
Coleman-Weinberg potentials which come from nonderivative couplings. Our purpose is to investigate
whether these quantum-induced k-essence models can provide efficient reheating without affecting the
observational constraints on primordial inflation. Our numerical studies show that it is difficult to preserve
both properties.
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I. INTRODUCTION

Single scalar inflation is the simplest model consistent
with current data:

L ¼ R
ffiffiffiffiffiffi−gp

16πG
−
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
− VðφÞ ffiffiffiffiffiffi

−g
p

: ð1Þ

Given a desired expansion history aðtÞ, one can construct a
scalar potential and an initial condition which will support
it [1–3]. This is important because the observational
constraints on inflation can be phrased in terms of the
expansion history aðtÞ and its derivatives:

ds2¼−dt2þa2ðtÞdx⃗ ·dx⃗⇒HðtÞ≡ _a
a
; ϵðtÞ≡−

_H
H2

: ð2Þ

These constraints are, first, that the number of e-foldings
from the start of inflation at ti to its end [when ϵðteÞ ¼ 1]
should be large enough to explain the horizon problem:

N ≡ ln

�
aðteÞ
aðtiÞ

�
≳ 60: ð3Þ

Additional constraints come from the slow-roll approxi-
mations for the scalar and tensor power spectra,

Δ2
RðkÞ ≃

GH2ðtkÞ
πϵðtkÞ

; Δ2
hðkÞ ≃

16

π
GH2ðtkÞ; ð4Þ

where tk is the time of the first horizon crossing at which
k ¼ aðtkÞHðtkÞ. The observed scalar perturbations experi-
ence first crossing over a period of about ten e-foldings,

starting about 50 e-foldings before the end of inflation.
Near the beginning of this period, the value of Δ2

RðkÞ must
be about 2 × 10−9, and the scalar spectral index ns must
obey [4]

1 − ns ≡ −
∂ lnðΔ2

RÞ
∂ lnðkÞ ≃ 2ϵþ _ϵ

Hϵ
≃ 0.035: ð5Þ

Finally, the nondetection of primordial tensors implies [4]

r≡ Δ2
h

Δ2
R
≃ 16ϵ≲ 0.036: ð6Þ

The observational constraints of Eqs. (3)–(6) result in very
flat potentials, whose minimum is infinitesimally close to
zero, andwith initial conditionswhich seemunnaturally fine-
tuned to some people. However, our concern here is the
additional constraints which arise from coupling the inflaton
to ordinary matter in order to facilitate reheating. The
simplest couplings involve the undifferentiated inflaton—
for example, a Yukawa coupling φΨ̄Ψ to fermions. What
happens then is that vacuum fluctuations of ordinary matter
induceColeman-Weinberg potentials that are neither Planck-
suppressed nor limited to local functionals of metric which
could be completely eliminated by local counterterms [5].
Because they are not Planck-suppressed, these cosmological
Coleman-Weinberg potentials typically cause dramatic
changes in the inflationary expansion history, which endan-
gers the observational constraints [Eqs. (3)–(6)].
Although cosmological Coleman-Weinberg potentials

cannot be completely eliminated by allowed counterterms,
two partial subtraction schemes are possible:
(1) Hubble subtraction, in which a local function of the

inflaton is used to nullify quantum effects at the
onset of inflation [6].
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(2) Ricci subtraction, in which a local function of the
inflaton and the Ricci scalar are used to nullify
quantum effects for ϵ ¼ 0 [7].

Neither technique gives good results. Employing Hubble
subtraction [6] shows that, with a moderate coupling
constant, inflation never ends for fermionic couplings of
effective potential, and it ends too soon for vector boson
couplings. Making the coupling constants very small
results in acceptable inflation at the price of inefficient
reheating. Ricci subtraction gives even worse results [7].
With this scheme, neither model experiences more than a
single e-folding of inflation, no matter how small the
coupling constant. This is because Ricci subtraction intro-
duces an extra, unsuppressed degree of freedom, which
makes a fatal change in the first Friedmann equation.
Because nonderivative couplings are so problematic, we

have decided here to explore the consequences of derivative
couplings.1 Because the inflaton oscillates during reheating,
its derivative should be just about as effective as the undiffer-
entiated field at communicating kinetic energy to ordinary
matter. Of course, a derivative coupling will not induce a
Coleman-Weinberg potential; it will instead generate a non-
linear function of the inflatonkinetic energy,which is a kind of
the quantum-induced k-essence model [8–10]. Our goal is to
check whether the resulting models, with Hubble subtraction,
can resolve the inconsistency between the efficiency of the
reheating and the observational constraints on inflation.
This paper consists of six sections, of which the first is

nearly done. In Sec. II, we consider a model with derivative
couplings of the inflaton to fermions, and work out the
inducedk-essence. Section III does the same for couplings to
scalars. The two modified Friedmann equations and the
scalar evolution equation are derived in Sec. IV. Section V
investigates the effective kinetic energy induced by fermions
and scalars. Our conclusions are presented in Sec. VI.

II. MODEL WITH DERIVATIVE COUPLING
OF THE INFLATON TO FERMIONS

The inflaton could be derivative-coupled to a massless
fermion ΨðxÞ:

Lfermion ¼ Ψ̄γbeμb
�
∂μ þ

i
2
AμcdJcd

�
Ψ

ffiffiffiffiffiffi
−g

p

þ 1

2m3
c
∂μφ∂νφgμνΨ̄Ψ

ffiffiffiffiffiffi
−g

p
: ð7Þ

Here, eμbðxÞ is the vierbein field with gμνðxÞ ¼
eμbðxÞeνcðxÞηbc, and AμcdðxÞ ¼ eνc½eνd;μ − Γρ

μνeρd� is the
spin connection. The symbol γbij represents the 4 × 4

gamma matrices which obey fγb; γcg ¼ −2ηbcI, and
Jcd ≡ i

4
½γc; γd� are the Lorentz representation matrices

for Dirac fermions. The final term is the coupling between
the derivative inflaton and fermions, and 1

m3
c
is the strength

of the dimensionful coupling.
Taking the functional derivative of the sum of Eqs. (1)

and (7), and then replacing Ψ̄Ψ with the coincident fermion
propagator gives the effective field equation,

∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νφ� − V 0ðφÞ ffiffiffiffiffiffi

−g
p

þ 1

m3
c
∂μ½

ffiffiffiffiffiffi
−g

p
gμν∂νφ × TrfiS½M�ðx; xÞg� ¼ 0: ð8Þ

The sign flip in the final term is due to the definition of the
fermion propagator, i½iSj�ðx; x0Þ≡ hΨiðxÞΨ̄jðx0Þi. To com-
pute the final term of the effective equation, we employ the
coincidence limit of the massive fermion propagator on de
Sitter background (ϵ ¼ 0) [11,12],

iS½M�ðx;xÞ ¼ HD−2

ð4πÞD2 Γ
�
1−

D
2

�
ΓðD

2
þ iMHÞΓðD2 − iMHÞ

Γð1þ iMHÞΓð1− iMHÞ
×MI:

ð9Þ

Here,M≡ −1
2m3

c
∂μφ∂νφgμν is the fermion mass, and I stands

for the identity matrix. Expanding Eq. (9) around D ¼ 4
and substituting into Eq. (8), the unregulated limit of the
quantum-induced term can be obtained:

∂μ

m3
c

( ffiffiffiffiffiffi−gp
gμν∂νφ ×

" HD−2

ð4πÞD2
Γð1 − D

2
Þ½4M þ 4M3

H2 �þ
H2

16π2
f8M þ ½4M þ 4M3

H2�½ψð1þ i MHÞ þ ψð1 − i MHÞ�g þOðD − 4Þ

#)
: ð10Þ

Note that ψ in the second line is not a fermion field, but rather the digamma function ψðzÞ≡ d
dz ln½ΓðzÞ�.

One can see that two counterterms are needed to renormalize the first line of Eq. (10):

Lct ¼ −
1

4
δz1ð∂μφ∂νφgμνÞ2

ffiffiffiffiffiffi
−g

p
−
1

8
δz2ð∂μφ∂νφgμνÞ4

ffiffiffiffiffiffi
−g

p
;

δSct
δφ

⇒ δz1∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νφð∂ρφ∂σφgρσÞ� þ δz2∂μ½

ffiffiffiffiffiffi
−g

p
gμν∂νφð∂ρφ∂σφgρσÞ3�: ð11Þ

1This idea was suggested by the unnamed referee of Ref. [6], to whom we are grateful.
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We make the following choice of δz1 and δz2:

δz1 ¼
HD−2

ð4πÞD2 Γ
�
1 −

D
2

�
2

m6
c
þ H2

4π2
ð1 − γÞ
m6

c
;

δz2 ¼
HD−2

ð4πÞD2
Γð1 − D

2
Þ

2m12
c H2

þ H2

16π2
½−γ þ ζð3Þ�
m12

c H2
; ð12Þ

in order to absorb the divergences and to eliminate the two lowest-order terms in the small-field expansion of Eq. (10). After
combining Eqs. (12) and (11) with Eq. (10), the renormalized result is

∂μ

( ffiffiffiffiffiffi−gp
gμν∂νφ × H4

16π2

" 8γ
m3

cH
ðMHÞ þ 8γ−8ζð3Þ

m3
cH

ðMHÞ3

þ½ 4
m3

cH
ðMHÞ þ 4

m3
cH

ðMHÞ3�½ψð1þ i MHÞ þ ψð1 − i MHÞ�

#)
: ð13Þ

This quantum contribution in the field equation can be regarded as a kind of quantum-induced k-essence. Suppose that
there exists a function of the kinetic term in the action

R
dDxΔKð− 1

2
∂ρφ∂σφgρσÞ ffiffiffiffiffiffi−gp

. Then, the contribution to the effective
field equation gives

∂μ

� ffiffiffiffiffiffi
−g

p
gμν∂νφ × ΔK0

�
−
1

2
∂ρφ∂σφgρσ

��
: ð14Þ

We can immediately identify Eq. (13) as ΔK0ð− 1
2
∂ρφ∂σφgρσÞ. By integrating Eq. (13) back with the argument, the

quantum-induced kinetic term is

ΔKfðzÞ ¼
H4

8π2

�
2γz2 þ ½γ − ζð3Þ�z4 þ 2

Z
z

0

dx½xþ x2�½ψð1þ ixÞ þ ψð1 − ixÞ�
�
;

where z is defined as z≡ −
∂ρφ∂σφgρσ

2m3
cH

¼ M
H

: ð15Þ

To get the small-field expansion, we substitute

jzj ≪ 1 ⇒ ψð1þ zÞ ¼ −γ −
X∞
k¼1

ζðkþ 1Þð−zÞk: ð16Þ

The resulting expansion is

ΔKfðzÞ ¼
H4

4π2
X∞
n¼2

ð−1Þn
nþ 1

½ζð2n − 1Þ − ζð2nþ 1Þ�z2nþ2 ð17Þ

¼ H4

8π2

�
2

3
½ζð3Þ − ζð5Þ�z6 − 1

2
½ζð5Þ − ζð7Þ�z8 þOðz10Þ

�
: ð18Þ

By substituting the large-argument expansion for the digamma function,

jzj ≫ 1 ⇒ ψðzÞ ¼ lnðzÞ − 1

2z
−

1

12z2
þ 1

120z4
−

1

256z6
þO

�
1

z8

�
; ð19Þ

the large-field expansion can be obtained:

ΔKfðzÞ ¼
H4

8π2

�
1

2
z4 lnðz2 þ 1Þ −

�
ζð3Þ þ 1

4
− γ

�
z4 þ z2 lnðz2 þ 1Þ −

�
4

3
− 2γ

�
z2 þ 11

60
lnðz2 þ 1Þ þOðz0Þ

�
: ð20Þ
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III. THE MODEL WITH DERIVATIVE COUPLING
OF THE INFLATON TO SCALARS

In this section, we begin with a derivation of the
quantum-induced k-essence model due to scalars with
arbitrary nonminimal coupling. We then present two
special cases. One is a conformal coupling, and the other
is the minimally coupled one.

A. General derivation with nonminimal coupling

Derivatives of the inflaton φðxÞ might couple to another
scalar ΦðxÞ, which need not be minimally coupled to
gravity,2

Lϕ ¼ −
1

2
∂μΦ∂νΦgμν

ffiffiffiffiffiffi
−g

p
−

1

12
ð1þ ΔξÞRΦ2 ffiffiffiffiffiffi

−g
p

þ 1

2m2
c
∂μφ∂νφgμνΦ2 ffiffiffiffiffiffi

−g
p

; ð21Þ

where 1
m2

c
is a dimensionful coupling strength. Note that

Δξ ¼ 0 corresponds to a conformally coupled scalar. The
mass term of the scalar ΦðxÞ can be identified from
Eq. (21):

M2
Φ ¼ −

1

m2
c
∂μφ∂νφgμν: ð22Þ

Taking the functional derivative of the sum of Eqs. (1) and
(21), and then replacing Φ2 with the coincidence limit of
the Φ propagator gives the effective field equation,

∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νφ� − V 0ðφÞ ffiffiffiffiffiffi

−g
p

−
1

m2
c
∂μ½

ffiffiffiffiffiffi
−g

p
gμν∂νφ × iΔ½ξ;M2

Φ�ðx; xÞ� ¼ 0: ð23Þ

On de Sitter background (ϵ ¼ 0), the coincidence limit of
the scalar propagator is [5,13]

iΔ½ξ;M2
Φ�ðx;xÞ ¼

HD−2

ð4πÞD2 Γ
�
1−

D
2

�
ΓðD−1

2
þ νÞΓðD−1

2
− νÞ

Γð1
2
þ νÞΓð1

2
− νÞ ;

ð24Þ

where ν2 is

ν2¼
�
D−1

2

�
2

−DðD−1Þξ−M2
Φ

H2
; ξ≡1

6
ð1þΔξÞ: ð25Þ

After substituting Eq. (24) into Eq. (23), expanding around
D ¼ 4, and segregating finite parts from divergences, we
see that two counterterms are needed to renormalize the
primitive contribution:

Lct ¼ −
1

2
δZ∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
−
1

4
δZ1ð∂μφ∂νφgμνÞ2

ffiffiffiffiffiffi
−g

p
;

δSct
δφ

⇒ δZ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νφ�

þ δZ1∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νφð∂ρφ∂σφgρσÞ�: ð26Þ

Here, the finite parts of δZ and δZ1 are chosen to cancel
the ∂ρφ∂σφgρσ and ð∂ρφ∂σφgρσÞ2 terms in the small-field
expansion,3

δZ ¼ 1

m2
c

�
HD−2

ð4πÞD2 Γ
�
1 −

D
2

�
ð2ΔξÞ þ H2

16π2

�
1

3
þ 7

3
Δξþ 2Δξ½ψðνþÞ þ ψðν−Þ�

��
;

δZ1 ¼
−1
m2

c

�
HD−2

ð4πÞD2
Γð1 − D

2
Þ

m2
cH2

þ H2

16π2

�½ψðνþÞ þ ψðν−Þ�
m2

cH2
−
2Δξ½ψ 0ðνþÞ − ψ 0ðν−Þ�

m2
cH2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Δξ

p
��

: ð27Þ

Note that ψðzÞ≡ d
dz ln½ΓðzÞ� is the digamma function and that we define ν� ≡ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Δξ

p
. The renormalized result can

be expressed in terms of the dimensionless quantity y≡ −∂μφ∂νφgμν

2m2
cH2 :

ΔKðyÞ ¼ H4

16π2

�
½2Δξyþ y2�½ψðνþÞ þ ψðν−Þ� −

2Δξy2½ψ 0ðνþÞ − ψ 0ðν−Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Δξ

p

− 2

Z
y

0

dxðΔξþ xÞ
�
ψ

�
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8ðΔξþ xÞ

p �
þ ψ

�
1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8ðΔξþ xÞ

p ���
: ð28Þ

2The þ sign is chosen for stability, because M2 ≡ − 1
m2

c
∂μφ∂νφgμν is positive for a time-dependent inflaton.

3The expression of the finite parts works for Δξ ≧ 0.
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We Taylor-expand the digamma function in Eq. (28) to get the small-field expansion,

ΔKðyÞ ¼ H4

16π2

��ð1 − 6ΔξÞ½ψ 0ðνþÞ − ψ 0ðν−Þ�
ð1 − 8ΔξÞ32 −

Δξ½ψ 00ðνþÞ þ ψ 00ðν−Þ�
ð1 − 8ΔξÞ

��
4y3

3

�

þ
�
2ð1 − 4ΔξÞ½ψ 0ðνþÞ − ψ 0ðν−Þ�

ð1 − 8ΔξÞ52 −
ð1 − 4ΔξÞ½ψ 00ðνþÞ þ ψ 00ðν−Þ�

2ð1 − 8ΔξÞ2

þ
2
3
Δξ½ψ 000ðνþÞ − ψ 000ðν−Þ�

ð1 − 8ΔξÞ32
�
y4 þOðy5Þ

�
: ð29Þ

The large-field expansion comes from using the asymptotic expansion [Eq. (19)]:

ΔKðyÞ ¼ H4

16π2

�
−y2 lnð2yþ 2ΔξÞ þ

�
1

2
þ ψðνþÞ þ ψðν−Þ −

2Δξ½ψ 0ðνþÞ − ψ 0ðν−Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Δξ

p
�
y2

− 2Δξy lnð2yþ 2ΔξÞ þ
�
1

3
þ Δξþ 2Δξ½ψðνþÞ þ ψðν−Þ�

�
y

þ
�
1

30
− Δξ2

�
lnð2yþ 2ΔξÞ þOðy0Þ

�
: ð30Þ

B. Conformal coupling

In this subsection, we specialize to the case in which derivatives of the inflaton are coupled to a massless, conformally
coupled scalar. By expanding Eq. (28) for small Δξ, and carefully dealing with singular contributions from the digamma
functions and its derivatives, such as

ψðν−Þ ≃
−1
2Δξ

þ 1 − γ þ � � � ; ð31Þ

ψ 0ðν−Þ ≃
1

4Δξ2
ð1 − 4Δξ − 4Δξ2Þ þ π2

6
þ � � � ; ð32Þ

the quantum-induced term is seen to be

ΔKconðyÞ ¼
H4

16π2

�
−yþ ð1 − 2γÞy2 − 2

Z
y

0

dx x

�
ψ

�
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p �
þ ψ

�
1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p ���
: ð33Þ

Employing the same techniques as the preceding section gives the small-field and large-field expansions:

ΔKconSðyÞ ¼
H4

16π2

�
−
4

3
y3 − ½4þ 2ψ 00ð1Þ�y4 þOðy5Þ

�
; ð34Þ

ΔKconLðyÞ ¼
H4

16π2

�
−y2 lnð2yÞ þ

�
3

2
− 2γ

�
y2 −

2

3
yþ 1

30
lnð2yÞ þOðy0Þ

�
: ð35Þ

C. Minimal coupling

The other special case we consider is minimal coupling, for which Δξ is taken to −1 in Eq. (21). We assume that Mϕ is
small and positive because the massless limit of a massive, minimally coupled propagator is not smooth [14–16].
Furthermore, in order to eliminate the two leading contributions in the small-field expansion, the finite parts of Eq. (27)
need to be adjusted as follows:

δZ ¼ 1

m2
c

�
HD−2

ð4πÞD2
�
−2Γ

�
1 −

D
2

��
þ H2

16π2

�
4γ −

29

3

��
;

δZ1 ¼
−1
m2

c

�
HD−2

ð4πÞD2
Γð1 − D

2
Þ

m2
cH2

þ H2

16π2

�
−2γ þ 25

27

m2
cH2

��
: ð36Þ
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A straightforward but lengthy computation gives the exact result,

ΔKminðyÞ ¼
H4

16π2

�
−2γ þ 182

27
þ
�
4γ −

23

3

�
yþ

�
−2γ þ 25

27

�
y2

þ 2

Z
y

1

dxð1 − xÞ
�
ψ

�
1

2
þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9
x

r �
þ ψ

�
1

2
−
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9
x

r ���
: ð37Þ

The small- and large-field expansions are

ΔKminSðyÞ ¼
H4

16π2

�
−3 lnðyÞ þ Cþ

�
−92
729

þ 8

27
ψ 00ð1Þ

�
y3 −

2

81

�
44

27
þ 5ψ 00ð1Þ

�
y4 þ � � �

�
; ð38Þ

ΔKminLðyÞ ¼
H4

16π2

�
−y2 lnð2yÞ þ

�
77

54
− 2γ

�
y2 þ 2y lnð2yÞ þ

�
4γ −

25

3

�
y −

29

30
lnð2yÞ þOðy0Þ

�
: ð39Þ

Here, C ¼ 14
81
½26
27
− ψ 00ð1Þ� is an integration constant.

IV. THE MODIFIED FRIEDMANN EQUATIONS

Our results in Eqs. (15), (28), (33), and (37) were all
derived on de Sitter background because that is the only
case for which the necessary propagators are known.
However, for realistic inflation, the first slow-roll parameter
is nonzero, and the Hubble parameter changes with time.
Numerical studies of cosmological Coleman-Weinberg
potentials have shown that it is reasonable to simply
replace the constant de Sitter HdS with the evolving
HðtÞ, and ignore ϵðtÞ [17–19]. That is what we shall do
for quantum-induced k-essence models,

L ¼ R
ffiffiffiffiffiffi−gp

16πG
þ Kðk; HÞ ffiffiffiffiffiffi

−g
p

− VðφÞ ffiffiffiffiffiffi
−g

p
;

Kðk; HÞ≡ kþ ΔKðk; HÞ; k ¼ −
1

2
∂μφ∂νφgμν: ð40Þ

The purpose of this section is to work out how the two
Friedmann equations and the scalar evolution equation
change. The section closes by converting these equations
into a dimensionless form conducive to numerical work.
If the effective action is known for a general metric

gμνðxÞ, the modified Friedmann equations can be obtained
by taking the functional derivative with respect to it and
then specializing to the cosmological background [Eq. (2)].
However, what we have is (an approximation for) the
effective action already specialized to Eq. (2). Because this
depends only upon the single gravitational dynamical
variable aðtÞ, varying can give at most one of the two
Friedmann equations. The theorem of Palais [20,21]
guarantees us that the single equation so obtained is at
least correct. We first show that this is the second
Friedmann equation, and then we use conservation to
reconstruct the first Friedmann equation.

In our homogeneous, isotropic, and spatially flat geom-
etry [Eq. (2)], the Lagrangian [Eq. (40)] becomes

L ¼ −
6a3H2

16πG
þ a3Kðk; HÞ − a3VðφÞ: ð41Þ

The gravitational dynamical variable is aðtÞ, and the
associated Euler-Lagrange equation is

−2 _H − 3H2 ¼ 8πG

�
Kðk; HÞ − VðφÞ

−H
∂Kðk; HÞ

∂H
−
1

3

d
dt

∂Kðk; HÞ
∂H

�
: ð42Þ

This is the ij Einstein equation, sometimes known as the
second Friedmann equation. Varying Eq. (40) with respect
to φðtÞ gives the scalar evolution equation,

φ̈

�
2k

∂
2K
∂k2

þ ∂K
∂k

�
þ _φ

�
_H

∂
2K

∂k∂H
þ 3H

∂K
∂k

�
þ ∂V

∂φ
¼ 0:

ð43Þ

Missing is the first Friedmann equation, which is the 00
Einstein equation. We can recover it by noting that the two
Friedmann equations are related to the scalar evolution
equation through conservation:

d
dt

½00 equation� þ 3H½ð00þ ijÞ equations�
¼ 8πG _φ½scalar evolution equation�: ð44Þ

From relation (44), we infer the first Friedmann equation,
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3H2 ¼ 8πG

�
2k

∂K
∂k

− Kðk; HÞ þH
∂K
∂H

þ VðφÞ
�
: ð45Þ

Because the scale of temporal variation changes dra-
matically over the course of inflation, and because the
dependent variables φðtÞ and HðtÞ are dimensionful, it is
convenient to convert to dimensionless variables. We first
change the comoving time t to the number of inflationary
e-foldings since the beginning of inflation,

n≡ ln

�
aðtÞ
aðtiÞ

�
⇒

d
dt

¼ H
d
dn

;

d2

dt2
¼ H2

�
d2

dn2
− ϵ

d
dn

�
: ð46Þ

It is also useful to make the various other quantities
dimensionless:

ϕðnÞ≡ ffiffiffiffiffiffiffiffiffi
8πG

p
φðtÞ; χðnÞ≡ ffiffiffiffiffiffiffiffiffi

8πG
p

HðtÞ;

κðnÞ≡ ð8πGÞ2kðtÞ ¼ 1

2
χ2ϕ02;

kc ≡
ffiffiffiffiffiffiffiffiffi
8πG

p
mc; Kðκ; χÞ≡ ð8πGÞ2Kðk; HÞ;

UðϕÞ≡ ð8πGÞ2VðφÞ: ð47Þ
With these changes, the two modified Friedman equa-
tions (42) and (45) take the forms

3χ2 ¼ 2κ
∂K
∂κ

−Kðκ; χÞ þ χ
∂K
∂χ

þ UðϕÞ; ð48Þ

−2χχ0 − 3χ2 ¼ Kðκ; χÞ − UðϕÞ − χ
∂K
∂χ

−
1

3
χ
d
dn

∂Kðκ; χÞ
∂χ

: ð49Þ

And the scalar evolution equation becomes

ϕ00
�
2κ

∂
2K
∂κ2

þ ∂K
∂κ

�
þϕ0

�
−2κϵ

∂
2K
∂κ2

− ϵχ
∂
2K

∂κ∂χ
þð3− ϵÞ∂K

∂κ

�

þ 1

χ2
∂U
∂ϕ

¼ 0; ð50Þ

where the first slow-roll parameter is expressed as

ϵðnÞ≡ −
χ0

χ
¼

1
2
ϕ02 ∂K

∂κ −
1
6
χϕ00ϕ0 ∂2K

∂κ∂χ

1 − 1
6
½∂2K
∂χ2

þ χϕ02 ∂
2K

∂κ∂χ�

¼
ϕ02
2

∂K
∂κ ½∂K∂κ þ 2κ ∂

2K
∂κ2

þ χ ∂
2K

∂χ∂κ� þ 1
6
ϕ0
χ

∂
2K

∂χ∂κ
∂U
∂ϕ

½∂K
∂κ þ 2κ ∂

2K
∂κ2

�½1 − 1
6
∂
2K
∂κ2

� þ κ
3
ð∂2K
∂χ∂κÞ2

: ð51Þ

Here we have used Eqs. (48) and (49) in the first equality
and eliminated ϕ00 to obtain the final expression using the
scalar evolution equation (50).

V. THE FATE OF THE m2φ2 MODEL

Because the Hubble parameter HðtÞ is not a local
functional of the metric, we cannot completely subtract
the quantum-induced k-essence ΔKðkðtÞ; HðtÞÞ in expres-
sion (40) using permissible counterterms. What we could
do instead is to subtractΔKðkðtÞ; HiÞ, which would restore
the classical model at the initial time, but it would lead to
quantum corrections as evolution carries HðtÞ away from
HðtiÞ. This procedure is known as Hubble subtraction. The
purpose of this section is to investigate the effects of
quantum-induced k-essence models with Hubble subtrac-
tion in the context of the classical m2φ2 model. This model
has the virtue of simplicity, even though it is not consistent
with the current upper bound [Eq. (6)] on the tensor-to-
scalar ratio r [22,23]. We begin by describing classical
evolution of the m2φ2 model, then consider the effects of
fermionic-induced k-essence [Eq. (15)], and finally close
by discussing the corrections due to conformal scalars
[Eq. (33)] and minimally coupled scalars [Eq. (37)].
The dimensionless expressions of the two classical

Friedman equations and the scalar evolution equation are

3χ2 ¼ 1

2
χ2ϕ02 þ UðϕÞ;

ð2ϵ − 3Þχ2 ¼ 1

2
χ2ϕ02 −UðϕÞ; ð52Þ

ϕ00 þ ð3 − ϵÞϕ0 þ 1

χ2
∂UðϕÞ
∂ϕ

¼ 0; ð53Þ

where χ, ϕ are defined in Eq. (47), and UðϕÞ can be
expressed as

UðϕÞ ¼ 1

2
k2ϕ2; k2 ≡ 8πGm2: ð54Þ

Under the slow-roll approximation, the time evolutions of
several useful quantities can be found:

ϕðnÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0 − 4n

q
; ϕ0ðnÞ ≃ −2

ϕðnÞ ;

ϵðnÞ ≃ 2

ϕðnÞ2 ; ϵ0ðnÞ ≃ 2ϵ2; ð55Þ

Δ2
R≃

1

8π2
χ2

ϵ
⟶

1

8π2
k2

3ϵ2
; 1−ns≃2ϵþ ϵ0

ϵ
⟶ 4ϵ: ð56Þ

The justification for the magnitude of the dimensionless
mass k is to reproduce the scalar power spectrum amplitude
As and spectral index ns [22]:

k ≃ πð1 − nsÞ
ffiffiffiffiffiffiffiffi
3

2
As

r
≃ 6.13 × 10−6: ð57Þ
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To make inflation last about 100 e-foldings, the slow-roll
approximation suggests the initial conditions

ϕ0¼ 20; ϕ0
0¼

−1
10

; χ0≃
1ffiffiffi
6

p kϕ0≃5×10−5: ð58Þ

These should continue to apply in the quantum-corrected
model as long as the classical kinetic term KC ≡ κ
dominates over the quantum correction KQ ≡ ΔK. In
principle, two initial conditions are enough to numerically
simulate the system, even with the quantum correction.
However, because the first Friedmann equation [Eq. (48)] is
highly nonlinear in χ, it is simpler to evolve the quantum-
corrected system using Eqs. (50) and (51). That is why we
need an initial condition for χ0.
For the regime where quantum contributions KQ become

comparable or larger than the classical resultKC, one should
fix geometric initial conditions,making χ0 and ϵ0 equal their
classical values. From the first modified Friedmann equa-
tion (48), the potential still dominates the right-hand side
below some coupling strength,4 so it leaves χ0 unchanged.
Using the second expression of Eq. (51), one can find ϵ0 as a
function of ϕ0

0 at the specific coupling strength with fixed
values of ϕ0 and χ0, and then solve for ϕ0

0 numerically by
demanding ϵ0ðϕ0

0Þ ¼ ½ϵ0�classical ∼ 5 × 10−3. One should use
this more appropriate ϕ0

0 in the quantum-dominated regime.

A. Induced k-essence model due to fermions

If fermions quantum-correct the kinetic term and Hubble
subtraction is employed, its dimensionless form is

Kðκ; χÞ ¼ κ þ χ4

8π2
f

�
κ

k3cχ

�
−
χ4ð0Þ
8π2

f

�
κ

k3cχð0Þ
�
; ð59Þ

where fðzÞ can be identified from Eq. (15):

fðzÞ ¼ 2γz2 þ ½γ − ζð3Þ�z4

þ 2

Z
z

0

dxðxþ x3Þ½ψð1þ ixÞ þ ψð1 − ixÞ�: ð60Þ

At this point, we digress to discuss the magnitude of the
dimensionless coupling strength, kc ≡

ffiffiffiffiffiffiffiffiffi
8πG

p
mc. Our goal

was to make the derivative coupling roughly comparable to
the nonderivative coupling during reheating:

1

2m3
c
∂μφ∂νφgμνΨ̄Ψ

ffiffiffiffiffiffi
−g

p
⇔ −λφΨ̄Ψ

ffiffiffiffiffiffi
−g

p
: ð61Þ

Because the inflaton depends only on time, we infer

λφ ∼
_φ2

2m3
c
: ð62Þ

The scale of 1
2
_φ2 can be approximated as 1

2
ω2φ2, and

it is roughly equal to 1
2
m2φ2. Therefore, the dimension-

less parameter kc relates to the dimensionless Yukawa
coupling as

1

k3c
∼ λ

�
2

k2ϕ

�
∼ ð5.32 × 1012Þλ: ð63Þ

Here we have used the relation in Eq. (57) and ϕ ∼ 10−2,
which is roughly valid during reheating. Finally, note
that the cosmological Coleman-Weinberg potential due
to the fermion corrections has a similar expression to
Eq. (59) [5,6,11],

Uðϕ; χÞ ¼ 1

2
k2ϕ2 −

χ4

8π2
f

�
λϕ

χ

�
þ χ4ð0Þ

8π2
f

�
λϕ

χð0Þ
�
; ð64Þ

where the form of the function f is exactly the same
as Eq. (60).
There is an interesting distinction between cosmological

Coleman-Weinberg potentials and quantum-induced
k-essence. Because the inflaton rolls down its potential,
cosmological Coleman-Weinberg potentials become
smaller as inflation progresses. However, the inflaton’s
kinetic energy does not show a similar decline, meaning
that quantum-induced k-essence terms do not typically
fall off. Obviously, increasing 1=k3c makes the quantum
contribution larger. Figure 1 shows that the quantum
correction begins dominating the initial kinetic energy
around 1=k3c ∼ 3.26 × 108, which corresponds to a small
Yukawa coupling λ ∼ 6.13 × 10−5.
In spite of the quantum correction dominating the

classical kinetic energy, it is still possible to stay close

FIG. 1. Comparison of the initial (n ¼ 0) magnitudes of the
classical kinetic energy (in blue) with the quantum correction (in
yellow) for different values of the dimensionless coupling 1=k3c,
assuming slow-roll initial conditions [Eq. (58)].

4For fermionic k-essence, the kinetic contributions become
comparable with the potential contribution around 1=k3c ∼
1.564 × 1010.
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to the classical evolution, provided the slow-roll initial
conditions [Eq. (58)] are abandoned for geometric
conditions, as described at the end of Sec. V. As long
as the potential term dominates over the rest of the
kinetic contributions in Eq. (48), choosing χ0 ¼ 5 ×
10−5 is still a reasonable approximation, whereas ϕ0

0

needs to be solved numerically by demanding that the
initial first slow-roll parameter equal its classical value.
Without Hubble subtraction (the unsubtracted model),
only one solution is found to give ϵðϕ0

0Þ ¼ 5 × 10−3.
With Hubble subtraction (the subtracted model), the
nonlinearity of the function ϵðϕ0

0Þ results in two sol-
utions at each specific coupling strength. One should
choose the branch which is connected to the classical
value ϕ0

0 ¼ −0.1 for small 1=k3c. This is shown by the
blue dots in Fig. 2.
We chose several coupling strengths within a range such

that χ0 ∼ 5 × 10−5 is still valid. We present these evolutions
both without and with Hubble subtraction in Fig. 3. The
general trend is that reducing the coupling strength
decreases the duration of inflation.

The general trends in either case can be understood in
terms of a simple picture of the slow-roll approximation.
Applying the slow-roll conditions to the effective field
equation (13), one obtains the speed of the inflaton:

jϕ0ðnÞj ≃
				 −U0ðϕÞ
3χ2½1þ gðχ; zÞ�

				;
gðχ; zÞ ¼ hðχ; zÞ þ 1

3

d
dn

hðχ; zÞ; z ¼ κ

k3cχ
;

hðχ; zÞ ¼ χ4

4π2
1

k3cχ
f2γzþ 2½γ − ζð3Þ�z3

þ ðzþ z3Þ½ψð1þ izÞ þ ψð1 − izÞ�g: ð65Þ

In addition to −U0ðϕÞ=3χ2 from a classical evolution,
an extra factor 1þ gðχ; zÞ occurs in the denominator
from quantum corrections. Because gðχ; zÞ is positive and
1þ gðχ; zÞ is monotonically increasing, the quantum-
corrected inflaton rolls down its potential with a smaller
speed than its classical cousin, which lengthens
inflation. The difference between the subtracted model

FIG. 2. The initial condition ϕ0
0 in the quantum-dominated regime versus the equivalent coupling constant λ [Eq. (63)]. The left-hand

graph depicts a series of solutions for the unsubtracted model. The two branches of the subtracted model are shown in the
right-hand plot.

FIG. 3. The ϵðnÞ versus n for various λ’s. The unsubtracted model is on the left-hand side, while the subtracted one is plotted on the
right-hand side.
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(the right-hand plot of Fig. 3) and the unsubtracted one
(the left-hand plot of Fig. 3) is that the former tends to
shorten inflation, but with a lower peak value for ϵ. The
value of ϵ falls back to zero after inflation as well. Also note
that the maximum of ϵ never reaches 1 until λ ≤ 6.98×
10−5ð1=k3c ≤ 3.71 × 108Þ.
Finally, we compare evolution in the k-essence model

(derivative couplings) with evolution in the analogous
cosmological Coleman-Weinberg potential (nonderivative
model). These comparisons are presented in Figs. 4 and 5.
One can see that the derivative model deviates from a
classical evolution more than the nonderivative one at the
same coupling strength and also has a bigger dimensionless
Hubble parameter after inflation. For evolution with
λ ¼ 6.98 × 10−5, the dimensionless Hubble parameter in
the derivative model is 1.41 × 10−6, while it is 1.26 × 10−7

in the nonderivative model. At a coupling strength
of λ ¼ 1 × 10−4, the dimensionless Hubble parameters
are χderivative ¼ 1.21 × 10−5, χnon-derivative ¼ 2.59 × 10−7.
According to a previous study [6], the system with a
moderate Yukawa coupling constant λ tends to inflate
forever. It is not clear whether we should extrapolate our
current conclusion from Fig. 3 and draw a similar con-
clusion for the k-essence model of the fermionic coupling.
The obstruction to this conclusion is that, at coupling

strength λ ∼ 0.1 ⇒ 1=k3c ∼ 5.32 × 1011, the approximation
χ0 ∼ 5 × 10−5 is not valid, and the complexities of highly
nonlinear dependence of ϵ and χ on ϕ and ϕ0 become
nontrivial. No analytic solution exists, and we must employ
some kind of nonlinear search routine such as a
Monte Carlo Markov chain method to solve for χ0 and
ϕ0
0 from Eqs. (48) and (51).

B. Induced k-essence model due to scalars

The generic expression of the k-essence from Eqs. (33)
and (37) takes the form

Kðκ; χÞ ¼ κ −
χ4

16π2
f

�
κ

k2cχ2

�
þ χ4ð0Þ

16π2
f

�
κ

k2cχ2ð0Þ
�
: ð66Þ

The two explicit cases we consider are

fconðyÞ ¼ yþ ð2γ − 1Þy2 þ 2

Z
y

0

dxx

�
ψ

�
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 8x

p �

þ ψ

�
1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 8x

p ��
; ð67Þ

FIG. 4. Plots of the dimensionless scalar ϕðnÞ (left), the dimensionless Hubble parameter χðnÞ (middle), and the first slow-roll
parameter ϵðnÞ (right) for a coupling constant λ ¼ 6.98 × 10−5 ð1=k3c ¼ 3.71 × 108Þ with the initial conditions χ0 ¼ 5 × 10−5 and
ϕ0
0 ¼ −9.99737 × 10−2.

FIG. 5. Plots of the dimensionless scalar ϕðnÞ (left), the dimensionless Hubble parameter χðnÞ (middle), and the first slow-roll
parameter ϵðnÞ (right) for a coupling constant λ ¼ 1 × 10−4 ð1=k3c ¼ 5.32 × 108Þ with the initial conditions χ0 ¼ 5 × 10−5 and
ϕ0
0 ¼ −9.81626 × 10−2.
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fminðyÞ ¼ 2γ −
182

27
þ
�
−4γ þ 23

3

�
yþ

�
2γ −

25

27

�
y2

− 2

Z
y

1

dxð1 − xÞ
�
ψ

�
1

2
þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9
x

r �

þ ψ

�
1

2
−
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8

9
x

r ��
; ð68Þ

where fconðyÞ stands for the contribution from the con-
formal coupling, and the minimal coupling’s contribution is
denoted by fminðyÞ. Similarly, by making an analogy with
the nonderivative coupling term which generates a cosmo-
logical Coleman-Weinberg potential

−
1

4
h2φ2Φ2 ffiffiffiffiffiffi

−g
p

⇔
1

2m2
c
∂μφ∂νφgμνΦ2 ffiffiffiffiffiffi

−g
p

; ð69Þ

the dimensionless couplings h and kc can be related:

1

k2c
∼

h2

2k2
∼ ð1.33 × 1010Þh2: ð70Þ

Also, note that the scalar corrections to Coleman-Weinberg
potential have the same form as Eq. (66) [5], with the
replacements of κ by 1

2
k2ϕ2 and κ

k2c
by 1

4
h2ϕ2:

Uðϕ; χÞ ¼ 1

2
k2ϕ2 þ χ4

16π2
f

�
h2ϕ2

4χ2

�
−
χ4ð0Þ
16π2

f

�
h2ϕ2

4χ2ð0Þ
�
:

ð71Þ

Here, the function f is the same as either Eq. (67) or
Eq. (68) for conformal scalars and minimally coupled
scalars, respectively.
We first determine when evolution enters the quantum-

dominated domain for conformal scalars and minimally
coupled scalars. Figure 6 shows that this happens around
1=k2c ≳ 106 (h2 ≳ 10−5) in both cases. Because KQ in the
scalar k-essence model is negative, we must not go beyond
the classical-dominated regime in order to avoid a disas-
trous kinetic instability. When KC dominates over KQ, it is
reliable to use the slow-roll initial conditions [Eq. (58)].
Within the safe regime, we find that quantum effects due to
each sort of scalar tend to shorten inflation. The result
agrees with what one expects from the effective field
equation using the slow-roll approximation:

μðχ;zÞϕ0ðnÞ∼−U0ðϕÞ
3χ2

; μðχ;zÞ≡1þαðχ;zÞ; z¼ κ

k2cχ2
:

ð72Þ

FIG. 7. Evolution for conformally coupled scalars, comparing the classical result (in black) with nonderivative coupling (in blue) and
derivative coupling (in red). Plots show the dimensionless scalar ϕðnÞ (left), the dimensionless Hubble parameter χðnÞ (middle), and the
first slow-roll parameter ϵðnÞ (right) for an effective coupling constant of h2 ¼ 1.6 × 10−5, corresponding to 1=k2c ¼ 2.218 × 105, with
slow-roll initial conditions [Eq. (58)].

FIG. 6. Plots of KQ and KC versus 1=k2c at n ¼ 0 with slow-roll initial conditions [Eq. (58)]. The left-hand graph is for conformally
coupled scalars, while the right-hand plot is for minimally coupled scalars.
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Because quantum contributions are negative, they make the
inertia μðχ; xÞ smaller than 1 and hence cause the inflaton to
roll down its potential more rapidly than that in the classical
model. Figure 7 compares the k-essence model (derivative),
with the model of nonderivative couplings (nonderivative)
and the classical result for an inflaton coupled to con-
formal scalars whose coupling strength is h2 ¼ 1.6 × 10−5

(1=k2c ¼ 2.218 × 105). Figure 8 presents a similar com-
parison, at the same coupling constant, for an inflaton
coupled to minimally coupled scalars. There is little
distinction between conformal and minimal coupling. At
this coupling strength, inflation ends at about ten e-foldings
for the nonderivative model, whereas the derivative model
nicely traces the classical evolution.

VI. CONCLUSIONS

Quantum-induced k-essence models, or cosmological
Coleman-Weinberg potentials, are the price scalar-driven
inflation pays for efficient reheating. Although coupling the
differentiated inflaton to matter alters the kinetic energy
instead of the potential, quantum-induced k-essence and
cosmological Coleman-Weinberg potentials are the same
functions of different arguments. On de Sitter background,
this goes like H4 multiplying a complicated function of the
dimensionless parameters, k=m3

cH for fermions, and
k=m2

cH2 for scalars. Recent work [17–19] strongly sup-
ports the idea that these de Sitter results remain approx-
imately valid when the constant Hubble parameter of
de Sitter is replaced by the evolving HðtÞ of realistic
inflation. A significant difference between quantum-
induced k-essence models and cosmological Coleman-
Weinberg potentials is that the dimensionless parameters
of the former increase as time progresses, so that the
system remains in the large-field domain over the course of
inflation. As a result, changes due to the quantum correc-
tion are enormously large.
Because HðtÞ is not a local functional of the metric for a

general geometry, neither quantum-induced k-essence nor
cosmological Coleman-Weinberg potentials can be com-
pletely eliminated using local counterterms [5]. The

technique of Hubble subtraction consists of subtracting
the local counterterm which results from setting HðtÞ to its
initial value. One can compare the dimensionful coupling
constants of quantum-induced k-essence with the dimen-
sionless coupling constants of cosmological Coleman-
Weinberg potentials by requiring the two couplings to
have the same strength during reheating. This paper is
devoted to comparing quantum-induced k-essence with
cosmological Coleman-Weinberg potentials, with and
without Hubble subtraction, regarding the competing
requirements of facilitating efficient reheating without
disturbing the observational constraints [Eqs. (3)–(6)] on
primordial inflation.
Fermionic k-essence (derivative) and fermionic

Coleman-Weinberg potentials (nonderivative) both tend
to lengthen inflation, albeit for different reasons. One
can understand this by looking at the scalar evolution
equation simplified by the slow-roll approximation:

ϕ0ðnÞ≈ −1
3χ2

½U0
clðϕÞþΔU0ðϕÞ�
1þgðχ;zÞ ; z≡ κ

k3cχ

�
k

m3
cH

�
: ð73Þ

Nonderivative couplings induce ΔU0ðϕÞ < 0 and
gðχ; zÞ ¼ 0, so they decrease jϕ0ðnÞj (and hence increase
the duration of inflation) by decreasing the force term. In
contrast, derivative couplings induce ΔU0ðϕÞ ¼ 0 with
gðχ; zÞ > 0, so jϕ0ðnÞj is also decreased, but now by
increasing the inflaton’s inertia μðχ; zÞ ¼ 1þ gðχ; zÞ.
However, fermionic k-essence enters the quantum-
dominated regime even at a quite small effective coupling
λ ∼ 6.3 × 10−5, for which the cosmological Coleman-
Weinberg potential would be small compared to the
classical potential. At the same coupling strength, the
quantum effect in the derivative model is generically
stronger than it is for the nonderivative one. This is why
Figs. 4 and 5 show longer durations for inflation, and larger
dimensionless Hubble parameters after the end of inflation,
for fermionic k-essence models than for the analogous
cosmological Coleman-Weinberg potentials. For nonde-
rivative couplings, inflation does not even end (ϵ ¼ 1)

FIG. 8. Evolution for minimally coupled scalars, comparing the classical model (in black) with nonderivative couplings (in blue) and
derivative coupling (in red). Plots show the dimensionless scalar ϕðnÞ (left), the dimensionless Hubble parameter χðnÞ (middle), and the
first slow-roll parameter ϵðnÞ (right) for an effective coupling constant of h2 ¼ 1.6 × 10−5, corresponding to 1=k2c ¼ 2.218 × 105, with
slow-roll initial conditions [Eq. (58)].
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unless the coupling is less than about λ ∼ 1.15 × 10−4 [6],
whereas this occurs for derivative couplings at an even
smaller equivalent value of λ ∼ 6.98 × 10−5. Neither fer-
mionic model (derivative or nonderivative) begins to have a
reasonable evolution until the coupling is made very small,
which could endanger reheating.
For scalars, both derivative and nonderivative couplings

induce models which are within the classical domain at the
small effective coupling constant of h2 ¼ 1.6 × 10−5.
Scalar-induced k-essence suffers from a disastrous
kinetic instability [that is, gðχ; zÞ < −1 in Eq. (73) with
z ¼ k=m2

cH2] if it leaves the classical-dominated regime.
From Figs. 7 and 8, one can see that both derivative and
nonderivative models tend to shorten inflation, with an
especially rapid termination of inflation for the nonderiva-
tive model. One can understand this from the analog of
Eq. (73) with z ¼ k=m2

cH2. Nonderivative couplings
induce ΔU > 0 with g ¼ 0, so they increase jϕ0ðnÞj by
strengthening the force. Derivative couplings induce
ΔU ¼ 0 with g < 0, which increases jϕ0ðnÞj by reducing
the inertia. We found no significant differences between
minimally coupled and conformally coupled scalars, pre-
sumably because the (derivative or nonderivative) cou-
pling is larger than the conformal coupling. Generally
speaking, coupling the differentiated inflaton to scalars
seems to do a better job than the nonderivative coupling.
However, neither coupling provides a very satisfactory
resolution of the tension between facilitating efficient
reheating and preserving the observational constraints
[Eqs. (3)–(6)].
Because dimensionful coupling constants are introduced

to quantum-induced k-essence, we would like to digress in
order to comment on the validity of these models as low-
energy effective field theories. Even though our couplings
[Eqs. (7) and (21)] are not renormalizable, they induce no
higher-derivative counterterms [Eqs. (11) and (26)] as long
as the inflaton kinetic factor [Eq. (22)] is considered to be
constant. Without inflaton loops, the only way one gets
higher loop corrections is from the interaction with gravity.
Hence, the two-loop contribution would take the form of
Gð∂φ·∂φm3

c
Þ6, and its effect is suppressed by G. As a result, we

recognize the cutoff of this effective field theory as the
Planck mass. Inflation is assumed to occur well below the
Planck mass. Note that the value of the quantum gravita-
tional loop counting parameter GH2 (obtained from the
upper bound of the tensor-to-scalar ratio and the scalar
power spectrum [4]) is about 10−11. So, the work consid-
ered here should be safely within the realm of validity of
low-energy effective field theory.
There is so far no consensus about the magnitude of the

reheat temperature. The common belief is that it could be as
low as 102 GeV or as high as 1019 GeV. If one extrapolates
the initial form of the potential to the end of inflation, one
finds a large reheat temperature. This is done by employing
observational data on primordial perturbations to estimate

the number of e-foldings since the end of inflation, and then
comparing that with a thermal estimate of the same
quantity. Using WMAP data, Martin and Ringeval derived
a bound of TR > 104 GeV [24], and more recent data raise
this bound. Please see the Appendix for a detailed explan-
ation. Accommodating a lower reheat temperature requires
dramatic changes in the shape of the potential after the
emission of currently observable perturbations.
Leaving aside the issue of what geometric and thermal

considerations imply for the value of the reheat temperature,
we can estimate TR from the dynamics of the coupling. For
the fermionic k-essence model considered in this paper, if
one imagines that the interaction is a sort of effectiveYukawa
coupling, the reheat temperature can be estimated when the
Hubble parameter falls below the decay rate Γ ¼ λ2m

8π2
(where

m is the mass of the inflaton) [6,25,26]:

TR ≃
1

5

�
Γ2

G

�1
4

≃ λ × 1015 GeV: ð74Þ

As we have seen, the largest value of λ which is consistent
with viable inflation is λ ∼ 10−5. This corresponds to a reheat
temperature of TR ∼ 1010 GeV.
An alternative approach would be to make no subtrac-

tions and attempt instead to cancel the positive kinetic
corrections induced by fermions with the negative ones
induced by scalars. Of course, coupling the inflaton to more
fields aids reheating, so there are no worries on that score.
By adjusting the effective coupling constants λ and h2’s,
one could manage to get the leading terms of the large-field
expansions of Eqs. (20), (35), and (39) to cancel. The
question then becomes how the lower-order terms affect the
observational constraints in Eqs. (3)–(6).
In addition to studies on axionic couplings like

φϵμνρλFμνFρσ by Adshead and collaborators [27], another
alternative is to investigate derivative couplings to vector
bosons, analogous to the undifferentiated couplings already
studied for a charged inflaton [5–7,19,28],

L ¼ R
ffiffiffiffiffiffi−gp

16πG
−
1

4
FρσFμνgρμgσν

ffiffiffiffiffiffi
−g

p

− ð∂μ − iqAμÞφ�ð∂ν þ iqAνÞφgμν
ffiffiffiffiffiffi
−g

p
: ð75Þ

One might explore some exotic derivative coupling of
uncharged inflatons such as

−
1

4m4
c
∂αφ∂βφgαβ × FρσFμνgρμgσν

ffiffiffiffiffiffi
−g

p
: ð76Þ

We might consider its undifferentiated cousin to be

−
1

4m2
c
φ2FρσFμνgρμgσν

ffiffiffiffiffiffi
−g

p
: ð77Þ
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To carry out studies with such derivative couplings, one
first needs to figure out the coincidence limit of the field
strength propagator on de Sitter background,

hFρσðxÞFμνðxÞgρμgσνi: ð78Þ
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APPENDIX: CONNECTING DATA TO THE
REHEAT TEMPERATURE TR

In this appendix, we begin by presenting two approaches
to estimate the number of e-foldings from the end of
inflation to the current time. Comparison of these
results implies that a large TR is favored. To facilitate
the discussion, we define N ≡ ln½aðtÞai

� as the number of
e-foldings since the start of inflation to comoving time t. If
we follow the usual practice that the current scale factor is
one (a0 ¼ 1), then the number of e-foldings between any
event and now is

N0 − N ¼ ln

�
1

aðtÞ
�
: ðA1Þ

We begin by using the geometry of inflation to estimate
the number of e-foldings from the end of inflation to now
[29]. Primordial perturbations which are today observed
with a comoving wave number k experienced their first
horizon crossing at a time tk during inflation with
k≡HðtkÞaðtkÞ. The number of e-foldings from then to
now is

N0 − Nk ¼ ln

�
HðtkÞ
k

�
≃
1

2
ln

�
Δ2

RðkÞ
πϵðtkÞ
Gk2

�
; ðA2Þ

where the final step follows from the approximate form

of the scalar power spectrum, Δ2
RðkÞ ≅ GH2ðtkÞ

πϵðtkÞ . Now, we
substitute the simple power law formula used to represent
the observational data in terms of a scalar amplitude As ≃
2 × 10−9 and spectral index ns ≃ 1 − 0.035 around a pivot
wave number of k0 ¼ 0.05 Mpc−1:

Δ2
RðkÞ ≅ As

�
k
k0

�
ns−1

⇒ N0 − Nk0 ¼
1

2
ln

�
Asπr
16Gk20

�

≃ 122.33þ 1

2
ln

�
r

0.036

�
: ðA3Þ

The final logarithm would vanish if the tensor-to-scalar
ratio were resolved at its current upper limit; otherwise, it
would be negative. We stress that Eq. (A3) derives from
geometry and observation; it cannot be evaded (within the

context of single-scalar inflation), no matter what assump-
tions are made about the inflationary potential or the
mechanism of reheating. It is rather our assumptions about
these two things which must accommodate Eq. (A3).
Consider first the duration of inflation after the pivot

wave number experienced its first horizon crossing. Wewill
see that increasing this interval increases the reheat temper-
ature. Trivial calculus allows us to express this as an
integral over the first slow-roll parameter,

Ne − Nk0 ¼
Z

1

ϵðtk0 Þ

dϵ
ϵ0
: ðA4Þ

Primes on ϵ denotes derivatives with respect to the number
of e-foldings. At this point, the inflationary potential
becomes relevant. When these estimates were first made
in 2010 [29], the quadratic potential was employed to
conclude ϵ0 ¼ 2ϵ2, and the resulting integral was evaluated
to 2=ð1 − nsÞ − 1

2
≅ 56.64. Since then, the increasingly

tight upper bounds on r (and hence on ϵ ¼ r=16) have
favored very flat potentials, which give an even larger
result. To understand this, consider the slow-roll relation for
the spectral index under the assumption of very small ϵwith
ns fixed (which is supported by the absence of evidence for
running of the spectral index [4]):

1−ns¼ 2ϵþ ϵ0

ϵ
⇒ ϵ0 ¼ ð1−nsÞϵ−2ϵ2≃ ð1−nsÞϵ: ðA5Þ

Substituting this approximation into the integral (A4) gives

Ne − Nk0 ≃
1

1 − ns

Z
1

ϵðtk0 Þ

dϵ
ϵ
¼ lnð16r Þ

1 − ns

≃ 28.57
�
6.10 − ln

�
r

0.036

��
: ðA6Þ

Of course, expression (A6) is larger than Eq. (A3), which is
impossible, but it indicates the general trend towards large
reheat temperatures. To facilitate the discussion, we made a
numerical computation using the Einstein frame version of
Starobinsky’s model [30], which gives Ne − Nk0 ≅ 51.32.
Because this number is smaller than either the result for
quadratical potential or our general estimate in Eq. (A6), we
can regard it as a sort of lower bound. Combining this
figure with Eq. (A3) gives

ΔN ≡ N0 − Ne ¼
1

2
ln

�
Asπr
16Gk20

�
− 51.32

≃ 71.01þ 1

2
ln

�
r

0.036

�
: ðA7Þ

Note that inserting the much lower value of r predicted
for the Starobinsky model would decrease ΔN, thereby
increasing the reheat temperature.
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We can use thermodynamics to estimate the number of
e-foldings from the end of inflation to now, ΔN≡N0−Ne.
The estimate is based on considering three periods [29]:
(1) The interval from the end of inflation to the end of

reheating.
(2) The interval from the end of reheating to

recombination.
(3) The interval from recombination to now.

The (approximately matter-dominated) energy density at
the end of inflation ρe derives from the kinetic energy of the
inflaton. We assume that this kinetic energy is approx-
imately constant throughout inflation, which implies that it
can be related to conditions at the time the pivot wave
number experiences first horizon crossing:

ρe ¼
1

2
_φ2 ¼ ϵH2

8πG
≃

r2As

211G2
: ðA8Þ

This energy density redshifts like nonrelativistic matter
until reheating converts it into the energy density of g�
relativistic species,

ρR ¼ ρe

�
ae
aR

�
3

¼ g�π2T4
R

30
: ðA9Þ

Hence, the number of e-foldings from the end of inflation
to the end of reheating is

NR − Ne ¼
1

3
ln

�
15r2As

210π2g�G2T4
R

�
: ðA10Þ

Entropy is conserved during the second period, which
means

arec
aR

¼
�
g�
2

�1
3

×
TR

Trec
⇒ Nrec − NR ¼ 1

3
ln

�
g�T3

R

2T3
rec

�
: ðA11Þ

Finally, from recombination to now, we have

a0
arec

¼ Trec

T0

⇒ N0 − Nrec ¼
1

3
ln

�
T3
rec

T3
0

�
: ðA12Þ

Adding the three intervals (A10), (A11), and (A12) gives

ΔN ≡ N0 − Ne ¼
1

3
ln

�
15r2As

211π2G2TRT3
0

�

≃ 62.65þ 2

3
ln

�
r

0.036

�
−
1

6
lnðGT2

RÞ: ðA13Þ

Equating Eqs. (A7) and (A13), and assuming that the tensor
power spectrum is resolved at the current upper limit, we
find the reheat temperature to be TR ∼ 108 GeV. One can
avoid this conclusion by fine-tuning the model to reduce
Ne − Nk0 , but the preference for a large reheat temperature
is clear.
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