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The α-attractor models are some of the most interesting models of inflation from the point of view
of upcoming observations in cosmology and also attractive from the point of view of supergravity.
We confront representative models of exponential and polynomial α-attractors with the latest
cosmological data (Planck’18+BICEP2/Keck array) to obtain predictions and best fit values of
model parameters. The analysis is done by making use of ModeChord and CosmoMC plugged
together via PolyChord.
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I. INTRODUCTION

Cosmic inflation is the leading candidate for producing
super-Hubble coherent perturbations that seed the cosmic
structures and are imprinted on the cosmic microwave
background (CMB). On the other hand, ΛCDM cosmology
is on firm footing for describing the late-time cosmological
history of the Universe. Other than the dark energy, the
model includes the existence of nonbaryonic dark matter
and several constituents of the Standard Model. In the usual
setup of inflation, the universe is driven to exponential
expansion due to the dominance of energy density of a
scalar field dubbed as the inflaton. At the end of inflation,
the energy density stored in the field is converted (either
perturbatively or nonperturbatively) to the energy of all the
constituents required by the ΛCDM model.
While constructing and analysing a model of inflation, a

few points are of immense importance in contemporary
cosmology:

(i) The nature of the inflaton: It is desirable that the field
is a natural outcome of high-energy physics playing
a role at that scale.

(ii) The nature of (p)rehearing: converting the energy of
the inflaton to the constituents of the low energy
physics requires a deeper understanding of the
couplings between these fields

(iii) Precision analysis: each inflation model must be
confronted with high-precision data to constrain
model parameters.

Over the years, CMB observations have become the
main probe for the physics of the early Universe. In the
context of inflation, the fluctuations are parametrized by
the strength of the power spectrum As, the scalar spectral
tilt ns, the tensor-to-scalar ratio r, and, in certain cases, the
non-Gaussianity parameter fNL. All these observables
encode the nature of primordial fluctuations produced by
the inflaton. Theoretical computations needed to obtain the
predictions for these observables involve the computation
of the primordial fluctuations at the time when the CMB
modes exit the horizon. In cases where the slow roll
approximation is valid, consistent approximations for ns
and r can be obtained by computing the slow roll
parameters at a fiducial value of the e-fold, Ne, defined
as the number of e-folds between horizon exit of the pivot
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CMB mode and the end of inflation. Observational con-
straints on ns from CMB motivates to choose Ne between
50 and 60.
However, as we are deep into the era of precision

cosmology, it has been widely advocated [1–7] that a more
rigorous numerical analysis is needed to determine model
predictions. In this type of precision analysis, it is ideal to
vary both the model parameters and Ne while confronting
the models with data (e.g., temperature or polarization data
from CMB). Furthermore the primordial fluctuations are
determined by numerically solving perturbation equations,
without relying on the slow roll approximations. This is
particularly important in certain cases where it is not
possible to obtain the exact form of the slow roll parameters
or if the slow roll approximations are unreliable. The above
works (and many more in the literature) analyze specific
models but they also advocate that all models should be
analyzed using similar methods. In this article we will
carry out such an analysis for a class of models which are
now being considered as particularly important for future
observations—the α attractors, which we describe next.
The main goal of this work is to mark the difference in the
numerically obtained best-fit values of the parameters for
the two main classes of α-attractor models: exponential α
attractors and polynomial α attractors.
A key prediction of the inflationary model is the

presence of primordial tensor fluctuations. The ratio of
tensor and scalar power spectra represented by r is related
to the slow roll parameter ϵ at the time of horizon exit of the
modes of interest. Similarly, the scalar spectral tilt ns is
determined by a linear combination of ϵ and η. From the
observational point of view, a red spectral tilt is well
established, yet there is no observation of a tensor compo-
nent in the fluctuations. This implies that inflationary
models consistent with data have to be special in the sense
that there is a hierarchy in the magnitude of the two slow-
roll parameters so that they correctly predict the observed
tilt and are consistent with the lack of observational
evidence for r so far (i.e., upper bound on r). Motivated
by this, starting from nearly a decade ago,1 a large family of
different inflationary theories predicting the same charac-
teristic form of observables were proposed and studied in
[15–37]. From the point of view of observations, these
models have the attractive feature that the model parameters
allow for a regime in which ns ¼ Oð1=NeÞ while r ¼
Oð1=N2

eÞ (where Ne is the number of e-folds between
horizon exit of CMB modes and the end of inflation).
Another appealing feature of these models is that a large
class have been successfully embedded in supergravity.
In view of this, these models have been proposed as

benchmarks for future cosmological experiments2 (see,
e.g., [33]). Themodels are collectively knownasα-attractors,
where α is a parameter that affects the observables.
Given the importance of these models in the realm of

contemporary precision cosmology, they certainly deserve
detailed studies. The goal of this work is to initiate a
systematic cosmological analysis of these models as is
needed to confront them with current data. As mentioned
earlier, this is in the spirit of the studies of [1–7]. Further
studies in this direction have been carried out in [39–42].
Here, wewill follow [2], making use of CosmoMC [43] and
ModeChord3 plugged together through Polychord [44].
Analyzing an inflation model using ModeChord has

two advantages. First, ModeChord analyzes inflationary
dynamics without relying on the slow roll approximation;
thus slow-roll violating effects which can be important for
confronting models with precision data are automatically
captured. Also, in cases where the exact analytic form of
the slow roll parameters is not available or available only
under some approximation it is natural and desirable to
adopt this method. The second advantage is related to the
reheating epoch. Given a model of inflation, the precise
predictions for various cosmological observables (such as
the spectral tilt) are sensitive to the post inflationary history
of the model—this is an input for determining Ne which
thereby sets the value of the observables such as the spectral
tilt. In the postinflationary history, most of our ignorance
lies in the reheating epoch. ModeChord allows to incor-
porate this ignorance into the analysis systematically, by
considering the so called “generalized reheating scenario.”
Here, the duration of the reheating epoch is treated as a
parameter and is sampled over.
This paper is structured as follows. In Sec. II, we briefly

review α-attractor models. In Sec. III, we describe our
methodology and present our results. There are a large
number of α-attractor models, to keep the paper streamlined
we will focus on some representative models: we will
consider the T-model from the “exponential α-attractors”
and the models of first and second kind from the “poly-
nomial α-attractors”. Our choice of models is guided by the
following: as emphasized in [34], the exponential T-models
and polynomial models nicely complement each other; in
the ns − r plane, the exponential models cover the left half
and the polynomial models lie to the right spanning the
entire interesting region observationally allowed by the
Planck/BICEP/Keck data (see Fig. 1 of [34]). We discuss
and conclude in Sec. IV.

II. α-ATTRACTOR MODELS

A large class of inflationary models (e.g. the Starobinsky
model, chaotic inflation model λϕ4 with nonminimal
coupling to gravity and conformal, superconformal and

1Models proposed even earlier are consistent with the present
data see, e.g., the Starobinsky model [8], the GL model [9–11],
the Higgs inflation [12–14].

2Such as CMB stage 4, LiteBIRD and CORE, [38].
3Publicly available at http://modecode.org/modechord.
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supergravity generalizations [8,13,15–22,45,46]) have a
common prediction for the scalar spectral index ðnsÞ and
the tensor-to-scalar ratio (r):

ns ¼ 1 −
2

Ne

r ¼ 12

N2
e
; ð1Þ

in the limit of large Ne, where Ne is the number of e-folds
of inflation, counted from the end of inflation to the horizon
exit of the CMB modes.
These models can be generalized with the introduc-

tion of a new parameter α, (which is inversely related to
the curvature in the field space of the inflaton). This
class of attractor models of inflation, known as
α-attractors, also lead to a general prediction for infla-
tionary observables [23]:

ns ¼ 1 −
2

Ne

r ¼ 12α2

N2
e
: ð2Þ

Popular examples of models of this kind are Starobinsky
inflation [8], where the Jordan frame action contains
polynomials of the Ricci scalar (leads to α ¼ 1), Higgs
inflation [12–14] with nonminimal gravitational cou-
plings gðϕ; RÞ, GL model [9–11], etc. For these models
the Einstein frame potential can be expressed as

VðϕÞ ¼ V0

�
1 − eð−

ϕffiffi
6

p
α
Þ�2

: ð3Þ

ϕ is the canonical field related to the field ρ as

ρ ¼ eð−
ϕffiffi
6

p
α
Þ; ð4Þ

and ρ defines the potential VJðρÞ in the Jordan frame. α
can be much smaller than 1, and this leads to very small
values of r. This is interesting in the context of the
upcoming experimental efforts with CMB B-modes to
probe the tensor fluctuations of inflation (see, e.g., [28]).
On the other hand, large values of α render the predictions
to be the same as chaotic inflation VðϕÞ ¼ 1

2
m2ϕ2. Note

that these models are “exponential” in the sense that the
inflaton plateau is approached exponentially in ϕ.
A class of models that can be easily embedded in

supergravity are examples which lead to similar predictions
for inflationary observables as in Eq. (2) upto first order in
1=Ne. For the generalized “T-models,” [23] the inflaton
potential takes the form:

VðϕÞ ¼ V0 tanh2n
�

ϕffiffiffi
6

p
α

�
: ð5Þ

The full predictions for these models are

ns ¼
1 − 2

Ne
− 3α2

4N2
e
þ 1

2nNe
ð1 − 1

Ne
Þgðα; nÞ

1þ 1
2nNe

gðα; nÞ þ 3α2

4N2
e

r ¼ 12α2

N2
e

�
1þ 1

2nNe
gðα; nÞ þ 3α2

4N2
e

� : ð6Þ

where gðα; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α2ð4n2 þ 3α2Þ

p
. This shall be the first

model that we will analyze in detail.4 Note that in the limit
of large Ne, Eq. (6) reduces to the form in Eq. (2).
Another class of α-attractors are the so called “poly-

nomial” α-attractors [34] (these have their origins in various
models of inflation such as brane and pole inflation, e.g.,
[24,28,47–61]). Here, instead of an exponential approach,
the inflationary plateau is reached with an inverse power of
the field: V ∼ V0½1 − ðμϕÞk þ � � ��. The simplest polynomial

α-attractor models have a potential [for the canonically
normalized field which has a relation with ρ same as
Eq. (4)]

VðϕÞ ¼ V0

ϕ2n

ϕ2n þ μ2n
: ð7Þ

The potential for the canonically normalized ϕ is similar to
the class of models known as power law plateau potential
which has supergravity origin (for more details the author
is advised to consult [58] and [59]). In the slow roll
approximation and limit of large Ne,

ns ¼ 1 −
2nþ 1

nþ 1

1

Ne
;

r ¼ 2
3þn
1þnðμ2nnÞ 1

1þnððnþ 1ÞNeÞ−1þ2n
1þn : ð8Þ

These expressions are valid in the approximation μ ≪ 1.
Our analysis with ModeChord will be numerical, and hence
will not rely on this approximation. The analysis will also
involve varying μ as a parameter. For large n, the above
approach the form of ns and r in Eq. (2) with α2 ¼ 1

6
ð μn2Þ2.

The polynomial α-attractor models of the second kind have
the following form in the Einstein frame

VðϕÞ ¼ V0

ðϕ2 þ μ2Þk=2 − μk

ðϕ2 þ μ2Þk=2 þ μk
: ð9Þ

4As mentioned in the introduction, our analysis incorporates
ModeChord, hence, it will not rely on the expression (6), which
are provided to give the reader an idea of the nature of the model.
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Again, it is easy to see that the inflationary plateau is
approached as a power law in ϕ. The analytic forms of ns
and r are available (again in the case of μ ≪ 1), but they are
rather complicated in the general case.

III. ANALYSIS

Now, we consider the analysis of the following models:
(i) n ¼ 1 tanh model given by Eq. (5),
(ii) n ¼ 2 polynomial of the first kind given by Eq. (7),
(iii) and k ¼ 1 polynomial of the second kind given

by Eq. (9).
For the case (i), α is the only remaining model parameter to
be varied, whereas for the cases (ii) and (iii), μ is the model
parameter that is varied. While the predictions for the
model (i) are expected to conform to the α-dependent forms
of ns and r in Eq. (2), those for models (ii) and (iii) are
expected to have the n and μ-dependent form in Eq. (8).
Therefore, studying only these three models actually covers
both the sectors of exponential α-attractors and polynomial
α-attractors, and this is the reason for choosing and
studying these three models only.

The analysis is carried out using publicly available
packages: CosmoMC and ModeChord brought together
through Polychord. Given a inflationary potential,
ModeChord numerically computes the primordial scalar
and tensor power spectra by directly solving the perturba-
tion equations. These primordial spectra are then put
through CAMB [62] in the CosmoMC package with the
help of the plug-in package Polychord and then evolved
through transfer functions. Then the angular power spectra
obtained at CMB from the theory are compared to the
observed fluctuations (e.g., by Planck) using CosmoMC. In
the usual implementation of ModeChord, the cosmological
perturbations are evaluated without assuming slow-roll
conditions, therefore, our analysis does not make use of
the expressions for ns and r in Eqs. (6) and (8). The best-fit
values of the potential parameters are estimated using
CosmoMCwithout relying on the slow-roll approximation.
In this analysis, flat priors are used in appropriate ranges for
all the model parameters.
The simplest check for a cosmological model can be

done in the base 6-dimensional parameter space described
by: the baryon and cold dark matter energy densities

FIG. 1. One dimensional posterior distribution and two dimensional joint contours at 68%, 95% and 99% confidence limit C.L. for
parameters. Inset: one dimensional posterior distribution for number of e-folds(Ne) for n ¼ 1 the T- model given by Eq. (5).
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ðΩbh2;Ωch2Þ, the acoustic peak angular scale (θ), the
optical depth to reionization (τ), the amplitude (As) and
the spectral index (ns) of the primordial power spectrum.
For given values of the model parameters, we solved for the
cosmological perturbations by solving perturbation equa-
tions using ModeChord (together with CosmoMC, through
Polychord) without the assumption of slow-roll. The
Boltzmann solver CAMB is used to evaluate the two-point
correlation functions for temperature and polarization
anisotropies. Then, the model parameters are estimated
and the goodness of the fit is determined using CosmoMC
by comparing the model predictions with CMB data. In
addition, the number of e-folds of inflation (Ne) has also
been set as a variable. Therefore, in this work, we have
varied the four late-time cosmological parameters Ωbh2,
Ωch2, θ, and τ, the model parameters from inflation andNe.
The primordial power spectrum is calculated by the code at
different points of the parameter space of the inflation
model parameters and Ne. The constrains these parameters
as well as ns and tensor-to-scalar ratio r are provided. The
amplitude As can be found as a function of the model

parameter V0 [see Eq. (12)]. Using this approach confirms
the removal of the otherwise uncertainty from the analysis
of the inflationary parameter space and allows us to
constrain inflationary models with complicated spectra
not well described otherwise.
The connection between inflationary dynamics and

primordial fluctuations requires Ne: the number of
e-foldings between horizon exit and the end of inflation.
This is sensitive to the post-inflationary history of the
universe and hence affected by the uncertainties asso-
ciated with reheating. ModeChord deals with this
uncertainty by working with the generalized reheating
scenario (GRH)—Ne is varied over a physically well
motivated range and optimized over. If the universe
under goes Nre e-foldings during the reheating epoch
and has an effective equation of state wre during the
epoch then Ne is given by

Ne ¼ NIRH −
1

4
ð1 − 3wreÞNre; ð10Þ

FIG. 2. One dimensional posterior distribution and two dimensional joint contours at 68%, 95%, and 99% C.L. for parameters. Inset:
one dimensional posterior distribution for number of e-folds (Ne) for n ¼ 2 of the polynomial attaractors of first kind given by Eq. (7).
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where NIRH is the value of Ne assuming instantaneous
reheating. Various physical arguments can be given for
wre < 1=3 (see, e.g., [6,63] for a discussion and further
references). Given this, Modechord takes NIRH as an
upper bound for the value of Ne and varies it in the range
NIRH > Ne > 20. The lower limit comes from the
requirement that at the end of inflation, all the relevant
cosmological scales are well outside of the horizon.
The value ofNIRH can be obtained by tracking the energy

density of the universe from the end of inflation to today
[2,64]:

NIRH ¼ 55.75 − log

�
1016 Gev

V1=4
end

�
: ð11Þ

Furthermore, up to logarithmic corrections one can replace
Vend by the plateau value (V0) in the above expression. The
expression for the strength of the scalar perturbations

As ≈
2

3π2r

�
V0

M4
pl

�
ð12Þ

can then be used to express NIRH in terms of As and r.

We present our results in the form of tables and plots.
The likelihoods used are from Planc k 2018 TT þ TEþ
EEþ lowPþ lensing and Planckþ BICEP2=Keck
array joint analysis [65]. Figs. 1–3 show the triangle
plots for the models T-model with n ¼ 1 [Eq. (5)],
the n ¼ 2 polynomial α-attractors of the first kind
[the potential in Eq. (7)] and for the k ¼ 1 polynomial
α-attractors of the second kind [the potential in (9)]
respectively.5

Triangle plots are shown for the marginalized posterior
distributions of the inflationary and base ΛCDM param-
eters. For each case, the posterior distribution of the
number of inflation e-folds is also plotted. Table I sum-
marizes the best-fit values for the parameters varied in
these three cases.

FIG. 3. One dimensional posterior distribution and two dimensional joint contours at 68%, 95% and 99% C.L. for parameters. Inset:
one dimensional posterior distribution for number of e-folds (Ne) for k ¼ 1 of the polynomial potential of second kind given by Eq. (9).

5The convergence of all the simulations is ensured satisfying
the Gellman-Rubin criterion. In the case of the three analysis
presented in Figs. 1–3, the convergences attained are R − 1∼
0.0004, 0.0210, 0.1039 respectively.
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IV. RESULTS AND DISCUSSIONS

The α-attractor models are very interesting from the
point of view of upcoming observations in cosmology.
Motivated by this, we confronted them with the latest
cosmological data and obtained the best-fit values of model
parameters. The distributions of α and μ suggest that they
would have to be generated from a high scale. In the
2-dimensional marginalized posterior distribution in the
ns − r plane, our precision analysis shows that exponential
models cover the left half and the polynomial models lie to
the right spanning the entire interesting region. Therefore,
predictions for ns are higher in polynomial α-attractor
models than those for the exponential α-attractor models—
confirming earlier expectations [34]. The best-fit values of
r are low, and the polynomial models typically predict r
values higher by one order of magnitude than the T-model,
which can be seen in Table I. It is interesting to note that, r
is severely constrained at the level of Oð10−5Þ. This shows
the dependence of r on μ. To keep all the cosmological
observables such as As and ns in the allowed range, μ gets
severely constrained. This constraint on μ propagates to r.
Moreover, the polynomial model of the second kind
requires less number of e-folds of inflation compared to
the other two examples we have analyzed. As mentioned
earlier, the models that are not studied in this paper are
equivalent in their predictions of ns and r to one of the three
models already analyzed in the paper, since the studied
cases cover both the exponential and polynomial types of
α-attractors.

Our result should be useful for various directions. One
can now think about what embeddings of these models in
string/M-theory can lead to the parameters in the desired
range. Recently, it has been found that models closely
related to those analyzed in this paper (the hybrid
α-attractors [66]) have a rich phenomenology in the context
of primordial black holes and gravitational waves [67,68].
It will be interesting to carry an analysis similar in spirit to
this paper and obtain the implications for their phenom-
enology. We hope to return to some of these questions.
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TABLE I. Observational constraints at 68% C.L. on both independent and derived cosmological parameters for the T- model with
n ¼ 1, Polynomial α attractor of the first kind with n ¼ 2 and Polynomial α attractor of the second kind with k ¼ 1 using the following
data combination: Planck 2018 TT þ TEþ EEþ lowP þ lensing and Planck þ BICEP2=Keck array joint analysis [65].

Parameter T-model with n ¼ 1
Polynomial α-attractor
(1st kind) with n ¼ 2

Polynomial α-attractor
(2nd kind) with k ¼ 1

Ωbh2 0.02227� 0.00023 0.02228� 0.00024 0.02230� 0.00025
Ωch2 0.12110� 0.00235 0.12081� 0.00225 0.11990� 0.00220
τ 0.08981þ0.02141

−0.02116 0.08080þ0.01952
−0.01931 00.08065þ0.01855

−0.01847
H0 66.9060� 1.0985 66.9801� 1.02921 66.8705� 1.1105
ns 0.96450þ0.0068

−0.0073 0.96750þ0.0071
−0.0070 0.97147þ0.0002

−0.0002
r=10−5 2.1290þ0.9429

−2.0693 18.7001þ4.5852
−6.0335 16.2980þ2.3986

−3.9336
α 0.0962þ0.00046

−0.00047 � � � � � �
μ � � � 0.31075þ0.013633

−0.015222 0.01043þ0.0001916
−0.0001265

Ne 55.1121� 0.1902 55.1241� 0.2306 52.2232� 0.3000
V0=1015 1.9598� 0.25345 3.3787� 1.38700 3.2599� 1.02855
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