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By adding a matter-coupled dark energy field to Einstein’s general relativity, this paper proves that the
dynamical dark energy field can change the frequency of photons from distant galaxies as well as from
background radiation of remote Universe. Therefore, when the observed frequency shift of the photons is
entirely attributed to the temporal variation of the cosmic scale factor, the calculated expansion rate of the
Universe will be slightly greater than its actual value. The predicted values of the temperature of the cosmic
blackbody radiation in the past (future) of the Universe are slightly larger (gradually smaller and smaller)
than those in the standard cosmology. Since the blackbody radiation becomes the present cosmic
microwave background and its present-day temperature is directly estimated according to the Planck’s law
of blackbody radiation, the measured value of the cosmic microwave background temperature is
independent of whether to consider the scalar field or not.
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I. INTRODUCTION

More and more observed evidences show that a peculiar
form of energy exists in nature [1–4]. The characteristics of
this kind of energy are completely different from matter
(including ordinary matter, dark matter, and electromag-
netic fields), and are also very different from gravitational
energy. The so-called dark energy is currently described by
the cosmological constant Λ in the standard Λ-cold-dark-
matter (ΛCDM) cosmological model [5,6]. The value of Λ
in energy scale is equal to ΛE ≈ 2.24 meV [1], neither a
“natural” value of zero [7,8] nor another “natural” value
MPl ≈ 2.4 × 1018 GeV of the Planck energy [9–12]. The
alternative scheme for describing the dark energy is to
introduce a scalar field with self-interaction potential
density (SPD) into GR [8–10]. In fact, as early as the
1960s, in order to be compatible with the Mach principle,
Brans and Dicke demonstrated that the relativistic gravi-
tational theory should include a matter-coupled scalar
field [13,14]. Scalar fields are also introduced in the
cosmic inflationary models to drive inflation of the early
Universe [15] so as to solve the flatness and horizon
problems in the standard big-bang cosmology. The scalar
field would couple to the other forms of energy and then
mediate a new force in nature [16–18].
In this paper, I will first prove that when dark energy is a

dynamical scalar field and is conformally coupled with
all other fields (except the gravitational field) in the
same fashion, GR can maintain its traditional mathematical
form. This is in line with Weinberg’s theorem that a
Lorentz invariant theory for a spin-two graviton must be

GR [19,20]. Based on the conformal coupling, I will then
prove that the frequencies of the photons from the distant
Universe can be shifted by the scalar field. The photons are
described by the usual massless particles, differing from
the extended theories of electromagnetism [21,22] in
which the massive photon frequency shift is discussed.
The frequency-shift of the massless photons due to the
scalar field would result in a false increase of the cosmic
expansion rate when the additional redshift is also attrib-
uted to the Hubble parameter. The introduction technique
of the coupling between the scalar field and other fields is
similar to [23–26]. However, I assume that the conformal
coupling factor is (i) the same (universal) function of the
scalar field for all other fields (except for the space-time
itself: gravitational field), so that the weak equivalence
principle in the presence of the scalar field is still valid not
only for massive particles, but also for massless particles;
and (ii) a spontaneous symmetry-breaking function of the
scalar field, so that the consequences of the scalar field
appear only on both cosmic and smaller scales to satisfy the
observed evidence of the accelerating expansion of the
Universe and no observed evidence of existing a long-range
scalar field. This direct coupling fashion leads to the
disappearance of the physical concepts of Einstein frame
and Jordan frame in our scheme. The frame concepts
always appear in the usual scalar-tensor modified gravity
theories [27–35].
With the improvement of astronomical measurement

accuracy, the number of observable quantities related
to methodology is also increasing, which offers ways to
break the parametric degeneracy in a cosmic model. The
parametric degeneracy refers to that it is difficult to
distinguish the values of model parameters by the same*zhanghc@siom.ac.cn
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set of fixed astronomical observations. Taking the Hubble
constant H0 as an example, various methodologies and
techniques [1,36–44] have been and will be developed to
determine it with high accuracy. Current astronomical
observations already show that the present-day value of
the cosmic expansion rate seems to depend on methodol-
ogy, called the Hubble constant tension [45–49]. This
provides an opportunity to constrain the parameters of
our model. In addition, since the scalar field can influence
the value of the temperature of the CMB, the evolution of
the temperature violates the traditional relation TðzÞ ¼
T0ð1þ zÞ of standard cosmology. The redshift range of the
measurements for the redshift dependent temperature of the
CMB has been extended to z ∼ 6.34 [50,51]. We can test
the dynamical dark energy model with the data of the
measurements [50–58].

II. SETUP

In order to maintain the weak equivalence principle [59],
we require that various matter fields (including electro-
magnetic fields) couple to the dark energy field ϕ via the
same conformal fashion, i.e., LI ¼ BðϕÞLm, where Lm is
the Lorentz-invariant Lagrangian density for any kind of
matter fields and BðϕÞ is a dimensionless conformal
coupling function of ϕ, respectively. The dynamical dark
energy field, matter fields, and the conformal interaction
between the scalar and matter are minimally coupled to
gravitational field, i.e., the total action is the sum as
follows:

S ¼ SR þ Sm þ Sϕ þ SI

¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ Lm þ Lϕ þ BðϕÞLm

�
; ð1Þ

where G is Newton’s gravitational constant, g is the
determinant of the metric tensor gμν, R is the Ricci
curvature scalar, and Lϕ ¼ −gμν∂μϕ∂νϕ=2 − VðϕÞ is the
Lagrangian density for the scalar field with a scalar
potential density VðϕÞ being the SPD. The metric tensor
is related to the spacetime interval ds by ds2 ¼ gμνdxμdxν,
where the Einstein summation convention for repeated
indices is used. The units c ¼ ℏ ¼ 1 are adopted unless we
emphasize the importance of the speed of light or the
reduced Planck’s constant.
In the presence of the scalar field, the Einstein’s

equations are obtained by varying the action (1) with
respect to the metric as follows:

Gμν ¼ 8πG

�
TðmÞ
μν þ TðϕÞ

μν þ BðϕÞTðmÞ
μν

�
; ð2Þ

where Gμν is the Einstein tensor, and

Tμν ¼ −
2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

LÞ
∂gμν

ð3Þ

defines the energy-momentum tensor for any kind of energy,
respectively. It is assumed that the coupling function does
not depend explicitly on the metric and the Lagrangian
density does not contain any derivatives of the metric.
The equation of motion for the scalar field in the

presence of gravitational field is obtained by varying the
action (1) with respect to ϕ as follows:

DμDμϕ ¼ V;ϕðϕÞ − B;ϕðϕÞLm; ð4Þ

where Dμ is the covariant derivative with respect to the
metric gμν, Dμ is the contravariant operator defined by
Dμ ¼ gμνDν, and the subscript “,ϕ” denotes a partial
derivative of ∂=∂ϕ. Equation (4) means that the scalar
moves in an effective potential density (EPD) as follows:

VeffðϕÞ ¼ VðϕÞ − LmBðϕÞ: ð5Þ

One sees that the motion of the quintessence field is related
to the Lagrangian density Lm of matter rather than the trace
Tm of the energy-momentum tensor. Thus, although Tm ¼
0 is always satisfied for electromagnetic field [60], the
motion of the scalar is directly influenced by electromag-
netic field due to Lm ≠ 0 in general. Of course, the value of
the Lagrangian density for a plane electromagnetic wave
indeed vanishes. Incidentally, we know that there are many
Lagrangian densities of a kind of matter field that can give
the same equation of motion for the matter field. However,
the Lagrangian densities are also restricted by the require-
ment to give the correct relativistic energy-momentum
tensor. Taking a specifical example, the Lagrangian for a
free classical particle should not only give the correct
equation of motion, but also the correct relativistic four-
momentum whose time component is equal to the corre-
sponding Hamiltonian and the space components are the
relativistic three-dimensional momentum. If, in a sense of
physics rather than mathematics, these Lagrangian den-
sities for matter fields can still not be uniquely determined
by all the above restrictions, the equation of motion for
the scalar field shown as Eq. (4) will place considerable
restrictions on the possible Lagrangian densities. Whether
the choice of Lagrangian density is correct is ultimately
determined by experiments.
From Eq. (2), it is evident that the total energy-

momentum tensor of matter plus the scalar field must have
a vanishing covariant divergence, i.e.,

�
TðmÞ
μν þ BðϕÞTðmÞ

μν þ TðϕÞ
μν

�
;ν
¼ 0; ð6Þ

where the subscript “;ν” denotes the covariant derivative

Dν. Both the energy-momentum tensor TðϕÞ
μν of the scalar
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field and TðmÞ
μν of matter are no longer conserved respec-

tively due to the conformal coupling between the scalar and
matter.
We now discuss the equations of motion for a classical

particle with rest mass M in the presence of both the
gravitational field and the dark energy field. Let us first
introduce the four-momentum of the particle. We use a set
of coordinates xμðσÞ to describe a curve with σ being a
single parameter. The bare action for the classical particle
is [60,61]

Sm ¼ −M
Z

dτ ¼ −M
Z

dτ
dσ

dσ; ð7Þ

where τ is the proper time of the particle. Since the moving
speed of a particle cannot exceed the speed of light, the
square of the spacetime interval between two events is
always nonpositive under the ð−þþþÞmetric convention,
i.e., ds2 ≤ 0. Therefore, we introduce the proper time
through dτ2 ¼ −ds2 so that the mass parameter M is real.
From Eq. (7), the Lagrangian for the massive particle is
L ¼ −Mdτ=dσ, and then the Lagrangian density can be
written as Lm ¼ −Mδðr − rðσÞÞdτ=dσ, where δðr − rðσÞÞ
is Dirac δ functionwith the spatial positionvector rðσÞ of the
particle marking its spatial trajectory. The four-momentum
pμ of the classical particle can be defined as [60]

pμ ≡ ∂Sm
∂xμ

: ð8Þ

Thus, by using the chain rule of differentiation to Eq. (7) we
obtain an important relation

pμ
dxμ

dσ
¼ −M

dτ
dσ

; ð9Þ

which is equivalent to the expression pμdxμ=dτ ¼ −M.
This relation is superior to the usual mass-energy relation
pμpμ ¼ −M2 in calculation, where pμ ≡ gμνpν ¼Mdxμ=dτ
is the contravariant four-momentum of the particle.
Mathematically, the choice of a coordinate system in GR

is not limited in principle. However, considering the
comparison with experiments, such an appropriate physical
coordinate system is often selected as far as possible, in
which the time component p0 can represent the particle’s
energy ε measured by an observer who is at rest in the
coordinates, i.e., p0 ¼ ε, and the space components of pμ

correspond to the three-dimensional momentum p mea-
sured by the observer.
Based on the above definition of the four-momentum and

the principle of least action [59,60], the equations of motion
for the classical particle can be obtained by varying the
action (1) with respect to the path xμðσÞ as follows:

½ð1þ BÞpμ�;ν
dxν

dτ
¼ −M∂

μB; ð10Þ

or, equivalently,

½ð1þ BÞpμ�;ν
dxν

dσ
¼ −M∂

μB
dτ
dσ

; ð11Þ

where ∂
μ ≡ gμν∂ν with ∂ν ≡ ∂=∂xν. The particle no longer

moves on a geodesic line since it couples to the dynamical
dark energy field. When the coupling BðϕÞ ¼ 0, Eqs. (10)
and (11) become the expected geodesic equations.
However, Eq. (10) cannot be used for the propagation of

light signal because the denominator dτ on the left-hand
side of Eq. (10) equals zero for light [60]. We have to use
the single parameter σ to describe the spacetime path of
light ray. By inserting dτ ¼ 0 into Eq. (11), the equations of
motion for a light signal are obtained as follows:

½ð1þ BÞkμ�;ν
dxν

dσ
¼ 0; ð12Þ

where kμ stands for the wave four-vector of the electro-
magnetic wave packet, defined by the generalized de
Broglie relation pμ ¼ ℏkμ with ℏ being the reduced
Planck’s constant. We see that, due to the scalar field,
the magnitude of the tangent vector to the parametrized
path of light signal will change, and then light signal does
not fall on a geodesic line in a narrow sense. The geodesic
line in the narrow sense refers to that, when a particle
moves along the geodesic line, both the direction and the
magnitude of the tangent vector to the parametrized path of
the particle do not change. However, Eq. (12) tells us that
the four-momentum kμ of the photon as well as the resultant
four-momentum ð1þ BÞkμ is indeed transported in parallel
by the photon itself along the path curve. Thus, this path of
the photon parametrized with σ can be regarded as a
geodesic curve in a more general sense, along which the
direction of the four-momentum vector remains unchanged
but its size can be changed. If we introduce a new
mathematical curve parameter σ̃ by the conformal trans-
formation dσ̃ ¼ dσ=ð1þ BÞ, where B is a function of σ
through the scalar field, then Eq. (12) becomes the conven-
tional geodesic equation with respect to the new math-
ematical parameter σ̃ in the above narrow sense. However,
we should keep in mind that the measured physical
quantities for photons are always expressed by the param-
eter σ rather than by the rescaled parameter σ̃.
Incidentally, even if the new rescaled curve parameter is

used, the equations of motion for massive particles shown
as Eqs. (10) and (11) still cannot become the conventional
forms of the geodesic equations in the above narrow sense.
No physical interaction can disappear globally by virtue of
pure mathematical transformations. If the influence of a
physical field on all matter fields can be eliminated by the
same mathematical transformations, then this field cannot

DYNAMICAL DARK ENERGY CAN AMPLIFY THE EXPANSION … PHYS. REV. D 107, 103529 (2023)

103529-3



be introduced through measurable physical quantities, and
there is no need to introduce it.
It is well known that the time component k0 represents

the wave packet’s frequency ω, i.e., k0 ¼ ω, and the space
components of kμ correspond to the three-dimensional
wave vector k of the wave packet. Mathematically, the
frequency ω represents an average value of the frequencies
corresponding to the monochromatic components of the
light wave packet. The three-dimensional wave vector k
represents an average wave vector of the expanded plane
waves of the wave packet. The relation of the frequency and
the wave vector for light signal can be obtained by inserting
dτ ¼ 0 into Eq. (9) as follows:

kμ
dxμ

dσ
¼ 0; ð13Þ

which is a generalized result of the usual relation kμkμ ¼ 0

for monochromatic plane waves [60]. This generalized
relation is superior to the usual one in calculation.
The curve parameter σ must be introduced for the case of

light signal since its proper time cannot be used to label its
path. From a mathematical point of view, as an intermediate
parameter, σ is neither unique nor appears in the final
solutions of the equations. In physics, the curve parameter
could, but need not, be thought of the synchronous time for
all of positions along the actual spatial trajectory of the light
ray. Since the parameter appears in the equation of motion
after all, it can also be said that σ is determined by Eqs. (12)
and (13).
Unlike the curve parameter σ, the mass parameter M

completely disappears in the equations of motion for light
signal. It can only be seen as an auxiliary dimensional
parameter [61] in the action (7) in obtaining Eqs. (12) and
(13) for photons. These equations can also be obtained by
insertingM ¼ 0 into Eqs. (9) and (11) of massive particles,
meaning that photons are indeed zero rest mass but not zero
energy particles. Due to the nonzero energy of photons, the
motion of photons can be influenced by the scalar and
gravitational fields, and vice versa.

III. A CONCRETE FORM OF CONFORMAL
COUPLING

Since there is no observed evidence that a long-range
scalar field exists, one can impose that the conformal
coupling possesses a discrete Z2 spontaneously broken
symmetry [62] and the SPD contains only ϕ4 term, i.e., [29]

BðϕÞ ¼ 1

4M1
4
ðϕ2 −M2

2Þ2; ð14aÞ

VðϕÞ ¼ λ

4
ϕ4; ð14bÞ

where M1, M2, and λ are the three model parameters.

In cosmology, the matter content is regarded as a set of
perfect fluids indexed by i, each with its energy density ρi
and pressure Pi. Since we consider a system of non-
interacting particles, the Lagrangian density for a perfect
fluid indexed by i can be expressed as [60]

Lmi ¼ −
X
C

δðr− rCÞ
�
εC − pC ·

∂εC
∂pC

�
≡−ρi þ 3Pi; ð15Þ

where εC and pC denote, respectively, the energy and the
momentum of the particle C. The energy density ρi and the
pressure Pi of the ideal fluid are obtained by averaging over
all the particles in unit volume [60]. Obviously, for
radiations and relativistic particles, Pi ¼ ρi=3; for dust
and cold dark matter, Pi ¼ 0. Thus, the total Lagrangian
density of all perfect fluids in the Universe is

Lm ¼ −ρþ 3P≡ −ρN; ð16Þ

where ρ ¼ P
i ρi, P ¼ P

i Pi and ρN ≡ ρ − 3P denote the
total energy density, the total pressure, and the effective
nonrelativistic energy density of the total perfect fluids,
respectively. Obviously, the effective nonrelativistic energy
density ρN is in general smaller than the total energy density
ρ. If all fluids contain only radiations and relativistic
particles, then ρN ¼ 0. If all fluids contain only dust and
cold dark matter, then ρN ¼ ρ. Based on the cosmological
constraint, it has been demonstrated that, after the era of the
big bang nucleosynthesis [29,63], any quintessence field
should and would sit stably at the minimum ϕb of the EPD.
Substituting Eqs. (14) and (16) into Eq. (5), the minimum
ϕb and the mass mb of the scalar field at the minimum are
obtained, respectively, as follows:

ϕb
2 ¼ M2

2ρN
λM1

4 þ ρN
; ð17aÞ

mb
2 ¼ 2M2

2ρN
M1

4
: ð17bÞ

The mass of the quintessence strongly depends on the
effective nonrelativistic matter density, leading to a short
interaction range for a large matter density. However, the
minimum of the EPD weakly depends on the effective
nonrelativistic matter density when ρN ≫ λM1

4, leading to
a meaningful cosmological constant, which will be shown
by Eq. (27) or, equivalently, Eq. (26).

IV. COSMOLOGICAL EVOLUTION

We consider a homogenous and isotropic cosmology
with a scale factor aðtÞ described by the line elements

ds2¼−dt2þa2ðtÞ
�

dr2

1−Kr2
þr2ðdθ2þsin2θdφ2Þ

�
; ð18Þ
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where K ¼ 1, 0, or −1 correspond to closed, flat, or open
spaces, respectively. The spaces contain several species of
noninteracting perfect fluids of matter source. For a perfect
fluid with Lagrangian density Lmi shown as Eq. (15), the
energy-momentum tensor is

Tμν
ðmiÞ ¼ ðρi þ PiÞuμuν þ Pigμν; ð19Þ

where uμ is the four velocity for the macroscopic motion of
an element of volume of the fluid. uμ differs from the four
velocity for the microscopic motion of the particles.
Using Eqs. (4), (18), and (19), the equations of motion

for the quintessence and the perfect fluids are

ϕ̈þ 3H _ϕþ 1

a2ðtÞ∇
2
FRWϕþ V;ϕðϕÞ þ B;ϕðϕÞρN ¼ 0;

ð20aÞ

_ρi þ 3Hðρi þ PiÞ ¼
−3Pi

1þ B
dB
dt

; ð20bÞ

respectively, where the overdots denote derivatives with
respect to time, H ¼ _aðtÞ=aðtÞ is the Hubble parameter,
and ∇2

FRW is the Laplacian operator [64] corresponding to
the Friedmann-Roberson-Walker (FRW) metric shown as
Eq. (18). Suppose that the cosmic background consists of
only two extreme types of matter: nonrelativistic particles
Pi ¼ 0 and relativistic particles Pi ¼ ρi=3, from Eq. (20b),
we have

_ρN ¼ −3HρN: ð21Þ

One sees that Eq. (20a) describes a damped (negative
damped) oscillation of the quintessence for an expanding (a
contracting) universe corresponding to H > 0 (H < 0).
The rate of change of the minimum with respect to the time
variable can be evaluated by Eqs. (17a) and (21) as follows:

_ϕb

ϕb
¼ −

3H
2

λM1
4

λM1
4 þ ρN

: ð22Þ

In an expanding universe of H > 0, we have
_ϕb=ϕb < 3H=2, meaning that when the quintessence
reaches the minimum, it will always follow the minimum
adiabatically [29]. In a contracting universe of H < 0,
based on the positive feedback mechanism, even if the
quintessence initially sits at the minimum, it will depart
away the equilibrium value with time.
For our expanding Universe, with the time growing the

quintessence eventually and already reaching the minimum
ϕb of the EPD, i.e., V;ϕðϕbÞ þ ρNB;ϕðϕbÞ ¼ 0. It then sits
stably at the minimum since the rate of change of the
minimum is sufficiently small compared with the cosmic
expanding rate. The minimum ϕb indeed presents a

dynamical equilibrium state for the quintessence in the
homogeneous background medium of matter. Thus, when
the equilibrium state is achieved, Eq. (20a) can be divided
into the following equations:

V;ϕðϕbÞ þ B;ϕðϕbÞρN ¼ 0; ð23aÞ

∇2
FRWϕb ¼ 0; ð23bÞ

ϕ̈b þ 3H _ϕb ¼ 0: ð23cÞ

These equations mean that, for the expanding Universe
with the homogenous distribution of matter, the scalar
field eventually and slowly evolves along the spatial-
homogeneous equilibrium state.
In the equilibrium state of the quintessence, using

Eqs. (2) and (18) we obtain the equations of cosmic
evolution as follows:

H2 ≡
�
_a
a

�
2

¼ 8πG
3

�
VðϕbÞ þ ρð1þ BÞ þ 1

2
_ϕ2
b

�
−
K
a2

;

ð24aÞ
ä
a
¼ 4πG

3
ð2VðϕbÞ − ð1þ BÞðρþ 3PÞ − 2 _ϕ2

bÞ; ð24bÞ

where B≡ BðϕbÞ specifically refers to the conformal
coupling at the equilibrium state ϕb, a≡ aðtÞ is the scale
factor, and ρ ¼ ρN þ 3P [see Eq. (16)] denotes the cosmic
total energy density in the absence of the scalar field and in
terms of ρN and P so as to make the formula concise. The
conformal coupling and the self-interaction potential den-
sity can be obtained by inserting Eq. (17a) into Eqs. (14a)
and (14b), respectively, as follows:

BðϕbÞ ¼
1

4

�
λM1

2M2
2

λM1
4 þ ρN

�
2

; ð25aÞ

VðϕbÞ ¼
λ

4

�
M2

2ρN
λM1

4 þ ρN

�
2

: ð25bÞ

Thus, if the nonrelativistic matter density ρN is large
enough, the value of the conformal coupling BðϕbÞ is
far less than 1, and then the coupling function in Eq. (24)
can be ignored. One can see that, roughly, the difference of
ρ − 3P affects the scalar field, while the sum ρþ 3P affects
the gravitational field. Thus, for the same value of ρ, the
source of a relativistic fluid has the largest gravitational
effect but no effect on the scalar field. By comparing
Eq. (24) with the ΛCDM model [5,6], one can see that the
value VðϕbÞ of the SPD at the equilibrium state is similar to
the cosmological constant in the ΛCDM model [65]. From
Eq. (25b), we can see that, as long as the parameters’
combination λM4

1 is smaller than the current cosmic
density, the value of the SPD is very close to a constant
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λM2
4=4. Since the density of matter is quite large in the

remote past of the expanding Universe, the limiting value
λM2

4=4 multiplied by the factor 8πG can be defined as the
cosmological constant Λ at that time [65], i.e.,

Λ ¼ 2πλGM2
4: ð26Þ

Because the cosmological constant in energy scale is often
used in literature, we define it by the limit as follows:

ΛE ¼ lim
ρN→∞

V1=4ðϕbÞ ¼
�
λ

4

�
1=4

M2: ð27Þ

The ΛCDMmodel can be regarded as an approximate form
of the dynamical dark energy model in the case of large
nonrelativistic matter densities of the Universe.
The orders of the model parameters are constrained

theoretically and experimentally as follows [1,17,18,66]:
λ ∼Oð1Þ, M2 ∼OðΛEÞ, M1=M2 ∼Oð1Þ, and the current
cosmic density ∼OðΛE

4Þ. Noticing Eqs. (17a) and (21),
and the definition of the reduced Planck energy
MPl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
, one can see that the kinetic energy density

terms of _ϕ2
b=2 and 2 _ϕ2

b in Eq. (24) can be safely neglected.
In Eq. (24), the ratios of the kinetic energy density terms to
the SPD terms are estimated to be far smaller than the ratio
of ðΛE=MPlÞ2 ∼Oð10−60Þ. Incidentally, only the combina-
tions λM4

1 and λM4
2 appear in the expressions of BðϕbÞ and

VðϕbÞ. Thus, the equations of cosmic evolution shown by
Eq. (24) are only related to these combinations. This results
in that the separate values of λ, M1, and M2 cannot be
determined through astronomical observations based on the
homogenous and isotropic cosmology.

V. FREQUENCY-SHIFT OF LIGHT SIGNAL

The information of the cosmic evolution is often
obtained by measuring the electromagnetic radiations from
distant galaxies and the CMB from the early Universe.
Consider a test signal which is emitted from atoms in a
distant comoving galaxy at the late Universe. The light
signal passes through the cosmic perfect fluids for a long
journey and is eventually measured by a comoving local
observer on our Earth. The original frequency of the signal
is naturally equal to that of photons emitted by the same
kind of atoms in the laboratory on the Earth. By comparing
the received frequency of the light signal with the reference
frequency in the laboratory, one can determine the fre-
quency shift of the light signal. Using Eqs. (12) and (13)
under the FRW metric shown as Eq. (18), the curve
parameter σ is determined to be the time variable t and
the evolution equation of the frequency ω of the light signal
is determined as follows (see the Appendix):

dω
dt

¼ −
�
H þ 1

1þ B
dB
dt

�
ω; ð28Þ

with H ≡ _aðtÞ=aðtÞ being the Hubble parameter.
Equation (28) means that

ð1þ BÞωaðtÞ ¼ constant: ð29Þ

When the coupling B ¼ 0, the above equation becomes the
old expression ωaðtÞ ¼ constant which give us the well-
known redshift for the expanding Universe. However, from
Eq. (28), one sees that the redshift of a light signal comes
from two factors: the Hubble expansion and the temporal
variation of the conformal coupling. Thus, if the observed
frequency shift of the light signal is only attributed to the
expansion rate of the Universe, then the calculated apparent
value Happ of the expansion rate will be larger than the
actual value H of the expansion rate. Due to dB=dt ¼
∂B=∂t in the spatial homogenous case, from Eq. (28) we
have

Happ ¼ H þ 1

1þ BðϕbÞ
∂BðϕbÞ

∂t
: ð30Þ

Noticing Eq. (21), we can rewrite Eq. (30) as follows:

Happ ¼ H

�
1 −

3ρN
1þ BðϕbÞ

∂BðϕbÞ
∂ρN

�
; ð31Þ

where the conformal coupling BðϕbÞ is related to the
nonrelativistic matter density ρN of the Universe
through Eq. (25a).

VI. B DEPENDENCE AND H DEPENDENCE
OF OBSERVABLE QUANTITIES

The Hubble parameter dependence and the coupling
factor dependence are not the same for different observable
quantities. For example, if the Universe expands adiabati-
cally, then the frequency ω of photons in the CMB varies,
but their number population NðωÞ remains constant. Hence
the temperature TðtÞ of the CMB can be deduced by its
spectral distribution according to the Planck’s law under the
adiabatic expansion, i.e.,

NðωðtÞÞ ¼ 1

eℏωðtÞ=kBTðtÞ − 1
; ð32aÞ

Nðω0Þ ¼
1

eℏω0=kBT0 − 1
; ð32bÞ

NðωðtÞÞ ¼ Nðω0Þ; ð32cÞ

where kB is Boltzmann constant and ω0 and T0 are the
present-day values of frequency and temperature of the
CMB measured on the Earth. Combining Eq. (32) with
(28), the evolution equation of the temperature TðtÞ of the
CMB is obtain as follows:
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dTðtÞ
dt

¼ −
�
H þ 1

1þ B
dB
dt

�
TðtÞ; ð33Þ

which means that

ð1þ BÞTðtÞaðtÞ ¼ ð1þ B0ÞT0a0; ð34Þ

where B0 denotes the present-day value of the conformal
coupling factor. When the coupling B ¼ 0, the above
equation becomes the old expression TðtÞaðtÞ ¼ T0a0.
In cosmology, the cosmic time t is customarily repre-

sented by the cosmological redshift z defined through the
ratio of the current cosmic scale a0 to the cosmic scale aðtÞ
at time t as follows

1þ z ¼ a0
aðtÞ : ð35Þ

Hence, by inserting Eq. (35) into Eq. (34), we see that the
CMB temperature will evolve as

TðzÞ ¼ T0ð1þ zÞ 1þ B0

1þ BðzÞ ; ð36Þ

which differs from the old expression

T 0ðzÞ ¼ T0ð1þ zÞ ð37Þ

in standard cosmology. Incidentally, we have the evolution
of the frequency of a light signal with the redshit z as

ωðzÞ ¼ ω0ð1þ zÞ 1þ B0

1þ BðzÞ ; ð38Þ

corresponding to Eq. (28). It should be emphasized that the
meaning of redshift defined by Eq. (35) is different from
that of its original definition in the physics of redshift zf
defined by

1þ zf ¼
ωðtÞ
ω0

: ð39Þ

If light signal is emitted from atoms in a distant galaxy,
its original frequency ωðtÞ should be equal to the frequency
of photons emitted from the same kind of atoms in the
laboratory on the Earth, while ω0 is the measured value of
the signal frequency on the Earth. If the light signal comes
from the cosmic blackbody radiation, based on the calcu-
lation of nucleosynthesis, then the maximum in the energy
spectrum of the blackbody radiation is about 1 MeV at the
time ∼200 sec after the big bang [67], corresponding to
the temperature ∼109 K. With the Universe expanding, the
blackbody radiation becomes the present-day CMB with
the temperature estimated to be ∼5 K [68], which is very
close to the accurately measured value of 2.7255�
0.0006 K [50].

Since the number population density nðtÞ and the energy
density ρðtÞ of the CMB are defined as follows:

nðtÞ ¼ n0a03

aðtÞ3 ; ð40aÞ

ρðtÞ ¼ nðtÞωðtÞ; ð40bÞ

together with Eq. (28), we have evolution equations for
number density nðtÞ and the energy density, respectively, as
follows:

dnðtÞ
dt

¼ −3HnðtÞ; ð41aÞ

dρðtÞ
dt

¼ −
�
4H þ 1

1þ B
dB
dt

�
ρðtÞ: ð41bÞ

VII. EXPLAINING THE HUBBLE
CONSTANT TENSION

We have seen that, from Eqs. (28) and (41), if the scalar
field exists and its influence is ignored in measurements,
then different methodologies will give different estimates
for the same parameter (such as the Hubble parameter). For
the expanding homogenous Universe, the value of Hubble
parameter will be amplified by the scalar field in measure-
ments based solely on the redshift of light frequency, but it
will not be affected in the purely number density mea-
surements. Due to the frequent mixing of these two
mechanisms in practical methodologies, the estimated
values of Hubble parameters are distributed between the
two extremes mentioned above.
As a first step, it is reasonable to assume that theminimum

value is close to the real value of the cosmic expansion rate,
while the larger value is far away from it. Fortunately,
various methodologies and techniques [1,36–44] have been
developed with high accuracy. It seems that the present-day
value of the cosmic expansion rate depends onmethodology,
known as the Hubble constant tension [45–49]: the differ-
ence between values of the Hubble constant measured by
the Planck experiment,H0 ¼ 67.36þ0.54−0.54 km s−1Mpc−1 [1],
and a local expansion rate measurement of the Hubble
constant made using Cepheids and type Ia supernovae
now H0 ¼ 73.04þ1.04−1.04 km s−1 Mpc−1 [36]. There are many
measurements of H0 that lie between 67.36 and
73.04 km s−1 Mpc−1, with most of them being clustered
around 68–70 km s−1Mpc−1 [36–44], and most of them
being mutually consistent.
We can, but we do not have to, choose a moderate value

from the dataset of the smaller values as the true value of
the Hubble constant, e.g., H0 ¼ 67.36 km s−1Mpc−1 [1]
and choose another moderate value from the dataset of the
larger values as the amplified value of the Hubble constant,
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e.g.,Happ0 ¼ 73.04 km s−1Mpc−1 [36], then the evolutions
of the Hubble parameter and the amplified Hubble param-
eter over time can be plotted in Fig. 1.
Figure 1 shows that the actual and apparent expansion

rates of the Universe as functions of redshift. In the remote
past of the Universe, the apparent value Happ is almost
equal to the actual Hubble parameter H due to BðϕbÞ
approaching zero for very large cosmic density. In the
future, the apparent value Happ will gradually become
larger than the actual value H, and then will tend to reach
the actual value H again with the time moving forward due
to BðϕbÞ approaching a constant for extreme thin cosmic

density. The model parameters (λ, M1, and M2) are
independent of the time we live, but the density of cosmic
matter varies over time. If we live in the far past or future of
the Universe when the apparent value Happ is almost equal
to the actual Hubble parameter H, i.e., there is no “Hubble
tension,” then the parametric degeneracy of the dynamical
dark energy model cannot be broken by comparing Happ

with H.

VIII. THE EFFECT OF THE SCALAR FIELD
TO THE CMB [69]

From Eq. (36), the value of the temperature of the CMB
can be influenced by the scalar field. In order to compare
the dynamical dark energy model with the standard
cosmology in describing the temperature evolution of the
CMB, we introduce a temperature ratio of TðzÞ=T 0ðzÞ
through Eqs. (36) and (37) as follows:

TðzÞ
T 0ðzÞ ¼

1þ B0

1þ BðzÞ : ð42Þ

The evolution of the ratio with redshift z is shown in Fig. 2.
From Fig. 2, one sees that the calculated values of the

CMB temperature by the dynamical dark energy model are
slightly larger than that by the standard model in the past of
the Universe. But in the future, compared with the standard
model, the calculation values will be smaller and smaller.
Since the redshift range of the measurements for the

redshift dependent temperature of the CMB has been
extended to z ∼ 6.34 [50,51], we can compare the data
of the measurements [50–58] with the calculated values by
the dynamical dark energy model. The evolution of the
CMB temperature is shown in Fig. 3.

FIG. 1. Cosmic expansion rates vary with cosmic time
denoted by cosmological redshift. (a) The actual expansion rate
(dotted curve) is calculated by Eq. (24). The following
values of the model parameters and the cosmic parameters are
used to satisfy the constraints of cosmology [1,36], the fifth-
force experiment [17,18], and the theory of quantum stability
[66]: λ ¼ 1=6, M1 ¼ M2=6.0816, M2 ¼ 4.97251 meV, and
ρN0 ¼ 2.65072 × 10−27 kgm−3. The cosmic matter density is
not a model parameter in our setup. These parameter values are
selected carefully so as to obtain the actual Hubble constantH0 ¼
67.36 km s−1 Mpc−1 (hollow circle, corresponding to the fitted
value with the ΛCDM model from the distributions of the CMB
[1]) and the flat space of K ¼ 0. If the space is closed (open), then
the spatial curvature parameter K ¼ 1 (K ¼ −1) can be achieved
by slightly increasing (decreasing) the above critical density of
ρN0 ¼ 2.65072 × 10−27 kgm−3. (b) The apparent expansion rate
(solid curve) is calculated by Eq. (31), meaning that the redshift is
attributed entirely to the cosmic expansion rate. The present-day
value of the apparent expansion rate corresponds to the inferred
value of the Hubble constant deduced from the late Universe [36],
i.e., Happ0 ¼ 73.04 km s−1 Mpc−1 (hollow square). (c) The Hub-
ble parameter in the ΛCDM model (dashed curve). By letting
VðϕbÞ ¼ Λ4

E and BðϕbÞ ¼ _ϕb
2 ¼ K ¼ 0 in Eq. (24), the equa-

tions of cosmic evolution in the flat ΛCDM model can be
obtained. There is no concept of apparent expansion rate in the
ΛCDM model.

FIG. 2. The ratio between the temperature values in the
dynamical dark energy model and that in the standard model
versus redshift z. The values of the model parameters are the same
as those used in Fig. 1.
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One can see that, in order to reach the current temper-
ature value of 2.7255 K, the temperature of the CMB at
nonzero shifts should be higher than that predicted by the
standard cosmology so that the CMB can transfer energy to
the scalar field. However, from Eqs. (25a) and (28), the
transfer process mainly occurs when the density of cosmic
matter fluid becomes thinner. For dense matter fluids, the
value of the conformal coupling BðϕbÞ is far less than 1,
and then the amount of the transfer energy can be safely
neglected. In the future, the cosmic density becomes
smaller and smaller, resulting in conformal coupling
BðϕbÞ that will become larger and larger. This will cause
a rapid decrease in CMB temperature.
According to Fig. 3, we can roughly say that our model

can recover the standard cosmology in the past of the
Universe. However, both calculated curves are far away
from the measured data points at the larger redshifts. In fact,
since the present-day value of the CMB temperature is
definitely a constant, it is impossible to fit the measured
data using the standard relation of T 0ðzÞ ¼ T0ð1þ zÞ. We
can use Eq. (36) to fit the datapoints very well by assuming
ρN ¼ ρN0ð1þ zÞ3 in the pressureless case P ¼ 0 without
any other constraints. However, for the best fitting result,
the parameter ratio of M2=M1 is smaller than the critical
value of 121=4 ¼ 1.861 [70]. The critical value of M2=M1

corresponds to the intersecting condition of the first two
terms (as functions of z) on the right-hand side of Eq. (24b).
When the ratio of M2=M1 is smaller than 121=4, the model
cannot provide enough dark energy to drive the accelerated
expansion of the Universe at the late time. Therefore, the

experimental data points should be fitted under the
constraints of the ratio M2=M1 > 121=4 and the
deceleration-acceleration transition redshift ztran ∼ 0.5. If
we still maintain the flat space of K ¼ 0 and Happ0 ¼
73.04 km s−1 Mpc−1 as described above, a much smaller
value of the Hubble rate should be introduced so as to
obtain large values of temperature for the larger redshifts as
shown by the experimental data. The smaller the introduced
Hubble constant, the higher the CMB temperature value at
a large redshift. Based on the data of the measurements
[50–58], the value of H0 is deduced to be about
54.4 km s−1Mpc−1 from the fitting curve under the cosmic
constraints above. The calculation curve of the CMB
temperature corresponding to H0 ¼ 54.4 km s−1 Mpc−1
is shown in Fig. 4.
Consequently, if the scalar field exists and can be

described by our model, then the present-day
expansion rate of the Universe may be smaller than
67.36 km s−1 Mpc−1 [1]. The estimated value of H0 ¼
54.4 km s−1Mpc−1 is exactly equal to the value reported
in the literature [71]. However, the value ofH0 is deduced by
fitting the CMB temperature data in the case of flat space
with the dynamical dark energymodel. In the literature [71],
the same value of H0 is obtained by the data of the Planck
experiment with the ΛCDM in the case of the closed space.
In fact, one can find that the same value of H0 can also be
deduced by fitting the CMB temperature data in the case
of closed space with the dynamical dark energy model.

FIG. 3. The temperature evolution of the CMB for
H0 ¼ 67.36 km s−1 Mpc−1. The dotted curve is calculated by
Eq. (36) in the dynamical dark energy model. The solid curve is
calculated by the relation T 0ðzÞ ¼ T0ð1þ zÞ in standard cosmol-
ogy. The solid squares mark the measurement data listed in [50].
The values of the model parameters are the same as those used
in Fig. 1.

FIG. 4. The temperature evolution of the CMB for
H0 ¼ 54.4 km s−1 Mpc−1. The dotted curve is calculated by
Eq. (36) in the dynamical dark energy model. The solid curve
is calculated by the relation T 0ðzÞ ¼ T0ð1þ zÞ in standard
cosmology. The solid squares mark the measurement
data listed in [50]. In the case of K ¼ 0, the values of the
model parameters are used in the calculation as follows:
λ ¼ 1=6, M1 ¼ M2=3.0586, M2 ¼ 4.26149 meV, and ρN0 ¼
2.54319 × 10−27 kgm−3.
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This implies that the temperature evolution of the CMB is
independent of the spatial curvature of the Universe, but it is
sensitive to the cosmic expansion rate in the dynamical dark
energy model.
It should be pointed out that, for large redshifts, there are

not many experimental data points of the CMB temperature
and there are also significant measurement errors in the
existing measurement data. Therefore, it is difficult to
accurately determine the fitting parameters. Further dense
and accurate measurements of CMB temperature are
needed in the case of large redshift.

IX. CONCLUSIONS

The scalar field for dark energy is introduced through its
self-interaction potential and the conformal interaction
potential with matter. The ratio of the interaction
Lagrangian density and the bare Lagrangian density of
matter does not depend on the nature of matter, it is a
universal and spontaneous symmetry-breaking function of
the scalar field. The dynamical property of the dark energy
field can cause a new redshift for the frequency of a light
signal from distant Universe (galaxies or the CMB). If the
new redshift is not subtracted in the calculation for the
cosmic expansion rate, then the calculated value would be
larger than the actual one. The Hubble constant tension as
well as the problem of the cosmological constant is
explained by this dynamical dark energy scenario. Since
only the combinations of the model parameters appear in
the equations of cosmic evolution, the separate values of the
parameters cannot be determined completely by astronomi-
cal observations based solely on the homogeneous and
isotropic cosmology. In order to break the parametric
degeneracy, we need to analyze the data of astronomical
observations and laboratory experiments in the case of

nonuniform distribution of matter because the three-dimen-
sional force mediated by a scalar field depends on its spatial
gradient.
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APPENDIX: THE DETAILED DERIVATION OF
THE FREQUENCY SHIFT OF LIGHT SIGNALS

The FRW metrics are

gμν ¼

0
BBBBB@

−1 0
a2

1−Kr2

a2r2

0 a2r2sin2θ

1
CCCCCA

ðA1Þ

and

gμν ¼

0
BBBBB@

−1
1−Kr2
a2

1
a2r2

0 1
a2r2sin2θ

1
CCCCCA
; ðA2Þ

respectively. Consequently, the nonzero connection coef-
ficients can be calculated, and can also be found in popular
textbooks of general relativity, as follows:

Γ0
11 ¼

a2 _a
ð1 − Kr2Þa ¼ Hg11; Γ0

22 ¼ a _ar2 ¼ Hg22; Γ0
33 ¼ a _ar2sin2θ ¼ Hg33;

Γ1
10 ¼ Γ2

20 ¼ Γ3
30 ¼ H; Γ1

11 ¼
Kr

1 − Kr2
; Γ1

22 ¼ −rð1 − Kr2Þ; Γ1
33 ¼ −rð1 − Kr2Þsin2θ;

Γ2
12 ¼

1

r
; Γ2

33 ¼ − sin θ cos θ; Γ3
13 ¼

1

r
; Γ3

23 ¼ cot θ; ðA3Þ

where H ¼ _a=a denotes the Hubble parameter. In order to obtain the relation Eq. (28), we should solve the equations of
motion for light signal as shown by Eq. (12), for k0 component of the four-wave-vector, one has

½ð1þ BÞk0�;ν
dxν

dσ
¼ ð1þ BÞk0;ν

dxν

dσ
þ ð1þ BÞΓ0

λνk
λ dx

ν

dσ
þ ð1þ BÞ;ν

dxν

dσ
k0: ðA4Þ

Inserting Eq. (A3) into Eq. (A4), one has

dk0

dσ
þ d lnð1þ BÞ

dσ
k0 þHg11k1

dx1

dσ
þHg22k2

dx2

dσ
þHg33k3

dx3

dσ
¼ 0: ðA5Þ

Inserting k1 ¼ g1νkν ¼ g11k1, k2 ¼ g22k2, and k3 ¼ g33k3 into the above expression, one has
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dk0

dσ
þ d lnð1þBÞ

dσ
k0 þHk1

dx1

dσ
þHk2

dx2

dσ
þHk3

dx3

dσ
¼ 0:

ðA6Þ

Noticing the relation (13) in the main text, i.e.,

k0
dx0

dσ
¼ −ki

dxi

dσ
ðA7Þ

with i ¼ 1; 2; 3, one has

dk0

dσ
þ d lnð1þ BÞ

dσ
k0 þH

�
−k0

dx0

dσ

�
¼ 0: ðA8Þ

Since k0 ¼ g0νkν ¼ g00k0 ¼ −k0, one has

dk0

dσ
þ d lnð1þ BÞ

dσ
k0 þHk0

dx0

dσ
¼ 0: ðA9Þ

Consequently, we can choose the curve parameter

σ ¼ x0 ¼ t: ðA10Þ

Noticing k0 is related to the frequency ω of the electro-
magnetic wave by the relation

k0 ¼ ω; ðA11Þ

Eq. (A8) becomes

dω
dt

þ
�
H þ 1

1þ B
dB
dt

�
ω ¼ 0: ðA12Þ
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