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Halo models of large scale structure provide powerful and indispensable tools for phenomenological
understanding of the clustering of matter in the Universe. While the halo model builds structures out of the
superposition of haloes, defining halo profiles in their outskirts—beyond their virial radii—becomes
increasingly ambiguous, as one cannot assign matter to individual haloes in a clear way. In this paper, we
address this issue by finding a systematic definition of mean halo profile that can be extended to large
distances—beyond the virial radius of the halo—and matched to simulation results. These halo profiles are
compensated and are the key ingredients for the computation of cosmological correlation functions in an
amended halo model. The latter, introduced in our earlier work [A. Y. Chen and N. Afshordi, Phys. Rev. D
101, 103522 (2020)], provides a more physically accurate phenomenological description of nonlinear
structure formation, which respects conservation laws on large scales. Here, we show that this model can be
extended from the matter auto-power spectrum to the halo-matter cross-power spectra by using data from
N-body simulations. Furthermore, we find that this (dimensionless) definition of the compensated halo
profile, r3 × ρðrÞ=M200c, has a near-universal maximum in the small range of 0.03–0.04 around the virial
radius, r ≃ r200c, nearly independent of the halo mass. The profiles cross zero into negative values in the
halo outskirts—beyond 2–3 × r200c—consistent with our previous results. We provide a preliminary fitting
function for the compensated halo profiles (extensions of Navarro-Frenk-White profiles), which can be
used to compute more physical observables in large scale structure.
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I. INTRODUCTION

Probing properties of the large scale structure of the
universe is an active area of research in cosmology. While
the interior structure of dark matter haloes can be well
modeled with the Navarro-Frenk-White (NFW) or Einasto
profiles [1,2], the large scale distribution of dark matter in
the outskirts of individual haloes is poorly understood in
semianalytic frameworks. Previous studies have attempted
to produce a model using effective field theory (EFT) and
perturbation theory [3–6], but nonlinearities in structure
formation make it difficult to extrapolate the models
beyond k ≥ 1.0 Mpc−1. For smaller scales, the standard
halo model (SHM) is often used as a phenomenological
framework. However, SHM suffers from pathologies
that stem from not enforcing the conservation laws [7].
One proposal to address these pathologies, namely the
large-scale shot noise, has been to impose an exclusion
radius for haloes [8,9], but it is hard to see how this would
distinguish between the conserved and nonconserved

quantities, as the latter are expected to display shot noise
on large scales.
In order to address this issue in a systematic manner,

we introduced an amended halo model (AHM) [10]
with compensated halo profiles and fitted this to cold dark
matter simulations by Takahashi et al. [11] to model
nonlinear dark matter density power spectrum on scales
of 10−2 Mpc−1 ≲ k≲ 100 Mpc−1. However, this analysis
did not consider the profile’s potential dependence on halo
mass, nor did it include nonlinear biasing in halo-halo
correlations [12]. Consequently, the present study aims to
address these deficiencies. To do this, we adopt simulation
data from the DarkEmu cosmological emulator suite [13]—
which uses Planck 2015 cosmology [14]—to develop a
novel and systematic method to directly measure mean
compensated profiles from simulated (or emulated) halo-
matter and halo-halo correlations. We find that the dimen-
sionless compensated halo profiles all peak around the
virial radius at a near-universal maximum even across
different mass bins, which is quite a striking result. We also
find that it is possible to “extrapolate” the NFW profile
beyond the virial radius by using two extra parameters to fit
our compensated halo profile, and provide an approximate
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functional form of the profile (although more parameters
are likely necessary if we want a highly accurate numeri-
cal fit). Having such a fit for a semianalytic framework
allows us to make predictions for halo power on a larger
scale (larger r and k range), beyond the resolution of current
N-body simulations.
While the physical meaning of the fitting parameters used

here is yet to be determined, ourmain goal here is to show that
a simple fit for the compensated halo profile does exist and
can be used to predict the matter-halo cross-correlation,
while avoiding the pathologies of the standard halo model.
Our fit matches NFW in the halo regions r < rvirial, but is
compensated in the outer regions r > rvirial.

1 This paper is
then structured as follows: Sec. II outlines the amended halo
model [10] for halo-matter cross correlations, Sec. III dis-
cusses our findings from the results of the simulation data
fromDarkEmu [13], and Sec. IV summarizes the results and
potential avenues for future research. The exact form of the
fitting function we used, and its derivation and implications
are outlined in the Appendix.

II. STANDARD VS AMENDED HALO MODELS

In the standard halo model (SHM), the matter over-
density in the universe, δmðxÞ, is described as a super-
position of individual halo profiles, that we refer to here
as uj:

δmðxÞ ¼ ρ̄−1
X
j

Mju
j
SHMðx − xjÞ; ð1Þ

in real space, and

δm;k ¼ ρ̄−1
X
j

Mju
j
SHM;k expðik · xjÞ; ð2Þ

in Fourier space.Mj and xj are the mass and position of the
jth halo, respectively, while ρ̄ denotes the mean density of
the universe.
To get a complete understanding of matter distribution,

we need to know both how matter is distributed within the
individual halos, uj’s, and how these halos are distributed
throughout space. Furthermore, conservation laws, such as
those of mass and linear momentum, require a fine balance
between these two distributions, which are often hard to
enforce in the SHM formulation (but see [3]).

In order to address this, we introduced the amended halo
model (AHM), where we split the nonlinear overdensities
between the linear δLðxÞ and halo contributions, revising
the SHM Eqs. (1) and (2) to be:

δmðxÞ ¼ δLðxÞ þ ρ̄−1
X
j

Mju
j
AHMðx − xjÞ ð3Þ

and

δm;k ¼ δL;k þ ρ̄−1
X
j

Mju
j
AHM;k expðik · xjÞ ð4Þ

in real and Fourier spaces, respectively. The nonlinear
contribution to the halo profile, which is what we use to
construct ujAHM, is what we will be calculating from
simulations, since the contribution from the linear term
is already included in δLðxÞ.
Now, let us consider the overdensity of haloes within a

mass-bin b:

δbhalo;k ¼ 1

n̄bhalo

X
j

N j
b expðik · xjÞ; ð5Þ

where N j
b ¼ 1 if the jth halo is within the mass-bin b, but

vanishes otherwise. Furthermore, n̄bhalo is the number
density of haloes within the mass bin.
The auto matter, auto halo, and halo-matter cross spectra

can now be defined as:

PmmðkÞ≡ hδm;kδ
�
m;ki

V
ð6Þ

Pbc
hhðkÞ≡

hδbhalo;kδc�halo;ki
V

ð7Þ

Pb
hmðkÞ≡

hδbhalo;kδ�m;ki
V

; ð8Þ

respectively, where V is the volume of the simulation,
and b and c stand for different halo mass bins. Now, by
multiplying equations (5) and (4), we find the cross-power
spectra:

Pb
hmðkÞ ¼ bðM̄bÞPLðkÞ þ

1

n̄bhaloρ̄V

X
j

MjN
j
bu

j
AHM;k

þ 1

n̄bhaloρ̄V

X
j≠l

MjN l
bu

j
AHM;k exp½ik · ðxj − xlÞ�;

ð9Þ
which we can write in the matrix form:

1In this paper, the virial radius rvirial is taken to be the radius
where density is 200 times the critical density of the universe, or
equivalent to r200c. Unless noted otherwise, the mass of a halo is
also defined as the total mass contained within this radius.
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0
BBB@

P1
hmðkÞ
…

…

Pq
hmðkÞ

1
CCCA ¼ PLðkÞ

0
BBB@

bðM̄1Þ
…

…

bðM̄qÞ

1
CCCAþ

0
BBB@

M̄1=ρ̄ 0 … 0

0 M̄2=ρ̄ … 0

… … … …

0 … … M̄q=ρ̄

1
CCCA

0
BBB@

u1AHMðkÞ
…

…

uqAHMðkÞ

1
CCCA

þ

0
BBB@

PhhðkjM̄1; M̄1Þ PhhðkjM̄1; M̄2Þ … PhhðkjM̄1; M̄qÞ
PhhðkjM̄2; M̄1Þ PhhðkjM̄2; M̄2Þ … PhhðkjM̄2; M̄qÞ

… … … …

PhhðkjM̄q; M̄1Þ PhhðkjM̄q; M̄2Þ … PhhðkjM̄q; M̄qÞ

1
CCCA ×

0
BBB@

μ1 0 … 0

0 μ2 … 0

… … … …

0 … … μq

1
CCCA

0
BBB@

u1AHMðkÞ
…

…

uqAHMðkÞ

1
CCCA:

ð10Þ

Here, q ≥ 1 is the number of mass bins used, and we have
used the following definitions:

M̄b ≡
P

jN
j
bMj

n̄bhaloV
; ð11Þ

μb ≡ n̄bhaloM̄b

ρ̄
; ð12Þ

ubAHMðkÞ≡
P

jN
j
bMju

j
AHM;k

n̄bhaloM̄bV
: ð13Þ

Note that, at this level, AHM does not make a prediction
for the halo-halo auto-power spectrum, which can be
impacted by nonlinear structure formation, and here we
rely on N-body simulations to model it. Furthermore,

Eqs. (9) or (10) can be considered as precise definitions
of (mean) halo profiles ubAHM and linear bias bðM̄bÞ (by
setting ubAHMðk ¼ 0Þ → 0), and thus make no assumptions
about the distribution of matter.
One may then gain an intuition about the nature of

the AHM vs SHM on large scales, using the linear
bias approximation for halo distribution, and the mass
function nðMÞ:

δm;k ¼ δL;k þ
X
j

Mj

ρ̄
ujAHM;k expðik · xjÞ

≃
�
1þ 1

ρ̄

Z
dMMnðMÞbðMÞuAHMðk;MÞ

�
δLðkÞ;

ð14Þ
where the fact that ubAHMðk ¼ 0Þ → 0 guarantees the agree-
ment with linear density predictions on large scales. In
contrast, for SHM, we have:

δm;k ≃
�
1

ρ̄

Z
dMMnðMÞbðMÞuSHMðk;MÞ

�
δLðkÞ; ð15Þ

where ubSHMðk ¼ 0Þ → 1, and thus an additional condition
of

R
dMMnðMÞbðMÞ ¼ ρ̄ is necessary to recover large

scale linear behavior.2

Even then, as we discussed in [10], the 1-halo term in
SHM spoils the linear behavior of the matter power
spectrum on large scales, while the revised equations (3)
and (4) are guaranteed to recover it.

III. RESULTS AND DISCUSSION

To find the compensated halo profile for AHM,
uAHMðkjMÞ from Eq. (10), we use simulation data from
DarkEmu [13] for the auto halo power spectrum Phh, and

FIG. 1. The halo profile uðkÞ for all mass bins in Fourier space.
It can be seen here that the peak heights do not differ significantly,
but the peak position k increases as the halo mass decreases. We
also see the halo profiles approach the NFW profile at large k0s/
small r0s, or inside the halo region, as we should expect. (At
smaller k’s we see some oscillation in the profile, likely due to
approaching the boundaries of the simulation box.) The splash-
back radius (arrow lines) is roughly 2× the k value of the
profile peak.

2While this condition follows from the assumption that all
mass is in haloes, given that bðMÞ and nðMÞ are measured
from simulations only in a finite mass range, satisfyingR
dMMnðMÞbðMÞ ¼ ρ̄ requires an additional constraint on

extrapolating functions.
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halo-mass cross-power spectrum Phm. We then invert
Eq. (10) to find the halo profile functions, which are
plotted in Fig. 1, and compared to the best-fit NFW
profiles in the corresponding mass bins. Note that all
uAHMðkjMÞ’s go to zero for k → 0 for compensated
haloes, while uNFWðkÞ → 1 [uNFWðkÞ ¼ uSHMðkÞ] by

construction as NFW haloes are truncated at rvirial.
However, even for larger k’s, we find that the simulated
profiles do not exactly match the NFW in Fourier space,
with the discrepancy being bigger for smaller mass halos.
This is likely due to leakage of structure outside the virial
radius into larger k’s in the Fourier transform.

(a)

(b)

FIG. 2. These figures shows the halo profile uðrÞ in real space. In panel (a) (top) the profile is multiplied by r3, and plotted as a
function of r=rvirial ¼ r=ðcrscaleÞ up to 10 times the virial radius. This shows that the dimensionless profile peaks around rvirial and has
near-universal values for all mass bins. The zero crossing happens at distances 20%–30% outside the splashback radii of the haloes, that
are shown for comparison [15]. In panel (b) (bottom), the halo overdensities ρðrÞ=ρ̄ for each mass bin in real space are shown for our
entire radial range, although they are not reliable at very large distances. The dotted parts show negative overdensity.
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The inferred uAHMðkjMÞ’s can be Fourier trans-
formed to find real-space halo profiles, uðrÞ ¼ ρðrÞ=M.
Figure (2) shows these real-space profiles uðrÞ × r3 as a
function r=rvirial. As expected, what we find is that the
compensated profile goes negative in the outskirts, just
outside the splash-back radii [15] of the haloes.
In the inner regions, the dimensionless profile r3 × uðrÞ

has a near-universal positive maximum around r ¼ rvirial
(with values ranging from 0.034 to 0.039, for smallest
to largest masses). The profile is also mostly independent of
the minimum mass bin of the halo with a key exception—
for results to be reasonable, the smallest mass bin should be
≳1012M⊙—which is set by the minimum mass of haloes
resolved in DarkEmu simulations.
Figure 3 shows the enclosed mass (in units of virial

mass), that results from integrating Fig. 2.3 The radii of
the peaks of these mass profiles would thus coincide with
zero crossings of the density. We further notice that the
maximum compensated masses (masses of compensated
halos) are nearly the same as uncompensated virial mass,
although the latter is defined at a smaller radius.
In Fig. 4, we fit our measured halo profiles in real space

to a function of the form

M × uAHMðrjMÞ ¼ gðrÞ × ρNFWðrÞ; ð16Þ

where ρNFW is the best-fit NFW profile for the correspond-
ing mass bin, and gðrÞ is a simple fitting function (with two
free parameter α and β) that approaches α at small r, but

(a)

(b)

FIG. 4. (a) (top) The uðrÞ function times r3 in real space
compared to the NFW profile. It can be seen that at small r’s, the
two start to approach each other, as we would expect, since NFW
describes halo density at small radii inside the halo (this likely
deviates near the halo centre due to baryonic effects, but we do
not go to that scale here). (b) (bottom) The uðrÞ (uðkjmÞ function
Fourier transformed into real space) fitted to a function with two
free parameters (see Table 1). The fit works up to around
1–4 Mpc=h, after which the Fourier transform noise takes over.

FIG. 3. The integrated enclosed mass found in real space using
the compensated halo profile. Similar to the halo profiles, the
peak height of the enclosed masses for different mass bins are
also almost the same—the peak is independent of halo mass.

TABLE I. Best fit parameters at z ¼ 0 (present day)a for
Eq. (A2) shown by α and β. We also report the best-fit zero-
crossing radius rzc, the ratio of the zero-crossing radius and the
virial radius rzc=rvir, the peak radius rpeak (where uðrÞr3 is at a
maximum), as well as the ratio of the peak radius to the virial
radius.

Mass bin α β rzc
rzc
rvir

rpeak
rpeak
rvir

1012–12.5M⊙ 0.80 4.0 × 10−7 0.53 2.5 0.18 0.84
1012.5–13M⊙ 0.79 6.9 × 10−7 0.80 2.6 0.28 0.91
1013–13.5M⊙ 0.77 1.6 × 10−6 1.2 2.6 0.42 0.93
1013.5–14M⊙ 0.76 3.5 × 10−6 1.6 2.5 0.62 0.96
1014–14.5M⊙ 0.76 8.3 × 10−6 2.2 2.3 0.88 0.94
1014.5–15M⊙ 0.76 2.0 × 10−5 2.9 2.1 1.2 0.91

aAll the results presented here are at z ¼ 0. There could be
redshift dependence on halo bias and distributions that would
affect these parameters, but this is currently not well understood
beyond the scope of this work. We would expect rpeak to decrease
as redshift increases though, as haloes would have less mass at
earlier formation stages.

3We use the NFW profile to integrate mass within radii below
the spatial resolution of the DarkEmu.
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goes negative at r > rzc, and is constructed such that
g × ρNFW is compensated [see Appendix A for the full
form of gðrÞ].
Table I shows our numerical best fits for α and β for each

mass bin. We also see that, as we noted above, the peak of
r3 × uðrjMÞ is always within a few percent of the virial
radius, while the zero crossing happens at rzc, between 2–3
times the virial radius (or 1.2–1.3 times the splashback
radius, see Fig. 2).
Using this fitted halo profile to account for compensa-

tion, we recalculated the power spectrum to see how well
it matched the data from DarkEmu. The results are shown
in the top and bottom plots of Fig. 4, which shows that
our theoretical fit is capable of matching the simulation
data within the range where the halo profile is not noise
dominated (both inside and outside the halo regions).
From the Figs. 4(a) and (b), it can be seen that it is possible

to fit the cross halo-matter power spectrum using a compen-
sated halo profile term as well. While, so far our fitted β
parameters do not have a straightforward physical interpre-
tation (α is only a simple normalization), our exercise shows
that both the matter auto spectrum, as well as the matter-halo
cross power spectra, can be modeled with compensated halo
profiles.
Figure 5 compares the resulting cross-power spectra

from Eq. (16) with DarkEmu, showing reasonable agree-
ment at small scales (used in the fit), but modest 20%–30%
disagreement for larger scales. For practical applications, the
accuracy of the fit can be improved if more parameters are
added, but that is beyond the scope of this study. The main
point we want to show is that compensation is an important
part of the halomodel in both thematter auto power spectrum
and the halo-matter cross spectrum, as we can see that adding
compensation provides a better fit to simulation data overall
across a wider range of k’s. The oscillations around the halo
boundary cutoff in the standard halo model are also avoided,
as we extropolate the profile beyond the virial radius.
Havingaphysicallymotivatedmodel for thepower spectrum

—both matter auto and halo-matter cross spectra—can help us
predict power at k values beyondwhat simulations can currently
resolve, at either very high or very lowk’s. This can be applied to
lensing observables as well (see Fig. 8 in Appendix B), since a
compensated halo model will predict observed lensing power
more accurately at small k’s/large radii, where the standard halo
model overpredicts power. Also, it can be seen from Fig. 5 that a
compensated model still is a better fit at around k ∼ 1 h=Mpc,
near the halo boundaries, where SHM usually does not model
well. Thus, having a semianalytical formalism for cross halo-
matter power spectra canbeusefulwhenmakingpredictions ona
wide scale beyond what simulations can currently produce [16]
and SHM can accurately predict.

IV. CONCLUSION AND FUTURE PROSPECTS

In this paper, we built upon our previous study [10],
to show that compensation—introduced as an important

(a)

(b)

(c)

FIG. 5. (a) (top) Comparison of matter-halo cross-power
spectra, between DarkEmu (dots), our fitted compensated profiles
[Eq. (16)], and standard halo model profiles We can see that at
intermediate k’s they all mostly follow each other, which is what
we would expect. (b) (middle) The ratios of our compensated fit
and standard halo model to DarkEmu cross-power spectra for
each mass bin. The fit works better for larger mass bins, where the
DarkEmu simulation data is more robust. Moreover, note that the
fit in Eq. (16) is only done in real space and radii r < 3 h−1 Mpc,
which is why the behavior at smaller k’s is not well modeled by
the fit. Furthermore, k ≪ 1.0 hMpc−1 are likely not well-resolved
in simulations. (c) (bottom) The ratios of the SHM and AHM
models to the DarkEmu cross-power spectra, averaged over the
mass bins from 1013–1014.5 ⊙. At small k’s SHM does slightly
better than our amended fit, but overall across the k range our
amended fit does better. The light orange band shows the error
range within 5% of the simulation data.
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amendment of the halo model to respect physical con-
servation laws—can be applied to model both the auto-
matter power spectrum and halo-matter cross-power
spectra. Compensated halo profiles still match NFW in
the inner halo regions, but now also take into account
underdense regions (or voids) in the outskirts of cosmo-
logical haloes. The new compensated (dimensionless)
profiles show a near-universal behavior out to the splash-
back radius, independent of the halo mass. What is notable
is that the dimensionless profiles peak at the virial radius
and the profiles of different halo masses have near-
universal peak values, while the maximum compensated
mass coincides with the (uncompensated) virial mass of the
haloes. This new halo profile can also be fitted numerically
by introducing two free parameters, which we report in
Table I. The physical interpretation the fitting parameters
are currently beyond the scope of this paper, and we leave
them for future work. More precise fits (especially outside
r≳ 10.0h−1 Mpc) can be obtained by using more param-
eters in the fitting function, though the goal here is not to
obtain a model of extremely high precision. Rather, we
want to show halo profiles have similar peak heights across
different mass bins and these profiles can be fitted using
amendments (the result of adding halo compensations).
This will be an important step to compare the predictions
of the amended halo profile for weak lensing power and
kinetic Sunyaev-Zel’dovich (kSZ) observations, where mass
and momentum conservation may play an important role in
constraining physical possibilities on intermediate and large
scales. Semianalytic formalisms are currently important for
this, as simulations have finite resolution and k-modes.
Other factors not taken into account here are substructure of

halos, and halo assembly bias [17]—for the latter, we did try
different bias models ([12,18]), but it did not yield any
significant changes in the results. Effects that assembly bias,
halo substructure, or filaments may further have on the
compensated halo profiles are interesting future prospects
to explore. In particular, the extent towhichAHMcan be used

(or adapted) to model the matter/halo bispectra (or 3-point
correlation function) is another interesting direction, as it may
probe the covariance of compensated profiles at large dis-
tances; an important step for kSZ studies will be the deter-
mination of compensated momentum profiles (due to gas
infall in halo outskirts) in the hydrodynamical simulations. In
addition, the mass clustering in haloes will affect the rotation
curves of the galaxies residing inside these haloes [19], which
can provide evidence for different cosmological models, such
as ΛCDM vs. MOND [19]. All these effects are interesting
future paths of exploration for dark matter halo profiles.
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APPENDIX A: EXPLICIT PROFILES

The NFW function in Fourier space is given by:

uNFWðkjMÞ ¼ 4πρsr3s
M

�
sinðkrsÞðSi½ð1þ cÞkrs� − SiðkrsÞÞ þ cosðkrsÞðCi½ð1þ cÞkrs� − CiðkrsÞÞ −

sinðckrsÞ
ð1þ cÞkrs

�
; ðA1Þ

and this is the equation that our fitting function tends to in the limit r ≪ rvirial.
The fitting function gðrÞ in Eq. (16) is of the form

gðrÞ ¼ α

0
B@1 −

ffiffi
β

p
ð−4ð1þβÞþβ1=4ð2 ffiffi

2
p

−3β1=4þ4
ffiffiffiffi
2β

p
−2

ffiffi
2

p
βþβ5=4Þπþð−1þ3βÞ lnðβÞÞ

πð1−2 ffiffi
2

p
β1=4þ4

ffiffi
2

p
β3=4−3βþ2

ffiffi
2

p
β5=4Þþ

ffiffi
β

p
ð−4ð1þβÞþlnðβÞðβ−3ÞÞ ðr=rscaleÞ2

1þ βð r
rscale

Þ4

1
CA; ðA2Þ

where α and β are parameters fitted by least square fitting, listed in Table I. This function is designed to be of the form

gðrÞ ∝ 1 − sðβÞr2
1þ βr4

; ðA3Þ
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where sðβÞ is found by integrating gðrÞ × ρNFW from 0 to
infinity and setting the integral to 0. As a result, the final
halo profile is compensated (see Figs. 6 and 7).

APPENDIX B: LENSING POWER

A potential observable for the power spectra of large
scale structure is the cross halo-matter lensing power
([22,23]), which can be calculated using the Limber
approximation [24]. The lensing power for the halo-matter
cross power spectra (standard halo model, compensated
model, and linear power) can be seen in Fig. 8. We see that

the nonlinear lensing power follows the data in Figs. 2 and
3 in [23] more closely, which is what we would expect to
see. The amended (compensated) model also follows the
plateau pattern in [23] slightly better than the standard
model at large L’s, so it could potentially be a more accurate
model in a bigger observational region of the sky.

(a)

(b)

FIG. 8. (a) (top) Lensing power of the standard halo model, our
compensated model, and linear power as a function of angular
separation L. The difference is more significant for larger mass
bins, where our compensation has the most effect. (b) (bottom)
Average lensing power of the simulated power from DarkEmu,
the standard halo model, our compensated model, and linear
power as a function of angular separation L at different redshifts.
We can see from the graph that the compensated/amended
model does a better job of fitting the simulated lensing power
(DarkEmu) overall throughout the L range.

FIG. 6. A comparison of the simulation halo profile (scatter
points) and our compensated profile uðrÞ in Fourier space,
zoomed in at smaller r’s.

FIG. 7. A comparison of the simulation halo profile (scatter
points) and our compensated profile uðkjmÞ in Fourier space,
zoomed in at smaller k’s. It can be seen here that even though the
compensated profile matches the data fairly well in real space at
large r’s, the same is not true for small k’s, so the relation between
the two isn’t exactly proportional due to k-mode mixing
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