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We investigate the properties of dark energy halos in models with a nonminimal coupling in the dark
sector. We show, using a quasistatic approximation, that a coupling of the mass of dark matter particles to a
standard quintessence scalar field ϕ generally leads to the formation of dark energy concentrations in and
around compact dark matter objects. These are associated with regions where scalar field gradients are large
and the dark energy equation of state parameter is close to−1=3. We find that the energy and radius of a dark

energy halo are approximately given by Ehalo ∼ β2φm and rhalo ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βφðR=HÞp

, where φ ¼ Gm=ðRc2Þ, m
and R are, respectively, the mass and radius of the associated dark matter object, β ¼ −ð8πGÞ−1=2d lnm=dϕ
is the nonminimal coupling strength parameter, H is the Hubble parameter, G is the gravitational constant,
and c is the speed of light in vacuum. We further show that current observational limits on β over a wide
redshift range lead to stringent constraints on Ehalo=m and, therefore, on the impact of dark energy halos on
the value of the dark energy equation of state parameter. We also briefly comment on potential backreaction
effects that may be associated with the breakdown of the quasistatic approximation and determine the
regions of parameter space where such a breakdown might be expected to occur.
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I. INTRODUCTION

In general relativity an exotic dark energy (DE) fluid [1–3]
dominating the energy density of the Universe is required in
order to explain the recent acceleration of the expansion of
the Universe [4–6]. Various observations also suggest that
matter in the Universe is primarily nonbaryonic and
dark [6,7]. Despite their importance for the dynamics of
the Universe, the physical nature of nonbaryonic dark matter
(DM) andDE remains largely unknown. In particular, it is not
known whether or not DM and DE are nonminimally
coupled [8–11], or even if they could be associated with a
single DE fluid [12,13]. It is also possible that general
relativity may not provide an accurate description of gravity
on cosmological scales and that DE and/or DM could be
manifestations of modified gravity [14–16].
The coupling of the mass of DM particles to a DE scalar

field [9–11] has been shown to give rise to DE mediated
fifth forces between DM particles as well as velocity
dependent forces. These forces can affect the linear growth
of cosmological perturbations [17–19], and may also play a
crucial role on nonlinear scales with a potential impact on
the dynamics of galaxies and clusters of galaxies [20–26].

Also, a nonminimal coupling between DM and DE has
been claimed to alleviate some cosmic tensions [27–32],
including the apparent discrepancy between local and high
redshift constraints on the value of the Hubble parameter,
making this a promising avenue of research.
Although many studies do not explicitly consider them,

local variations in the DE have been shown to play an
important role in the context of growing neutrino models,
with a potentially significant backreaction on the back-
ground evolution of the Universe [33–35]. It has also been
shown that the dynamics of DM particles nonminimally
coupled to a DE field may be affected by backreaction
effects with a possible impact on structure formation and on
the large scale dynamics of the Universe [36].
This paper aims to characterize the properties of DE halos

resulting from a nonminimal coupling between DM and a
DE scalar field. We shall work in the context of the
quasistatic approximation, which essentially consists in
neglecting terms involving time derivatives in the perturbed
field equations. This approximation has been previously
used to investigate local variations of the fine-structure
constant inside virialized objects in the context of a DE
model with a nonminimal coupling to the electromagnetic
field [37]. It has also been frequently used in the context
of other DE and modified gravity scenarios [38–41].*pedro.avelino@astro.up.pt
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The quasistatic approximation is particularly useful when
considering small subhorizon scales, since the dynamics of
perturbationmodeswith awave number significantly smaller
than theHubble radius is in general expected to be dominated
by the terms containing spatial derivatives in the equations of
motion. Under these conditions, the quasistatic approxima-
tion may significantly simplify the perturbation equations,
and allow for an analytical treatment.
The outline of this paper is as follows. In Sec. II we

describe a generic family of quintessence models with a
nonminimal coupling to the DM and derive the corre-
sponding equations of motion. In Sec. III we use the
quasistatic approximation to compute the scalar field
perturbations around compact DM objects, discussing
the conditions required for its applicability. In Sec. IV
we estimate the energy and radius of a DE halo surrounding
a compact DM object, as well as the corresponding DE
equation of state parameter. We also provide a lower bound
to the contribution of DE perturbations inside compact DM
objects. Finally, we discuss the implications of our results
and conclude in Sec. V.
Throughout this paper we use units where the speed of

light in vacuum is equal c ¼ 1. We also adopt the metric
signature ð−;þ;þ;þÞ. The Einstein summation conven-
tion will be used when a greek index appears twice in a
single term, once in an upper (superscript) and once in a
lower (subscript) position.

II. NONMINIMALLY INTERACTING
DARK SECTOR

In this paper we consider a class of models for the dark
sector with a nonminimal coupling between DM and a
standard quintessence scalar field (which plays a DE role).
These models are described by the action

S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p
L; ð1Þ

where the Lagrangian L is given by

L ¼ LDE þ LDM; ð2Þ

with

LDE ¼ X − VðϕÞ; ð3Þ

LDM ¼ fðϕÞLDM�: ð4Þ

Here X ¼ −∇μϕ∇μϕ=2 is a standard kinetic term, VðϕÞ is
the scalar field potential,

LDM ¼ fðϕÞLDM� ð5Þ

is the nonminimally coupled DM Lagrangian (LDM�
denoting the minimally coupled DM Lagrangian).

The components of the DM and DE energy-momentum
tensors are given by

Tμν
DM ¼ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LDMÞ
δgμν

¼ fðϕÞTμν
DM�; ð6Þ

Tμν
DE ¼ 2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LDEÞ
δgμν

;

¼ ∇μϕ∇νϕþ gμνLDE; ð7Þ

where g ¼ detðgμνÞ, gμν are the components of the metric
tensor, and

Tμν
DM� ¼

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LDM�Þ

δgμν
: ð8Þ

As a consequence of the nonminimal coupling to the
quintessence scalar field, the mass m of a DM particle, or
a compact DM object is a function of ϕ with

mðϕÞ ¼ fðϕÞm�; ð9Þ

where m� is the mass that the particle would have if
fðϕÞ ¼ 1.

A. Scalar field dynamics in a flat FLRW universe

Consider a flat homogeneous and isotropic universe,
described by the Friedmann–Lemaître–Robertson–Walker
(FLRW) metric. The corresponding line element is given by

ds2 ¼ −dt2 þ a2½t�dq⃗ · dq⃗;

¼ −dt2 þ a2½t�ðdq2 þ q2ðdθ2 þ sin2 θdϕ2ÞÞ; ð10Þ

where a½t� is the scale factor, t is the physical time, q⃗ are
comoving Cartesian coordinates, and ðq; θ;ϕÞ are comov-
ing spherical coordinates. If the DM particles are non-
relativistic, then the dynamics of the nonminimally coupled
quintessence scalar field ϕ½t; q⃗� is given by [36]

□ϕ ¼ −ϕ̈ − 3H _ϕþ∇2ϕ ¼ α − β
X
i

miδ
3½r⃗ − r⃗i�; ð11Þ

where □≡∇μ∇μ is the d’Alembertian, a dot represents a
derivative with respect to the physical time t, r⃗ ¼ aq⃗, mi,
and r⃗i ¼ aq⃗i are, respectively, the masses and positions
of the DM particles, ∇2ϕ≡∇2

q⃗ϕ=a
2, δ3½r⃗� is the three-

dimensional Dirac delta function, and

α½ϕ�≡ dV
dϕ

; ð12Þ

β½ϕ�≡ −
d lnm
dϕ

¼ −
d ln f
dϕ

: ð13Þ
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III. QUASISTATIC APPROXIMATION

Consider a single compact DM object of mass m
comoving with the expansion of the Universe at r⃗ ¼ 0⃗.
In the quasistatic approximation the field ϕ may be written
as ϕ½t; r⃗� ¼ ϕ̄½t� þ δϕ, with

̈ϕ̄þ 3H _̄ϕ ¼ −α½ϕ̄�; ð14Þ

∇2δϕ ¼ −β½ϕ̄�m½ϕ̄�δ3½r⃗�; ð15Þ

where Eq. (14) implies that ϕ̄ is a function only of the
physical time (ϕ̄ ¼ ϕ½t�). This is expected to be a good
approximation as long as

j _δϕj ≲ j _̄ϕj; ð16Þ

jδϕj ≲
���� d ln αdϕ

����
−1
; ð17Þ

jδϕj≲
���� d lnðβmÞ

dϕ

����
−1
: ð18Þ

The nonzero components of the energy-momentum
tensor of the DE field are given approximately by

Tt
t ¼ Tt

t þ δTt
t; ð19Þ

Tt
q ¼ Tt

q þ δTt
q; ð20Þ

Tq
q ¼ Tq

q þ δTq
q; ð21Þ

Tθ
θ ¼ Tθ

θ þ δTθ
θ; ð22Þ

Tϕ
ϕ ¼ Tθ

θ; ð23Þ

with

Tt
t ¼ −

1

2
_̄ϕ
2 − V½ϕ̄�; ð24Þ

Tt
q ¼ 0; ð25Þ

Tq
q ¼ Tθ

θ½ϕ̄� ¼ Tϕ
ϕ½ϕ̄� ¼

1

2
_̄ϕ
2 − V½ϕ̄�; ð26Þ

and

δTt
t ¼ −

1

2
ðδϕÞ02 − α½ϕ̄�δϕ; ð27Þ

δTt
q ¼ −a−1 _̄ϕðδϕÞ0; ð28Þ

δTq
q ¼

1

2
ðδϕÞ02 − α½ϕ̄�δϕ; ð29Þ

δTθ
θ ¼ δTϕ

ϕ ¼ −
1

2
ðδϕÞ02 − α½ϕ̄�δϕ; ð30Þ

where ðδϕÞ0 ≡ a−1∂ϕ=∂q.
Let us also compute the proper density and pressure

associated with the background evolution of the scalar
field ϕ½t�,

ρ̄DE ¼ −Tt
t ¼

1

2
_̄ϕ
2 þ V½ϕ̄�; ð31Þ

p̄DE ¼ 1

3
ðTq

q þ Tθ
θ þ Tϕ

ϕÞ ¼
1

2
_̄ϕ
2 − V½ϕ̄�; ð32Þ

and define the current values of the corresponding equation
of state and fractional energy density parameters:

w̄≡ p̄DE=ρ̄DE; ð33Þ

Ω̄DE ≡ 8πGρ̄DE
3H2

: ð34Þ

Notice that

_̄ϕ
2 ¼ ð1þ w̄Þρ̄DE ¼ 3H2ð1þ w̄ÞΩ̄DE

8πG
; ð35Þ

VðϕÞ ¼ð1 − w̄Þρ̄DE ¼ 3H2ð1 − w̄ÞΩ̄DE

8πG
: ð36Þ

A. Quasistatic solution

The quasistatic solution to Eq. (15) outside a compact
DM object of radius R is given by

δϕ½t; r� ¼ δϕ½t; R�R
r
; r ¼ jr⃗j ≥ R; ð37Þ

where

δϕ½t; R� ¼ βm
4πR

: ð38Þ

The DE flux towards the interior of a sphere of radius r ≥ R
centered on the DM compact object is

−4πr2 _̄ϕðδϕÞ0 ¼ β _̄ϕm ¼ _m; ð39Þ

thus accounting for the change of the object’s mass.
Calculating the partial derivative of δϕ with respect to

the physical time t (at fixed q ¼ r=a½t�) one obtains

_δϕ ¼
�
d lnðβmÞ

dϕ
_̄ϕ −H

�
δϕ; ð40Þ
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where H ≡ _a=a is the Hubble parameter. The conditions
given in Eqs. (16) and (18) thus imply that the quasistatic
approximation is expected to be a good approximation for

ð _δϕÞ2 ∼H2δϕ2 ≲ _̄ϕ
2
; ð41Þ

or, equivalently,

r
R
≳ 2

β2

jkjφ: ð42Þ

Here, β is the nonminimal coupling strength parameter
defined by

β≡ βffiffiffiffiffiffiffiffiffi
8πG

p ; ð43Þ

k½a�≡ d lnm
d ln a

¼ −
β _̄ϕ

H
¼ −β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ w̄ÞΩ̄DE

q
ð44Þ

is a related cosmological coupling strength parameter also
used often in the literature, and

φ≡Gm
R

ð45Þ

is the Newtonian gravitational potential at the surface of
the compact DM object. Equation (42) implies that the
condition

jkj ≳ 2β2φ ð46Þ

is required in order to ensure that the quasistatic approxi-
mation is valid for all r > R.

IV. DE HALOS

The energy density fluctuations of the quintessence
scalar field δρ ¼ −δTt

t ¼ ðδϕÞ02=2þ α½ϕ̄�δϕ are the sum
of two contributions: (1) the one directly associated with
the scalar field gradients ðδϕÞ02=2 ∝ r−4 and (2) the one
associated with spatial variations of the potential energy
α½ϕ̄�δϕ ∝ r−1. The first one provides a contribution that is
essentially localized in and around the particle, while the
second one is strongly dependent on how one defines the
halo radius rhalo. In fact, the energy perturbation inside a
sphere of radius rhalo centered on the compact DM object
associated with contribution 2 is given by

δEV ½rhalo� ¼ 4π

Z
rhalo

0

α½ϕ̄�δϕr2dr;

¼ 2πα½ϕ̄�δϕ½t; R�Rr2halo;

¼ 3

2

�
α½ϕ̄�δϕ½t; R�

V½ϕ̄�
�

R
rhalo

EV; ð47Þ

where EV ¼ 4πr3haloV½ϕ̄�=3. Hence, if jα½ϕ̄�δϕ½t; R�j ≪
V½ϕ̄� or R ≪ rhalo, then this contribution may be neglected.
Therefore, in this paper we shall focus only on the
contribution directly associated with the scalar field
gradients.

A. Halo energy

The total energy associated with the scalar field gradients
outside a sphere of radius R centered at r ¼ 0 is given by

Eout
G ½t� ¼ 2π

Z
∞

R
ðδϕÞ02r2dr ¼ β2φm; ð48Þ

which will be our best estimate of the total energy of a DE
halo (Ehalo ∼ Eout

G ). For φ≡Gm=R≳ 1 this result should
be taken as a rough estimate, since the impact of the local
gravitational field on the dynamics of the quintessence
scalar field has not been taken into account.

B. Halo radius

The radius of a DE halo may be determined by defining
the halo as the region where the energy density associated
with the scalar field gradients exceeds the background
energy density or, equivalently, ðδϕÞ02=2 > 3H2=ð8πGÞ.
This happens for values of r smaller than

rhalo½t� ¼
� ffiffiffi

2

3

r
βφ

R
H

�1=2

: ð49Þ

Here we implicitly assume that R <
ffiffiffiffiffiffiffiffi
2=3

p
βφH−1 or,

equivalently, that rhalo > R.

C. Equation of state

Within a DE halo the DE equation of state parameter,

wDE ≡ pDE

ρDE
¼ p̄DE þ δpDE

ρ̄DE þ δρDE
; ð50Þ

is dominated by the contribution of the scalar field
gradients to the DE proper density and pressure. These
satisfy δpG ¼ −ðδϕÞ02=6 ¼ −δρG=3 or, equivalently,

wG ≡ δpG

δρG
¼ −

1

3
: ð51Þ

Hence, the DE equation of state parameter is expected to be
close to −1=3 within an halo, especially in its central
regions.

D. DE perturbations inside compact DM objects

The knowledge of the density profile inside a compact
DM object would be required in order to accurately
compute the energy Ein

G associated with the scalar field
gradients for r < R—notice that this contribution would
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vanish if and only if all the mass was located at the surface
of the object, which would be utterly unrealistic. Here we
will provide a rough estimate of Ein

G, assuming thatGm=r is
always significantly smaller than unity and that the DM
energy density distribution for r < R is uniform. In this
case, the quasistatic solution to Eq. (15) is given by

δϕ½t; r� ¼ 3

2
δϕ½t; R�

�
1 −

1

3

�
r
R

�
2
�
: ð52Þ

The total energy directly associated to the scalar field
gradients inside the compact DM object would then be
equal to

Ein
G½t� ¼ 2π

Z
R

0

ðδϕÞ02r2dr ¼ 1

5
Eout
G ½t�; ð53Þ

so that ∼17% of the energy associated with the scalar field
gradients would be located inside the DM object. In general
one would expect the DM energy density to be a decreasing
function of r. Therefore, this should be regarded as a lower
limit on Ein

G.

V. DISCUSSION AND CONCLUSIONS

In this paper we characterized the properties of DE
concentrations that are expected to form in and around
compact DM objects as a consequence of a coupling of the
mass of DM particles to a standard quintessence scalar
field. We determined the dependence of the energy and
radius of a DE halo on the nonminimal coupling strength
and Hubble parameters, and on the mass and radius of the
associated compact DM object. We have also shown that
deep inside a DE halo the equation of state parameter is
close to −1=3 and estimated the contribution of the DE
energy perturbations inside DM objects.
Although the results presented in this paper were

obtained considering a single comoving compact DM
object, they should also hold in the case of a network of
nonrelativistic DM objects. However, in this case the
background evolution of the DE scalar field will be affected
by the energy transfer between DE to DM. Although this
effect needs to be considered for an accurate characteriza-
tion of the background dynamics of the DE scalar field, it is
not expected to significantly change our main results. Also,
our results were obtained in the context of the quasistatic
approximation, assuming that local contributions to the
evolution of the mass of dark matter particles can be
neglected. If that is not the case a breakdown of the

quasistatic approximation is expected, which can be asso-
ciated with a significant transfer of linear-momentum
between moving DM particles and the DE scalar field [36].
Scalar field gradients associated with the coupling of the

mass of DM particles to a DE scalar field give rise to
attractive fifth forces between DM particles whose strength
is equal to 2β2 times that of gravitational forces. In addition
to these, energy-momentum conservation in general rela-
tivity requires that any change of the proper mass of a
compact DM object associated with the nonminimal
coupling to the DE scalar field should be compensated
by a corresponding decrease of its speed with respect to the
local cosmological frame, assuming that backreaction
effects associated with a significant transfer of linear
momentum from moving DM particles to the DE scalar
field can be neglected (which is expected to be the case as
long as the quasistatic approximation holds everywhere).
This effect essentially changes the strength of the velocity
dependent cosmological damping of the speed of compact
DM objects by a factor of 1þ k.
The velocity dependent forces and fifth forces in coupled

DE energy models have an impact on the growth of cosmic
structures which can be constrained observationally. A
tomographic analysis of coupled DE has been performed
in [42], where a significant redshift dependence of the
constraints on the coupling strength has been found
(assuming, for simplicity, a non-negative coupling strength
parameter): β≲ 0.1 at z < 5, and β≲ 0.05 in the redshift
range 5 < z < 500, while β≲ 0.02 for a constant coupling
case (at 68% confidence level). This imposes stringent
constraints on the ratio between the energy of a DE halo
and the mass of the associated compact DM object:
Ehalo=m≲ 0.01φ at z < 5. It also precludes any substantial
contribution (i.e., exceeding a subpercent level) of DE
halos to the DE equation of state parameter. Whether these
limits can be relaxed by considering broader families of
coupled DE models will be the subject of future work.
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