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Early dark energy (EDE), whose cosmological role is localized in time around the epoch of matter-
radiation equality in order to resolve the Hubble tension, introduces a new coincidence problem: Why
should the EDE dynamics occur near equality if EDE is decoupled from both matter and radiation? The
resolution of this problem may lie in an early dark sector (EDS), wherein the dark matter mass is dependent
on the EDE scalar field. Concretely, we consider a Planck-suppressed coupling of EDE to dark matter, as
would naturally arise from breaking of the global Uð1Þ shift symmetry of the former by quantum gravity
effects. With a sufficiently flat potential, the rise to dominance of dark matter at matter-radiation equality
itself triggers the rolling and subsequent decay of the EDE. We show that this trigger EDS model can
naturally resolve the EDE coincidence problem at the background level without any fine-tuning of the
coupling to dark matter or of the initial conditions. When fitting to current cosmological data, including
that from the local distance ladder and the low-redshift amplitude of fluctuations, the trigger EDS
maximum-likelihood model performs comparably to EDE for resolving the Hubble tension, achieving
H0 ¼ 71.2 km=s=Mpc. However, fitting the Planck cosmic microwave background data requires a specific
range of initial field positions to balance the scalar field fluctuations that drive acoustic oscillations,
providing testable differences with other EDE models.
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I. A NEW COINCIDENCE PROBLEM

The discrepancy between the inference of the Hubble
constant from the Planck cosmic microwave background
(CMB) data [1] within the Λ cold dark matter (ΛCDM)
model and that from the SH0ES cosmic distance ladder
calibrated with Cepheid variables stands at 5σ [2]. More
generally, many direct probes of H0 also disagree with the
CMB (and large-scale structure constraints) at varying
levels of quoted significance [3,4] (see, however, [5,6]).
This “Hubble tension” has spurred on an intense effort in
the cosmology community, aiming to explain the origin of
this discrepancy via new physics in the cosmological
model. The community also realizes that it is very hard
to solve this tension by changing the late-time expansion
history (see, e.g., [7–13]).
A prominent approach to reconcile these measurements

is to modify the cosmological model in the prerecombi-
nation universe, thereby changing the CMB inference of
H0. In particular, one may consider a model that reduces
the physical size of the sound horizon at last scattering, rs,
relative to that found in the concordance ΛCDM model;
since the CMB data constrain the angular size of the sound
horizon, θs, such a change then raises the H0 value inferred

from the CMB. A paradigmatic example within this class of
models is early dark energy (EDE), originally proposed
by [14,15] and followed by many other realizations, e.g.,
Refs. [16–20] (see [4] for a recent review).
The size of the sound horizon rs and that of the CMB

damping scale are most sensitive, in different ways, to the
decade of redshift that precedes last scattering [7].
Meanwhile, measurements of the postrecombination uni-
verse are in excellent agreement with ΛCDM, with rela-
tively little room for modification. This suggests that the
epoch of matter-radiation equality occupies a privileged
position in the hierarchy of timescales in the new model in
order to mimic the success of ΛCDM [14].
This presents a new cosmological mystery, which we

refer to as the “early dark energy coincidence problem”:
The resolution of the Hubble tension by a dark-energy-

like component crucially relies on a coincidence of
unknown origin, namely, that its epoch of influence
corresponds to the time of matter-radiation equality.
This may easily be observed in all successful EDE-like

models (see, e.g., [15,17,18]). In these models, the new
dark-energy-like component contributes a fraction of the
energy density of the Universe, fEDE, which is sharply
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peaked at a redshift zc. If the model is to address the Hubble
tension, then zc must be ≈zeq, which would appear to be a
coincidence lacking a dynamical explanation.
The EDE coincidence problem has been studied in a

small number of works with a limited amount of success.
Concretely, Ref. [21] obtained a no-go with assisted
quintessence; Refs. [22,23] proposed neutrino-assisted
EDE, which has the potential to resolve the coincidence
problem, but has yet to be tested against observables and
may violate existing constraints on neutrino masses (see
also Refs. [24]); and Ref. [25] studies the interaction
between EDE and dark matter in a specific scenario that
fails to address the coincidence problem, as described in
further detail below.
The early dark sector (EDS) scenario [26] encompasses a

general interaction between EDE and dark matter, in the
form of an EDE-dependent mass for the dark matter
particle. It has been studied in a specific incarnation as a
mechanism to reduce the disagreement in the EDE scenario
between Hubble-tension-resolving models that fit the CMB
data and observations of large-scale structure [27–31] (see
also [32–35]). See the related discussions about linking
dark energy to particle mass in [36,37]. One might also
wonder, in a more general context, whether EDS can
address the EDE coincidence problem.
In this work we answer the EDE coincidence question

within the EDS framework in the affirmative: We demon-
strate that an EDE-dependent perturbative correction to the
dark matter mass, itself a generic expectation of effective
field theory, can act as a trigger for the decay of the EDE
that naturally occurs at matter-radiation equality. We
provide three detailed conditions that any coincidence-free
model must satisfy, and demonstrate that our trigger EDS
(TEDS) model satisfies them all.
The structure of this paper is as follows: In Sec. II we

enumerate the model requirements on the background
cosmological evolution for a successful resolution of the
EDE coincidence problem and propose the TEDS model
that satisfies these requirements. In Sec. III we confront the
model with data from Planck 2018 CMB, BOSS BAO,
Pantheon SNIa, and the SH0ES cosmic distance ladder
measurement of H0, and find that the TEDS model
performs comparably well to EDE. We investigate this
further in Sec. IV, where we perform a detailed analysis of
CMB physics in the TEDS model, and show why a specific
range of initial field values is preferred in spite of the
insensitivity of the trigger mechanism. In Sec. V we show
that TEDS also has the (partial) ability to reduce S8
compared to that found in EDE, from which it benefits
once the Dark Energy Survey data are included. We discuss
results and directions for future work in Sec. VI.

II. RESOLVING THE COINCIDENCE PROBLEM

The EDE coincidence problem finds a natural solution in
the context of the EDS scenario. EDS was originally

proposed in [26] as a mechanism to resolve the Hubble
tension without exacerbating the currently moderate tension
between CMB and large-scale structure inferences of S8
within ΛCDM. The EDS scenario posits an interaction
between dark matter (DM) and the EDE field, such that
the mass of the DM particle is dependent on the EDE scalar.
While a past work [26] considered the limit in which the

dominant effect of the EDE-DM interaction is in the DM
background and perturbations, with only a small back-
reaction on the evolution of the EDE scalar, in the present
work we are interested in the opposite regime: a small
change in the DM mass that has a dramatic effect on the
background evolution of the EDE scalar. In this regime, the
dark matter can act as a trigger for the decay of the EDE so
that the scalar is naturally released from Hubble drag near
matter-radiation equality.
EDS models are specified by a potential VðϕÞ and a dark

matter mass mDMðϕÞ. The background evolution for the
DM energy density ρDM is given by

_ρDM þ 3aHρDM ¼ _ϕ
d lnmDM

dϕ
ρDM; ð1Þ

and for the EDE scalar ϕ by

ϕ̈þ 2aH _ϕþ a2V 0
eff ¼ 0; ð2Þ

where overdots are derivatives with respect to conformal
time and the Hubble parameter is defined with respect to
the coordinate time,H ≡ d ln a=dt. Here Veff is an effective
potential that includes both the “bare” potential VðϕÞ and
the interaction with DM, defined by

V 0
eff ¼ V 0 þ ρDM

d lnmDM

dϕ
; ð3Þ

where 0 is the derivative with respect to ϕ. The effective
potential dictates the transition in the EDE evolution from
dark-energy-like (i.e., a cosmological constant) to
decaying. The timing of this transition can be approximated
as the epoch when

V 0
eff

H2ϕ
∼Oð1Þ ðonset of rollingÞ ð4Þ

is first satisfied, corresponding to the release of the
field from Hubble drag [cf. Eq. (2) above]. If jV 0

eff j ≫
jV 0j at this time, then the release and subsequent decay of
the EDE can be considered to be “triggered” by the DM
coupling.
Following past work, we parametrize the evolution of the

EDE in terms of its fractional contribution

fEDEðzÞ≡ ρEDEðzÞ
ρtotðzÞ

; ρEDE ≡ 1

2
a−2 _ϕ2 þ VðϕÞ ð5Þ
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to the total energy density ρtot. This is maximal at a critical
redshift zc, and we will frequently refer to fEDEðzcÞ as
simply fEDE.

A. Model requirements

We make the following demands on a model for it to be
deemed a resolution of the Hubble tension free from the
EDE coincidence problem:
(1) Resolve the Hubble tension via EDE-like dynamics,

with fEDE∼0.1 and zc∼103.5 (approximately matter-
radiation equality), and a release from Hubble drag

���� d lnϕd ln a

����∼
���� V

0
eff

ϕH2

���� ∼ 1 ð6Þ

just prior to this epoch.
(2) DM-triggered decay: The release from Hubble drag

is triggered by the coupling rather than the bare
potential VðϕÞ, i.e., jV 0

eff j ≫ jV 0j, implying

ρDM
H2ϕ

���� d lnmDM

dϕ

���� ∼ 1 ð7Þ

at release.
(3) No fine-tuning of initial conditions: The mechanism

of DM-induced release from Hubble drag at the
critical redshift zc is independent of the initial value
of ϕ.

These requirements significantly narrow the possibilities
for both the mass mDMðϕÞ and the potential VðϕÞ.

B. Previous models

Previous models are unable to satisfy the conditions for a
successful trigger mechanism. For example, Ref. [25]
proposed a monomial potential VðϕÞ ¼ V0ðϕ=MplÞn with
n > 2 and an exponential coupling mDMðϕÞ ¼ m0ecϕ=Mpl

as an EDE-like model with the possibility to resolve the
coincidence problem. The effective potential in this case
has slope given by V 0

eff ¼ V 0 þ cρDM=Mpl. Let us confront
this with these conditions:
(1) Condition 1, namely, that zc ∼ zeq, sets the Hubble

parameter at that time as 3M2
plH

2ðzcÞ ∼ ρDM. This
can be related to V via fEDE ∼ V=ð3H2M2

plÞ as
V ∼ fEDEρDM, and, using V ¼ V0ðϕ=MplÞn, this
fixes the slope V 0 ∼ nfEDEρDM=ϕ.

(2) Condition 2 implies that cρDM=Mpl ≫ V 0. Com-
bined with V 0 from condition 1, this implies
c ≫ nðMpl=ϕÞfEDE. At release,

ρDMc
H2ϕMpl

∼ 1: ð8Þ

(3) Condition 3 is violated since the trigger mechanism
works only around a specific initial value of ϕ given
by Eq. (8).

In addition, even only requiring conditions 1 and 2 causes
problematic phenomenology for satisfying observations.
First, they require a large fractional change in the DM
mass between the initial epoch and today: jΔ lnmj∼
jcϕ=Mplj ≫ nfEDE. Furthermore, since ρDM ∼ 3M2

plH
2
eq,

the specific initial value required is ϕ ∼ 3cMpl and even
marginally satisfying the trigger condition implies a large
coupling 3c2 ≳ nfEDE, which is also not observationally
favored in this model, in part due to the “fifth force” in the
dark sector and the enhanced growth that it mediates [26]
(see Sec. II D below).
Similar considerations for the no-go for trigger solutions

also apply to the original EDE axionlike potentials, where

Vðθ ¼ ϕ=fÞ ¼ V0ð1 − cos θÞ3; ð9Þ

as studied in Ref. [26] with the same exponential EDE-DM
coupling as in Ref. [25].
We therefore conclude that with EDE axionlike poten-

tials and an exponential coupling to the DM mass there is
no viable resolution to the EDE coincidence problem.

C. Trigger model

The requirement that the EDE field is triggered by the
DM for generic initial field values from Eq. (7) suggests
that we need a coupling where d lnmDM=dϕ ∝ ϕ with a
sufficiently flat bare potential, unlike previous models. In
addition, this form of the coupling makes the fifth force
enhancement of growth in the DM sector vanish as ϕ → 0,
and can thus remove the consequent late-time enhancement
of large-scale structure found in [26] (see Sec. II D).
As a simple, theoretically well-motivated coupling that

satisfies this requirement, we consider an EDE dependence
of the dark matter mass given by

mDMðϕÞ ¼ m0

�
1þ g

ϕ2

M2
pl

�
: ð10Þ

The interaction with ϕ is naturally Planck suppressed, and
the coupling constant g is expected to be an Oð1Þ number
based on standard effective field theory arguments. This
coupling is consistent with the symmetries of the low-
energy effective field theory (wherein ϕ is typically
associated with a pseudoscalar), and is also a natural
expectation of string theory. For example, the nonpertur-
bative effects in string theory (presumably responsible for
the EDE potential) are themselves in general moduli
dependent (see, e.g., Refs. [38,39]), which could generate
couplings of the form given above.
For the potential, one may again take guidance from

effective field theory considerations. The EDE scalar field is
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naturally identified as an axionlike particle, e.g., the phase of
a complex scalar field in a field theory describing the
spontaneous breaking of a global Uð1Þ symmetry. In this
case the requisite extremely small mass of ϕ can be justified
on the basis of a continuous shift symmetry that is broken to a
discrete shift symmetry nonperturbatively, with the potential
protected from perturbative corrections. The potential in this
case is periodic, e.g., Vðθ ¼ ϕ=fÞ ¼ V0 cos θ.
In the present context, the requirement that the minimum

of the potential is locally V ∝ ϕ2n with an integer n ≥ 2 in
order for fEDE to decay sufficiently quickly (e.g., [15,16]),
whilst V 0

eff ≫ V 0 at early times to trigger off the DM,
suggests instead a potential of the monodromy type,
namely, a potential that breaks the shift symmetry entirely.
In this scenario, the potential is generically flattened at
large field values [40]. For example, the original models of
axion monodromy inflation [41,42] (see also Ref. [43])
may be parametrized as

Vðθ ¼ ϕ=fÞ ¼ V0ð1þ θaÞ1b; ð11Þ

where V0 is a normalization. This potential is characterized
by a minimum which is locally V ∼ θa, and a flattening of
the potential at large field values, V ∼ θa=b for a > 0 and
b > 1. This class of potential has well-developed interest-
ing associated phenomenology, such as the production of
oscillons [44–46].
More recent axion monodromy models (e.g., Ref. [47])

have extended the scenario to include plateaulike poten-
tials, characterized by an ever more dramatic flattening at
large field values. This class of monodromy potential
naturally satisfies V 0

eff ≫ V 0 for arbitrary initial conditions,
and thus is a natural candidate for a coincidence-free EDS
model. To make contact with the EDE literature and
enforce a flat plateau, we remap the parameters of
Eq. (11) as a ¼ −2np and b ¼ −p with positive integer
values of n and p. This rewriting of the potential makes
manifest a plateau V → V0 at large field values (jθj ≫ 1), a
minimum V ∝ θ2n at small field values (jθj ≪ 1), and a
transition region at jθj ∼ 1. Motivated by the phenomeno-
logically successful EDE potential in Eq. (9), which
behaves as V ∼ θ6 near its minimum, we fix n ¼ 3 hereafter
so that p alone controls the sharpness of the transition. Our
bare potential is therefore parametrized as

Vðθ ¼ ϕ=fÞ ¼ V0

θ6

ð1þ θ6pÞ1p
: ð12Þ

This trigger EDS model admits a simple interpretation.
For gϕ2=M2

pl ≪ 1, corresponding to a small fractional
change in the DM mass, one may approximate
lnmDM ∼ lnm0 þ gϕ2=M2

pl. The effective potential may
then be approximated as

Veff ≈ VðϕÞ þ g
ϕ2

M2
pl

ρDM; ð13Þ

in effect a correction to the mass of ϕ,

m2
ϕeff

≈ V 00 þ 2g
ρDM
M2

pl

: ð14Þ

Note we use the exact expressions for VðϕÞ and mDMðϕÞ,
Eqs. (12) and (10), in all numerical calculations.
The effective potential in Eq. (13) is shown in Fig. 1 for

p ¼ 8. One may immediately understand the dynamics of
the model: if the field is initially on the plateau of VðϕÞ,
then Veff ∝ ϕ2 and the effective mass of ϕ is predominantly
due to the DM contribution. The field begins to roll
when m2

ϕeff
∼H2, which occurs when H2 ∼ gρDM=M2

pl.
For g ∼Oð1Þ, this is satisfied around matter-radiation
equality for any initial ϕ. This construction naturally
satisfies all three trigger conditions: V 0

eff=ðϕH2Þ ∼
m2

ϕeff
=H2 is independent of ϕ and hence the onset of rolling

is independent of initial conditions, satisfying condition 3;
VðϕÞ for ϕ ≫ f is flat by design and hence V 0 is
automatically small, satisfying condition 2; and fEDE ∼
V0=ðH2M2

plÞ may be adjusted by setting V0, while zc is
determined by g, thus satisfying condition 1. Notice that the
conditions themselves do not set requirements on the field
scale f. This flexibility allows for the ability to adjust the
variation in the dark matter mass between zc ∼ zeq and
today, mDMðθ ¼ 1Þ −m0 ¼ m0gf2=M2

pl, and in particular

FIG. 1. The TEDS bare potential [Eq. (12)] versus effective
potential [Eq. (13)] at different redshifts near matter-radiation
equality (as labeled). Here we take p ¼ 8, f ¼ 0.05Mpl,
V0 ¼ 0.12 eV4, g ¼ 0.68, and Ωch2 ¼ 0.1280 as an example.
The rolling of the EDE scalar field is triggered by the coupling to
dark matter near zeq for any initial field position on the plateau of
the bare potential.
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to reduce it while increasing the frequency of field
oscillations around the potential minimum at z≲ zc.
We confirm these dynamics in Fig. 2, where we numeri-

cally solve for the evolution of the background fields in the
EDS model defined by Eqs. (10) and (12). In the top panel
of Fig. 2 we show the evolution of the EDE scalar ϕ for
varying initial field positions θi, for the fixed p ¼ 8, f, and
V0 values of Fig. 1. The EDE fractional energy density
fEDEðzÞ is shown in the bottom panel of Fig. 2.
We can see that the Hubble tension target

(fEDE ∼ 0.1; zc ∼ 103.5) can be realized by a wide range
of initial conditions. The time evolution of fEDEðzÞ is not
sensitive to the initial field position θi once zc is fixed by
adjusting the coupling constant g by a fractional amount
around its typical order-unity magnitude. In addition, the

evolution of the DMmass, especially in the observationally
relevant regime z < zeq ∼ zc, remains very small (see the
middle panel of Fig. 2). Moreover, since ϕ → 0 the
additional fifth force acting on the DM at late times is
suppressed as well. Note that the sharp transitions around
zc originate from the sharpness of the bare potential in
Eq. (12) near the ϕ ¼ 1 edge, which is differentiable.
We have also verified that this trigger mechanism and its

consequences for the dark matter apply to any sufficiently
large p or equivalently any sufficiently flat plateau in VðϕÞ.
Therefore, we conclude that we can satisfy all the

requirements for solving the coincidence problem for the
EDE background evolution with the model defined by
Eqs. (10) and (12), which we shall refer to as the trigger
EDS or TEDS model.

D. Perturbations

A successful resolution to the Hubble tension with the
TEDS model must not only reproduce the background
energy density features of EDE but also produce perturba-
tions that fit CMB and large-scale structure data.
Following Ref. [26], the equations of motion for the

perturbations in synchronous gauge are modified to
account for a general coupling as

δ̈ϕþ 2aH _δϕþ
�
k2 þ a2

d2V
dϕ2

�
δϕþ 1

2
_h _ϕ

¼ −a2
�
d lnm
dϕ

ρDMδþ
d2 lnm
dϕ2

δϕρDM

�
; ð15Þ

_δþ θ þ
_h
2
¼ d lnm

dϕ
_δϕþ d2 lnm

dϕ2
_ϕδϕ; ð16Þ

_θ þ aHθ ¼ d lnm
dϕ

k2δϕ −
d lnm
dϕ

_ϕθ; ð17Þ

where δ and θ≡ ∂ivi are the density and velocity diver-
gence perturbations of the dark matter, and h is the metric
trace perturbation in synchronous gauge. The equations of
motion for other components, including metric fluctua-
tions, remain unchanged (see, e.g., [48]).
These equations contain a number of notable features for

CMB observables, which we return to in Sec. IV. For large-
scale structure, the sourcing of the scalar field fluctuations
δϕ from DM fluctuations δ is of particular interest. On
small scales, where gradients dominate over both temporal
derivatives and derivatives of the potential, the sourced
scalar field fluctuation in this quasistatic approximation is
given by

δϕðsourcedÞ ≈ −
a2

k2
d lnm
dϕ

ρDMδ; ð18Þ

which acts as a slowly varying offset corresponding to the
DM density-dependent minimum of the field oscillations.

FIG. 2. The time evolution of the EDE scalar field (top), dark
matter mass (middle), and EDE fractional energy density fEDEðzÞ
(bottom) for the TEDS model (p ¼ 8) with various initial field
values θi. The vertical dashed line indicates the peak epoch zc and
the black horizontal line on the top panel indicates the edge of the
potential plateau θ ¼ 1. For a wide range of initial field positions
θi, the EDS order-unity coupling g is adjusted fractionally as
labeled to achieve a similar fEDE evolution. The other parameters
are fixed to be the same as in Fig. 1.
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This in turn sources a change in the DM momentum
proportional to δ, via Eq. (17), in effect a dark “fifth force”
[26] (see also related discussion in [49]).
In the case of an exponential coupling d lnm=dϕ ¼

c=Mpl, the impact on DM can be described by an effective
Newton’s constant on small scales [26],

Geff ¼ GNð1þ 2c2Þ; ðexpÞ ð19Þ

leading to an enhanced growth of structure that significantly
constrains the allowable range of c. This may be contrasted
with the case of the quadratic coupling of the TEDS model,
which gives d lnm=dϕ ¼ 2gϕ=ðM2

pl þ gϕ2Þ → 0 at late
times and

lim
ϕ→0

Geff ¼ GN ðTEDSÞ: ð20Þ

It follows that there is no enhanced growth of structure at late
times from a dark fifth force for our TEDS model.

III. H0 TENSION DATA AND SOLUTIONS

In order to assess the ability of our TEDSmodel to resolve
the Hubble tension, we employ the following datasets:

(i) CMB: low-l and high-l Planck 2018 [1,50,51]
[PLIK] temperature and polarization power spectra
(TTþ TEþ EE) and lensing potential power
spectrum.

(ii) BAO: SDSS DR7 main galaxy sample [52], 6dF
galaxy survey [53], and SDSS BOSS DR12
LOWZþ CMASS galaxy samples [54].

(iii) Supernovae: Pantheon supernovae dataset of relative
luminosity distances [55].

(iv) H0: SH0ES 2019Cepheid-Supernova distance ladder
measurement H0 ¼ 74.03� 1.42 km=s=Mpc [56].1

We perform the analyses of the TEDS model specified
by Eqs. (10) and (12) using a modified version of
CLASS2 [57,58]. In addition to the six standard ΛCDM
parameters (θs, Ωbh2, Ωch2, τ, As, ns), the TEDS model
includes three parameters that exist in the EDE model of
Eq. (9) (potential scale V0, field scale f, and initial field
value ϕi ¼ θif) and adds one parameter (the coupling g).
Finally, the index p determines the sharpness of the
transition from the plateau in VðϕÞ, which we take to be
fixed to a sufficiently large value to provide a sharp
transition.
In the absence of well-motivated physical priors for these

parameters and to establish a proof of principle parameter
set that resolves the Hubble tension, we use COBAYA [59] to
find the best-fit model rather than sample the posterior
distributions. Since COBAYA MINIMIZE can easily get
stuck in a local minimum if the theory model is complicated
[even with the covariance matrix from the Monte Carlo
Markov Chain (MCMC) chains], we develop an iterative
minimizer routine that repeats MINIMIZE by setting the
starting point as the last-round minimum until Δχ2 between
the current and last-round minima is less than 0.1.

TABLE I. Parameters of the best-fit models to the baseline datasets (CMBþ BAOþ SNeþH0). The first set of
rows includes the fundamental model parameters, the second set the derived parameters, and the third set the
goodness of fit, with Δχ2tot relative to the ΛCDM model.

Model ΛCDM EDE TEDS ðp ¼ 4Þ TEDS ðp ¼ 8Þ TEDS ðp ¼ 16Þ
100θs 1.04204 1.04129 1.04133 1.04112 1.04128
Ωbh2 0.02254 0.02272 0.02285 0.02291 0.02293
Ωch2 0.1182 0.1319 0.1280 0.1280 0.1278
τ 0.0595 0.0602 0.0559 0.0563 0.0549
lnð1010AsÞ 3.052 3.075 3.056 3.055 3.055
ns 0.9696 0.9887 0.9826 0.9825 0.9851
θi � � � 2.768 1.208 1.103 1.056
g � � � � � � 0.076 0.041 0.017
f=Mpl � � � 0.18 0.21 0.30 0.29
V0=eV4 � � � 0.050 2.15 1.96 1.75

fEDE � � � 0.123 0.102 0.110 0.108
log10 zc � � � 3.57 3.87 3.85 3.84
H0 68.24 71.90 70.46 70.72 70.77
S8 0.8136 0.8437 0.8351 0.8305 0.8291
fEDE=f

g¼0
EDE

� � � 1 0.31 0.32 0.38

χ2TTTEEE 2346.1 2342.7 2347.4 2344.5 2343.8
Δχ2tot 0 −17.4 −10.1 −14.6 −14.5

1We use the SH0ES 2019 measurement to facilitate compari-
son with EDE results in the literature, whereas the most recent
update gives H0 ¼ 73.04� 1.04 km=s=Mpc [2].

2http://class-code.net.
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Compared to the standard one-round minimizer, this
iterative procedure can improve the result by Δχ2 ∼ 3.
These best-fit parameters and Δχ2 values for TEDS

models with p ¼ 4, 8, 16 are given in Table I, along with
those of the best-fit ΛCDM and EDE models. For example,
for the p ¼ 8 TEDS model, the fit is better than ΛCDM by
Δχ2 ¼ −14.6 with four additional free parameters and
gives H0 ¼ 70.72 km=s=Mpc. Notice that this model has
a nonzero coupling g ¼ 0.041 and an initial field position
on the plateau of the bare potential θi ≈ 1.1 but near its
edge. The fit is only marginally worse than EDE where
Δχ2 ¼ −17.4, with the additional parameter g introduced to
solve the coincidence problem rather than added to the
EDE bare potential and optimized to improve its fit. This
should be borne in mind when assessing any model
selection criteria.
Since the effective potential at finite g evolves with

redshift and so always dominates over the bare potential
early on to assess whether the coupling triggers the field to
roll we compute the maximum EDE fraction for g ¼ 0,
fg¼0
EDE, with the same other parameters in the model. In

the limit that the coupling has no effect, the ratio
fEDE=f

g¼0
EDE → 1; whereas if the field fails to roll at all

without the coupling such that EDE eventually dominates
the expansion, fg¼0

EDE → 1 and so fEDE=f
g¼0
EDE → fEDE. The

best-fit p ¼ 8 model has fEDE=f
g¼0
EDE ¼ 0.31, indicating

that the roll is indeed triggered by the DM coupling. Thus,
condition 2 in Sec. II is satisfied. Likewise, condition 1 is
satisfied since fEDE ¼ 0.11 and zc ¼ 103.85.
Finally, although the trigger mechanism for the back-

ground applies to a wide range of θi, satisfying condition 3,
the best-fit prefers a specific value θi ≈ 1.1. We shall see in
the next section that this value best flattens the CMB TT
residuals relative to ΛCDM, especially for modes near the
horizon at zc, as shown in Fig. 3. The residuals here are
plotted relative to the best-fit ΛCDM model, expressed in
units of the cosmic variance per multipole,

σCVl ¼

8>>>>><
>>>>>:

ffiffiffiffiffiffiffiffi
2

2lþ1

q
CTT
l ; TT

ffiffiffiffiffiffiffiffi
1

2lþ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CTT
l CEE

l þ ðCTE
l Þ2

q
; TEffiffiffiffiffiffiffiffi

2
2lþ1

q
CEE
l ; EE

: ð21Þ

Note that the smooth residuals, especially at high-l, are
compensated by adjusting Planck foreground parameters,3

whose effects are not shown in this figure since the
data points are plotted assuming foreground parameters
for ΛCDM.

In Table I we also show that the fits are only weakly
sensitive to the sharpness of the transition. Compared to
p ¼ 8, a sharper transition p ¼ 16 fits the data essentially
equally as well, while a smoother transition p ¼ 4 is
marginally worse. Notice that the values of fEDE, zc,
and fEDE=f

g¼0
EDE remain nearly the same. Consequently

we hereafter focus on the p ¼ 8 case.

IV. DYNAMICAL BALANCE IN THE CMB

In the previous section we have shown that the TEDS
model of Sec. II provides an excellent fit to the Hubble
tension data, including the SH0ES H0 measurement and
Planck 2018 CMB power spectra. The fit is comparable to
that in EDE whilst being free of the EDE coincidence
problem in the background (see Fig. 2).
On the other hand, although the trigger mechanism

works to provide the desired energy density fraction

FIG. 3. CMB TT, TE, and EE power spectra residuals (in units
of the CV-limited error bar) for the p ¼ 8 best-fit model with
respect to the best-fit ΛCDM model and the Planck 2018 data.
Vertical lines represent the position of the acoustic peaks in this
model. Slowly varying residuals versus ΛCDM are absorbed by
foreground parameters in the fit.

3The main change is a small increase in A217
cib , the amplitude of

the cosmic infrared background power spectrum at 217 GHz,
which actually moves slightly closer to its reference value in the
Planck likelihood.

DARK MATTER TRIGGER FOR EARLY DARK ENERGY … PHYS. REV. D 107, 103523 (2023)

103523-7



fEDE and the correct peak redshift zc to solve the Hubble
tension for a wide range of initial field values θi > 1, the
data prefer a specific value where the field gets a small but
finite amount of its roll off the plateau from the bare
potential, as monitored by fg¼0

EDE, the EDE fraction with
vanishing coupling g (see Table I).
The novel feature of the TEDS model is that although the

field can successfully roll from a wide range of θi > 1 to
the edge of the plateau at θ ¼ 1 around zc, the kinetic
energy of the field near θ ¼ 1 then necessarily increases
with θi. This in turn generates field fluctuations that
compete with those generated from falling off the plateau.
The latter ones are largely independent of θi. We shall see
that it is a balance between these two effects that produces
the θi preferred by the CMB data.
The consequence of this balance can be seen in the CMB

residuals. To illustrate this, in Fig. 4 we show the CMB TT
spectra of the p ¼ 8 model for two examples: the best-fit
model with θi ¼ 1.103 and a variation to the best fit with a
larger value θi ¼ 1.3. The EDS coupling g is adjusted to
keep zc fixed with the same VðϕÞ, leaving fEDE ¼ 0.111
nearly unchanged.
From Fig. 4 one may appreciate that the increase in θi

induces a sizeable excess in the CMB TT spectrum in the
multipole range 1000≲ l≲ 1500, corresponding to modes
that reentered the horizon around zc. This bump is not
easily compensated by shifts in other cosmological or
foreground parameters and will remain even when the
other parameters are reoptimized with θi held fixed to the
larger value.
We can trace the origin of this bump back to the behavior

of the scalar field fluctuations δϕ on the corresponding
scales k ≈ 0.075 Mpc−1. In the absence of isocurvature
initial conditions, the scalar field perturbations are pre-
dominantly sourced by the adiabatic metric perturbations,
i.e., the term _h _ϕ appearing in Eq. (15). The metric

perturbation itself is relatively insensitive to the EDE,
being predominantly sourced by the matter and radiation
components of the Universe. However, the larger θi model,
while indistinguishable from any other θi at late times
ðz ≥ zcÞ, is distinguished by a larger velocity _ϕ at early
times ðz < zcÞ. This is a consequence of satisfying the
trigger condition in Eq. (6), where for a fixed Veff ,
Δ _ϕ ∝ Δθi. In our example, we fix zc so that g also varies
somewhat with θi. Since zc corresponds roughly to the
epoch at which θ ¼ 1, the result is that _ϕ ∝ ðθi − 1Þ since
by construction the field rolls to this position from its initial
value in the time interval tðzcÞ, as seen in the top panel of
Fig. 2. Approximating Eq. (15) on superhorizon scales and
at early times z < zc, we have

δ̈ϕ ∼ aH _δϕ ∼ − _h _ϕ : ð22Þ

Integrating over time from the initial moment until zc, and
approximating _ϕ as a constant, we find δϕ ∝ ðθi − 1Þ,
indicating an early time growth of δϕ that itself grows
linearly with the initial condition θi.
In Fig. 5 (top panels, solid lines) we compare the field

fluctuations for the two different θi where the shaded region
corresponds to zc > z > z�, where z� is the epoch of
recombination when the acoustic CMB fluctuations are
frozen in. For the time variable, we choose the comoving
sound horizon of the photon-baryon fluid

rsðzÞ ¼
Z

∞

z

csðz̃Þdz̃
Hðz̃Þ ; ð23Þ

where cs is the photon-baryon sound speed to highlight the
relevant epoch for the acoustic oscillations. Here we have
weighted δϕ by k2 for ease of comparison to the metric
sources (dashed lines). Notice the strong dependence on θi
for zc < z.
At zc, when the EDE scalar rolls down its potential and

the EDE begins to decay, there is a dramatic increase in the
field velocity _ϕ due to the bare potential. The sharp growth
in _ϕ imparts a “kick” on the perturbations δϕ, again coming
from the _ϕ _h source term in Eq. (15), but now largely
independent of θi and at a time where the initial kick has
already evolved to a different phase of its now subhorizon
evolution. In Fig. 2 (top panels, dashed lines), we can see
that the metric sources at z < zc are nearly indistinguish-
able between the two θi values.
The combination of these two kicks to the field fluctua-

tions, one dependent on θi and the other independent, imply
that there is a special value where the kicks are balanced so
that δϕ is nearly constant in time at the crucial epoch for
driving CMB acoustic oscillations around krsðzÞ ≈ π.
The impact on the CMB from the EDS is through its

gravitational effect via the Weyl potential ΨþΦ (see,
e.g., [60]), which in turn reflects the energy density

FIG. 4. CMB TT power spectrum residuals (as in Fig. 3) for the
p ¼ 8 best-fit model with initial field position θi ¼ 1.103 and its
variation with a higher θi ¼ 1.3 and the same zc and VðϕÞ. Other
aspects follow Fig. 3.
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fluctuations carried by the field. In Fig. 5 (middle panel),
we separate these fluctuations into the potential and kinetic
energy contributions. Because of the rapid conversion of
potential to kinetic energy, the two begin at z > zc nearly
equal and opposite and allow for a much faster evolution of
the total than usually allowed by an equation of state
jwϕj ≤ 1 [61] as the kinetic energy redshifts away.
Correspondingly the Weyl potential evolves rapidly and
drives the CMB acoustic oscillations (bottom panel). This
feature is not present in the EDE model and depends
strongly on θi.
After zc the potential energy corresponding to a given

field fluctuation sharply declines as the field falls off the
plateau and leaves the dominant energy density fluctuation
as contributed by kinetic energy. In this regime, the

counterbalancing metric kicks that leave the field fluc-
tuation nearly constant for θi ¼ 1.103 reduce the energy
density fluctuation and hence the impact on the Weyl
potential, especially for the variations on the kΔrs ∼ π
timescale that drive CMB acoustic oscillations. It is this
combination that is responsible for the minimization of
CMB residuals in Fig. 3. For 1≲ θi ≲ 1.1 this imbalance
shifts in the other direction, though not as dramatically as
for a large increase in θi.
In the case of θi ≲ 1, the slope of the bare potential

dominates the initial roll and the model effectively reduces
to the g ¼ 0 case with a power-law potential, which has
limited ability to solve the Hubble tension (see, e.g., [16]).
In summary, the best-fit TEDS model reflects a balance

between the dynamics of the trigger in the background,

FIG. 5. The evolution of the scalar field perturbation with its metric source (top panel), energy density fluctuations (middle panel), and
the Weyl potential (bottom panel) of the horizon crossing mode at zc with k ¼ 0.075 Mpc−1. The left panel shows the best-fit p ¼ 8
model with θi ¼ 1.103, while the right shows an unbalanced case with a larger θi ¼ 1.3, corresponding to the poorly fitting model in
Fig. 4. The Weyl potential is plotted relative to the best-fit ΛCDM model. The region zc > z > z� is shaded. PE ¼ potential energy,
KE ¼ kinetic energy.
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which is largely insensitive to the initial field value θi by
design, and the dynamics of the perturbations where there
is a competition between metric kicks whose balance
depends on θi. In this sense, the resolution of the
Hubble tension requires more than just the resolution of
the coincidence problem of the background, but it is
nonetheless successfully achieved within the TEDS model.

V. S8 TENSION: TEDS VS EDE

The TEDS model performs comparably to EDE in
resolving the Hubble tension, namely, in the fit to the
baseline dataset comprised of Planck 2018 CMB primary
anisotropies and CMB lensing, BOSS BAO, Pantheon
SNIa, and SH0ES. The χ2 difference between the maxi-
mum-likelihood TEDS (p ¼ 8) and EDE models is
Δχ2tot;TEDS−EDE ¼ þ2.8 (see Table I), indicating that the
coincidence-resolving TEDSmodel is a slightly worse fit to
cosmological data than EDE. However, the two best-fit
models are also distinguished by their S8 values: S8 ¼
0.8291 and S8 ¼ 0.8436 in TEDS and EDE, respectively.
This difference reduces the relative tension between the
TEDS model and large-scale structure data: the EDE model
is in 4.0σ tension with the Dark Energy Survey Year-3
(DES-Y3) measurement S8 ¼ 0.776� 0.017 [62], com-
pared to only 3.1σ in TEDS. The matter power spectra for
the best-fit TEDS and EDE models to the baseline datasets
are shown with respect to the best-fit ΛCDM model in
Fig. 6 (solid lines). Notice that the ns increase compared to
ΛCDM is somewhat reduced in TEDS compared to EDE,
which partially helps lower S8 in TEDS as does the
lower Ωch2.
Of course, these best-fit models for the Hubble tension

would have their parameters readjusted to lower S8 if the

DES-Y3 data were included, but the trade-offs may differ
between EDE and TEDS.
Motivated by this potential difference, we supplement

the baseline datasets with additional large-scale structure
data from the DES-Y3 analysis [62]:

(i) DES-Y3: Dark Energy Survey Year-3 [62] weak
lensing and galaxy clustering data, namely, galaxy-
galaxy, shear-shear, and galaxy-shear two-point
correlation functions (“3 × 2-point”), implemented
as a Gaussian constraint on S8 ≡ σ8ðΩm=0.3Þ0.5
corresponding to the DES-Y3 measurement S8 ¼
0.776� 0.017.

We repeat our analysis and search for maximum likelihood
parameters again using COBAYA [59]. Note that the approxi-
mation of treating the full DES 3 × 2-point likelihood as an
effective Gaussian prior on S8 was validated forΛCDM and
EDE in Ref. [27] (in that case, for DES-Y1), and thus we
adopt this approach here as well.
The maximum-likelihood model parameters when DES-

Y3 data is included are given in Table II. The χ2 difference
between the models is now Δχ2tot;TEDS−EDE ¼ þ1.2, indi-
cating that the TEDS model becomes even closer to EDE in
goodness of fit. Interestingly, the values for both H0 and S8
of the best fits become closer as well, with H0 remaining
nearly unchanged in EDE and actually increasing in TEDS.
In Fig. 6 (dashed lines), we also show the matter power
spectra for these þS8 data best-fit models.
While these new best-fit cases would apparently reduce

the S8 and H0 tensions simultaneously, the overall fit to the
baseline dataset without DES is, of course, slightly worse.
This comes primarily from the CMB, where in both cases
Δχ2TTTEEE ≈þ2.5. The poorer fit and parameter trends can
be explained from the residual freedom to adjust the

FIG. 6. Matter power spectra for the TEDS p ¼ 8 and EDE
models with respect to the best-fit ΛCDM model. Both best-fit
models for the baseline (“best”) and þS8 datasets are shown.

TABLE II. Parameters of the best-fit models to the baselineþ S8
datasets.

Model EDE TEDS ðp ¼ 8Þ
100θs 1.04139 1.04112
Ωbh2 0.02281 0.02296
Ωch2 0.1287 0.1273
τ 0.0581 0.0565
lnð1010AsÞ 3.065 3.054
ns 0.9894 0.9843
θi 2.763 1.103
g � � � 0.039
f=Mpl 0.17 0.30
V0=eV4 0.040 1.74

fEDE 0.108 0.112
log10 zc 3.56 3.83
H0 71.96 71.21
S8 0.8236 0.8200

χ2TTTEEE 2345.2 2346.9
χ2tot − χ2tot;EDE 0 þ1.2
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ΛCDM parameters themselves. At the expense of the
Planck 2018 fit for Ωch2, ΛCDM models follow the
CMB angular diameter distance degeneracy leading to
S8 ∝ h−2.3 (e.g., [63]). The best-fit EDE and TEDS models
can then exploit this scaling to lower S8 without lowering
H0 and compromise between the competing demands of
the various datasets.

VI. DISCUSSION

In this work we have formalized and studied in detail the
coincidence problem of EDE models, working primarily in
the context an early dark sector, in which the mass of the
dark matter particle is dependent on the EDE scalar field.
The coincidence problem is naturally a statement pertaining
to the background evolution: Why is the decay of the
background energy density in the EDE field anchored to the
epoch when the background energy densities of matter and
radiation are equal? From this, one may enumerate the
requirements for a coincidence-free EDS model:
(1) Realize the desired EDE-like dynamics (fEDE ∼ 10%

and zc ∼ 103.5), with
(2) dark matter triggered decay, and
(3) no fine-tuning of initial conditions.

We have demonstrated that a TEDS model with a plateau-
like potential VðϕÞ and a quadratic coupling to dark matter,
ΔmDM ∝ ðϕ=MplÞ2, can naturally satisfy these conditions
on the background evolution.
We find that the TEDS model performs comparably to

EDE when fit to a combined dataset comprised of Planck
2018 CMB temperature and polarization anisotropies and
CMB lensing, BOSS BAO, Pantheon SNIa, and the SH0ES
cosmic distance ladder measurement of H0. This fit
becomes even closer and essentially indistinguishably as
good if S8 constraints are included from DES-Y3, achiev-
ing H0 ¼ 71.2 km=s=Mpc.
However, amongst the trigger solutions that provide the

same background evolution, fitting the CMB anisotropies
associated with perturbations that cross the horizon around
zc selects a specific range of initial conditions for the
background value of the EDE scalar. We find that the
optimal TEDS model is one wherein there is a dynamical
balance of effects in the evolution of field fluctuations
induced by the trigger and by the bare potential. In our
choice of coupling and bare potential, this balance is
enforced by the CMB data rather than built into the model
itself, which suggests that future refinements of the basic
trigger mechanism may be possible.

Another novel feature of this optimal parameter choice is
that zc is slightly higher than zeq, which leads to observable
differences from the best-fit ΛCDM and EDE models that
are distinguishable at higher multipole moments than are
well constrained by the Planck 2018 data. These predic-
tions can be tested in the near future. Of course as with the
S8 tension and data, the best-fit parameters of TEDS may
also change with new datasets, requiring a full analysis of
parameter posteriors to assess model performance rather
than the best-fit approach here.
More generally, the assessment of EDE and EDE-like

models is sensitive to the datasets that are included or
excluded in the analysis as well as priors on their
parameters. This is consistent with past work, such as
Ref. [27] where EDE was analyzed using different dataset
combinations and parameter priors (e.g., priors on model
parameters versus on derived parameters fEDE, zc) with
dramatically different outcomes. See also Ref. [35] for
related discussion. With this in mind, an interesting next
step for EDS will be to investigate constraints on the
parameters of this scenario with the ACT DR4 [64,65] and
SPT-3G 2018 [66,67] data, particularly in light of the mild
ACT preference for a nonzero EDE component [68–70],
analogous to the EDE analysis in [71], as well as the BOSS
full-shape data, e.g., utilizing an effective field theory-
based large-scale structure likelihood, as done for EDE
in [28,29]. We leave these and other interesting directions
to future work.
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