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The possibility of obtaining symbolic expressions for cosmic backreaction is explored through a case
study of so-called 2-region models. By using the publicly available symbolic regression algorithm AI
Feynman, it is shown that the kinematical backreaction from a single 2-region model can be well described
as a function of the mean redshift (or, equivalently, the volume averaged scale factor). A single expression
depending on the redshift/scale factor as well as a model parameter, f, that can accurately describe the
backreaction for a significant range of models is naturally more complicated but is also achieved
with percent-level accuracy. Datasets of redshift drift in the 2-region models are also considered. Again
utilizing AI Feynman, expressions for the redshift drift are found. In particular, an expression for the
difference between the mean redshift drift and the drift of the mean redshift in terms of the kinematical
backreaction is easily obtained for a single 2-region model. An accurate symbolic expression that describes
this difference for an array of 2-region models is achieved by using the redshift as a feature instead of the
kinematical backreaction.
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I. INTRODUCTION

Since the first cosmological solution to Einstein’s equa-
tion was presented in 1917 [1] (see e.g. also [2]), modern
cosmology has been based on the cosmological principle:
The notion that the Universe is (statistically) homogeneous
and isotropic on large scales. More importantly, modern
cosmology has since its birth been based on the (often
implicit) assumption that the cosmological principle
implies that one can insert an exactly spatially homo-
geneous content and corresponding metric assumptions
into Einstein’s equation when wishing to describe the
Universe. This means that standard cosmology is based
on the Friedmann-Lemaitre-Robertson-Walker (FLRW)
models. Questioning this procedure of using the FLRW
models to interpret observations and describe the dynamics
of the Universe is a cornerstone in the research field of
inhomogeneous cosmology. Note that two separate issues
must be addressed. One issue concerns the effect inhomo-
geneities have on observations. Some effects are well
known and even make up an important part of standard
cosmology. This is for instance the case for fluctuations in
the cosmic microwave background. But in inhomogeneous
cosmology the focus is also on the possibility that mean
observations may deviate from the observational relations
given by an FLRW model meant to describe the large-scale
spatial average of the Universe. This has been studied for
decades, with a variety of different approaches such as
using inhomogeneous cosmological models [3–31],

numerical cosmology [32–40] and analytical considera-
tions [41–54] including different spacetime slicings [55–
61]. In addition to this, there is the separate issue of whether
or not the large-scale/spatially averaged behavior of the
Universe indeed does follow FLRW dynamics. This was
studied as early as in [62], but today the most popular way
of studying the average evolution of an inhomogeneous
spacetime is through the Buchert formalism [63–65]
developed decades later. There is good sense in using this
formalism since the work presented in [51,52] combined
with that in especially [66,67] shows that spatial averages
based on the Buchert formalism can be directly related to
observations if (1) averages are made on spatial hyper-
surfaces of statistical homogeneity and isotropy, (2) mean
observations are based on averaging over several, random
light rays sampling spacetime fairly, i.e. without avoiding
certain regions such as e.g. overdensities, and (3) structures
evolve slowly compared to the time it takes a light ray to
traverse the homogeneity scale (assumed to exist).
With the Buchert averaging formalism, averages of

scalars are computed as volume weighted averages, i.e. as

sD ≔
R
D sdVR
D dV

¼
R
D sdV
V

; ð1Þ

where s is a scalar being averaged over a spatial domain D,
and dV is the proper (Riemannian) infinitesimal spatial
volume element. When using this simplest form of the
formalism, it is assumed that spacetime is foliated with
spatial hypersurfaces orthogonal to the fluid flow and that
the lapse function (the time-time component of the metric*koksbang@cp3.sdu.dk
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tensor) is set to 1. This is assumed throughout. Note that
this foliation requires that there is no vorticity. The foliation
corresponds to assuming that the line element of the
spacetime can be written as

ds2 ¼ −dt2 þ gijdxidxj; ð2Þ

where i; j ∈ ½1; 2; 3� are used for indicating spatial indexes.
Greek letters will be used to denote spacetime indexes
running over 0,1,2,3.
Applying the Buchert formalism to the Hamiltonian

constraint and the Raychaudhuri equation leads to (c ¼ 1
throughout)

3H2
D ¼ 8πGρD −

1

2
RD −

1

2
Q ð3Þ

3
äD
aD

¼ −4πGρD þQ: ð4Þ

A possible cosmological constant is omitted from the
equations as it will not be included in the models consid-
ered here. The spatially averaged Hubble parameter, HD, is
defined as HD ≔ _aD

aD
, where aD ≔ ðV=V0Þ1=3 is the volume

averaged scale factor normalized to 1 at present time.
Present time evaluation is indicated by a subscripted zero
and V is the proper volume of the averaging domain D.
Dots are used to indicate partial derivatives with respect to
the time coordinate. RD is the (spatially averaged) spatial
curvature scalar and Q ≔ 2=3½ðθ2ÞD − ðθDÞ2� − ðσμνσμνÞD
is known as the kinematical backreaction, computed
through averages of the fluid expansion scalar, θ, and its
shear tensor, σμν. Note that subscripted D’s are used to
denote that quantities are either averages themselves or
given in terms of average quantities (such as aD given in
terms of the averaging volume). It would also be appro-
priate to add such a subscript to the kinematical back-
reaction since this quantity is given in terms of spatial
averages and certainly depends on the choice of averaging
domain D. However, in order to simplify the notation and
reduce subscript-clutter in the following sections, Q is not
given the subscript D, but it is here stressed that Q does
represent an averaged quantity and indeed has no local
counterpart. Note lastly that ρD ∝ a−3D , equivalent to the
FLRW limit [63].
The Buchert equations are very similar to the Friedmann

equations which govern the dynamics of the FLRW
models, with the key differences being (1) that the averaged
spatial curvature does not have to be proportional to the
inverse squared averaged scale factor, and (2) the extra
term,Q, which vanished identically in the FLRW limit. The
two components RD and Q thus make up the cosmic
backreaction. They depend on each other through the so-
called integrability condition

a−6D ða6DQÞ: þ a−2D ða2DRDÞ: ¼ 0; ð5Þ

which ensures that the two previous equations are con-
sistent with each other.
A major obstacle in inhomogeneous cosmology is

determining the dependence of Q and RD on aD. A small
number of studies based on different forms of perturbation
theory as well as numerical simulations have given some
minor indication that the relationship may be very simple,
in the form of Q ∝ a�1

D [68–70]. In addition, it was early
noted [71] that there is a very simple set of solutions to the
integrability condition, namely the scaling solutions which
take the form

RD ¼ RD0
anD ð6Þ

Q ¼ −
nþ 2

nþ 6
RD; ð7Þ

with n ≠ −6;−2. These solutions have been used for
studying observational effects of backreaction in e.g.
[72–75]. However, aside from the minor indications just
mentioned that Q may in some instances scale as ∝ a�1

D ,
there is little physical justification for the scaling solution
which is instead mainly a result of mathematical conven-
ience and simplicity. Additional physical justification can
be attributed the relation Q ∝ a−1D since this represents the
leading large-scale mode [70]. Overall, this means that the
scaling solutions can mainly be used for proof-of-principle
studies such as in [72] where the scaling solution was used
to show that backreaction can in principle explain the
Hubble tension [76,77]. In order to seriously constrain
backreaction through observations, more information is
needed regarding the dependence of Q on aD and possibly
other quantities such as the average matter density etc. The
same must be obtained for RD but note that since RD andQ
are related by the integrability condition (as well as the top
line in Eq. (3), i.e. the first Buchert equation), we can in
principle obtain one, once we have the other.
This article and its accompanying Letter [78] represent

the first step toward learning about the parametrization of
cosmic backreaction by using machine learning.
Specifically, results from an initial investigation into
the possibility and use of determining the parametrization
of Q and RD in terms of aD with symbolic regression are
presented.
Symbolic regression is an automated regression analysis

where the algorithms learn symbolic expressions that
accurately describe a given set of data (see e.g. [79,80]).
With Q and RD parametrized in terms of e.g. the volume
averaged scale factor, it becomes possible to constrain
backreaction with redshift-distance relations since Q and
RD enter into the redshift distance relation given according
to [51]
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HD
d

dhzi
�
ð1þ hziÞHD

dhDAi
dhzi

�
¼ −4πGρDhDAi; ð8Þ

where z;DA are the redshift and angular diameter distance
and triangular brackets are used to denote mean values,
i.e. mean relations obtained by averaging over several
random lines of sight and ensuring that the requirements
(1)–(3) mentioned earlier are fulfilled (see e.g. [51] for
a detailed discussion of the requirements). Note that
1þ hzi ¼ 1=aD [51] and that Q and RD enter into the
equation through HD.
While the redshift-distance relation can be fairly easily

related to spatial averages as discussed above, this is not
true for all types of observations. One observable that does
not seem to be easily described by spatial averages is the
redshift drift. The redshift drift is the change in the
observed redshift of a source due to cosmic expansion.
It was first discussed in [81,82]. As first demonstrated in
[66] and later corroborated in [67], the mean redshift drift is
not as simply related to spatially averaged quantities as the
redshift-distance relation is. This has further been studied in
[83,84] which support the result: The mean redshift drift is
not in general equal to the drift of the mean redshift in an
inhomogeneous spacetime.
Besides studying the parametrization of cosmic back-

reaction it will in the following be studied to what extent it
is possible to identify a symbolic expression for the redshift
drift in terms of spatially averaged quantities. This pos-
sibility is interesting for (at least) two reasons. First of all, if
an analytic expression relating the mean redshift drift to
spatial averages can be found, it becomes possible to use
redshift drift to constrain spatially averaged quantities. This
is not currently possible unless one is in the FLRW limit.
Secondly, a symbolic expression could be useful as a guide
to analytical/theoretical studies of redshift drift and e.g.
drive an investigation into the theoretical underpinnings of
such a symbolic expression obtained through machine
learning. In a similar vain, parametrizingQ and RD through
aD not only makes it possible to constrain these using
observables, but the resulting symbolic expression can
advise analytical studies into this parametrization with
the goal to e.g. learn about under what conditions non-
negligible backreaction occurs.
In this first study, a simple toy-model will be used to

obtain datasets for the task of learning symbolic expres-
sions for the kinematical backreaction, spatially averaged
curvature, and mean redshift drift. Specifically, 2-region
models will be used. These models were chosen because
they are fast and simple to use for generating backreaction
and redshift drift data. In Sec. II, 2-region models are
introduced together with the method used for computing
redshift drift in these models. Results from symbolic
regression and a feature importance analysis are then
presented in Sec. III before a discussion and concluding
remarks are given in Sec. IV.

II. 2-REGION MODELS

A 2-region model is a toy-model representing an
inhomogeneous universe constructed as a disjoint ensem-
ble of two different specific FLRW solutions to Einstein’s
equation. As the individual FLRW solutions are disjoint,
the 2-region models are not exact solutions to Einstein’s
equation, but they are nonetheless useful for initial
investigations and proof-of-principle studies; the models
are fairly easy to construct and are fairly undemanding
computationally. This type of model was introduced in
[85,86], where backreaction was considered in 2-region
models in a spacetime represented by the disjoint ensem-
ble of two FLRW regions. The models were later
generalized to consist of an ensemble of multiple versions
of each of the two distinct FLRW solutions, with the
individual regions being joined sequentially along light
rays to mimic a statistically homogeneous and isotropic
universe [66,87,88]. This is the version of the 2-region
models which will be considered here. Note that the 2-
region models can be viewed as a simple version of the
multiscale models of [89,90] and a simple version of the
model presented in [91].
The considered 2-region models will be constructed as

the ensemble of an empty FLRW model and matter þ
curvature FLRWmodel, where the latter is modeled to have
positive curvature. In this case, the scale factors of the two
different types of regions can be related according to (see
e.g. [85,86] for details)

t ¼ t0
ϕ − sinðϕÞ
ϕ0 − sinðϕ0Þ

ð9Þ

au ¼
f1=3u

π
ðϕ − sinðϕÞÞ ð10Þ

ao ¼
f1=3o

2
ð1 − cosðϕÞÞ; ð11Þ

where au is the local scale factor of the underdense (empty)
FLRW region and ao is the local scale factor of the
overdense region. The parameter ϕ is a parameter that is
used for convenience when describing matter þ curvature
FLRW regions and is sometimes called the development
angle. The relative fractions, fu, fo, of the two region types
in the total ensemble at ϕ ¼ π are related by fu ¼ 1 − fo.
Following the original work in [85,86], present time is set
to be at ϕ0 ¼ 3=2π. There is an additional free parameter
which can be set by noting that HD ¼ Huð1 − vþ vhÞ,
where v ≔ a3o=ða3o þ a3uÞ and h ¼ Ho=Hu. SinceHu ¼ 1=t
we see that t0 ¼ ð1 − v0 þ v0h0Þ=HD0

so we need to fix
either t0 or HD0

. Here, the choice HD0
¼ 70 km=s=Mpc

is made.
In the following, fo is used as a free parameter and will

for notational simplicity be referred to simply as f. Note
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that f is a constant but that this does not mean that the
volume fraction of over- and underdense regions is constant
in the considered models. f is merely constant because it
represents the volume fraction at a specific time, namely the
time corresponding to ϕ ¼ π.

A. Redshift drift in 2-region models

The redshift drift, δz, along light rays propagating
through consecutive FLRW regions can be computed using
the equations (see [66])

dt
dr

¼ −a ð12Þ

dz
dr

¼ ð1þ zÞ _a ð13Þ

dδz
dr

¼ _aδzþ ð1þ zÞäδt ð14Þ

dδt
dr

¼ − _aδt; ð15Þ

where the scale factor is always evaluated as the local value.
The parameter δt represents the difference in emission time
of the two signals of the redshift. Typical values for δt0 are
in the range 10–30 years based on the expectation regarding
how long observation periods will be used with upcoming
surveys (see e.g. [92] for an example). The choice δt0 ¼ 30
was made for all the results presented below, but it is noted
that this choice is of little importance here since δt0 largely
just gives an overall scaling of δz. This is true even for
inhomogeneous models as long as δt0 is not chosen to be
very large compared to the typical dynamical scale of the
inhomogeneities, at least in the models studied here where
light paths are all repeatable (see e.g. [93] regarding
repeatable light paths).
When solving the above equations, a choice must be

made regarding how big the individual FLRW regions
should be along the light rays. As mentioned in [66] the
resulting redshift drift does not depend significantly on
the exact choice as long as the regions are not excessively
large (≲1 Gpc), in agreement with condition (3) from the
introduction. Here, inhomogeneities are chosen to be of
order 10–100 Mpc at present time. As also found in [66],
the spatial position (underdense or overdense region) of the
present-time observer is of little significance for the overall
redshift drift signal. The observer is therefore simply
always positioned in the overdense region in the following
(an arbitrary choice). Since the redshift drift depends only
minimally on the observer position and structures sizes, the
redshift drift computed along a single light ray will be a
good approximation to the mean redshift drift.
The data studied in the following was obtained by

propagating single light rays through 2-region models.
Data was only collected along a single light ray for each

model since the results of [66] indicate that very little
difference is obtained by computing the mean of the
redshift and redshift drift along different light rays with,
say, differently placed (present-time) observers. In the
following, the redshift and redshift drift along an individual
light ray will therefore be used for approximating the mean
values. To remind the reader that the generated data in
reality represents data along a single light ray, triangular
brackets will not be used around symbols ðz; δzÞ represent-
ing the data.

III. RESULTS

There are several examples of publicly available soft-
ware for doing symbolic regression such as PySR1 and
gplearn2 as well as algorithms specifically developed for
(astro-)physics purposes, including e.g. ESR [79] and AI
Feynman [80,94]. In the following, AI Feynman will be
used because it was developed specifically with physics in
mind and is publicly available in a ready-to-use format.
AI Feynman fits analytical expressions to datasets of the

form (features, target), where the target is the target
variable which depends on the different features supplied
in the data array. For the study here, the targets are Q, RD
and the redshift drift and features include mainly z; aD; f. If
we wish to obtain an analytical expression for, say, Q in
terms of z, f we would generate data (a text file) with the
values of z, f together with the corresponding values of Q.
In such a data file, z and f would be considered features,
and Q the target. Data files used here were generated with
equidistant data points within the feature intervals given in
the sections below.
Some of the datasets considered here have multiple

features. When multiple features are introduced into the
datasets, most machine learning algorithms including
neural networks tend to perform better when trained on
datasets with normalized features [95]. In the datasets
given to AI Feynman (which contains a neural network),
the features could e.g. be normalized according to
x → xnorm ≔ ðx − xminÞ=ðxmax − xminÞ, where x is a given
feature value and xmin, xmax are the minimum and
maximum values, respectively, of the given feature in
the dataset. This is standard for many machine learning
algorithms as it puts different features on equal footing
with respect to the underlying algorithm. From a physical
point of view this type of feature scaling is, however,
unfortunate; it is much more useful to have an expression
in terms of actual physical variables instead of scaled
versions. Features scaled according to a normalization or
standardization would make it difficult to use the resulting
expressions since these could only be used with input
parameters scaled appropriately. The datasets used here
will therefore mainly be generated without feature scaling.

1https://github.com/MilesCranmer/PySR.
2https://gplearn.readthedocs.io/en/stable/.
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When scaling is introduced in the following, this will be
explicitly mentioned and explained.

A. Symbolic regression for a single 2-region model

As an initial test, AI Feynman is presented with
backreaction data for a single specific 2-region model.
Somewhat arbitrarily, the parameter f ¼ 0.25 is used. This
choice leads to a significant amount of average accelerated
expansion and provides a kinematical backreaction that is
fairly large but without the resulting model being wildly
unrealistic with, for instance, large regions of overdensity
and only small regions of underdensity at present time.
As mentioned in the introduction, it is in principle

not necessary to do symbolic regression on data of both
Q andRD since we may use the first Buchert equation or the
integrability condition to obtain one, once we have the
other. Therefore, for the initial test presented in this sub-
section, the focus will be on the kinematical backreaction
and the redshift drift. The reason for choosingQ rather than
RD is somewhat arbitrary with the main motivation being
that RD has an FLRW counterpart while Q does not. When
modeling RD one must therefore also consider if e.g.
subtracting an FLRW-part of RD is appropriate. No such
considerations are necessary regarding Q.
Backreaction data for this model has been generated

with a different number of data points ranging between 50
and 50000. AI Feynman was presented with the dataset
combinations ðz;QÞ, ðz;ΩQÞ, ðaD;QÞ, and ðaD;ΩQÞ, using
all 4 available symbolic expressions files and with various
choices of time limit for each brute force call, maximum
degree of polynomial to be tried and number of epochs.3

The parameter ΩQ is defined in analogy to the density
parameters of the FLRW model, i.e. ΩQ ≔ −Q=ð6H2

DÞ.
The redshift, z, used in these datasets was computed as
z ¼ 1=aD − 1 which, as mentioned in the introduction, is a
good approximation of hzi.
There still remains the choice of how large a parameter

interval to use, i.e. how large the interval of z (or aD) should
be. The larger an interval, the more difficult the regression
task is. A larger interval will, however, represent a more
general result which is typically desired. Here, the choice is
made to consider the interval corresponding to z ∈ ½0; 5�.
This choice is made based on the following considerations:

Cosmic backreaction is expected to become important in
the late universe, after nonlinear structures begin to form
(see e.g. [96]), but at the same time, redshift drift is a
quantity we expect to be able to observe all the way up to a
redshift of z ¼ 5 (see e.g. [92]).
Figure 1 shows Q and ΩQ plotted against both z and aD.

By eye, it looks as though Q has the simpler functional
form, leading to the expectations that it will be easier to find
an appropriate symbolic expression for Q than for ΩQ for
the particular models studied here. The most accurate
expressions found by AI Feynman were indeed obtained
for Q, with a few of the more accurate expressions
identified by AI Feynman shown in Figure 2. The legends
indicate whether the data was generated as ðz;QÞ or
ðaD;QÞ. Most of the expressions AI Feynman finds for
the data only provide a reasonable fit to part of the dataset.
This is for instance the case for SR-model 3 in Figure 2, and
to a lesser degree for SR-model 4. SR-models 1 and 2,
however, are fairly accurate long the entire studied redshift
interval. Specifically, the relative error between the data
points and SR-model 1 is below 3% for the entire redshift
interval, while SR-model 2 has a subpercent accuracy for
0.4 ≤ z ≤ 4.4 but becomes quite inaccurate at low redshifts
with an error above 20% for redshifts close to zero. On the
redshift interval z ∈ ½4.4; 5�, the error is approximately 1%,
never reaching as much as 1.1%.
There are several ways to proceed in order to obtain more

accurate fits. For instance, the models depicted in Figure 2
could be combined to form piece-wise expressions for Q
which are more accurate than any one of the expressions on
the entire studied redshift interval. Indeed, by combining
SR-model 2 and 3 one can obtain a piece-wise expression
with subpercent accuracy on almost the entire redshift
interval and never exceeding 1.1%. This option can work
well for symbolic expressions in one variable but quickly
becomes inconvenient when considering expressions of
multiple variables. Another option, which will briefly be
studied here, is to use AI Feynman for a second iteration,
now on data of the form (aD;Q–SRmodelX), where
SRmodelX is one of the models shown in Figure 2. This
is a simple way to try to attempt to increase the accuracy of
the symbolic expressions at the expense of the expressions
becoming significantly more complex. Figure 3 shows the
most accurate expression obtained by using SR-model1 for
such an iterative procedure. The total expression is still not
accurate to subpercent precision on the entire studied
redshift interval, but it is more accurate than SR-model1
alone, except at the data point with the smallest redshift
value where the error has increased from 2% to almost 4%
as well as for approximately z ≥ 4.8 where the error has
increased from 1% to around 2%.
We now move on to look at the redshift drift for the

specified model. Again, the redshift drift could equally well
be parametrized with z or aD, but there does not seem to be
much to gain from using one rather than the other. Hence,

3AI Feynman can be fed different types of information that
restricts/directs the algorithm. For instance, AI Feynman comes
with four different files of basic symbolic expressions it uses—
i.e. trigonometric functions, logarithms etc.. These can be
modified or new files can be supplied by the user. For the work
presented here, the four files were used without modifications and
no new files were introduced. Another example of a parameter
one can set to tune the algorithm is a time limit for the brute-force
part of the AI Feynman algorithm. The time limits used here were
in the interval 60–500 seconds. See e.g. the github page https://
github.com/SJ001/AI-Feynman for details on the parameters/
options that can be set.
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we will only consider data points with z as the feature
(independent variable).
The results from presenting AI Feynman with redshift

drift data from the single 2-region model are shown in
Fig. 4. Especially the expression marked as dzSR-model 1
is reasonably accurate—indeed, its accuracy is roughly the
same as the total expressions obtained after two rounds of
using AI Feynman on the Q data (Fig. 3), with an accuracy
of a few percent or below up to around z ¼ 4.
We could now move on to do a second round of using AI

Feynman on the ðz; δzÞ data as with the kinematical
backreaction, to try to obtain a fit with higher accuracy
for the high-redshift part of the data. However, we will skip
this and instead note that if the mean redshift drift were
equal to the drift of the mean redshift, we would have the
relation

hδzi ¼ δhzi ¼ δt0½ð1þ zÞHD0
−HD�; ð16Þ

which is equivalent to the FLRWexpression for the redshift
drift. Remember that triangular brackets indicate taking the
mean over several random lines of sight. Hence, hδzi is the
mean redshift drift while δhzi is the drift of the mean
redshift.
As shown in [66], the mean redshift drift and the drift

of the mean redshift are not identical in 2-region models
so the first equality in the above expression does not hold. It
is then interesting to see if there is another relationship
between hδzi andHD, z, andQ. This might seem a hopeless
venture (or at least a venture requiring a lot of tuning of the
algorithm) because z and HD are not independent and
because AI Feynman does not know that hδzi reduces to
δhzi in the FLRW limit. Thus, even if HD were added as a
feature, there is no reason to expect that the resulting
expression would resemble equation (16). However, since
we know that in the FLRW limit, hδzi ¼ δhzi, it would be
desirable that the symbolic expressions obtained with AI
Feynman reflect this. To achieve this, AI Feynman was

FIG. 1. The kinematical backreaction, Q, and its density parameter, ΩQ, as a function of aD and z.
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presented to first data of the type ðz;ΔzÞ and afterwards to
data of the type ðQ;ΔzÞ, where Δz ≔ hδzi − δhzi. Then,
hδzi can be written as the sum of δhzi and the symbolic
expression found by AI Feynman. This turns out to be an
easier task for AI Feynman in the sense that the algorithm
is fast to find several symbolic expressions for Δz in terms
of z with subpercent accuracy on the main part of the
interval. An example is shown in Fig. 5 which has an
accuracy below 1% except for approximately z ≤ 0.6
where the inaccuracy increases to almost 2%. However,
the other dataset, ðQ;ΔzÞ, is more interesting since the
literature so far strongly suggests that Δz will deviate
significantly from zero only when there is significant
backreaction [66,67,97,98] (or if the studied model clearly
does not have hypersurfaces with statistical homogeneity
and isotropy as in e.g. [99–103]). It turns out also to be
much more difficult to obtain an accurate symbolic

FIG. 2. Symbolic expressions for ðaD;QÞ and ðz;QÞ found by AI Feynman plotted together with data points. If legends indicate a
function in terms of z, the expression was obtained by presenting AI Feynman with data of the form ðz; QÞ, and equivalently for aD.

FIG. 3. Symbolic expression for ðaD;QÞ found by AI Feynman
used on data points of the type (aD;Q–SRmodel1) plotted
together with data points.
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expression for this data with AI Feynman: Several runs
with AI Feynman using different input choices (time
limit for the brute force call, different symbolic expression
files etc.) were all unsuccessful in finding accurate
expressions. In an attempt to try to obtain more accurate
expressions, the Q values were normalized according to
Q → Qn ≔ ðQ −QminÞ=ðQmax −QminÞ. The most accu-
rate expression obtained this way is shown in Fig. 6.
The expression is accurate to 0.1% level except for at very
low redshifts where it reaches percent-level for z ≤ 0.2.
However, as discussed earlier, using normalized data is
inconvenient. AI Feynman was therefore also used on a
dataset where Q was simply scaled by a factor of 100. In
this case, it is again possible to obtain symbolic expres-
sions with percent-level accuracy, presumably because
this simple scaling roughly brings Q to the same order of
magnitude as the other features for a larger part of the
feature intervals. An example of an accurate expression
obtained by scaling Q by a factor of 100 is shown in

FIG. 4. Redshift drift data, ðz; δzÞ, and a selection of symbolic expressions obtained with AI Feynman.

FIG. 5. Symbolic expressions for ðz;ΔzÞ found by AI Feynman
plotted together with data points.
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Fig. 6. The expression has a subpercent accuracy for
0.2 ≤ z ≤ 2.5 but outside this interval it slowly increases
to reach 10%-order for the smallest and largest values of
the redshift in the studied interval.
With these expressions, we can write hδzi in the form

hδzi ¼ δt0½ð1þ zÞHD0
−HD� þ FðQÞ; ð17Þ

where FðQÞ is the symbolic expression found for Δz in
terms of Q.
Before closing this section, a note on the phenomeno-

logical nature of the symbolic expressions is appropriate:
The expressions obtained with AI Feynman cannot a priori
be expected to represent physically justifiable expressions
but are instead phenomenological models that cannot
generally be extrapolated to outside the feature intervals
used for obtaining the expressions. This is true regardless
of the form of the symbolic expressions but is perhaps

emphasized well for polynomial expressions since espe-
cially polynomials of high degree are well-known for being
able to (over-)fit data on smaller intervals very accurately.
This is worth remembering when regarding the polynomial
expression in Figure 6; the AI Feynman algorithm was
instructed to use 6 as the maximum polynomial power
when it obtained this expression. This is also exactly the
degree of the obtained polynomial. The possibility for
obtaining physically justifiable expressions through sym-
bolic regression is discussed in Sec. IV.

B. Multiple 2-region models: Feature importance

Doing symbolic regression on the kinematical back-
reaction and redshift drift of a single 2-region model can be
useful as an initial exercise since the results are informative
on what can be expected regarding a successful regression
analysis on data from multiple models. However, this latter
regression analysis is the real goal: Understanding to what
extent Q, RD and hδzi can be parametrized in terms of
spatially averaged quantities with general expressions valid
for a significant parameter/feature region. Before present-
ing the results obtained by presenting AI Feynman with
data from multiple 2-region models, we will in this
subsection study the relative importance of the individual
features for the values of the target variables Q and hδzi in
multiple models (we will defer considering RD until next
subsection). Feature importance is a standard machine
learning tool that can be used to learn about which features
of a dataset the target depends (the most) on and hence
guide the use of which feature to focus e.g. a regression task
on (see e.g. [95]). We could therefore do a feature
importance study where different average quantities such
as HD, ρD, z, aD etc. were all added as features for the
targets Q and δz. The feature importance study would then
show us which of these features contain the most informa-
tion about the targets and hence are the most prudent to
include as features for the target when doing the later
regression. However, we are here working with a toy-model
where the differences between different 2-region models
are actually contained in a single feature, namely f. In
addition, the goal here is specifically to parametrize Q in
terms of the volume averaged scale factor or corresponding
redshift. Therefore, for Q, the only features that will be
considered are f and z. It is still instructive to compute the
relative importance of these two features since the features
have very different physical meanings with one feature
being a model parameter while the other is an observable
quantity. In addition, we learned in the previous section that
accurate expressions can be obtained for Q and δz for
individual 2-region models so the difficulties we can expect
to encounter when moving to multiple 2-region models
may depend on whether z or f is the most important
feature.
The feature importances are computed using scikit-learn

[104]. The results shown in this subsection are based on

FIG. 6. Symbolic expression for ðQD;x;ΔzÞ, where x ¼ n; 100
indicates scaling of Q either through a normalization or a simple
scaling by a factor of 100.
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feature importances extracted from a random forest regres-
sor with 100 estimators (trees). For the random forest
regressors, feature importances are estimated through
combinations of the standard deviation and mean of the
accumulated impurity increase of each tree. See e.g. [95]
for an introduction to random forests, decision trees and
feature importance.4

The relative importance of f and z for the value of Q are
shown in Fig. 7. For the computation, the interval of f was
initially set to f ∈ ½0.01; 0.3� while z ∈ ½0; 5�. The interval
for f was chosen based on noting that for f ≈ 0.18, the
kinematical backreaction is at the same order as the
cosmological constant in the standard ΛCDM model and
for f ≈ 0.225, the model leads to a redshift-distance
relation very similar to the redshift-distance relation of
the standard model (the latter is shown in Fig. 2 of [105]).
Thus, by searching an interval with f ∈ ½0.01; 0.3� we are
considering a large variation in the kinematical backreac-
tion, centered roughly in an area that can under some
circumstances mimic what is observed in the real universe
regarding dark energy. It is nonetheless interesting to
briefly consider models with larger values of f in order
to assess how (dis-)similar the graphs for QðzÞ look for
different values of f; this (dis-)similarity gives an indica-
tion of the complexity we should expect regarding a
symbolic expression that can cover large feature intervals.
For this reason,QðzÞ has been plotted for a range of f up to
f ¼ 0.9. This is shown in Fig. 8. It is seen that large values
of f lead to quite extreme behavior of Q. This would
presumably be difficult to capture in a symbolic expression
that simultaneously accurately describes the backreaction
in models with smaller values of f. Indeed, by looking at
Fig. 8 it is tempting to expect that f may become a more

important feature for Q than z is if a large interval of f is
considered. This is confirmed in Fig. 9 where the relative
importance of z and f are shown for larger ranges of f.
When f ∈ ½0.1; 0.9�,5 f is by far the most important feature,
i.e. the value of f is more important than z for the value of
Q. When the interval is narrowed to f ∈ ½0.1; 0.6�, z has
become the most important feature. Note that feature
importance is throughout depicted with the most significant
feature furthest to the left and so forth. Because of this, z
and f change places in the two diagrams shown in Fig. 9.
We will now turn to look at the redshift drift. As for the

single 2-region model we will look at the dependence on
the redshift and f, but the relative importance of Q, Ωm ≔
8πGρD=ð3H2

DÞ and HD will also be briefly discussed. The
relative importance of all these features is shown in Fig. 10.
In addition, the redshift drift for a variety of values of f is
shown in Fig. 11.
The relative importances depicted in Fig. 10 indicate that

HD by far is the most important feature for the value of the
redshift drift—and that the redshift is not really important at
all. This is perhaps not too surprising, when remembering
Eq. (16) and when looking at Fig. 11 where it is seen that
for a given value of f, the redshift drift is quite flat along the
z-axis compared to the change in the redshift drift between
different models. Additionally, it is here important to
remember that HD, Ωm and Q all themselves depend on
z as well as on f. Therefore the relative importances in
Fig. 10 should not be considered without regarding the
physical setup. What we are interested in physically is an
expression for the mean redshift drift in terms of z which is

FIG. 7. Relative importance of the independent features in the
backreaction data.

FIG. 8. Kinematical backreaction as a function of the redshift
for different values of f. A close-up is included to better show the
different QðzÞ for f ≠ 0.9.

4The reader may also find it instructive to look directly at the
scikit-learn page https://scikit-learn.org/stable/auto_examples/
ensemble/plot_forest_importances.html.

5Note that this large interval of f is used merely for illustrating
the significance of changing the interval of f for the feature
importance study. A value of f ¼ 0.9 corresponds to a universe
where the main volume fraction of the Universe is made up of
overdense regions even at present time, which is clearly not
realistic.
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valid for the entire considered range of 2-region models.
Therefore we should, as with Q, consider the redshift drift
as a function of z, f. However, as discussed earlier, it is
more desirable to obtain a symbolic expression of Δz ≔
hδzi − δhzi in terms of QðzÞ. This quantity is depicted in
Fig. 12 for a range of f values. Based on the experience
gained from considering a single 2-region model, Δz will
be considered with z;Q100 and f as features in the
following. It is nonetheless worth keeping in mind, e.g.
for future development, that the feature importance study
indicates that we can express much of the variability in the
Δz data by including HD and Ωm as features.

C. Multiple 2-region models: Symbolic regression

First, AI Feynman was used to attempt obtaining a
symbolic expression for ðz; f;QÞ in the data intervals used

FIG. 9. Relative importance of the independent features in the backreaction data. Note that features are arranged such that the most
important feature is always shown furthest to the left and so forth.

FIG. 10. Relative importance of the different features in the
redshift drift data.

FIG. 11. Redshift drift as a function of the redshift for different
values of f.

FIG. 12. The deviation, Δz, as a function of the redshift for
different values of f.
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for the single 2-region model and the feature importance
study. This proved very difficult with multiple attempts
yielding expressions that all had inaccuracies at the order of
100% over large parts of the feature intervals. Eventually,
after minimizing the studied parameter intervals in steps,
fairly accurate expressions were obtained by considering
data of the type ðz; f; 100 ·QÞ on the smaller intervals z ∈
½0; 2� and f ∈ ½0.1; 0.25�. The redshift interval was chosen
not to be made smaller than this interval because it
encapsulates the redshift area traced by the Square
Kilometer Array (SKA) and thus contains the redshift
interval where redshift drift measurements can be obtained
with SKA [106]. In addition, this redshift interval encom-
passes the main part of existing supernovae data which is
particularly interesting in terms of constrainingQ using the
redshift-distance relation. Thus, instead of making the
redshift interval smaller beyond this interval, the f interval
was made successively smaller to attempt obtaining more
accurate symbolic expressions. The regression task with
f ∈ ½0.1; 0.25� was still not wildly successful: Even after
several attempts of using AI Feynman on the data,
expressions that were accurate to subpercent on the entire
feature intervals were still not achieved. With three iter-
ations it was, however, possible to obtain expressions
with percent-precision for a large part of the feature region.
The feature region was therefore not shrunken more
after this. The most accurate results that were obtained

are shown in Fig. 13 which shows the results from
the iterative approach of using AI Feynman on first the
data ðz; f; 100 ·QÞ, then on ðz; f; 100 ·Q − f1Þ and then
ðz; f; 100 · ð100 ·Q − f1 − f2ÞÞ, where f1 and f2 were the
symbolic expressions obtained in the previous iteration.
The resulting symbolic expressions are6

f1 ¼ 3.58069 · tan−1 ððf · ðzþ expðzÞÞÞÞ
f2 ¼ 0.089282 · z4 þ 1.19043 · z3f − 0.51380 · z3

− 15.87238 · z2f2 þ 0.60670 · z2f þ 0.82042 · z2

þ 4.19790 · zf2 þ 2.86470 · zf − 0.83058z

þ 12 · f2 þ 11.67448 · f2 − 4.43136 · f þ 0.38435

f3 ¼ −0.00002 · expðexpðzÞÞ: ð18Þ

Note that these expressions represent 100 ·Q and not Q
itself.
Figure 13 also shows the relative accuracy of the symbolic

expressions. As seen, the final fit has a percent-level

FIG. 13. Kinematical backreaction data ðz; f;QÞ together with the most accurate expressions obtained with AI Feynman. The figure
entitled “1st iteration” shows the data together with f1, the figure entitled “2nd” iteration shows data together with f1 þ f2 etc. Figures
are also included showing the relative deviation between data points and values according to the symbolic expressions, with the y-axis
labeled as Q−prediction

Q , where the prediction is the value obtained by evaluating the symbolic expression obtained from AI Feynman.

6AI Feynman presents expressions with a precision of 14
decimal places. To increase readability, a lower precision is
shown here. Specifically, expressions are shown to a precision of
five decimal places which should be sufficient for readers to
verify the accuracy of the expressions while still allowing a
reasonable readability.
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precision for a significant part of the feature intervals but
does become imprecise above 20% in the considered feature
region. If the symbolic expressions are used on feature
intervals outside those used to create datasets for AI
Feynman, the accuracy becomes very poor (viz. completely
useless), very quickly.
The expressions f1 and f3 were found to be the most

accurate expressions identified by AI Feynman for the first
and third iteration, respectively (and are therefore the only
expressions shown here). From the second iteration, several
expressionswith similar accuracywere found, i.e. therewere
several choices for f2 that looked equally promising in terms
of increasing the accuracy of the symbolic expression.
Another example of f2 identified by AI Feynman is

fnew2 ¼ −0.02369þ z
ffiffiffi
z

p
− 1

π
; ð19Þ

but with this choice, no significant progress was made in
terms of accuracy through a third iteration and the overall
accuracy of the final symbolic expressionwas not as good as
in the case presented in Eq. (18).
The above results illustrate that the task of identifying an

accurate symbolic expression for the kinematical back-
reaction for multiple 2-region models is “difficult,” i.e.
several attempts yielded complicated expressions that were
only accurate on a smaller feature interval than what had
originally been sought. It is therefore worth reconsidering
the choice of working with Q rather than RD; just as it was
in Sec. III A found that more accurate expressions were
obtained for Q than for ΩQ, it may be that more accurate
expressions can be found for RD. Results from applying AI
Feynman to data of the form ðz; f; 108 · kDÞ is shown in
Fig. 14, where kD ≔ RDa2D was chosen as the target for the
regression task because kD is a constant in the FLRW limit,

making it easy to compare the results with the FLRW limit.
It was possible to use AI Feynman to obtain expressions for
kD which were more accurate than what was achieved for
Q. The most accurate fit obtained with AI Feynman is the
polynomial

108 ·kD¼−0.26678 · z6þ1.75499 ·z5−2.05776 · z4f

−4.32391 ·z4þ9.42147 · z3fþ4.97626 · z3

−15.87238 · z2f2−15.87188 · z2f−2.65310 · z2

þ31.74477 · zf2þ24.06085 · zfþ0.30805 · z

þ21.31177 ·f2−3.21452 ·f−5.05345: ð20Þ

The relative accuracy of this expression is shown in
Figure 14. As seen, the expression found is overall quite
accurate—note that spikes in the relative accuracy comes
from division by zero due to kD changing sign.
When extrapolating outside the feature intervals used for

training AI Feynman, the accuracy almost immediately
becomes very poor. This is not surprising since this is a
well-known quality of polynomials: They tend to fit data
well within smaller intervals, but they are prone to over-
fitting and generally cannot be extrapolated outside the
region they were originally fitted to. It is also worth noting
that polynomial expressions for the curvature and kin-
ematical backreaction is a generalization of the scaling
relations discussed in the introduction. The scaling rela-
tions are, however, usually used as “monomials” rather than
in polynomial versions with several terms. Nonetheless,
since the polynomial expressions for RD ¼ kD=a2D can be
related to the scaling relations, it becomes straightforward
to obtain the corresponding expression forQ. This indicates
that accurate polynomial expressions for Q can also be
obtained, making it a bit curious that the author was not

FIG. 14. Curvature data ðz; f; 108 · kDÞ together with the most accurate expressions obtained with AI Feynman. Two lines are
highlighted in the figures because they exhibit “spikes” in the relative precision. By comparing the two figures it is seen that these spikes
come from division by zero because kD for these two models crosses zero i.e. the curvature changes sign in the models represented by
those lines.
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successful in having the AI Feynman algorithm identify
any such accurate polynomial expressions for Q.7

The accurate fit obtained for kD encourages looking at
the possibility of obtaining accurate fits on larger feature

intervals. AI Feynman was therefore trained on data
generated with the feature intervals used in Sec. III A,
i.e. z∈ ½0;5� and f∈ ½0.01;0.3�. In this case the most
accurate expression obtained is also a polynomial, namely

108 · kD ¼ −0.00219 · z6 þ 0.03768 · z5f þ 0.03168 · z5 − 0.64965 · z4f2 − 0.43309 · z4f − 0.17684 · z4

þ 8.84545 · z3f2 þ 1.52360 · z3f þ 0.49810 · z3 þ 8.09975 · z2f3 − 45.06587 · z2f2 − 1.95429 · z2f

− 0.78006 · z2 − 40.49877 · zf3 þ 80.42749 · zf2 þ 9.97251 · zf þ 0.67266 · zþ 67.56565 · f3

− 25.90655 · f2 þ 7.02894 · f − 5.75576: ð21Þ

A comparison of this expression with data is shown in
Fig. 15. Again, the expression is accurate to percent-order
or better for most of the considered feature region. (And
again, there are spikes in the accuracy curves that come
from kD crossing the value zero.)
We nowmove on to look at the redshift drift. AI Feynman

was first presentedwith datasets of the type ðQD;100; f; 1010 ·
ΔzÞ with the feature intervals z ∈ ½0; 5� and f ∈ ½0.01; 0.3�,

but again it proved difficult to obtain accurate symbolic
expressions for these datasets. As for the data forQ, accurate
expressions were eventually obtained for a dataset of the
type ðz; f; 1010 · ΔzÞ, using the smaller intervals z ∈ ½0; 2�
and f ∈ ½0.1; 0.25�. Figure 16 shows data points together
with the most accurate symbolic expression obtained. The
only symbolic expression found that was accurate on almost
the entire feature interval was the polynomial

1010Δz ¼ −10−5 · z6 − 0.05383 · z5f − 0.16136 · z5 − 51.42798 · z4f2 þ 16.24516 · z4f − 0.71557 · z4

− 1.41156 · z3f3 þ 207.32051 · z3f2 − 58.40215 · z3f þ 4.05026 · z3 − 0.01453 · z2f4 þ 4.26328 · z2f3

− 191.11012 · z2f2 þ 41.45695 · z2f − 5.05871 · z2 − 7 × 10−5 · zf5 þ 0.02924 · zf4 − 2.61453 · zf3

− 30.04826 · zf2 − 56.13623 · zf þ 2.28806 · zþ 7 × 10−5 · f5 − 0.00896 · f4 − 0.20814 · f3

− 16.98247 · f2 þ 6.61763 · f − 0.72982: ð22Þ

FIG. 15. Curvature data ðz; f; 108 · kDÞ together with the most accurate expressions obtained with AI Feynman in the larger feature
interval z ∈ ½0; 5�, f ∈ ½0.01; 0.3�. The spikes in the relative precision come from division by zero when kD changes sign.

7In relation to this comment it should be noted that polynomial expressions forQ were obtained, including f2 shown in the main text.
In addition, a polynomial expression for Q was also obtained as a fairly accurate version of f1 i.e. during a “first iteration.” This
polynomial (not shown here) was third degree and obtained while the maximum polynomial degree permitted for AI Feynman was six.
None of the polynomials obtained for Q were as accurate as those found for kD.
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Figure 16 also shows the relative deviation between
1010 · Δz and the prediction of the symbolic expression
shown above. As seen, on the main part of the feature
region, the predictions by the symbolic expression have an
error around or below 1%.
As illustrated in Fig. 16, the symbolic expression was

also compared to data points outside the feature intervals of
the data presented to the AI Feynman algorithm. As seen,
the model actually extrapolates fairly well a bit outside the
f-interval it was developed on. It does not, however,
extrapolate well to significantly larger values of the red-
shift, where it quickly becomes highly inaccurate.
It is lastly noted that some of the expressions found by

AI Feynman which were simpler (i.e. with fewer terms but
non-polynomial) than the one shown above had percent-
level accuracy on large parts of the feature intervals as well,
but they were not quite as accurate as the polynomial
expression which is why only the polynomial expression is
shown here. Simplicity and accuracy are both important
qualities of symbolic expressions, and how these two
qualities should be weighed against each other is not clear
and certainly depends on the goal with the expressions. For
instance, if one wishes to study a possible physical
justification behind symbolic expressions, it may be pru-
dent to weigh simplicity higher. Here, simplicity was not
considered by the author8 and the selection of symbolic
expressions focused only on accuracy, simply because the
main point here is that it is actually possible to obtain
accurate expressions.

IV. DISCUSSION AND CONCLUSION

Symbolic expressions for the kinematical backreaction,
spatially averaged spatial curvature and the redshift drift in
2-region models were obtained through symbolic regres-
sion based on the publicly available AI Feynman algorithm.
It proved difficult to achieve expressions with subpercent
accuracy for the kinematical backreaction in terms of the
(mean) redshift and the model parameter f. It was much
easier to obtain accurate symbolic expressions for the
curvature and the redshift drift. Indeed, several expressions
with around 1% or subpercent accuracy for kD and hδzi
were obtained, perhaps the most interesting being an
expression for hδzi ¼ δhzi þ Δz. In this expression, δhzi
represents the naive expression equivalent to the FLRW
limit, and a symbolic expression for Δz was found with AI
Feynman. Regarding the expressions obtained for kD in
terms of the redshift and model parameter f, it is worth
noting that the accurate expressions obtained were all
polynomials. This is interesting because it highlights that
the models obtained by symbolic regression should gen-
erally be expected to be phenomenological, but also
because the expression can be considered a generalization
of the scaling solutions for backreaction studied in existing
literature.
The fact that different, roughly equally accurate, expres-

sions were obtained for Qðz; fÞ, kDðz; fÞ as well as Δz
as a function of either Q or z together with f is another
reminder that the expressions themselves were not obtained
through theoretical considerations and therefore do not
necessarily represent theoretical insight but instead re-
present phenomenological models. The lack of theoretical
insight is the big downside with symbolic regression and,
indeed, machine learning in general. However, the obtained

FIG. 16. Symbolic expression for ðz; f; 1010 · ΔzÞ plotted together with data points. Stars and solid lines indicate data and symbolic
expression, respectively, inside the feature regions used for generating data presented to AI Feynman. Dots and punctured lines indicate
data and symbolic expression outside the region. The punctured lines are for f ¼ 0.01, 0.06, 0.28, 0.39, 0.45, 0.5, in order of topmost to
lowest lying line. The solid lines indicate data for f ¼ 0.1, 0.1375, 0.2125, 0.25, from top to bottom. The relative accuracy of the
symbolic expression is shown in the figure to the right.

8But note that simplicity is rewarded by the AI Feynman
algorithm which means that simplicity was still indirectly used to
select symbolic expressions.
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expressions are still useful; although the expressions have
no significant theoretical underpinning, they are still correct
(phenomenological) reflections of the relationships
between the different variables/features. This means that
it is still valid to use the expressions for e.g. constraining
model parameters with observational data. This point is the
main motivation for the work presented here. In addition,
the concept of cosmic backreaction has been a significant
part of the cosmological literature for over two decades
now, but very little is still known about under what
circumstances Q will be non-negligible and how Q can
be parametrized in terms of z. Similarly, although the
redshift drift is clearly an important future observable, it has
so far not been possible to understand how redshift drift is
related to spatial averages in a general spacetime. Combining
theoretical work with symbolic regression or other types of
machine learning may pave the way forward. Note for
instance that if a relation between spatial averages and mean
redshift drift exists under certain restrictions e.g. similarly to
equation (8), then an exhaustive symbolic regression algo-
rithm will be able to find it, although it may require much
fine-tuning of the hyperparameters, selecting among algo-
rithms, and patience. If such a physically justifiable relation
between spatial averages and mean observations is obtained
through symbolic regression, it is identifiable since itmust be
possible to extrapolate the symbolic expression e.g. beyond
the feature intervals used for the regression aswell as to other
models. By e.g. studying under which model assumptions
the obtained expression is valid, theoretical insight regarding
the underlying physical justification for the expression can be
revealed.
The results presented here were obtained using AI

Feynman which is aimed at solving regression tasks within
a broad range of fields within physics. It is expected that
more accurate symbolic expressions for backreaction and
redshift drift can be achieved by using symbolic regression
algorithms tuned for this specific task. The fact that
accurate symbolic expressions could be obtained here
for a significant parameter region using AI Feynman
without modifying the algorithm or fine-tuning its hyper-
parameters (listed in Table II of [80]) gives reason to be
optimistic that more complex backreaction evolution can
also be described using symbolic regression, at least if one
tunes the algorithms appropriately. It therefore seems

reasonable to be optimistic that symbolic regression per-
formed on data from more realistic models can yield
accurate symbolic expressions for both Q and δz over
long ranges of redshift and hence diverse types of obser-
vations. This is especially the case since there seems to be
no reason to expect that more realistic and hence compli-
cated models should necessarily imply more complex
cosmic backreaction. Since cosmic backreaction vanishes
or becomes very small under certain constraints in even
some of the most realistic cosmological models currently
available including relativistic simulations (see e.g.
[107,108]), it is in fact not implausible that backreaction
evolution is simpler to model for more realistic models than
for the models considered here. It is, on the other hand, of
course also possible that new obstacles will turn up when
considering other models. One possible obstacle that could
require special modifications of the algorithm is if one
attempts obtaining a symbolic expression forΔz in terms of
Q in a case where Q is not monotonic in z.
Lastly, it must be stressed that the symbolic expressions

obtained here are only valid for the studied 2-region
models in the studied parameter intervals. Since there is
no reason to expect that these models reflect backreaction
realistically, the expressions obtained here should not be
used to attempt realistic parameter constraining with real
data. The results are still useful in terms of parameter
constraints for e.g. proof-of-principle studies. Future
studies will focus on utilizing the approach presented
here together with more realistic backreaction and redshift
drift data in order to gain a more general (and realistic)
idea of how these are related to volume averaged quan-
tities. It could also be interesting to look at more
sophisticated toy-models such as those of [89–91] which
generalize the simple model studied here.
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