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Thermal friction offers a promising solution to theHubble and the large-scale structure (LSS) tensions. This
additional friction acts on a scalar field in the early universe and extracts its energy density into dark radiation,
the cumulative effect being similar to that of an early dark energy (EDE) scenario. The dark radiation
automatically redshifts at the minimal necessary rate to improve the Hubble tension. On the other hand, the
addition of extra radiation to the Universe can mitigate the LSS tension. We explore this model in light of
cosmicmicrowave background (CMB), baryon acoustic oscillation, and type Ia supernova data, including the
SH0ESH0 measurement and the Dark Energy Survey Y1 data release in our analysis. Our results indicate a
preference for the regime where the scalar field converts to dark radiation at very high redshifts (z ≳ 105),
asymptoting effectively to an extra self-interacting radiation species rather than an EDE-like injection. In this
limit, thermal friction can ease both theHubble and the LSS tensions, but not resolve them.We find the source
of this preference to be the incompatibility of the CMB data with the linear density perturbations of the dark
radiation when injected at redshifts close to matter-radiation equality.
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I. INTRODUCTION

The recent discoveries of growing discrepancies in
cosmology, particularly the Hubble and large-scale struc-
ture tensions, may indicate new physics beyond the
standard ΛCDM (Λ-cold dark matter) concordance model.
The Hubble tension is a mismatch between different
estimations of the Hubble rate H0 today [1–3]. It has
grown to the critical 5σ-level between its two most precise
constraints—one based on a ΛCDM fit to the cosmic
microwave background (CMB) as observed by Planck [4]
and the other from more direct measurements in the late
universe using the distance-ladder approach by SH0ES
(Supernova H0 for the Equation of State) [5]. This mis-
match is, in fact, echoed at a lower discrepancy level by
several measurements [6,7], with the early universe and a
ΛCDM model consistently finding a lower H0 [4,8–12]
than the late universe [5,13–26]. A similar but milder
tension is emerging in descriptions of the large-scale
structure (LSS) of the Universe. Late-universe estimations
of the amplitude σ8 of matter fluctuations at a scale of
8h−1 Mpc are lower than those from a ΛCDM fit to the
early-universe CMB [27–32]. Ultimately, these tensions
could hint at an inconsistency between the early and late
universes under ΛCDM.

Taking these tensions at face value, it has been
challenging to postulate new-physics solutions [3,33–36].
Late-universe modifications of ΛCDM cosmology are con-
strained by supernovae and the consistency of baryon
acoustic oscillations (BAO) with the CMB [37,38], while
early-universe modifications are constrained by precise
measurements of the CMB [39]. Nonetheless, two solutions
demand further scrutiny.One is the introduction of extra free-
streaming radiation to the Universe, usually in the form of
additional massless neutrinos quantified by the effective
number Neff of neutrino species [4,14,40,41]. This proposal
is noteworthy because it can slightly ease both tensions,
however, it is unable to fit cosmological data well, in
particular, it worsens the fit to the CMB. Another notable
solution is the addition of early dark energy (EDE) [42–58], a
new component which behaves like a cosmological constant
at early times, then dilutes as fast or faster than radiation, such
that its impact on cosmology is localized in redshift. Although
this solution resolves the Hubble tension, it exacerbates the
LSS tension [59–63]. Moreover, EDEs have been under
scrutiny on the theory front for relying on extremely fine-
tuned scalar-field potentials [43,64–67] and for not offering
an explanation for why the scalar field becomes dynamic
close tomatter-radiation equality, a shortcoming that has been
dubbed the “why-then” problem [48,67].
In previous work [65], we proposed thermal friction

acting upon a scalar field as a solution to the Hubble
tension, combining the favorable characteristics of both the
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EDE and the extra-radiation solutions. This model circum-
vents the need for fine-tuned potentials and holds promise
for providing a good fit to data, addressing a criticism for
each of the two models it consolidates.
In this scenario, a scalar field experiences thermal friction

ϒ in addition to Hubble friction. This extracts the energy
density of the decaying scalar into dark radiation. The dark
radiation automatically redshifts at the minimum required
rate for EDE scenarios, obviating the need for finely-tuned
scalar field potentials, a crucial development from a model-
building perspective. The cumulative scalar field and dark
radiation energy densities then provide an EDE-like energy
injection into the early universe, with the added species
diluting like radiation, similar toNeff , potentially alleviating
the Hubble and the LSS tensions simultaneously.
Such models have been considered in the context of both

inflation [68–74] and late-time dark energy [75,76] due to
their desirable model-building properties, as well as unique
predictions for observations. Hence, besides having favor-
able characteristics to address both tensions, this model can
also provide explanations for two other eras in cosmic
history, with a cascading family of axions experiencing
thermal friction spread out over redshift.
In this paper, we perform a detailed study of the cosmo-

logical implications of thermal friction in the context of the
Hubble tension. We present our model in Sec. II and derive
the perturbations and initial conditions of this theory in
synchronous gauge. We then explore parameter constraints
for this model with methodology, data sets, and priors
described in Sec. III.We present these constraints for various
dataset combinations in Sec. IV, with (IV B) andwithout (IV
A) a SH0ES H0 prior and including Dark Energy Survey
(DES) data (IV C). We find that the preferred injection
redshift for ourmodel asymptotes to high z,where dissipative
axion (DA) EDE mimics an extra self-interacting dark
radiation solution. In Sec. IV D, we demonstrate that
expanding our parameter space will not yield phenomeno-
logically different results and explore the origins of this
preference in Sec. IV E. Finally, we summarize our findings
and conclude in Sec. V. In the appendices, we derive the
perturbation equations of theDAEDE system (AppendixA),
outline the calculation of our model-comparison criteria
(AppendixB) and provide the full posteriors for cosmologies
investigated here (Appendix C).

II. THERMAL FRICTION

Couplings between scalar fields and light degrees of
freedom are a natural extension of minimal scalar field
models and have long been considered in other cosmo-
logical contexts [68–73]. In [65], we introduced a coupling
between an axion field ϕ and a dark non-Abelian gauge
group [SU(2)], which induced a thermal friction ϒ in the
equation of motion of the scalar field. In this minimal
model, the axion field ϕ injects its potential energy into
dark radiation comprised of dark gauge bosons, instead of

converting it into its own kinetic energy. The dark radiation
efficiently self-interacts, maintaining a (dark) thermal
environment,1 and suppressing shear perturbations. This
is in contrast with extra radiation in the form of neutrino
species, which have non-negligible shear perturbations due
to their free-streaming [40,41,77].
Inspired by this DA model, we explore thermal friction

in the context of the Hubble tension. We start by defining
the stress-energy tensors for the DA sector. We decompose
its energy content into the dark radiation component (dr)
and the scalar field (ϕ) component:

Tμν
DA ¼ Tμν

ϕ þ Tμν
dr : ð1Þ

Then Tμν
DA is conserved and does not transfer energy to the

usual ΛCDM components. However, there is energy trans-
fer between the ϕ-field and the dark radiation,
−∇μT

μν
ϕ ¼ ∇μT

μν
dr , which we quantify by [78]

−∇μT
μν
ϕ ¼ gναð−ϒvμdr∂μϕ∂αϕÞ: ð2Þ

Here vμdr ¼ dxμ
dt is the 4-velocity of the dark radiation with

respect to proper time t.
In a self-consistent model, the macroscopic friction

coefficient ϒðρdrÞ, which allows for energy-momentum
exchange between the scalar field and the dark radiation,
emerges from the coupling between the scalar field and the
light fields which make up the radiation in the theory. We
treat ϒ as a constant for the in-depth analysis in this paper.
The full microphysical DA model has temperature-

dependent thermal friction (ϒðρdrÞ ∝ ρ
3
4

dr), which we do
not consider here.2 Thus, when referring to DA EDE
throughout this paper, we imply a constant friction ϒ,
unless otherwise indicated. We briefly comment on con-
sequences of temperature dependence in II B and derive the
perturbations for a general temperature dependence in
Appendix A.

A. Background evolution

Using the stress-energy tensor to derive the evolution
equation of the scalar field and the dark radiation (see
Appendix A for details), we find

ϕ00 þ ð2Hþ aϒÞϕ0 þ a2Vϕ ¼ 0;

ρ0dr þ 4Hρdr ¼
ϒ
a
ϕ02: ð3Þ

1This requirement is trivially fulfilled when the thermal friction
ϒ exceeds the Hubble rate.

2As we shortly explain, our theory is valid in the regime where
the scalar field is overdamped by the additional friction ϒ and
undergoes no oscillations. Temperature-dependence introduces
multidimensional nonlinear boundaries between the under-
damped and overdamped regime, making a systematic explora-
tion of the overdamped regime nontrivial.
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Here primes indicate derivatives with respect to conformal
time τ, and H≡ a0

a , where a is the scale factor. We take the
potential to be quadratic VðϕÞ ¼ 1

2
m2ϕ2, where m denotes

the mass of the scalar field, and ρdr denotes the dark
radiation energy density. We focus on a simple quadratic
potential since the alleviation of fine-tuning was our initial
motivation to explore thermal friction, but our results hold
for more complex potentials. In the regime preferred by
data, all terms in which the dynamics of the scalar field
enter become negligible, thus making our results indepen-
dent of the choice of scalar field potential.3

We restrict our analysis to the overdamped regime in
which the constant friction ϒ ≥ m. In this regime, thermal
friction solves the fine-tuning of EDE potentials. In the
standard ultra-light-axion scalar-field EDE scenario, the
scalar field is frozen until H

a ∼m, at which point it rapidly
begins to oscillate. In the DA EDE model, the thermal
friction dominates over Hubble friction (aϒ ≫ H), and the
scalar field never oscillates.
The time dependence of the overdamped scalar field is

well described by

ϕðτÞ ≈ ϕ0e
−m2

ϒ

R
τ

0
aðτ0Þdτ0 : ð4Þ

Approximating
R
τ
0 aðτ0Þdτ0 ∼ a

H, we estimate that the ther-
mal friction system decays away when

aϒ
m2

≲HðzÞ: ð5Þ

This timescale also coincides with the peak energy density
of the dark radiation, approximately at the redshift zc of the
maximal fractional contribution fede of DA EDE to the total
cosmic energy budget,

fedeðzcÞ ¼
ρedeðzcÞ
ρtotðzcÞ

; ð6Þ

where

ρedeðzÞ ¼ ρϕðzÞ þ ρdrðzÞ; ð7Þ

and ρtot is the sum over all components present in the early
universe. Hence, ϒ

m2 maps directly onto the phenomeno-
logical EDE parameter zc.

If the decay timescale is close to matter-radiation equal-
ity at zeq, thermal friction reproduces a modified EDE
scenario [65]. If zc ≫ zeq, then this system asymptotes to
an extra-radiation solution with self-interacting dark radi-
ation. We refer to these as EDE-like and extra-radiation
regimes, respectively, and show the latter in Fig. 1, which
corresponds to our best-fit DA EDE cosmology.

B. Linear perturbation dynamics

We derive the density and velocity perturbation equa-
tions of the scalar field as well as the dark radiation fluid in
synchronous gauge using Eq. (A7) and find

δϕ00 þ2Hδϕ0 þ ðk2þa2V 00ðϕÞÞδϕ¼−
h0ϕ0

2
−ϒaδϕ0; ð8Þ

−
2h0

3
−
4

3
θdr þ 2

ϒ
aρdr

δϕ0ϕ0 ¼ δ0dr þ
ϒϕ02

aρdr
δdr; ð9Þ

θ0dr þ
ϒ
aρdr

ϕ02θdr ¼ þ k2

4
δdr þ k2

3ϒ
4aρdr

ϕ0δϕ: ð10Þ

Here, we have defined δdr ≡ δρdr
ρdr
, and θdr ≡ ikivi. Note that in

theϒ → 0 limit, these equations reduce to those of a regular
scalar field [45] and strongly self-interacting radiation in
synchronous gauge [77]. See Appendix A for details on the
derivation.

FIG. 1. The energy densities ρi=ρtoday of various components in
units of the critical density today are shown here against red-
shift z, for the best-fit DA EDE cosmology when fitting to
baselineþH0 (defined in Sec. III A). These include radiation
(dotted curve), matter (dashed), the cosmological constant (dot-
dashed), and DA EDE (solid). We further split DA EDE into its
two components, a scalar field component (dashed) dominant in
the early universe that rapidly vanishes near the critical redshift zc
(marked by the vertical line) and dark radiation (dotted), which
grows in the early universe, dominates near zc, and then dilutes
∝ ð1þ zÞ4. In the lower panel, we show the fractional energy
density in DA EDE and its components.

3Scalar-field potentials VðϕÞ ¼ λnϕ
n with n > 2 are challeng-

ing to obtain from a UV-complete theory, as dominant terms with
n ¼ 2 are also generated in the underlying theory (see [66],
Eq. (2), for instance). A quadratic potential on the other hand
arises naturally. For example, for the axionlike particle we
consider here it could be obtained through an explicit symmetry
breaking term in the UV-theory, making the axionlike particle a
pseudo-Nambu Goldstone boson with a small mass term.
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The scalar field perturbations now have an additional
friction sink termϒaδϕ0 that extracts energy from the scalar
field perturbations, in parallel with the modifications to its
background evolution. The fluid equations are modified by

both a source term, 2 ϒ
aρdr

δϕ0ϕ0, and a sink term, ϒϕ02
aρdr

δdr, in
Eq. (9). The sink term is due to the modified continuity
equation inEq. (3),which enterswhen rewriting δρ0dr in terms
of δ0dr. Similarly, the velocity perturbations have an addition
source, k2 3ϒ

4aρdr
ϕ0δϕ, and sink term, ϒ

aρdr
ϕ02θdr.

Practically, we find that the scalar-field perturbations
have a negligible impact on CMB spectra. As the scalar
field exponentially decays for z < zc, it has inconsequential
contribution to the energy budget at z� when the CMB is
emitted. Accordingly, the source terms in the fluid equa-
tions that are proportional to δϕ also quickly become
subdominant.
We distinguish two regimes for terms impacting CMB

spectra. For very early injection times, zc ≫ zeq, the system
quickly approaches one in which all thermal friction terms
are unimportant. In effect, this regime is identical to a
universe that has always included self-interacting dark
radiation, as opposed to having it injected at some redshift.
The impact on CMB spectra is then dominated by the
addition of such dark radiation. For injection around
zc ∼ zeq, although ϕ and δϕ quickly vanish, ϕ0 remains

sizeable enough such that the sink term ϒϕ02
aρdr

δdr dominates
the evolution in Eq. (9). This leads to a suppression of the
overdensities of the dark radiation fluid. In essence, the
continuous sourcing of dark radiation acts to smooth its
anisotropies, differentiating the evolution of its perturbations
from those of other fluids which are dictated by metric
perturbations. We examine how this dynamic affects the
CMB in Sec. IV E.
The case of temperature-dependent friction (which we

do not explore in this work) also sees this suppression of
dark radiation density perturbations in the EDE-like
regime. The term responsible for the smoothing in this
scenario is ð1 − n

4
Þ ϒϕ02
aρdr

δdr, for temperature-dependent fric-

tion ϒ ∝ ρ
n
4

dr. As attractor initial conditions only exist for
n < 4 [74], the sink term can, at most, decrease by a factor
of 4. Thus, even for temperature dependent friction we
expect a smoothing of the dark radiation anisotropies,
which differentiates its perturbation evolution from those of
the other fluids.
In the extra-radiation regime, with zc ≫ zeq, we do not

expect qualitative differences between constant and temper-
ature-dependent friction since all friction-related terms
become subdominant at redshifts the CMB is sensitive to.

C. Initial conditions

Our system has attractor initial conditions at the back-
ground level. At very early times, when the axion field is
effectively frozen, we can assume ϕ00 → 0 and

ϕ0 ≃
am2ϕ

2Hþ aϒ
: ð11Þ

Plugging this estimate into Eq. (3) and neglecting ρ0dr, we
find

ρdr ≃
ϒam4ϕ2

4Hð2Hþ aϒÞ2 : ð12Þ

Neglecting ρ0dr when estimating the initial amount of dark
radiation is justified as this system maintains a quasi-steady-
state temperature on timescales∼ðaϒÞ−1 (or ð2HÞ−1, which-
ever is shorter at the time initial conditions are set). Note that
due to the attractor initial conditions the system quickly
approaches these conditions evenwhen startingwithmore or
less dark radiation. The initial value ϕi is an input parameter
that controls how much new physics we are injecting. This
corresponds to the amount of EDE-like energy, or when the
scalar field decays away very early how much extra dark
radiation is injected. We assume adiabatic initial conditions
for the DA EDE perturbations:

δϕ ¼ 0; ð13Þ

δdr ¼
3

4
δγ; and ð14Þ

θdr ¼ θγ: ð15Þ

III. DATASETS AND METHODOLOGY

We add the above DA EDE cosmology to the Boltzmann
code CLASS [79] and run Markov chain Monte Carlo
(MCMC) simulations using Cobaya [80] to obtain parameter
posterior distributions, defining convergence using the
Gelman-Rubin criterion [81], R − 1 < 0.05. We use
GetDist [82] for analyzing output. Lastly, to obtain best-fit
parameter values, we utilize the BOBYQA likelihood maxi-
mization code [83–85].

A. Data

For parameter constraints, we consider the standard
datasets that EDE investigations employ [44–47,50,54,86]:
(1) the Planck 2018 CMB high-l (TTTEEE), low-l

(lowlþ lowE) [4,87] and lensingmeasurements [88];
(2) BAO measurements from the Baryon Oscillation

Spectroscopic Survey (BOSS) DR12 at redshifts
z ¼ 0.38, 0.51, and 0.614 [89], Sloan Digital Sky
Survey main Galaxy sample at z ¼ 0.15 [90], and
6dFGS at z ¼ 0.106 [91]; and
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(3) the Pantheon Supernovae (SN) sample [92].4

For all the above, we use the default likelihoods available
with Cobaya, which include full covariance matrices account-
ing for statistical and systematic errors for Planck 2018
CMB high–l (TTTEEE), low-l (lowlþ lowE) [4,87], and
lensing measurements [88], BOSS DR 12 [89], and the
Pantheon Supernovae sample [92], which can be found
in the respective references and their supplemental materials.
For the BAO distance ratio measurement from 6dFGS at
zeff ¼ 0.106, we use rsðzdÞ=DVðzeffÞ ¼ 0.336� 0.015
[91], and for the BAO measurement from the SDSS
main Galaxy sample at DVðzeff ¼ 0.15Þ ¼ ð664� 25Þ×
ðrd=rd;fidÞ, we use the full likelihood as provided in
Table 3 in [90].
This combination of data has several important con-

straining properties. CMB and BAO together break geo-
metric degeneracies by measuring the sound horizon at
multiple redshifts. Their agreement under ΛCDM also
constrains new physics in the redshifts between the
CMB and BAO. Supernovae from Pantheon strongly
constrain new physics over their own redshift range,
altogether largely excluding new physics in the late uni-
verse. Beyond providing these constraints, these datasets
are also consistent under a ΛCDM cosmology, providing a
powerful point of comparison for any new physics—new
physics should not introduce a tension where previously
none existed.
We term the above combination our baseline datasets, to

which we eventually add either or both:
(4) the latest SH0ES measurement of the present day

Hubble rateH0¼ 73.04�1.04 kms−1Mpc−1 [5], and
(5) the Dark Energy Survey Year 1 (DES Y1) galaxy

lensing and clustering measurements [27,93].
We include the SH0ESH0 measurement to mitigate prior

volume effects [61,94] and to evaluate whether our model
can reconcile the most discrepant local H0 measurement
with the one derived from the CMB. We focus on the local
late-time measurement resulting in the largest Hubble
tension, though we do note that other local measurements
with lower H0 exist [20,23]. We compare the DA EDE
cosmology to ΛCDM, but we note that baselineþH0 is
discrepant under ΛCDM. Therefore, the target goodness-
of-fit to CMB for this extended model is a ΛCDM fit to
baseline.
We include DES Y1 data to study the impact of thermal

friction on large-scale structure observations and the LSS
tension, wherein ΛCDM combined with the Planck CMB
overpredicts the amplitude of matter fluctuations σ8 relative

to late-universe measurements relying on weak lensing and
galaxy clustering [27–31]. Although DES Y1 data is in∼2σ
agreement with the Planck ΛCDM CMB, this dataset
nonetheless helps constrain EDE models that generically
increase ωcdm in order to accommodate a larger H0 [60].
Hence, we study DA EDE first with baseline alone and

then under optimistic circumstances—with SH0ES and
DES forcing a solution to the H0 and S8 tensions. As we
will show in the next section, we find that for every dataset
combination the best-fit DA EDE solution matches onto a
cosmology with extra self-interacting dark relativistic
species, a model that requires only one extra parameter
rather than the three introduced in the DA EDE cosmology.
Recent work has shown that CMB data from the

Atacama Cosmology Telescope (ACT) Data Release 4
combined with large-scale Planck TT, Planck CMB lens-
ing, and BAO data prefers the existence of EDE even
without the inclusion of local H0 measurements [95]. This
is confirmed by independent tests and data from the South
Pole Telescope (SPT) [96–99]. This preference is driven by
ACT’s TE and EE power spectrum data, and the exclusion
of the tight constraints arising from Planck’s high-l TT
data, and is supported by data from the SPT [95]. We do not
include these data sets here as it remains unclear whether
these differences in support for an EDE cosmology arise
from new physics or systematics [95,96].

B. Priors

Using the data combinations outlined above, we con-
strain three cosmologies—ΛCDM, thermal friction as
described in Sec. II (labeled DA EDE), and varying the
massless neutrino degrees of freedom Neff (labeled Neff ).
For all three, we constrain the standard ΛCDM parameters:
the baryon densityΩbh2, the cold dark matter densityΩch2,
the curvature spectrum amplitude As at k ¼ 0.05 Mpc−1

and its tilt ns, the reionization optical depth τreio, and the
Hubble rate today, H0, all with noninformative priors.
For ΛCDM and DA EDE, we adopt the standard

neutrino description, with one massive neutrino with
minimal mass mν ¼ 0.06 eV and two massless neutrinos.
Allowing the number Nur of massless neutrinos to vary as
Nur ∈ ½0; 5�, the cosmology labeled Neff adds one addi-
tional parameter to ΛCDM. This cosmology also holds the
number of massive neutrinos constant at 1, with a mass
of mν ¼ 0.06 eV.
The additional theory parameters beyond ΛCDM in DA

EDE are the constant thermal friction ϒ, the scalar field
mass m both in units of ½Mpc�−1, and the initial value ϕi of
the scalar field in units of ½MPl�. For our analysis, we
reparametrize the model in terms of effective parameters
(m, m2

ϒ , fede), where fede denotes the maximal fractional
amount of scalar field and dark radiation energy density
combined, and m2

ϒ maps onto the often used phenomeno-
logical parameter zc, the redshift at which fede peaks as
defined in Eq. (6).

4We note that while a newer version of this dataset has been
released, the corresponding likelihood is not yet out. Moreover,
we expect minimal changes to our constraints from improve-
ments in supernovae (SNe), as DA EDE all but vanishes at the
redshifts, where SNe provide constraints. The primary purpose of
SNe data here is to eliminate the possibility of resolving the
Hubble tension through the introduction of late-time new physics.
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We impose the priors in Table I, where the prior onm2=ϒ
has the additional prior of m ≪ ϒ to remain in the
overdamped regime. The purpose of this is twofold.
Primarily, this forces the scalar field to instantaneously
dump its energy density into the dark radiation, which then
dilutes away as a−4. Early dark energy scenarios only
alleviate the Hubble tension if their energy density dilution
is at least as fast as that of radiation [43], a box ticked by
this additional prior. Another valuable advantage of this
choice is that our results become broadly applicable to all
other choices of potentials, as the evolution of the scalar is
dominated by thermal friction, making the specifics of its
potential irrelevant. Hence, the fine-tuning of EDEs is
guaranteed to be alleviated by the construct of overdamped
DA EDE itself—regardless of potential.
In Fig. 2, we show how the prior on our effective

parameters translates to allowed ranges on the theory
parameters m and ϒ. The curves of constant zc show
the redshifts that this permitted region probes. Further
expanding our prior range in m to include larger values
increases the maximum possible zc. However, we limit
ourselves to zc ≲ 2 × 105, as data loses sensitivity to higher
injection redshifts [42,100]. We find that our model
asymptotes to these high injection redshifts, approaching

the extra-radiation regime, and explore this further in
Sec. IV E.

IV. RESULTS

For each combination of data sets, we compare the three
cosmologies ΛCDM, DA EDE, and Neff . As mentioned
before, Neff provides a 1-parameter approach to adding
extra free-streaming radiation to a ΛCDM universe. We
seek to juxtapose our model with Neff to compare the
benefits or drawbacks of adding a more complicated dark
radiation which couples to an EDE-like scenario. We
illustrate the Hubble and LSS tensions with the parameters

H0 and S8 ¼ σ8

ffiffiffiffiffi
Ωm
0.3

q
, respectively. Our objectives are to

quantify:
(i) how the addition of thermal friction impacts the

Hubble tension,
(ii) the goodness-of-fit of thermal friction in comparison

to our reference cosmologies, and
(iii) the impact of thermal friction on the LSS tension.
Since we find our best fit to prefer asymptotically early

injection of dark radiation, we further investigate
(iv) at what redshift zc the data looses sensitivity to DA

EDE injection time, and
(v) why the EDE-like regime of thermal friction is not

preferred by data.
We discuss (i) in Secs. IVA and IV B, (iii) in Sec. IV C,
(iv) in Sec. IV D, and (v) in Sec. IV E. We explore
(ii) throughout.

A. Data consistent under ΛCDM
Planck CMB data, Pantheon supernova data, and the

BAO measurements outlined in Sec. III A are concordant
under a ΛCDM cosmology. As ΛCDM is a nested model in
both DA EDE and varying Neff , we do not expect to
introduce new tensions between these data. Ideally, the new
physics introduced to resolve the H0 and S8 cosmic
tensions would succeed without the inclusion of SH0ES
or weak-lensing data. While the inability of Neff to achieve
this is documented [40,101], here we test if the DA EDE fit
to these concordant data alone predicts a higher H0 or
lower S8.
2D marginalized posteriors for the DA EDE parameters,

Neff , and the two parameters H0 and S8 that quantify the
tensions are shown in Fig. 3, while Table II records the 1D
marginalized posteriors and best-fits values of the tension
parameters (see Fig. 10 and Table X for the full posteriors
of all cosmological parameters). The Hubble tension
becomes apparent between the 2σ SH0ES band shown
in light gray and the ΛCDM contour. The smaller LSS
tension is represented here by DES Y1 constraints on S8, in
darker gray. While DA EDE predicts a higher H0 than
ΛCDM, the increase is small, and the model does not
provide a solution to either tension.

TABLE I. Priors for thermal friction parameters, where m and
m2=ϒ have units of ½Mpc�−1. These priors allow for the following
ranges in derived parameters: 770 < zc < 2.2 × 105 and
10−5 < ϕi

MPl
< 10−2.

Parameter Prior

log10 m [3, 7]
log10

m2

ϒ
[1, log10 m − 1]

fede [0.001, 0.2]

FIG. 2. The shaded region shows the allowed parameter space
for ϒ and m, given the priors specified in Table I. The dashed
curves correspond to constant zc as labeled. This region probes a
range from 770 < zc < 2.2 × 105.
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Nonetheless, the 2D contours and 1D marginalized
likelihoods exhibit an interesting feature—while varying
Neff only increases the error on H0 without shifting its
central value, DA EDE both shifts the central value and
broadens the error. Moreover, DA EDE only increases the
predicted H0 relative to ΛCDM, while Neff broadens the
H0 contours to both higher and lower values. However, this
feature arises from our choice of priors for DA EDE and not
the model itself. Prerecombination EDE (zc > z�) can
alleviate the Hubble tension, but postrecombination EDE
(zc < z�) worsens it [43]. As our primary interest here in
DA EDE is in its potential to resolve tensions, we limit zc to
the range of interest, leading to contours that only increase
H0 relative to ΛCDM.
Choices of priors also dominate posteriors on the ϒ-m

plane. The preferred region for fede < 5% at 2σ with the
mean at fede ≃ 1%. For such small amounts of DA EDE,

data become insensitive to its properties, and ϒ and m
become unconstrained; their contours effectively tracing
the prior in Fig. 2.
Finally, Table III shows the CMB and total χ2 for all

three cosmologies fit to baseline. We also calculate the
Bayesian information criteria (BIC) [102] for all models
and present ΔBIC relative to the ΛCDM fit to the same
data, with the model with minimum BIC being preferred
(see Appendix B for details). While generally one expects a
χ2 improvement equal to the number of additional param-
eters, this is difficult to quantify for nonlinear models [103].
Specifically in DA EDE, prior-volume effects change the
effective number of additional parameters across the
parameter space. As fede → 0, the model adds one extra
parameter to ΛCDM, but for larger fede, data gains
sensitivity to the existence of DA EDE and the number
of additional parameters can rise to 3. Analysis with
additional data in the next subsections shows a preference
for the regime where DA EDE is injected at very early
redshifts zc > 104, asymptoting to an extra self-interacting
dark radiation solution [104]. This regime also reduces the
effective number of extra parameters to 1—the amount of
extra dark radiation. Posteriors for DA EDE fit to baseline
prefer the fede → 0 regime, such that DA EDE effectively
adds one extra parameter to ΛCDM, same as Neff . While
for DA EDE, the improvement is close to that expected
Δχ2total ≃ −1, Neff finds essentially no improvement. This is
consistent with analyses that allow Neff to vary, which find
it consistent with the ΛCDM value Neff ¼ 3.046 [101].
Lastly, the BIC shows preference for ΛCDM over both
extensions.

B. The Hubble tension

In Fig. 4 (see Fig. 11 and Table XI for full posteriors), we
show the2Dposteriors obtained by fitting to our baseline data
sets plus the local Hubble measurement [5] (baselineþH0),
following the methodology described in Sec. III A. DA EDE
(purple) can be seen to reduce the Hubble tension, while
leaving S8 roughly unchanged. Comparing to Neff , DA EDE
finds a larger H0 by 1.18 km=s=Mpc and smaller S8 by
0.0071, gaining improvements in both tensions over simply
varying the number of massless neutrinos, as also shown in
Table IV. Data also show preference for fede > 0 at > 2σ,
with a best fit of fede ¼ 6.3%. This best fit is similar to other
EDEs that dilute like radiation as a−4 [44,46].

FIG. 3. MCMC posteriors for ΛCDM, Neff , and DA EDE,
fitting to our baseline data combination Planck, BAO, and SNe,
which are concordant under a ΛCDM cosmology. In gray bands,
we show the SH0ES constraint on H0 and the DES Y1 constraint
on S8. The labels at the top of each column are the 1D
marginalized posteriors for each parameter in a DA EDE
cosmology.

TABLE II. 1D marginalized posteriors of measurements quan-
tifying the two cosmological tensions, showing the mean (best-
fit) �1σ, fitting to baseline data.

Model H0 [km=s=Mpc] S8

ΛCDM 67.73ð67.86Þ � 0.42 0.8239ð0.8226Þ � 0.0104
DA EDE 68.37ð68.14Þþ0.50

−0.77 0.8265ð0.8308Þ � 0.0107
Neff 67.4ð67.3Þ � 1.1 0.8224ð0.8237Þ � 0.0109

TABLE III. The goodness-of-fit when fitting to the baseline
data combination and the ΔBIC relative to BICΛCDM ¼ 4033.13.

Model χ2CMB χ2total ΔBIC

ΛCDM 2773.2 3813.54 0
DA EDE 2772.2 3812.82 23.68
Neff 2772.7 3813.7 8.29
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Projecting the amount of extra radiation energy density
of our best fit of fede ¼ 6.3% onto the amount of energy
density that would be provided by extra neutrino species,
we find a corresponding ΔNeff ¼ 0.47. In this mapping,
we set

ρr ¼ ργ

�
1þ 7

8
Neff

�
4

11

�4
3

�
; ð16Þ

with Neff ¼ 3, and then solve for ΔNeff such that

ΔNeff ¼
8

7

�
11

4

�4
3

�
1þ 7

8
Neff

�
4

11

�4
3

�
fede: ð17Þ

Of course, this is a crude mapping, with the comprehensive
differences between the Neff and DA EDE cosmologies

fully quantified by the posteriors shown in Fig. 4 and
Table XI.
Another interesting feature of these posteriors is that the

preferred EDE injection time is at high zc > 104, with our
best-fit zc ¼ 9.1 × 104. The shape of the zc contours in
Fig. 4 corresponds to the possible redshifts that can be
explored subject to satisfying the priors on ϒ. Typically,
EDE modifies the expansion history close to matter-
radiation equality, localized in redshift around
zeq ≃ 3300, maximizing its impact on the sound horizon,
and hence the predicted H0. However, in DA EDE, we find
that the preferred region in zc occurs at much higher
redshifts, with data effectively favoring the additional
radiation energy density over an EDE-like injection. This
corresponds to a constant fractional increase in energy
density throughout radiation domination, which fades as
matter takes over [105]. Indeed, our results show apreference
for an asymptotic extra-radiation solution, in which self-
interacting dark radiation has always been part of cosmic
history, throughout the redshifts (up to z ∼ 105) that data is
sensitive to [42,100]. The ability of this asymptotic solution
to ease the Hubble tension without disturbing, but also
without further solving S8, is in agreement with other
investigations of the effects of self-interacting radiation on
the Hubble tension [41,104,106,107].
Finally, we consider the impact to the χ2 for the CMB

and SH0ES in Table V. Driven by the inclusion of the local
SH0ES measurement, DA EDE and Neff both predict a
higher H0. Studies have shown that this increase in H0 is
not compensated for by Neff in a manner that either
decreases or maintains χ2CMB [4,14,40], as generally
achieved by EDEs. From the total χ2’s in Table V, DA
EDE provides an improvement of Δχ2 ≃ 13 for only three
additional degrees of freedom, relative to the expectation of
Δχ2 ¼ 1 per additional parameter. Although naively this
would imply that the model performs well, this improve-
ment comes entirely from a higher H0 and indeed at cost to
the CMB χ2.
Note that the ΛCDM χ2CMB reported in Table V is already

greater than a ΛCDM fit to just the concordant baseline
datasets. Under ΛCDM, baseline data sets are consistent
with each other, but incompatible with SH0ES. A ΛCDM
fit to baselineþSH0ES worsens the fit to the CMB by
Δχ2 ≃ 5. The attraction of EDEs stems from their ability to

FIG. 4. MCMC posteriors for ΛCDM, Neff , and DA EDE,
while fitting to baselineþSH0ES, following the same conven-
tions as Fig. 3. Note that under ΛCDM the data combined here
are discrepant, but we show ΛCDM contours to draw a
comparison with Neff and DA EDE run on the same data
combination.

TABLE IV. 1D marginalized posteriors of measurements quan-
tifying the two cosmological tensions, showing the mean (best-
fit) �1σ, fitting to baselineþH0.

Model H0 [km=s=Mpc] S8

ΛCDM 68.44ð68.53Þ � 0.39 0.8093ð0.8095Þ � 0.0100
DA EDE 70.85ð71.43Þþ0.93

−0.80 0.8159ð0.8157Þ � 0.0102
Neff 70.53ð70.25Þ � 0.76 0.8241ð0.8228Þ � 0.0111

TABLE V. The goodness-of-fit to CMB data and SH0ES, while
cumulatively fitting to baselineþH0. For reference, ΛCDM fit
just to baseline has χ2CMB ¼ 2772.6. TheΔBIC are shown relative
to BICΛCDM ¼ 4056.16.

Model χ2CMB χ2H0
χ2total ΔBIC

ΛCDM 2777.5 18.8 3836.56 0
DA EDE 2780.3 2.4 3823.55 11.39
Neff 2780.0 7.2 3827.70 −0.73
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predict a high H0 compatible with SH0ES, while providing
a fit to the CMB competitive with ΛCDM fit only to
concordant data sets. We do not find these important
qualities in DA EDE, which reduces the Hubble tension
at the cost of CMB χ2.
Moreover, the BIC shows preference for ΛCDM over

DA EDE despite its improvement in total χ2 in Table V,
while Neff has a BIC comparable to ΛCDM. Ultimately, we
find similarities with the weaknesses of the Neff solution, in
that, the CMB χ2 is worsened at the cost of improving the
Hubble tension.

C. Impact of LSS measurements

Searching for a new concordance model of cosmology to
replace ΛCDM, we not only need to address the Hubble
tension, but also resolve the LSS tension. In this section, we
consider the impact of including DES Y1 data in our
analysis on cosmological parameter constraints as well as
goodness-of-fits.
We begin by adding just the DES to our baseline data, to

determine if LSS data suppresses the amount ofDAEDEas it
does for various other EDE models [59,60] (but see [61] for
an alternate perspective). These results are shown in Fig. 5
and Table VI (see Fig. 12 and Table XII for full posteriors).
The addition of DES data without the SH0ES H0 prior

does not by itself prefer nonzero fede, but nor does DES
data exert a strong enough pull to significantly shift the
predicted S8 from baselineþH0. This is unlike including

the SH0ES H0 prior, which substantially shifts the pre-
dicted H0 relative to baselineþDES. This is unsurprising,
given the smaller tension between DES and baseline.
Ultimately, we find constraints for both DA EDE and
Neff that include ΛCDM, but with broader error bars.
The more interesting posteriors result when we include

both DES and SH0ES with our baseline data, shown in

FIG. 5. Posteriors for ΛCDM, ΛCDM with variable Neff , and
DA EDE, while fitting to baseline and DES Y1. As in Fig. 4, we
show the SH0ES constraint on H0 and the DES Y1 constraint on
S8 and 1D marginalized posterior for each parameter in a DA
EDE cosmology at the top of each column.

TABLE VI. 1D marginalized posteriors of measurements
quantifying the two cosmological tensions, showing the mean
(best-fit) �1σ, fitting to baselineþDES Y1.

Model H0 [km=s=Mpc] S8

ΛCDM 68.19ð68.08Þ � 0.38 0.8115ð0.8128Þ � 0.0091
DA EDE 68.94ð68.38Þþ0.46

−0.88 0.8120ð0.8133Þ � 0.0091
Neff 67.4ð67.2Þ � 1.1 0.8086ð0.8078Þ � 0.0094

FIG. 6. Following the same conventions as Figs. 4 and 5, we
show posteriors for ΛCDM, ΛCDM with variable Neff , and DA
EDE cosmologies, while fitting baseline plus SH0ES and DES
Y1. Note again that under ΛCDM the data combined here are
discrepant. However, the ΛCDM contours allow for a direct
comparison with the extended cosmologies.

TABLE VII. The goodness-of-fit to CMB and DES data, while
cumulatively fitting to baselineþDES. We show ΔBIC relative to
BICΛCDM ¼ 4706.11.

Model χ2CMB χ2DES χ2total ΔBIC

ΛCDM 2774.1 509.3 4323.45 0
DA EDE 2774.7 509.4 4324.12 25.1
Neff 2776.0 508.1 4324.17 8.86
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Fig. 6 and Table VIII (see Fig. 13 and Table XIII for full
posteriors). As with baselineþH0, we find> 2σ preference
for fede > 0, with a smaller best fit of fede ¼ 4.7% and
asymptoting zc with a best fit of zc ¼ 8.1 × 104. But in this
case, DA EDE and ΛCDM both surprisingly find posteriors
with a higher H0 and a lower S8 than in previous data set
combinations, as also shown by Fig. 7. Based on the χ2’s
per individual data set in Tables V, VII, and IX, we explain
this as follows. Alone, the DES data does not exert a strong
pull on posteriors as seen from Fig. 5. However, combined
with the SH0ES likelihood, both DES and SH0ES exert a
stronger pull on posteriors in a direction that optimizes both
their χ2’s, leading to the results in Table VIII.
In both posteriors that include DES, ΛCDM, and DA

EDE χ2s are comparable, but Neff worsens the fit to the
CMB, as shown in Tables VII–IX, with all three models
producing worse χ2CMB than a ΛCDM fit to just baseline
which has χ2CMB ¼ 2772.6. When considering all data sets,
DA EDE improves χ2H0

over Neff with a total χ2 improve-
ment over ΛCDM of Δχ2total ¼ −12.32 and Neff of −6.15.
While this improvement in goodness-of-fit is greater than

the number of new parameters added, 3 and 1, respectively,
the BIC disfavors both models over ΛCDM as seen from
Table IX. Moreover, our best fit corresponds to the regime
where DA EDE matches onto the known extra dark
radiation solution [104] (with no shear perturbations),
which can be fully quantified by just one additional
parameter.
The best-fit H0 we obtain for baselineþH0

(H0 ¼ 71.43 km=s=Mpc) is slightly larger than that
for baselineþDESþH0 (H0 ¼ 71.06 km=s=Mpc) and
significantly larger than baselineþ DES (H0 ¼
68.38 km=s=Mpc), coinciding with the amount of fede.
The mean value for H0 is largest for baselineþH0 þ DES,
but the shift from baselineþH0 is not statistically significant.

D. Data are not sensitive to higher zc
As described in our priors in Sec. III B and in Table I, and

indeed as found by other investigations of the sensitivity of
the CMB to high redshifts [42,100], we find diminishing
returns of searching the parameter space that permits

TABLE VIII. 1D marginalized posteriors of measurements
quantifying the two cosmological tensions, showing the mean
(best-fit) �1σ, fitting to baselineþH0 þ DES.

Model H0 [km=s=Mpc] S8

ΛCDM 68.76ð68.63Þ � 0.36 0.8013ð0.8055Þ � 0.0087
DA EDE 71.08ð71.06Þ � 0.85 0.8058ð0.8075Þ � 0.0089
Neff 70.50ð70.86Þ � 0.78 0.8102ð0.8106Þ � 0.0096

TABLE IX. The goodness-of-fit to CMB and DES data, while
cumulatively fitting to baselineþH0 þ DES. We show ΔBIC
relative to BICΛCDM ¼ 4727.52.

Model χ2CMB χ2H0
χ2DES χ2total ΔBIC

ΛCDM 2778.4 18.0 508.0 4344.84 0
DA EDE 2778.7 3.6 508.3 4332.52 12.11
Neff 2783.3 4.4 508.8 4338.67 1.97

FIG. 8. We show the CMB residuals in units of cosmic variance
for various DA EDE cosmologies. In this format, for features to
be observable, they must be different by ΔCXX

l =σCV > 1. These
curves fixm ¼ 109 Mpc−1 and all other cosmological parameters
at the baselineþH0 best fit, varying just logðm2=ϒÞ ∈
½6; 9� Mpc−1, producing DA EDE curves with different zc. The
residuals are taken with respect to the curve at lowest
zc ¼ 2.2 × 105. In effect, we project that increasing zc beyond
the posteriors shown in Secs. IV B and IV C does not affect our
conclusions.

FIG. 7. Herewe show the impact of inclusion of LSS data onDA
EDE posteriors, along with the local estimations of H0 by SH0ES
and S8 from DES Y1. As expected, both tensions are improved
most when fitting to both DES and SH0ES simultaneously.
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zc > 105. In Fig. 8, we show the impact of further
increasing zc on observables, while holding all other
cosmological parameters constant. Increasing zc by over
an order of magnitude has minimal impact on the CMB
power spectra, all well under the cosmic variance limit of
ΔCXX

l =σCV ¼ 1 on the plot.
Physically, this is unsurprising as follows. The redshift

range shown is deep in the radiation-dominated era. Then,
because DA EDE redshifts like radiation, simply fixing fede
fixes the amount of dark radiation for all z < zc. This would
not be true closer to zeq, where matter density which
redshifts slower than DA EDE becomes important.
Therefore, it is unsurprising that going to higher zc has
an asymptotic impact on CMB observables, as the phe-
nomenology of the Universe at z < zc remains identical,
resulting in the Universe simply having the same amount of
dark radiation being injected earlier and earlier. Eventually,
data would be expected to lose sensitivity to the injection
time in the deep past. This is echoed in Fig. 8, results that
are robust to changes in m.
We note that this phenomenology—the insensitivity of

data to new physics introduced at asymptotically high red-
shifts may be present in entirely unrelated fundamental
models. New physics with sharp transitions like in EDE
[42,43], or step transitions like in some modified gravity,
decaying dark matter models [108] and redshift-dependent
entropy deposits [109] only impact cosmology if data is
sensitive to physics at the transition redshifts. If data con-
straints push the transition redshift to be asymptotically early,
this should be read as the data disfavoring the transition.

E. Why does data not prefer EDE thermal friction?

Although at the background level, DA EDE can map
onto the zc ≈ zeq EDE solution to the Hubble tension [65],
it is the details of the fundamental model forming the EDE
that dictate its perturbative behavior. Unlike the original
EDE [44], for DA EDE injection close to zeq, the fit to the
CMB is significantly worsened.
To further investigate the preference against an EDE-like

injection, we fix zc ¼ zeq and fede ¼ 0.06, and search for
the best-fit point in this forced EDE-like regime, by running
a MCMC and then a minimizer as described in Sec. III for
baselineþH0. By fixing fede to the best fit for uncon-
strained DA EDE for the same datasets, we attempt to
isolate the impact of changing the injection redshift. We
show the CMB residuals with respect to ΛCDM for the
forced EDE best fit in Fig. 9, along with the best-fit curves
for Neff and an unconstrained DA EDE. The incompati-
bility between the forced EDE curve and CMB data are
apparent, most so in the first three acoustic peaks of the TT
spectrum and the high-l TE. These residuals cannot be
absorbed by shifts in the ΛCDM parameters, as done for
other EDEs [44,45,67].
We trace the source of the preference for very early zc to

the impact of thermal friction terms in the DA EDE

perturbation equations. As discussed in more detail
Sec. II B, the perturbations of the dark radiation fluid
dominate the impact on observables since the scalar field
quickly vanishes. In particular, the thermal friction terms in
Eq. (9) lead to a suppression of the dark radiation density
anisotropies close to the injection redshift zc. However, for
asymptotically early injection redshifts, the impact of these
terms on observables is negligible. We conclude that data
disfavor the EDE-like regime of the DA EDE model we
investigate in this work due to an incompatibility with the
suppression of the dark radiation anisotropies arising from
thermal friction.

V. CONCLUSIONS

The transformation of cosmology into a precision
science has unearthed discrepancies within a ΛCDM
description of the Universe, in particular, the Hubble and
large-scale structure tensions. Seeking to find a new
concordance model of cosmology, we aim to resolve both
tensions with the introduction of new physics.
To do so, we combined favorable characteristics of two

solutions to the individual tensions—early dark energy and
extra radiation, into the dissipative axion model [65] (DA
EDE), which couples a scalar field to self-interacting dark
radiation.5 This is achieved through thermal friction acting

FIG. 9. We show the CMB residuals with respect to ΛCDM in
units of cosmic variance for each cosmology at its best-fit point
when fit to baselineþH0. The solid curve at zero isΛCDM,Neff is
in dashed orange, DA EDE in solid blue, and DA EDE fixing
zc ¼ zeq and fede ¼ 6% is in dotted blue. Over these, we scatter the
Planck 2018 (P18) measurements of the CMB spectra. Finally, the
vertical lines in eachplot represent the locations of the peaks in each
spectrum. Note that Planck 2018 nuisance parameters slightly
modify these curves in their comparison with data.

5In fact, self-interacting radiation has been shown to outper-
form Neff , which parametrizes extra free-streaming radiation
[104,109].
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on a scalar field, which extracts the energy density of the
scalar into a dark radiation bath.
Here, we limit ourselves to the range in which thermal

friction dominates over Hubble friction around the redshift
∼zc at which the scalar thaws and donates its energy to dark
radiation. This regime has several advantages. Most impor-
tantly, this addresses the primary criticism of EDE from the
theory perspective—we are able to obviate fine-tuning
problems related to the scalar potential. In this regime, the
scalar is overdamped by friction and does not undergo
oscillation in its potential, but instead quickly dumps all
its energy density into dark radiation. Therefore, there is no
need for a potential in which the kinetic energy of the scalar
field can dilute quickly as no sizeable component of kinetic
energy is produced in this model. A secondary advantage of
this approach is that our results become broadly applicable to
all choices of potential for the scalar.
With this set up, we calculate the perturbative behavior

of the described DA EDE in synchronous gauge. As
expected, observables are more sensitive to the perturba-
tions of the dark radiation and not the fleetingly dominant
scalar field. We then constrain this model using Planck
2018 CMB, baryon acoustic oscillation, and Pantheon
supernova data, alone and including either or both the
local Hubble measurement and weak lensing and galaxy
clustering data from DES to test the viability of this model
in the context of the two cosmological tensions.
For all combinations of data sets we consider, we find a

preference for the injection of dark radiation to occur at
redshifts zc > 104. We show that at these redshifts DA EDE
asymptotes to a cosmology in which self-interacting dark
radiation has always been part of the cosmic history.6 The
CMB looses sensitivity to the injecting time of dark
radiation at very high redshifts; we expect this loss of
sensitivity to be generalizable to other redshift-dependent
new physics. We pinpoint the induced dynamics of the
thermal friction in the dark radiation perturbations as the
source of the preference for early injection. Sizeable
thermal friction terms suppress the anisotropies of the dark
radiation, an effect that the CMB data disfavors, thus
pushing the injection of the dark radiation to early times.
The principal result we highlight is when fitting to all

aforementioned data. In DA EDE, we find both a higher H0

and slightly lower S8 than in the comparable model of extra
massless neutrino degrees of freedom, labeledNeff .We find a
substantially higherH0 thanΛCDM, but also a slightly larger
S8. Ultimately, this leads us to conclude thatwhileDAEDE is
an interesting model offering novel solutions to the fine-
tuning criticisms of EDE, it does not restore cosmological

concordance, nor does its best fit to data possess distinct
differences from extra self-interacting radiation.
Comparing goodness-of-fits of the three models for all

data sets we consider, DA EDE is comparable toΛCDM for
both χ2CMB and χ2DES (see Tables IX and XIII), but
substantially improves on Δχ2H0

¼ −14.4. On the other
hand, Neff while comparable on DES, worsens the CMB fit
relative to ΛCDM with Δχ2CMB ¼ þ4.9 with a smaller
improvement to SH0ES of Δχ2H0

¼ −13.6. Hence, the
species of extra radiation introduced by DA EDE offers
a better fit to all data compared to Neff , with a relative
Δχ2total ¼ −6.15 for two more degrees of freedom.
We note that while these improvements are encouraging,

DA EDE does not fit the CMB as well as ΛCDM can when
discrepant data sets are excluded. A ΛCDM model fit to
just the Planck 2018 CMB spectra, BAO measurements,
and Pantheon supernova data (which are consistent within a
ΛCDM description of the Universe) has χ2CMB ¼ 2773.2. A
worse fit results when ΛCDM is fit to the discrepant data
sets SH0ES and DES, in addition to all the above with
χ2CMB ¼ 2778.4. While some EDE models can simulta-
neously accommodate the SH0ES H0 yet fit the CMB with
a χ2CMB ≃ 2773.2 or better, DA EDE does not achieve this.
Hence, the manner in which the perturbations of our dark
radiation differ from Neff , specifically by not having shear
perturbations, aid in fitting data better than Neff , but not to
the extent that we maintain the excellent fit that ΛCDM
offers the CMB. This is in accordance with the results of
several other investigations of extra radiation as well as
EDEs that dilute like radiation in the literature: the tensions
are eased but not resolved [4,14,40,44,46,107], and the fit
to data is not as good as in ΛCDM [4,14,40].
In terms of parameter constrains, we find that the combi-

nation of all data sets shows preference for fede > 0 at> 2σ,
with a best fit of fede ¼ 4.7% (ΔNeff ¼ 0.35) and
zc ¼ 8 × 104. This effectively corresponds to the amount
of extra strongly-interacting dark radiation preferred by data.
We verify that allowing for higher zc does not impact our
results and that this result can be understood simply as the
Universe always having extra dark radiation. Lastly, com-
paring models using Bayesian information criteria, we find
that DA EDE is strongly disfavored over ΛCDM in all data
combinations we explore, with a minimum increase of
ΔBIC ¼ 11.39 in the baselineþH0 case.
Discrepancies in cosmology such as the Hubble and LSS

tensions may offer hints about the physics of the dark sector
and a more fundamental concordance model that can
succeed ΛCDM. Although DA EDE solves the fine-tuning
problems of the EDE scalar-field potential and alleviates
the Hubble tension, it cannot do so while offering a good fit
to data. Our results indicate a data-driven preference
disfavoring the introduction of new physics with smoothed
anisotropies, a lesson that may inform future model-
building efforts aiming to resolve the Hubble tension.

6Note that these constraints were obtained for DA EDE
injected post-big bang nucleosynthesis (BBN), such that the
Cosmic Linear Anisotropy Solving System (CLASS) calculations
of BBN are unchanged from LCDM.
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APPENDIX A: DERIVATION OF THERMAL
FRICTION EQUATIONS

1. Framework

We start with decomposing the scalar field ϕ and the dark
radiation density ρdr and pressure pdr into a smooth
background component with only time dependence, and
its spatially varying perturbations,

ϕðτ; x⃗Þ ¼ ϕðτÞ þ δϕðτ; x⃗Þ; ðA1Þ

ρdrðτ; x⃗Þ ¼ ρdrðτÞ þ δρdrðτ; x⃗Þ; and ðA2Þ

pdrðτ; x⃗Þ ¼ pdrðτÞ þ δpdrðτ; x⃗Þ: ðA3Þ

We follow the notation in [77] and define synchronous
gauge as

ds2 ¼ aðτÞ2ð−dτ2 þ ðδij þ hijÞdxidxjÞ: ðA4Þ

Here a is the scale factor, and τ is conformal time. Only
keeping scalar perturbations, we decompose the metric
perturbations into two scalar fields hðτ; x⃗Þ and μðτ; x⃗Þ,
which correspond to the trace h ¼ hii (summing over i) and

a traceless part hjjij ¼ ð∂i∂j − 1
3
δij∇2Þμðτ; x⃗Þ. We Fourier

transform these quantities such that we are able to quantify
the metric perturbations by hðτ; kÞ and ηðτ; kÞ as

hðτ; x⃗Þ ¼
Z

d3keik⃗·x⃗hðτ; k⃗Þ; and ðA5Þ

μðτ; x⃗Þ ¼ −
Z

d3keik⃗·x⃗
1

k2
ðhðτ; k⃗Þ þ 6ηðτ; k⃗ÞÞ: ðA6Þ

Similarly, we also Fourier transform the fluid and scalar field
perturbations, such that ∂iδϕ ¼ ikiδϕ, ∂iδρdr ¼ ikiδρdr, and
∂iδpdr ¼ ikiδpdr, where i is a spatial index.

2. Scalar field equations

To derive the equation of motion of the scalar field, we
compute

−∇μT
μ0
ϕ ¼ g0αð−ϒðρdrÞvμdr∂μϕ∂αϕÞ; ðA7Þ

where

Tϕ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
gαβ∂αϕ∂βϕþ V

�
; ðA8Þ

and

−g0αðϒvμdr∂μϕ∂αϕÞ ¼ ϒa−3ϕ02 þ δϒa−3ϕ02

þ 2ϒa−3δϕ0ϕ0 ðA9Þ

up to linear order in perturbations. Here vμdr ¼ dxμ
dt . Note that

only v0dr ¼ 1
a is nonzero at the background level.

Multiplying Eq. (A7) by a factor of ð− a4
ϕ0Þ, we arrive at

ϕ00ðτÞ þ ð2Hþ aϒðρdrÞÞϕ0ðτÞ þ a2VϕðϕÞ ¼ 0 ðA10Þ

for the background evolution of the scalar field, and

δϕ00 þ 2Hδϕ0 þ ðk2 þ a2VϕϕÞδϕ

¼ −
h0ϕ0

2
−ϒaδϕ0 −

n
4
ϒδdraϕ0 ðA11Þ

for its linear perturbations. In Eq. (A11) we used

ϒðρdrÞ≡ cnρ
n
4

dr ðA12Þ

to rewrite δϒ ¼ n
4
ϒδdr, where δdr ¼ δρdr

ρdr
.

3. Dark radiation equations

To derive the fluid equations, we compute

∇μT
μ0
dr ¼ −g0αðϒvμdr∂μϕ∂αϕÞ: ðA13Þ

Replacing δPdr
δρdr

≡ c2s , and pdr
ρdr

≡ wdr, we find the fluid
equation at the background level to be

ρ0dr − 3Hð1þ wdrÞρdr ¼
ϒ
a
ϕ02; ðA14Þ

where we multiplied both sides by a factor of a2.
Rewriting δρ0dr ¼ ρdrδ

0
dr þ ρ0dr

δρdr
ρdr
, and plugging in the

background solution for ρ0dr, we find
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δ0dr þ 3Hðc2s − wdrÞδdr

¼ ðn
4
− 1Þϒϕ02

aρdr
δdr þ 2

ϒ
aρdr

δϕ0ϕ0 − ð1þ wdrÞ
�
h0

2
þ θdr

�
:

ðA15Þ

Further defining θ≡ ikivi and computing

∇μT
μi
dr ¼ −giαðϒvμdr∂μϕ∂αϕÞ; ðA16Þ

where to linear order in perturbations

−giαðϒvμdrÞ ¼ −
ϒ
a
ikiδϕ; ðA17Þ

we find the velocity perturbation equation to be

θ0dr þ
�

ϒ
aρdr

ϕ02 þHð1 − 3wdrÞ þ
w0
dr

1þ wdr

�
θdr

¼ k2
c2s

ð1þ wdrÞ
δdr þ k2

ϒ
að1þ wdrÞρdr

ϕ0δϕ; ðA18Þ

where we have multiplied both sides by a factor of a2iki. In
this derivation, we have assumed shear perturbations to be
negligible (Ti≠j

dr ¼ 0). This assumption is justified by self-
interactions of the dark radiation being efficient in the
model we are considering, which suppresses any shear and
the fluid is well described as a perfect fluid. We also set

wdr ¼ c2s ¼ 1
3
. Plugging those in and taking the friction to

be constant (n ¼ 0), reduces Eqs. (A10), (A11), (A15), and
(A18) to the equations shown in Sec. II.

APPENDIX B: BIC CALCULATION

The BIC [102] allows for model comparison with a harsh
penalty on models with extra parameters as

BIC≡ −2 lnLmax þ k lnN ðB1Þ

¼ −2 lnðe−χ2min=2Þ þ k lnN ðB2Þ

¼ χ2min þ k lnN; ðB3Þ

with the model that minimizes the BIC being most
preferred. Here Lmax is the maximum likelihood value
and χ2min the equivalent minimized goodness-of-fit as
reported in Tables X–XIII, k is the total number of
parameters, and N is the total number of data points.
For data we consider, NCMB ¼ 2352 [87,88], NSNe ¼ 1048
[92], NBAO ¼ 5 [89–91], NDES ¼ 30 [27], and NH0

¼ 1

[5]. The only data sets with nuisance parameters are CMB
(21) and DES (20). Finally, ΛCDM has six parameters to
which Neff adds 1 and DA EDE adds 3. Ultimately, the
figure of interest is the ΔBIC presented in Tables X–XIII.

TABLE X. The mean (best-fit) �1σ for each parameter for various cosmologies fit to just the baseline data sets Planck CMB, BAO,
and Pantheon supernovae.

Parameter ΛCDM DA EDE ΛCDM þ Neff

Ωbh2 0.02242ð0.02246Þ � 0.00013 0.02248ð0.02241Þþ0.00015
−0.00017 0.02239ð0.02237Þ � 0.00018

Ωch2 0.11920ð0.11895Þ � 0.00091 0.1211ð0.1211Þþ0.0012
−0.0019 0.1185ð0.1184Þ � 0.0029

H0 67.73ð67.86Þ � 0.42 68.37ð68.14Þþ0.50
−0.77 67.4ð67.3Þ � 1.1

logð1010AsÞ 3.048ð3.052Þ � 0.014 3.050ð3.05Þ � 0.015 3.045ð3.043Þþ0.015
−0.017

ns 0.9667ð0.9686Þ � 0.0037 0.9709ð0.9751Þþ0.0042
−0.0066 0.9649ð0.9648Þ � 0.0068

τreio 0.0569ð0.0586Þþ0.0067
−0.0075 0.0568ð0.0542Þ � 0.0072 0.0562ð0.0558Þþ0.0065

−0.0076
σ8 0.8102ð0.8113Þ � 0.0060 0.8150ð0.8166Þþ0.0063

−0.0075 0.8075ð0.8072Þ � 0.0097
S8 0.8239ð0.8226Þ � 0.0104 0.8265ð0.8308Þ � 0.0107 0.8224ð0.8237Þ � 0.0109
fede 0.0121ð0.01Þþ0.0044

−0.011
log10 zc 4.19ð3.79Þþ0.44

−0.52
log10 mscf > 5.5ð5.5Þ
log10 ϒ 8.1ð8.2Þ � 1.5
ϕi 0.00395ð0.00034Þþ0.00089

−0.0056
Neff 3.00ð2.99Þ � 0.17
χ2CMB 2773.2 2772.2 2772.7
χ2BAO 5.42 5.61 5.9
χ2SN 1034.92 1035.01 1035.1
χ2total 3813.54 3812.82 3813.7
χ2red 1.1289 1.1297 1.1293
ΔBIC 0 23.68 8.29
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TABLE XI. The mean (best-fit) �1σ for each parameter for various cosmologies fit to baseline and SH0ES.

Parameter ΛCDM DA EDE ΛCDM þ Neff

Ωbh2 0.02258ð0.0226Þ � 0.00013 0.02283ð0.02289Þþ0.00016
−0.00014 0.02278ð0.02276Þ � 0.00015

Ωch2 0.11776ð0.11756Þ � 0.00085 0.1257ð0.1277Þ � 0.0028 0.1247ð0.1234Þ � 0.0025
H0 68.44ð68.53Þ � 0.39 70.85ð71.43Þþ0.93

−0.80 70.53ð70.25Þ � 0.76
logð1010AsÞ 3.053ð3.059Þ � 0.015 3.046ð3.041Þþ0.014

−0.016 3.068ð3.071Þ � 0.016
ns 0.9705ð0.9716Þ � 0.0036 0.9730ð0.9712Þþ0.0038

−0.0050 0.9817ð0.9812Þ � 0.0050
τreio 0.0608ð0.0645Þ � 0.0078 0.0600ð0.0587Þþ0.0070

−0.0079 0.0599ð0.0625Þþ0.0066
−0.0084

σ8 0.8080ð0.8097Þ � 0.0064 0.8197ð0.8205Þ � 0.0070 0.8273ð0.8263Þ � 0.0088
S8 0.8093ð0.8095Þ � 0.0100 0.8159ð0.8157Þ � 0.0102 0.8241ð0.8228Þ � 0.0111
fede 0.050ð0.063Þþ0.018

−0.015
log10 zc 4.79ð4.96Þþ0.30

−0.20
log10 mscf > 6.2ð6.3Þ
log10 ϒ 8.01ð7.47Þ � 0.76
ϕi 0.0155ð0.031Þþ0.0059

−0.015
Neff 3.44ð3.38Þ � 0.13
χ2CMB 2777.5 2780.3 2780.0
χ2BAO 5.52 6.1 5.76
χ2SN 1034.736 1034.746 1034.739
χ2H0

18.8 2.4 7.2

χ2total 3836.56 3823.55 3827.7
χ2red 1.1354 1.1326 1.1331
ΔBIC 0 11.39 −0.73

TABLE XII. The mean (best-fit) �1σ for each parameter for various cosmologies fit to baseline and DES.

Parameter ΛCDM DA EDE ΛCDM þ Neff

Ωbh2 0.02251ð0.02248Þ � 0.00013 0.02258ð0.02251Þþ0.00015
−0.00017 0.02241ð0.02239Þ � 0.00018

Ωch2 0.11818ð0.11837Þ � 0.00083 0.1201ð0.1187Þþ0.0011
−0.0022 0.1162ð0.1154Þ � 0.0027

H0 68.19ð68.08Þ � 0.38 68.94ð68.38Þþ0.46
−0.88 67.4ð67.2Þ � 1.1

logð1010AsÞ 3.046ð3.043Þ � 0.015 3.046ð3.049Þ � 0.015 3.040ð3.041Þ � 0.016
ns 0.9684ð0.9686Þ � 0.0036 0.9712ð0.9715Þþ0.0042

−0.0052 0.9642ð0.9633Þ � 0.0069
τreio 0.0571ð0.0548Þþ0.0068

−0.0078 0.0571ð0.0569Þ � 0.0073 0.0567ð0.0585Þþ0.0065
−0.0079

σ8 0.8062ð0.8058Þ � 0.0058 0.8099ð0.8088Þ � 0.0067 0.8002ð0.799Þ � 0.0095
S8 0.8115ð0.8128Þ � 0.0091 0.8120ð0.8133Þ � 0.0091 0.8086ð0.8078Þ � 0.0094
fede 0.0135ð0.0033Þþ0.0043

−0.013
log10 zc 4.30ð3.75Þþ0.60

−0.46
log10 mscf > 5.6ð6.0Þ
log10 ϒ 8.0ð9.4Þ � 1.4
ϕi 0.0052ð0.0Þþ0.0017

−0.0068
Neff 2.92ð2.87Þ � 0.17
χ2CMB 2774.1 2774.7 2776.0
χ2BAO 5.23 5.24 5.21
χ2SN 1034.82 1034.776 1034.86
χ2DES 509.3 509.4 508.1
χ2total 4323.45 4324.12 4324.17
χ2red 1.2761 1.2774 1.2767
ΔBIC 0 25.1 8.86
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TABLE XIII. The mean (best-fit) �1σ for each parameter for various cosmologies fit to baseline, SH0ES, and DES.

Parameter ΛCDM DA EDE ΛCDM þ Neff

Ωbh2 0.02263ð0.02261Þ � 0.00013 0.02288ð0.02288Þ � 0.00015 0.02281ð0.02288Þ � 0.00015
Ωch2 0.11705ð0.11732Þ � 0.00077 0.1245ð0.1242Þ � 0.0027 0.1224ð0.1226Þ � 0.0023
H0 68.76ð68.63Þ � 0.36 71.08ð71.06Þ � 0.85 70.50ð70.86Þ � 0.78
logð1010AsÞ 3.053ð3.056Þ � 0.015 3.045ð3.052Þ � 0.015 3.062ð3.07Þþ0.014

−0.016
ns 0.9717ð0.9713Þ � 0.0035 0.9736ð0.9731Þþ0.0037

−0.0045 0.9808ð0.9833Þ � 0.0051
τreio 0.0613ð0.0629Þþ0.0070

−0.0079 0.0599ð0.0641Þþ0.0068
−0.0078 0.0596ð0.0621Þþ0.0066

−0.0078
σ8 0.8056ð0.8076Þ � 0.0058 0.8156ð0.8179Þ � 0.0066 0.8195ð0.8231Þ � 0.0081
S8 0.8013ð0.8055Þ � 0.0087 0.8058ð0.8075Þ � 0.0089 0.8102ð0.8106Þ � 0.0096
fede 0.048ð0.047Þ � 0.016
log10 zc 4.81ð4.91Þþ0.29

−0.20
log10 mscf > 6.3ð6.6Þ
log10 ϒ 8.01ð8.19Þ � 0.74
ϕi 0.0152ð0.0109Þþ0.0072

−0.015
Neff 3.36ð3.39Þþ0.12

−0.13
χ2CMB 2778.4 2778.7 2783.3
χ2BAO 5.7 7.1 7.3
χ2SN 1034.735 1034.82 1034.87
χ2H0

18.0 3.6 4.4

χ2DES 508.0 508.3 508.8
χ2total 4344.84 4332.52 4338.67
χ2red 1.2820 1.2795 1.2806
ΔBIC 0 12.11 1.97
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APPENDIX C: FULL MCMC POSTERIORS

FIG. 10. Full MCMC posteriors for all ΛCDM and DA EDE cosmological parameters obtained by fitting to baseline data. The gray
bands show the local SH0ES H0 measurement and the DES Y1 constraint on S8.
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FIG. 11. Following the same conventions as previous triangle plots, here we show the MCMC posteriors for all cosmological
parameters while fitting to baseline and the local SH0ES H0 measurement.
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FIG. 12. Following the same conventions as previous triangle plots, here we show the MCMC posteriors for all cosmological
parameters while fitting to baseline and DES Y1.
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