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The velocity of the Sun with respect to the cosmic microwave background (CMB) can be extracted from
the CMB dipole, provided its intrinsic dipole is assumed to be small in comparison. This interpretation is
consistent, within fairly large error bars, with the measurement of the correlations between neighboring
CMB multipoles induced by the velocity of the observer, which effectively breaks isotropy. In contrast, the
source number count dipole was reported to privilege a velocity of the observer with an amplitude that is
about twice as large as the one extracted from the entirely kinematic interpretation of the CMB dipole, with
error bars that indicate a more and more significant tension. In this work, we study the effect of the peculiar
velocity of the observer on correlations of nearby multipoles in the source number counts. We provide an
unbiased estimator for the kinematic dipole amplitude, which is proportional to the peculiar velocity of the
observer and we compute the expected signal-to-noise ratio. Assuming full sky coverage, near future
experiments can achieve better than 5% constraints on the velocity of the Sun with our estimator.
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I. INTRODUCTION

Watching the stars on a clear night sky may easily make
one wonder about one’s place in the Universe. From such a
point of view, it seems hard not to think that one is located
in a very special place. Be that as it may, the Copernican
principle states that humans are not privileged observers of
the Universe. Combined with evidence of statistical isotropy
in the temperature associated with a black body spectrum
from the cosmic microwave background (CMB) up to
temperature fluctuations of the order of 10−5 [1], the
Copernican principle points towards the cosmological
principle, which is a corner stone of modern cosmology:
The Universe is statistically homogeneous and isotropic.
The implementation of these strong assumptions allows for
the use of the highly symmetric Friedmann-Lemaître-
Robertson-Walker (FLRW) metric and the application of
perturbation theory to describe the Universe, on sufficiently
large scales. This drastically simplifies calculations and has

allowed us to constrain with percent precision the six-
parameter standard model of cosmology, the Λ-cold-dark-
matter (ΛCDM) model [1].
In this reasoning, one important step was swept under the

carpet. To recover statistical isotropy of CMB temperature
fluctuations of the order of 10−5, one must boost
the observer to the so-called CMB frame in which the
apparently large CMB dipole, which is of order 10−3, i.e., a
hundred times larger than other multipoles, vanishes [1–4].
This is called the “entirely kinematic interpretation” of the
CMB dipole and is motivated by standard single field
inflation. This canonical model predicts a nearly scale
invariant power spectrum of primordial fluctuations of the
inflaton field, at the end of a period of quasi–de Sitter
expansion. In this context, there is no reason to expect the
dipole to be a hundred times larger than other multipoles
and one rather expects a primordial intrinsic dipole of the
order of 10−5. On the other hand, one also expects a CMB
dipole to be generated by the peculiar velocity of the
observer, as pointed out by D.W. Sciama [5] and calculated
by P. J. E. Peebles and D. T.Wilkinson [6]. One can easily be
tempted to attribute the large dipole to the velocity of the
observer with respect to the CMB, potentially absorbing a
small intrinsic dipole, which is expected to yield a 1%
correction. Absorbing the entire CMB dipole in the velocity
leads to an observer velocity jjvojj ¼ 369.82� 0.11 km s−1,
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corresponding to βdip¼jjvojj=c¼0.00123�0.00036, point-

ing towards β̂dip ¼ ð264.021°� 0.011°; 48.253°� 0.005°Þ
in galactic coordinates, where the yearly modulation of
∼30 km s−1 of the Satellite orbiting around the Sun has been
removed [1]. While this order of magnitude for the peculiar
velocity of the Sun is expected, it is important to recall that
an intrinsic CMB dipole is degenerate with a boost to linear
order in β. This implies that a boost to the CMB frame, may
not correspond to the frame in which matter fields live at rest
on average, if there exists a significant intrinsic cosmic
dipole [7,8]. This may potentially have dramatic conse-
quences on the interpretation of the CMB or of supernova
data. (See for example [9–12].)
There are several alternative ways to measure the velocity

of the observer with respect to the rest frame of matter fields.
One can check that the distribution of far enough sources1

leads to a kinematic dipole Dkin, consistent with the CMB
dipole. This was pioneered by G. Ellis and J. Baldwin [15],
who determined the dipole in the source number counts per
unit solid angle for radio sources with a flux following a
power law spectrum in frequency. Different teams reported a
source number count dipole with a direction that agrees
fairly well with the CMB dipole, but with an amplitude
that is about twice as large as expected from the CMB
dipole [16–19]. It was suggested by [14] that evolution bias
may, at least partially, explain the reported tension. This was
further studied by the authors of [20], which also find
significant variations in the number count kinematic dipole
in the presence of parameter evolution when using different
quasar luminosity function models. Combining midinfrared
quasars and radio sources, a 5.2σ tension between these two
dipoles was reported in [17]. The authors of [21] reanalyzed
the same midinfrared quasars and concluded that neither
masking nor parameter evolution could fully explain the
reported tension, even if this is subject to further assump-
tions. Let us, however, also mention that a source number
count dipole performed with data from the Very Large Array
Sky Survey and the Rapid Australian Square Kilometer
Array Pathfinder Continuum Survey was reported to be
consistent with the CMB dipole [22], although with much
larger error bars. Note that a dipole measurement with 1048
supernovae type 1a from the Pantheon sample was found to
point in a direction well aligned with the CMB dipole
with an amplitude which is 2.4σ smaller than the CMB
dipole [23]. Carefully analyzing the peculiar velocity field
with different catalogs, the authors of [24] found a bulk flow
velocity of about 400 km s−1 extending to ≲150 h−1 Mpc,
which is difficult to accommodate within the standard
cosmological paradigm. The cosmic infrared background
can also be used to measure the velocity of far away galaxies
relative to the observer and a signal-to-noise ratio of 50–100

is forecasted for the Euclid and Roman surveys [25].
Gravitational waves also offer promising ways to measure
the kinematic dipole [26,27]. Additionally, we also point out
that the degeneracy between intrinsic and kinematic dipole
may be broken using the redshift dependent dipoles in
future source number count experiments [28]. Fluctuations
of the number counts from radio surveys such as the Square
Kilometer Array may also be useful to constrain the
observer’s peculiar velocity [29].
The CMB, however, appears to be consistent with itself.

Indeed, the velocity of the observer which, effectively
breaks statistical isotropy, induces correlation of the l and
(l� 1) multipoles in the CMB [30–32]. This leads to an
independent measurement of β, which was found to be β ¼
0.00128� 0.00026ðstatÞ � 0.00038ðsystÞ in [4], consistent
with βdip. Slightly tighter constraints, consistent with βdip ¼
0.00123 were obtained in the analysis presented in [33,34].
This shows that the entirely (or at least dominantly)
kinematic interpretation of the CMB dipole is consistent
with the correlation of neighboring multipoles, although
there is still room for an intrinsic CMB dipole, which can
make up a significant portion of the observed CMB dipole,
without contradicting the observed l and (l� 1) correla-
tions [35]. However, a significant bulk flow of galaxy
clusters extending up to 300 h−1 Mpcwas found in WMAP
via the kinematic Sunyaev-Zeldovich effect [36]. Let us
also mention that while a boost and an intrinsic dipole are
degenerate in the CMB dipole at linear order in β, second
order corrections in β give distinct spectral distortions in the
CMB monopole and quadrupole, which may allow for a
measurement of the intrinsic CMB dipole in futuristic CMB
spectral distortions experiments, as pointed out in [37].
In this work, we study the correlation of neighboring

multipoles in the source number counts, which yield an
independent crosscheck of the validity of the measurement
of the kinematic dipole with source number counts. We find
that the peculiar velocity of the observer induces correla-
tions between the l and (l� 1) multipoles in the source
number counts, which are absent for comoving observers in
a statistically isotropic Universe. Assuming full sky cover-
age, we derive an unbiased estimator D̂kin of the kinematic
dipole amplitude, proportional itself to β, and compute its
variance and signal-to-noise ratio. We also comment on the
determination of the velocity direction and on limitations
from a partial sky survey.
The paper is structured as follows: In Sec. II, we present

the setup and the transformation rules of the ingredient
quantities under boost. In Sec. III, we detail the compu-
tation of the boosted spherical harmonic coefficients of the
source number counts for redshift surveys and redshift
independent ones. In Sec. IV, we calculate the two-point
correlation function for an observer boosted in an otherwise
isotropic Universe. In Sec. V, we write down an estimator
for the amplitude of the dipole and for the velocity of the
observer with respect to the rest frame of distance sources.

1Far enough sources means sources with observed redshift
z ≥ 0.1, such that the intrinsic dipole, predicted in ΛCDM is
small in comparison to the kinematic dipole [13,14].
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We show that this estimator is unbiased and impose an
upper bound for its variance in terms of measured quan-
tities. In Sec. VI, we briefly outline the determination of the
orientation of the peculiar velocity. We discuss our find-
ings, the potential for a measurement and its limitations in
Sec. VII.
Units are such that c ¼ 1, bold symbols indicate three

dimensional vectors, hats may indicate unit vectors when
used on bold symbols or statistical estimators.

II. THE SETUP

We consider two observers O and O0, which are related
by a Lorentz boost of velocity β ¼ jjvojj=c. Here vo is the
velocity of O0 with respect to O, which is aligned with
their respective ẑ ¼ ẑ0 axes. This choice allows for the
azimuthal angles of the two observers to coincide, φ ¼ φ0,
despite the Lorentz transformation. In Sec. VI, we con-
sider arbitrary directions of the peculiar velocity of the
observer. Primed quantities relate to O0 and quantities
without primes relate to O. We assume that both of these
observers live in a FLRW universe described by the line
element ds2 ¼ a2ðηÞð−dη2 þ dr2 þ r2ðdθ2 þ sin2 θdφ2ÞÞ,
where aðηÞ is the scale factor, which only depends on
conformal time η and r, θ and φ are comoving coordinates.
Observer O is assumed to be following the Hubble flow,
i.e., having zero peculiar velocity and may be called a
comoving observer. The motion of observer O0 with
respect to O affects their measurements of time intervals,
cosines of polar angles, polar angles, solid angles,
frequencies, and redshift, which transform, respectively,
in the following way:

dt0 ¼ dt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

q
; ð1Þ

cos θ0 ¼ ðcos θ þ βÞ½1þ β cos θ�−1; ð2Þ

θ0 ¼ θ þ δθ; δθ ¼ −β sin θ þOðβ2Þ; ð3Þ

dΩ0 ¼ d2n̂0 ¼ sinðθ0Þdθ0dφ0 ¼ dΩð1 − β2Þ½1þ β cos θ�−2;
ð4Þ

ν0 ¼ νð1þ β cos θÞγ; ð5Þ

1þ z0 ¼ ð1þ zÞð1þ β cos θÞ−1γ−1; ð6Þ

where z and z0 denote the redshifts of a photon observed at
an angle θ (respectively, θ0) with respect to vo, and γ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
is the Lorentz factor. Observer O0 calls n̂0 the

direction of an incoming photon which corresponds to n̂
for observer O. Those are related by [38]

n̂0 ¼
�
n̂ · β̂þ β

1þ n̂ · β

�
β̂þ n̂ − ðn̂ · β̂Þβ̂

γð1þ n̂ · βÞ : ð7Þ

In the next section, we apply these transformation rules to
the source number count.

III. SOURCE NUMBER COUNTS

We express the number of sources dN per unit solid
angle dΩ and per redshift bin dz in the direction n̂ b¼ðθ;φÞ
and at redshift z for sources with flux S (in Wm−2 Hz−1)
above a certain threshold S�ðνoÞ in some frequency band
½νo; νo þ dνo� as

dN
dΩdz

½n̂; z; S > S�ðνoÞ�: ð8Þ

For fixed S�ðνoÞ and fixed redshift z, the real-valued
function dN

dΩdz ∶S2 → R may be expanded in complex
spherical harmonics

dN
dΩdz

½n̂; z; S > S�ðνoÞ� ¼
Xþ∞

l¼0

Xl

m¼−l
almðzÞYlmðn̂Þ ð9Þ

with complex valued functions almðzÞ∶Rþ → C, with l ∈
N and m ∈ ½−l;−lþ 1;…; l − 1; l�. In case the survey
lacks redshift information, we also consider the same
quantity integrated over redshift, which we denote by

dN
dΩ

½n̂; S > S�ðνoÞ�≡
Z þ∞

0

dz
dN
dΩdz

½n̂; z; S > S�ðνoÞ�;

¼
Xþ∞

l¼0

Xl

m¼−l
almYlmðn̂Þ; ð10Þ

and for which the expansion coefficients are redshift
independent. Using the orthogonality relations of the
spherical harmonicsZ

S2

d2n̂Ylmðn̂ÞY�
l0m0 ðn̂Þ ¼ δll0δmm0 ; ð11Þ

one can obtain the expansion coefficients

almðzÞ ¼
Z
S2

d2n̂
dN
dΩdz

½n̂; z; S > S�ðνoÞ�Y�
lmðn̂Þ: ð12Þ

The redshift independent coefficients are obtained in a
similar way:

alm ¼
Z
S2

d2n̂
dN
dΩ

½n̂; S > S�ðνoÞ�Y�
lmðn̂Þ: ð13Þ

A masked sky breaks these orthogonality relations, of
course. In the following, we distinguish between an
isotropic universe and a statistically isotropic universe. In
an isotropic Universe, only the monopole, i.e., a00 contrib-
utes to the sum in Eq. (9). This corresponds to the case

STATISTICAL EFFECTS OF THE OBSERVER’S PECULIAR … PHYS. REV. D 107, 103514 (2023)

103514-3



where the number density of sources is exactly the same in
every direction. In practice, isotropy is only true in a
statistical sense. The expectation value of the number of
galaxies is the same in every direction. Within the standard
model, gravity acts to cluster sources, such that, in a
statistically isotropic Universe, there are in principle an
infinite series of alms that contribute. The alms of higher l
correspond to perturbations on smaller and smaller angular
scale. So far, number counts have been analyzed in angular
space mainly in photometric surveys which make a 3 × 2
pt analysis of shear, number counts and their cross-
correlations, see, e.g., [39,40]. A harmonic space analysis
of the number counts from the Dark Energy Survey data is
found, e.g., in [41,42]. Importantly, the motion of the
observer in an otherwise isotropic Universe contributes a
dipole to the source number count such that the number of
sources per unit solid angle and redshift observed by O0 at
redshift z0 in direction n̂0 reads [14,43]

dN0

dΩ0dz0
½n̂0; z0; S > S�ðνoÞ� ¼ ð1þ ðβ̂ · n̂ÞDkinðzÞÞ ð14Þ

×

�
dN
dΩdz

½z; n̂; S > S�ðνoÞ�
�
þOðβ2Þ; ð15Þ

where the amplitude of the dipole is given by

DkinðzÞ ¼
�
2þ 2½1 − xðzÞ�

rðzÞHðzÞ þ
_HðzÞ
H2ðzÞ − fevolðzÞ

�
β: ð16Þ

Here HðzÞ ¼ _aðηÞ=aðηÞ indicates the conformal Hubble
rate, a dot indicates a derivative with respect to conformal
time and rðzÞ is the background comoving distance,

rðzÞ ¼
Z

z

0

dz
ð1þ zÞHðzÞ : ð17Þ

The magnification bias xðzÞ [sometimes noted sðzÞ ¼
2xðzÞ=5] is defined as

xðzÞ≡ −
∂ ln h dN

dΩdz ½n̂; z; S > S��i
∂ ln S�

; ð18Þ

and is sometimes defined in its integrated form

h dN
dΩdz ½n̂; z; S > S��i ∝ S−xðzÞ� . It tracks the number density
of sources above a given flux density threshold S�.
Intuitively, for positive xðzÞ, the number density of objects
above the threshold S� goes to zero for large enough S� and
diverges for S� going to zero. A constant xðzÞ means that
this power law does not change with redshift or, alter-
natively that the population distribution of fluxes is constant

in cosmic time. The evolution bias traces the time evolution
of the number of sources per unit comoving volume dV

fevolðzÞ≡ 1

H

�
dN
dV

½rðzÞ;L>L��
�

−1 ∂

∂η

�
dN
dV

½rðzÞ;L>L��
�
;

¼−
∂ lnhdNdV ½rðzÞ;L>L��i

∂ lnð1þzÞ : ð19Þ

Here L and L� are luminosity densities (in WHz−1)
corresponding to the flux densities S and S�, respectively.
The angular brackets2 indicate an average over the two-
sphere S2

h…i ¼ 1

4π

Z
S2

…d2n̂: ð20Þ

The difference between n̂0 and n̂ results in second order
corrections [i.e.,Oðβ2Þ] of dN0=ðdΩ0dz0Þ½n̂0; S > S�ðνoÞ� in
a Universe where the sources are isotropically distributed.
Instead, in a Universe that is statistically isotropic, the
difference between n̂ and n̂0 becomes first order in β. We
note n̂0 b¼ðθ0;φ0Þ ¼ ðθ þ δθ;φÞ. Recall that since we have
assumed that β is aligned with ẑ, the azimutal angle φ is
unaffected by the boost. In a Universe with intrinsic
anisotropies, an additional term in the number count plays
a role. More precisely, Eq. (25) in [14] becomes

dN0

dΩ0dz0
½n̂0; z0; S > S��

¼ dN0

dΩ0dz0
ðθ þ δθ;φ; r½z0; n̂�; L > L0�½z0; n̂; νs�Þ; ð21Þ

≃
dN
dΩdz

½n̂; r½z�; L > L��
�
dΩ
dΩ0 þ

dz
dz0

�

þ ∂

∂r0

�
dN
dΩdz

½n̂; r0; L > L��
�				

r0¼r½z�
· δr½z; n̂�

þ ∂

∂L0�

�
dN
dΩdz

½n̂; r; L > L0��
�				

L0�¼L�

· δL�½z; n̂; νs�

þ ∂

∂θ0

�
dN
dΩdz

½θ0;φ; r; L > L��
�				

θ0¼θ

· δθ½n̂�; ð22Þ

where in the first line, we have rewritten n̂0 b¼ðθ0;φ0Þ ¼
ðθ þ δθ;φÞ. We associated a direction dependent comoving
distance r½z0; n̂� ¼ r½z0� þ δr½z0; n̂� to sources located at
fixed observed redshift (with δr½z; n̂� ¼ −n̂ · β=H). We also
associated a direction dependent luminosity density

2Later in the paper, angular brackets denote expectation values.
The context should allow the experienced reader to break this
degeneracy.
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threshold L0�½z0; n̂; ν0s� ¼ L�½z0; ν0s� þ δL�½z0; n̂; ν0s�, which
corresponds to a fixed observed flux density threshold of
the detector, which is independent of its motion. In the
second line, we have changed the “per observed” unit solid
angle dΩ0 and redshift interval dz0 to “per background” unit
solid angle dΩ and redshift dz, according to Eqs. (1)–(6). In
the following three lines, we Taylor expand around back-
ground quantities the three variables that are affected by the
boost, namely, r, L�, and θ. The only term that was not
accounted for in [14] is the ∂θ0 derivative. The ∂θ0 derivative
is equal to zero to first order in β in case the number counts
are independent of angular direction for observer O. This is
equivalent to assuming that the number counts are isotropic
for observer O and consist strictly of a monopole, which is
an assumption of [14] and is sufficient if one is only
interested in the dipole generated by the monopole due to
the motion of the observer. Here, however we want to study
the modification of all multipoles due to the motion of the
observer. This is because δθðn̂Þ ¼ −β sin θ is linear in
β and the ∂θ0 derivative acting on a monopole, which, by
definition, is independent of angles, vanishes. However, if
there are intrinsic anisotropies, meaning if alm ≠ 0 for l ≥ 1,

then this derivative is nonzero. We have δθ ¼ −β sin
θ ¼ − tanðθÞβ · n̂. This ∂θ0 derivative results in an additional
dipolar term that comes from relating the number density
from direction n̂0 for the boosted observer to direction n̂ for
the observer at rest with respect to the source’s rest frame.
Therefore, instead of Eq. (14), in a statistically isotropic
Universe, we get

dN0

dΩ0dz0
½n̂0; z0; S > S�� ¼ ð1þ ½cos θDkinðzÞ − β sinðθÞ∂θ�Þ

×
dN
dΩdz

½n̂; z; S > S��: ð23Þ

Assuming that the sources have a luminosity density that

follows a frequency power law L ∝ ν−αðzÞs with spectral
index αðzÞ, one can integrate over dz, write the partial derive
of fevolðzÞ in terms of a total redshift derivative, relate the
luminostiy density to a flux density, and integrate by parts
(see Sec. II of [14] or Appendix A of [28]) to find

dN0

dΩ0 ½n̂0; S > S�� ¼
Z þ∞

0

dz

�
1þ n̂ · β

�
3þ xðzÞ½1þ αðzÞ� − tanðθÞ∂θ þ ð1þ zÞ d

dz

��
dN
dΩdz

½n̂; z; S > S��: ð24Þ

Assuming for simplicity that xðzÞ and αðzÞ are constant, we
find, after integrating by parts and neglecting boundary
terms3 that

dN0

dΩ0 ½n̂0; S > S�� ¼ ð1þ ½cos θDkin − β sinðθÞ∂θ�Þ

×
dN
dΩ

½n̂; S > S��; ð25Þ

where the kinematic dipole boils down to the Ellis and
Baldwin formula4 [15]

Dkin ¼ ½2þ xð1þ αÞ�β: ð26Þ

Recall that a constant x means that the flux distribution
of sources does not depend on redshift, as we have
discussed below Eq. (18). Typical values of these param-

eters for radio galaxies are x ∼ 1 and α ∼ 1, such that
Dkin ∼ 4β. From now on, we focus on the redshift inte-
grated surveys, which measure dN0=dΩ0, but comparing
(23) and (25), one sees that the only change in redshift
dependent surveys is the change of Dkin in (25) to DkinðzÞ,
defined in (16).
For observer O0, the number of sources per unit solid

angle may also be expanded in spherical harmonics,
although the coefficients will in general be different

dN0

dΩ0 ½n̂0; S > S�ðνoÞ� ¼
Xþ∞

l¼0

Xl

m¼−l
a0lmYlmðn̂0Þ: ð27Þ

One computes the boosted a0lms by computing the follow-
ing integrals

a0lm ¼
Z
S2

d2n̂0
dN0

dΩ0 ½n̂0; S > S�ðνoÞ�Y�
lmðn̂0Þ: ð28Þ

One can express these integrals as follows

4Strictly speaking, it is sufficient that αðxÞ and xðzÞ are
uncorrelated to recover the Ellis and Baldwin formula.

3Boundary terms may not necessarily vanish. For example, if
one works with redshift bins, one may have to include these
boundary terms, which are straightforward to compute from
Eq. (24).
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a0l0m0 ¼
Z
S2

d2n̂0
dN0

dΩ0 ½n̂0; S > S�ðνoÞ�Y�
l0m0 ðn̂0Þ;

¼
Z
S2

d2n̂0
�
ð1þ ½cos θDkin − β sinðθÞ∂θ�Þ

dN
dΩ

½n̂; S > S�ðνoÞ�
�
· Y�

l0m0 ðn̂0Þ;

¼
Z
S2

d2n̂0
�
ð1þ ½cos θDkin − β sinðθÞ∂θ�Þ

X
lm

almYlmðn̂Þ
�
· ð−1Þm0

Yl0−m0 ðn̂0Þ; ð29Þ

where we have used that Y�
lmðn̂0Þ ¼ ð−1ÞmYlð−mÞðn̂0Þ and

expanded the number counts in spherical harmonics
according to Eq. (10). We express Ylmðn̂Þ in terms of
the variable n̂0 by a Taylor expansion

Ylmðn̂Þ ¼ Ylmðn̂0Þ þ β sin θ∂θYlmðn̂0Þ þOðβ2Þ: ð30Þ

This cancels the −β sin ∂θ acting on the spherical harmonic
Ylmðn̂Þ in Eq. (29) to first order in β. Using

cos θ ¼ 2

ffiffiffi
π

3

r
Y10ðn̂Þ; ð31Þ

we are left with

a0l0m0 ¼ al0m0 ð32Þ

þ 2

ffiffiffi
π

3

r
Dkinð−1Þm0

×
X
lm

Z
S2

d2n̂Y10ðn̂ÞYlmðn̂ÞYl0−m0 ðn̂Þ: ð33Þ

The integrals involving three spherical harmonics are
Gaunt coefficients, which satisfy certain selection rules. In
particular, the three ls that must satisfy the triangle
condition, i.e., jl1 − l2j ≤ l3 ≤ ðl1 þ l2Þ. Then they are
given by (see Appendix 4 of [44] for more details)

Z
S2

sin θdθdφYl1m1
ðθ;φÞYl2m2

ðθ;φÞYl3m3
ðθ;φÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r �
l1 l2 l3
0 0 0

��
l1 l2 l3
m1 m2 m3

�
; ð34Þ

otherwise, these integrals vanish. The (3 × 2) matrices are 3-j symbols that are related to the Clebsch-Gordan coefficients.
They are nonvanishing only if the sum m1 þm2 þm3 vanishes and the triangle inequality between the lis is satisfied, see
Ref. [44] or some text on quantummechanics. Since in (33) there is a sum over l andm and since the triangle condition must
hold, we have schematically

X
lm

Z
S2

sin θdθdφYlmðθ;φÞY10ðθ;φÞYl0ð−m0Þðθ;φÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 3Þ3ð2l0 þ 1Þ

4π

r �
l0 þ 1 1 l0

0 0 0

��
l0 þ 1 1 l0

m0 0 −m0

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 − 1ÞÞ3ð2l0 þ 1Þ

4π

r �
l0 − 1 1 l0

0 0 0

��
l0 − 1 1 l0

m0 0 −m0

�
; ð35Þ

where we have also used another important rule for the 3-j
symbols

�
l1 l2 l3
m1 m2 m3

�
¼ 0 if m1 þm2 ≠ −m3: ð36Þ

We can then express Eq. (33) as

a0l0m ¼
Xþ∞

l¼1

Kl0lmalm; ð37Þ

with the kernel

Kl0lm ¼ δll0 þ δlðl0þ1ÞAlmDkin þ δlðl0−1ÞAlþ1mDkin; ð38Þ

and define the functions

DALANG, DURRER, and LACASA PHYS. REV. D 107, 103514 (2023)

103514-6



BlmðDkin=βÞ≡ Alm
Dkin

β
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 −m2

ð2lþ 1Þð2l − 1Þ

s
·
Dkin

β
: ð39Þ

The functions BlmðDkin=βÞ depend linearly on the ratio
Dkin=β, while the correlation coefficients Alms are inde-
pendent of β and Dkin. For jmj ¼ l these coefficients

vanish, while for fixed jmj ≪ l, they are typically of order
1=2 and they have the large l behavior

lim
l→þ∞

Alm ¼ 1

2
: ð40Þ

We plot Alm in Fig. 1 for relevant values of l and m. As one
sees in the figure, the correlation coefficients are always
positive and largest contributions to the cross-correlation
coefficients Alm come from the smaller values of m.
In the next section, we compute the correlation between

different a0lms, assuming that the Universe is statistically
isotropic and homogeneous for the observer O.

IV. CORRELATION OF NEIGHBORING
MULTIPOLES

We assume that O is a comoving observer for which the
Universe appears statistically isotropic. This implies that
the two-point correlation function measured by O satisfies

halma�l0m0 i ¼ Clδll0δmm0 : ð41Þ

Here and in what follows, brackets denote ensemble
averages. For the boosted observer, O0, to linear order in
β we find, using (37),

ha0lmða0l0m0 Þ�i ¼ Clδll0δmm0 þDkin · δmm0 ð½Cl þ Cðl−1Þ�Almδlðl0þ1Þ þ ½Cl þ Cðlþ1Þ�Alþ1mδlðl0−1ÞÞÞ; ð42Þ

¼ Clδll0δmm0 þ β · δmm0 ð½Cl þ Cðl−1Þ�BlmðDkin=βÞδlðl0þ1Þ þ ½Cl þ Cðlþ1Þ�Blþ1mðDkin=βÞδlðl0−1ÞÞÞ: ð43Þ

This is no longer proportional to δll0δmm0 but correlations
between neighboring a0lms appear. This implies that an
observer that is moving with respect to the statistically
isotropic perturbed universe observes a statistically aniso-
tropic distribution of sources. These deviations from
statistical isotropy are encoded in the neighboring multi-
poles. Intuitively, aberration squashes the perturbation in
the direction of motion according to Eq. (4), which
naturally leads to a preferred direction, breaking statistical
isotropy. These neighboring multipole correlations involv-
ing Cl and Cl�1 are proportional to Dkin. This suggests that
correlations of alm and al�1;m of a sky map of number
counts may be used to constrain the amplitude of Dkin or of
β, if the ratio Dkin=β is known. In the following section, we
lay out the procedure to estimateDkin or β from an observed
map dN0=dΩ0½n̂0; S > S�ðνoÞ�.

V. QUADRATIC ESTIMATORS

In this section, we derive a quadratic estimator for the
kinematic dipole Dkin, we check that it is unbiased, and we

compute its variance and signal-to-noise ratio. It is straight-
forward to extend this estimator to the redshift dependent
DkinðzÞ by replacing a0lm → a0lmðzÞ. For simplicity, we
assume a catalog with full sky coverage. In practice,
number count catalogs cover only a fraction of the sky,
which induces the important limitations that we discuss in
Sec. VII. First one needs to determine the boosted coef-
ficients using Eq. (28). We can estimate the variance Cl of
the a0lms, with the following quadratic estimator

Ĉl ¼
1

2lþ 1

Xl

m¼−l
ja0lmj2; ð44Þ

which is boost independent to linear order in β. The
predictions for the correlators of l and lþ 1 is

ha0lmða0ðlþ1ÞmÞ�i ¼ ½Clþ1 þ Cl�Alþ1mDkin: ð45Þ

We can estimate Dkin with all products of neighboring a0lms
available,

FIG. 1. We plot the coefficients Alm as a function of l ∈
½1; 1000� and m ∈ ½−l; l�. The Alms appear as proportionality
factors in front of Dkin in the correlation of the neighboring
multipoles in Eqs. (42). For m ¼ jlj, they vanish. For m < jlj,
Alm > 0, which allows for the use of the off diagonal multipole
correlations to constrain the kinematic dipole Dkin.
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D̂kin ¼
1

lmaxðlmax þ 2Þ
Xlmax

l¼1

Xl

m¼−l

a0lmða0ðlþ1ÞmÞ�
Dlm

; ð46Þ

where

Dlm ≡ ðClþ1 þ ClÞAlþ1m: ð47Þ

Similarly, the redshift dependent kinematic dipole DkinðzÞ
can be estimated using Eq. (46) by replacing a0lm → a0lmðzÞ
and their variance Cl → ClðzÞ. If the ratio Dkin=β, which
appears in BlmðDkin=βÞ is known, for example, from direct

number count dipole measurements (together with x and α),
one can directly estimate β, using the following estimator

β̂ ¼ 1

lmaxðlmax þ 2Þ
Xlmax

l¼1

Xl

m¼−l

a0lmða0ðlþ1ÞmÞ�
ðClþ1 þ ClÞBlþ1mðDkin=βÞ

:

ð48Þ

One can easily check that these estimators are unbiased. For
example, we compute the bias of D̂kin

bDkin
ðD̂kinÞ ¼ hD̂kini −Dkin;

¼
�

1

lmaxðlmax þ 2Þ
Xlmax

l¼1

Xl

m¼−l

a0lmða0ðlþ1ÞmÞ�
ðClþ1 þ ClÞAlþ1m

�
−Dkin;

¼ 1

ðlmaxðlmax þ 2Þ
Xlmax

l¼1

Xl

m¼−l

ha0lmða0ðlþ1ÞmÞ�i
ðClþ1 þ ClÞAlþ1m

−Dkin;

¼
�

1

lmaxðlmax þ 2Þ
Xlmax

l¼1

Xl

m¼−l
Dkin

�
−Dkin ¼ 0; ð49Þ

which shows that our estimator is unbiased. Next, we compute the variance of D̂kin

VarðD̂kinÞ ¼ hD̂2
kini − ½hD̂kini�2 ¼ hD̂2

kini −D2
kin: ð50Þ

The squared expectation value of D̂kin is given by

hD̂kini2 ¼
�

1

lmaxðlmax þ 2Þ
�

2Xlmax

l¼1

Xlmax

l0¼1

Xl

m¼−l

Xl0
m0¼−l0

ha0lmða0ðlþ1ÞmÞ�iha0l0m0 ða0ðl0þ1Þm0 Þ�i
DlmDl0m0

: ð51Þ

The expectation value of D̂2
kin reads

hD̂2
kini ¼

�
1

lmaxðlmax þ 2Þ
�

2Xlmax

l¼1

Xlmax

l0¼1

Xl

m¼−l

Xl0
m0¼−l0

ha0lmða0ðlþ1ÞmÞ�a0l0m0 ða0ðl0þ1Þm0 Þ�i
DlmDl0m0

: ð52Þ

We can use Isserli’s theorem [45] (better known as Wick’s theorem [46]) to express the expectation value of four Gaussian
random variables as a sum of products of expectation values of two random variables. We have

ha0lmða0ðlþ1ÞmÞ�a0l0m0 ða0ðl0þ1Þm0 Þ�i ¼ ha0lmða0ðlþ1ÞmÞ�iha0l0m0 ða0ðl0þ1Þm0 Þ�i þ ha0lma0l0m0 ihða0ðlþ1ÞmÞ�ða0ðl0þ1Þm0 Þ�i
þ ha0lmða0ðl0þ1Þm0 Þ�ihða0ðlþ1ÞmÞ�a0l0m0 i;

¼ ha0lmða0ðlþ1ÞmÞ�iha0l0m0 ða0ðl0þ1Þm0 Þ�i þ ð−1Þm0 ð−1Þmha0lmða0l0ð−m0ÞÞ�iha0ðlþ1Þð−mÞða0ðl0þ1Þm0 Þ�i
þ ha0lmða0ðl0þ1Þm0 Þ�iha0l0m0 ða0ðlþ1ÞmÞ�i; ð53Þ

where we have used that a�lm ¼ ð−1Þmalð−mÞ. The first term on the right-hand side ends up canceling with the hD̂kini2 from
(51) in (50). We are left with
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VarðD̂kinÞ¼
1

l2maxðlmaxþ2Þ2
Xlmax

l¼1

Xlmax

l0¼1

Xl

m¼−l

Xl0
m0¼−l0

�ð−1Þmþm0
Clδll0δmð−m0ÞClþ1δðlþ1Þðl0þ1Þδð−mÞm0

DlmDl0m0
þClδlðl0þ1Þδmm0Cl0δl0ðlþ1Þδm0m

DlmDl0m0

�
;

¼ 1

l2maxðlmaxþ2Þ2
Xlmax

l¼1

Xlmax

l0¼1

Xl

m¼−l

δll0ClClþ1

DlmDl0ð−mÞ
¼ 1

l2maxðlmaxþ2Þ2
Xlmax

l¼1

Xl

m¼−l

ClClþ1

DlmDlð−mÞ
: ð54Þ

The signal-to-noise ratio reads

S=N ¼ hD̂kiniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðD̂kinÞ

q ¼ Dkin · lmaxðlmax þ 2ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPlmax
l¼1

P
l
m¼−l

ClClþ1

DlmDlð−mÞ

q : ð55Þ

Future number count experiments are expected to measure
dN0=dΩ0½n̂0; S > S�ðνoÞ� with an angular resolution below
the arcmin scale (with, e.g., 30 galaxies=arcmin2 for
Euclid [47]), translating to lmax ≥ 104. It is not relevant
here that the Cls cannot be calculated within linear
perturbation theory. They can be extracted from the
observations themselves even in the nonlinear regime.
The only relevant assumptions are statistical isotropy for
observer O, as we show in the Appendix and β ≪ 1 so that
an expansion to linear order in β makes sense. To estimate
how the signal-to-noise ratio scales with lmax, we estimate
the denominator of (55) for a smooth variance of the source
number counts so that we can set Cl ≃ Clþ1, such that

Xlmax

l¼1

Xl

m¼−l

ClClþ1

DlmDlð−mÞ
≃
Xlmax

l¼1

Xl

m¼−l

1

4Alþ1mAlþ1ð−mÞ
: ð56Þ

To estimate the denominator, we replace the sum overm by
an integral and use Alð−mÞ ¼ Alm

Xl

m¼−l

1

4½Alþ1m�2
¼

Xl

m¼−l

ð2lþ 3Þð2lþ 1Þ
4½ðlþ 1Þ2 −m2� ;

≃
ð2lþ 3Þð2lþ 1Þ

4

Z
l

−l

dm
½ðlþ 1Þ2 −m2� ;

¼ ð2lþ 3Þð2lþ 1Þ logð2lþ 1Þ
4ðlþ 1Þ : ð57Þ

We now integrate this result over l to find

Xlmax

l¼1

Xl

m¼−l

1

4½Alþ1m�2
≃
Z

lmax

1

dl
ð2lþ 3Þð2lþ 1Þ logð2lþ 1Þ

4ðlþ 1Þ ;

ð58Þ

¼1

8
½ð4lmaxðlmaxþ2Þ−2 logð2lmaxþ2ÞÞlogð2lmaxþ1Þ

þ2Li2ð−3Þ−2Li2ð−2lmax−1Þþ8−2lmaxðlmaxþ3Þ
−15 logð3Þþ logð4Þlogð9Þ�; ð59Þ

≤ 6l2max; ð60Þ

where the validity of the last inequality can be checked
numerically for lmax ≤ 105. Here Li2 denotes the dilogar-
ithm given by

Li2ðzÞ ¼
Z

0

z

logð1 − tÞ
t

dt ¼
X∞
k¼1

zk

k2
: ð61Þ

With (60), we can set

S=N ≥
Dkin · lmaxffiffiffi

6
p ; ð62Þ

which is larger than 1 for lmax ≥ 497, assuming β̂ con-
verges to βdip and Dkin ¼ 4βdip. Note that this is rather a
conservative estimate, since Dkin is rather observed to be
twice as large as 4βdip [16–18]. For future experiments like
Euclid, which can measure the clustering of photometric
sources up to lmax ¼ 104, we can hope to constrain Dkin
(or β if the ratio Dkin=β is known) with less than 5% error.
As stated earlier, it is irrelevant that the Cls cannot be
calculated within linear perturbation theory, as they can be
extracted from the observations themselves even in the
nonlinear regime. This rather suggests a clever use of the
Cls beyond the linear regime.

VI. ORIENTATION

In our treatment so far, we have assumed that the
direction of the peculiar velocity β is known and we have
chosen the ẑ axis in its direction. This is especially relevant,
since most radio surveys agree relatively well with the
direction of the CMB dipole, but they find a much too large
amplitude for the velocity. However, in general we want to
determine both the amplitude and the direction of β. This
can be achieved easily, remembering the transformation of
the coefficients alm under rotation.
We start from Eq. (37) which relates the alms of the

comoving observer to the a0lms of the observer boosted
along the ẑ axis. Let us assume that the velocity β is not
along the ẑ axis, but along a direction which is rotated with
respect to ẑ by a rotation R ∈ SOð3Þ. If we rotate the
coordinate system by R−1 ¼ RT, then β points in the ẑ
direction with respect to the new coordinate system. In this
rotated system, Eq. (37) is valid. Under a rotation by R−1,
the alms transform as
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arotlm ¼
Xl

m0¼−l

DðlÞ
mm0 ðRÞalm0 : ð63Þ

Here DðlÞ
mm0 ðRÞ is the representation matrix of the repre-

sentation DðlÞ of SO(3), see Ref. [44], Appendix 4, for
details. In the rotated system, we have

arot
0

l0m ¼
Xl0

m00¼−l0
Dðl0Þ

mm00 ðRÞa0l0m00 ¼
X
l

Kl0lmarotlm;

¼
X
lm0

Kl0lmD
ðlÞ
mm0 ðRÞalm0 : ð64Þ

Hence, the general relation for β rotated by R with respect
to the ẑ axis is

a0l0m ¼
X
lm0

Krot
l0lmm0alm0 ; ð65Þ

Krot
l0lmm0 ¼

X
m00

ðDðl0Þ
mm00 ðRÞÞ�Kl0lm00DðlÞ

m00m0 ðRÞ; ð66Þ

¼ δll0δmm0 þDkin

�
δlðl0þ1Þ

X
m00

ðDðl0Þ
mm00 ðRÞÞ�Alm00DðlÞ

m00m0 ðRÞ

þ δlðl0−1Þ
X
m00

ðDðl0Þ
mm00 ðRÞÞ�Aðlþ1Þm00DðlÞ

m0m00 ðRÞ
�
: ð67Þ

Here, we have used that the DðlÞ are unitary representa-

tions, Dðl0Þ
mm00 ðR−1Þ ¼ ðDðl0Þ

mm00 ðRÞÞ�.
In general, a rotation is given by three Euler angles.

Since R is the rotation that turns β̂ with its polar angles
ðθβ;φβÞ into the ẑ axis, we can simply choose the Euler
angles ð0;−θβ;−φβÞ and insert

Dðl0Þ
m00m0 ðRÞ ¼DðlÞ

m00m0 ð0;−θβ;−φβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
−m0Ylm00ðθβ;φβÞ:

ð68Þ

Here sYlm is the spin-weighted spherical harmonic of spin s
(see Ref. [44], Appendix 4 for details). In addition to the
amplitude dependence given in Eqs. (38) to (39), the
coefficients Krot

l0lmm0 now also depend on the orientation
ðθβ;φβÞ. Denoting

Arotðl; m;m0; θβ;φβÞ ¼
X
m00

Dðl−1Þ�
mm00 ð0;−θβ;−φβÞ

× Alm00DðlÞ
m00m0 ð0;−θβ;−φβÞ; ð69Þ

we have

Krot
l0lmm0 ðDkin; θβ;φβÞ
¼ δll0δmm0 þ δlðl0þ1ÞArotðl; m;m0; θβ;φβÞ
×Dkin þ δlðl0−1ÞArotðlþ 1; m;m0; θβ;φβÞDkin: ð70Þ

Note that under rotations Arotðl; � � �Þ transforms like a rank
l − 1 tensor from the left and a rank l tensor from the right
or vice versa. Note that since Aðl; m;m0; 0; 0Þ ∝ δmm0 , an
action from the left or from the right cannot be distin-
guished. For θβ ¼ φβ ¼ 0, the tensor Arot is diagonal,

Arotðl; m;m0; 0; 0Þ ¼ δmm0Alm: ð71Þ

The product alma�ðlþ1Þm0 actually yields an unbiased estima-

tor for Arotðl; m;m0; θβ;φβÞ ·Dkin. To extract the three
unknowns ðDkin; θβ;φβÞ, which allow us to reconstruct

the vector Dkin ¼ Dkin · β̂, one computes for each l, m,
and m0, the products alma�ðlþ1Þm0 from observations in some
basis. This three-dimensional array can be fitted by
Arotðl; m;m0; θβ;φβÞ ·Dkin with the three parameters Dkin,
θβ, and φβ, which determine the kinematic dipole due to the
observer’s peculiar velocity. While the amplitudeDkin enters
only linearly, the dependence on the angles, θβ and φβ, is
more complicated. The three parameters can be extracted,
e.g., via a Markov chain Monte Carlo fitting procedure,
assuming the Cls to be known and inserting the theoretical
expressions for Alm, which are independent of Dkin.

VII. DISCUSSION

In this paper, we have worked out the correlation of
neighboring multipoles in the number count spherical
harmonic coefficients due to a boost with velocity
jjβjj ≪ 1, in an otherwise isotropic Universe. We have
found that these correlations are proportional to the kin-
ematic dipole Dkin. We derived an unbiased estimator D̂kin
of Dkin in terms of the observed (boosted) coefficients a0lm,
l ∈ N, m ∈ ½−l;…; l�. The same estimator with redshift
dependent coefficients can be used to measure DkinðzÞ, if
the sources are arranged in redshift bins. Of course, the
statistics for each redshift bin then decline. We computed
the variance of the estimator D̂kin and have shown that for
reasonably smooth variance of the source number counts,
the signal-to-noise ratio scales (up to log lmax corrections) as
OðlmaxDkinÞ, which becomes larger than 1 for lmax ≥ 497
for the expected peculiar velocity βdip and kinematic dipole
Dkin ∼ 4βdip. This implies that order 5% precision may be
achieved on β if lmax ≥ 104. Note that this is a conservative
estimate since the kinematic dipole is rather observed to be
twice larger than 4βdip [16–18]. We have also derived an
unbiased estimator β̂ of β, which requires the additional
knowledge of the ratio Dkin=β. The latter can be estimated
via Eq. (16) by assuming a cosmological model and by
measuring xðzÞ. Alternatively, assuming that the redshift
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evolutions of α and x are uncorrelated (see Ref. [14]), one
can measure them from the data and use Eq. (26) to obtain
Dkin. A last option if the redshift evolutions of α and x are of
concern, is to build a parametric model for them and fit them
together with β on tomographic measurements of Dkin with
a sufficient number of redshift bins. We studied the effects
of the orientation of β̂ on the l and l� 1 correlations and lay
out the procedure that allows to determine also the ori-
entation of β̂ from observations.
While our results are optimistically set in full sky, they

will be affected by an incomplete sky coverage, which also
breaks statistical isotropy. In practice, number count
catalogs cover only a fraction of the sky, the rest being
masked for a number of reasons that include but are not
limited to the footprint of the detector, the Milky Way,
obscuration by dust, turbulence from the atmosphere, bad
detectors, and instability of noise. One might then worry
that by naively using the estimator given in (46), one may
find deviations from statistical isotropy, which actually
come from the mask rather than from the peculiar velocity
of the observer. One way to handle this is to account for the
mask by multiplying the underlying number counts by a
mask function Wðn̂Þ that depends on the direction and on
redshift and varies between zero and one, depending on the
completeness of the survey. This multiplication by the
mask function makes it a convolution in harmonic space
that, in principle, allows us to disentangle neighboring
multipole correlations generated by the mask from the
ones, generated by the peculiar velocity of the observer.
Masking in harmonic space has been successfully carried
out in the analysis of microwave background fluctuations
and of galaxy number counts [41,42].
Future work is needed to incorporate the effect of a

survey mask on the estimator given in Eq. (46) and the
impact on the estimator’s bias, variance, and signal-to-noise
ratio. The current work lays the foundation to use source
number counts as an assessment of how we observe the
Universe moving with our special velocity, if not from a
special place.
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APPENDIX: STATISTICAL ISOTROPY

In this appendix, we show for completeness that Eq. (41)
relies only on statistical isotropy. In particular, it does not
rely on the validity of perturbation theory or on Gaussianity
of the fluctuations. Consider an observable, which is a real
valued function, defined on the sky, i.e.,O∶S2 → R. This
can be the number count density or the temperature
fluctuations of the CMB. Statistical isotropy implies that
the correlation function depends only on the angle θ
between n̂ and n̂0,

hOðn̂ÞOðn̂0Þi ¼ CðμÞ; ðA1Þ

where μ≡ cosðθÞ ¼ n̂ · n̂0. This function can be expanded
on the interval −1 ≤ μ ≤ 1 in Legendre polynomials

CðμÞ ¼
Xþ∞

l¼0

alPlðμÞ ¼ 4π
Xþ∞

l¼0

al
2lþ 1

Xl

m¼−l
Ylmðn̂ÞY�

lmðn̂0Þ;

ðA2Þ

where we have used the addition theorem for spherical
harmonics in the second equality. On the other hand, the
function on the sphere Oðn̂Þ can be expanded in spherical
harmonics

Oðn̂Þ ¼
Xþ∞

l¼0

Xl

m¼−l
almYlmðn̂Þ ¼

Xþ∞

l¼0

Xl

m¼−l
a�lmY

�
lmðn̂Þ; ðA3Þ

where the second equality holds because Oðn̂Þ is real.
Plugging this expansion in Eq. (A1), one obtains

CðμÞ ¼
Xþ∞

l¼0

Xþ∞

l0¼0

Xl

m¼−l

Xl0
m0¼−l0

halmal0m0 iYlmðn̂ÞYl0m0 ðn̂0Þ: ðA4Þ

As the functions Ylmðn̂ÞYl0m0 ðn̂0Þ form an orthonormal basis
on the Hilbert space of square integrable function on the
cross product of two-spheres, L2ðS2 × S2Þ, one can iden-
tify the coefficients in (A2) and (A4) to conclude that

halma�l0m0 i ¼ δll0δmm0
4πal
2lþ 1

≡ δll0δmm0Cl: ðA5Þ
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