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We study the observational implications of a class of inflationary models wherein the inflaton is coupled
to the Einstein tensor through a generalized nonminimal derivative coupling (GNMDC). In particular, we
explore whether these models can generate suitable features in the primordial spectrum of curvature
perturbations as a possible explanation for the large-scale anomalies associated with the angular power
spectrum of CMB temperature anisotropies. We derive model-independent constraints on the GNMDC
function for such a scenario, considering both the scalar and tensor perturbations. We modify CosmoMC to
accommodate our GNMDC framework and investigate different classes of inflationary models using a fully
consistent numerical approach. We find that the hilltop-quartic model with a specific choice of the
GNMDC function provides a considerable improvement over the best-fit reference ΛCDM model with a
nearly scale-invariant power spectrum. While the large-scale structure observations should be able to
provide independent constraints, future CMB experiments, such as CMB-S4 and CMB-Bharat, are
expected to constrain further the parameter space of such beyond canonical single-field inflationary
models.

DOI: 10.1103/PhysRevD.107.103513

I. INTRODUCTION

Our current understanding of the universe on large scales
is remarkably well described by the standard model of
cosmology—a relatively simple six-parameter ΛCDM
model, supplemented by an inflationary epoch in the very
early universe [1–5]. Besides providing an elegant explan-
ation to the numerous shortcomings of the hot big bang
theory, an epoch of inflation also provides a causal and
efficient mechanism for the origin of primordial density
perturbations which source the anisotropies in the cosmic
microwave background (CMB) radiation and later act as
seeds for the formation of the large scale structures in the
universe [6–12]. For these reasons, the inflationary
paradigm is now widely considered a crucial part of the
concordance model of cosmology. The simplest inflation-
ary models are based on a minimally coupled slowly
rolling scalar field, called the inflaton, with a slowly
varying potential. Such slow-roll inflationary models pre-
dict a nearly scale-invariant power spectrum of primordial
curvature perturbations with very small non-Gaussianities
that are in excellent agreement with the ever-increasing

precision measurements of the CMB anisotropies by
WMAP and Planck [13–16].
In the CMB measurements at large angular scales,

several unexpected features, collectively known as CMB
anomalies, have also been observed by COBE, WMAP and
Planck [17–19]. Among these anomalies, one of the most
notable ones is the low value of the temperature angular
power spectrum at the quadrupole moment l ¼ 2, even
below the cosmic variance of the ΛCDM model with a
nearly scale-invariant primordial spectrum. Besides, some
other outliers (localized features) also exist around
l ∼ 20–30. Some localized features also appear at smaller
scales, most significantly around l ∼ 750 in the TT and TE
spectra, observed by Planck. Although all these features
have marginal statistical significance from the Planck data,
they have still generated enormous interest in the literature
to understand if they could have a primordial origin
in the early universe [20,21]. Such features are strongly
scale-dependent deviations from an otherwise nearly scale-
invariant spectrum. Within the minimal class of canonical
single field inflationary models, one of the simplest
possibilities to generate these features is to briefly modify
the slow roll dynamics of the inflaton, either by introducing
a step in the inflaton potential [22–30], allowing an
inflection point in the potential [31–34] or imposing
kinetic/fast roll initial conditions for the dynamical
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evolution of the inflaton field [35–39]. All these approaches
give rise to localized features in the primordial spectrum,
which usually improve the best fit over the concordance
model and have been discussed extensively in the literature.
Moreover, the possible origin of these primordial features
has also been studied in the context of multifield infla-
tionary models [40,41]. In particular, a specific class of two
field models that allow a rapid turn in the field space
usually produce such features due to transient deviations
from the slow roll conditions [42–44].
To extend beyond the minimal setup, an interesting

possibility is also to use the scalar-tensor theories such
as the Horndeski theory [45]. An interesting aspect of
these theories is that despite higher-order terms in the
Lagrangian, they yield second-order field equations and,
thus, remain free of the Ostrogradsky instability. Within
the framework of Horndeski theory, in this paper, we
explore specific inflationary scenarios involving coupling
of the derivative of the inflaton field to the Einstein
tensor with a generalized coupling function, popularly
known as the generalized nonminimal derivative coupling
(GNMDC) [46–49]. These interactions induce gravitation-
ally enhanced friction, affecting the inflationary dynamics
of the scalar field and lead to very interesting phenomeno-
logical implications.
The simplest case of GNMDC is called the nonminimal

derivative coupling (NMDC), wherein the coupling
function is a constant. It has been extensively explored,
leading to interesting implications in early universe cos-
mology [50,51] and black hole physics [52,53]. The
drawback of NMDC is due to its constant presence also
at the end of inflation and reheating era, which leads to
dynamical instability during the reheating stage [54],
affects the process of particle production and thus, changes
the predictions of the standard reheating scenario [55].
Therefore, the simple NMDC term has been proven to be
not so useful for successful inflationary model building.
However, in a more general GNMDC setup, all these issues
can be cured. The freedom to choose the form of the
generalized coupling function makes these classes of
GNMDC models phenomenologically attractive. In gen-
eral, choosing a nonconstant, field-dependent GNMDC
function affects the dynamics of the inflaton field, thereby
leaving distinguishable imprints in the primordial power
spectrum. For instance, the GNMDC term during inflation
has been recently studied for forming primordial black
holes and induced gravitational waves [56–58]. Including
GNMDC coupling or the gravitationally enhanced friction
can also make a class of inflationary models consistent with
the CMB data, which are otherwise ruled out. Recently, this
possibility has also been explored in the context of Higgs
inflation assuming slow roll approximations [49].
In this paper, we aim to study whether GNMDC models

can help make inflationary scenarios consistent with the
latest CMB data and simultaneously explore the prospects

of generating localized features in the scalar power spec-
trum to explain the origin of large-scale features in the
angular power spectrum of CMB temperature anisotropies.
For simplicity, we only consider the GNMDC function a
function of the scalar field ϕ and study three different
inflationary models for this purpose. Independent of the
choice of the coupling function, we find relevant con-
straints on this class of GNMDC models by keeping track
of the propagation speed for scalar and tensor perturba-
tions. From simple analytical arguments, we show that the
generation of nontrivial localized features in the primordial
power spectrum to explain the CMB anomalies in these
models, together with avoiding any gradient instabilities
and unphysical solutions, is inconsistent with subluminal
propagation of both scalar and tensor perturbation modes
simultaneously. Only if the tensor perturbations are margin-
ally superluminal during the inflationary phase, it opens up
the possibility of generating large-scale features of suffi-
cient amplitude in the primordial scalar power spectrum.
Staying within these constraints, we find that GNMDC
models’ efficiency in explaining large-scale CMB anoma-
lies crucially depends on the functional form of the
GNMDC function θðϕÞ.
Unlike previous literature, which relies explicitly on the

slow roll approximation in GNMDC, we adopt a fully
numerical approach and develop a fast parallel computing
module to exactly calculate the power spectra of scalar and
tensor perturbation in these models, taking into account the
transient deviations from the slow roll conditions accu-
rately. With this code, we study the evolution of the
background and linear scalar and tensor perturbations
accurately. We couple this code to the publicly available
cosmological Monte-Carlo code CosmoMC

1 [59] to compare
these models with the concordance ΛCDM model and
arrive at the best fit parameter constraints. We use two
Planck datasets and work with relevant likelihood combi-
nations for our model comparison. For both cases, we show
that within the GNMDC setup, characterized by our
specific choice of θðϕÞ, we obtain significant improvement
in the fit at large scales in the Planck data. As mentioned
earlier, the choice of θðϕÞ is crucial to obtain specific
features in the power spectrum. Here, we primarily target
the large-scale anomalies around l ∼ 20–30 in the obser-
vations of CMB temperature anisotropies by introducing a
localized feature in the GNMDC coupling function. Thus,
we do not expect much improvement in the fit on relatively
smaller scales or in polarization. Nevertheless, we still
check the consistency of our model with the small-scale
temperature and polarization anisotropy likelihoods for two
different datasets to ensure that the introduction of the
GNMDC feature does not affect the fit in smaller scales or
for polarization likelihood. The freedom to choose θðϕÞ
leaves us with much richer dynamics, and one can further

1https://cosmologist.info/cosmomc/.
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aim to achieve significant improvement on smaller scales as
well in CMB. Thus it will be more relevant to study these
models with the advent of future observations of CMB
polarization, such as from CMB-S4 experiments which
should be able to constrain these features better and provide
stronger bounds on the parameters space of these models.
This paper is organized as follows. In the following

section, we shall briefly discuss the details of the infla-
tionary setup, including the GNMDC term, and derive the
equations of motion of the background evolution and the
linear scalar and tensor perturbations. In Sec. III, we
discuss various issues arising in GNMDC models, such
as the gradient instability associated with the scalar
perturbations and the superluminal propagation of gravi-
tational waves, and also provide possible resolutions to
these problems. In Sec. IV, we discuss our choice of the
GNMDC function θðϕÞ and the various inflationary models
that we work with. In Sec. V, we discuss the methodology
of our numerical approach that we have developed to
compare these models with the data. In Sec. VI, we present
our results for the best-fit constraints on various model
parameters and the best-fit CMB power spectra. Finally, in
Sec. VII, we summarize our results, conclude with a
discussion and present some outlook for future work in
this direction. In appendix, we present the evolution
equations corresponding to the background and perturba-
tions for the GNMDC setup, which we use in our numerical
module to compute the power spectra of scalar and tensor
perturbations.
Our notations and conventions are as follows. We shall

work with natural units such that ℏ ¼ c ¼ 1, and the

reduced Planck mass MPl ¼ ð8πGÞ−1=2. We shall work
in the spatially flat Friedmann-Lemaître-Robertson-
Walker (FLRW) universe described by the following line
element

ds2 ¼ −dt2 þ a2ðtÞdx2 ¼ a2ðτÞð−dτ2 þ dx2Þ; ð1Þ

where t and τ denote the cosmic time and conformal time,
respectively while a represents the scale factor of the
3-dimensional spatial hypersurface. An overdot and over-
prime will denote differentiation with respect to t and τ
coordinates.

II. GENERALIZED NONMINIMAL DERIVATIVE
COUPLING (GNMDC) DURING INFLATION

As mentioned in the Introduction, we explore the
implications of a derivative coupling which can be moti-
vated by the well-studied scalar-tensor theory like the
Horndeski theory [48,60]. The complete action for the
Horndeski theory (or equivalently, for the generalized
Galileons), constructed out of the metric tensor and a
scalar field, is given as [48]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p X5
i¼2

Li; ð2Þ

where

L2 ¼ G2ðϕ; XÞ;
L3 ¼ −G3ðϕ; XÞ□ϕ;

L4 ¼ G4ðϕ; XÞRþ G4Xðϕ; XÞ½ð□ϕÞ2 − ð∇μ∇νϕÞ2�;

L5 ¼ G5ðϕ; XÞGμν∇μ∇νϕ −
1

6
G5X½ð□ϕÞ3 − 3□ϕð∇μ∇νϕÞ2 þ 2ð∇μ∇νϕÞ3�;

where R is the Ricci scalar, Gi are four independent
arbitrary functions of ϕ and X, and GiY ¼ ∂Gi=∂Y with
Y ¼ fϕ; Xg and X ¼ −∂μϕ∂μϕ=2. For specific choices of
the functions Gi, one can reproduce most of the second-
order scalar-tensor theory as a specific case. For instance,
the nonminimal coupling to gravity can be obtained by
setting G4 ¼ G4ðϕÞ. Moreover, the Einstein-Hilbert action
is already contained in this construction and can be
recovered by setting G4 ¼ M2

Pl=2. For our case, the action
comprising of a GNMDC interaction during inflation can
be obtained from the Horndeski setup by choosing
G2 ¼ X − VðϕÞ, G3 ¼ 0, G4 ¼ M2

Pl=2, G5 ¼ G5ðϕÞ,
and further doing integration by parts for the term L5,
we arrive at

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R−

1

2
ðgμν−θðϕÞGμνÞ∂μϕ∂νϕ−VðϕÞ

�
;

ð3Þ

where VðϕÞ is the potential of the inflaton field and
θðϕÞ ¼ −2G5ϕ. As mentioned earlier, the case where
θðϕÞ is a constant is referred to as the NMDC. As we
shall discuss later, for a given potential, an appropriate
choice of the coupling function θðϕÞ can generate interest-
ing features in the primordial spectrum of curvature
perturbations and, therefore, in the CMB angular power
spectrum which can possibly explain the observed large
scale features in the CMB temperature anisotropies.
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For the homogeneous, isotropic, and spatially flat FLRW
metric, the background Friedmann equations can be written
as [56]

3H2 ¼ κ2
�
VðϕÞ þ 1

2
_ϕ2ð1þ 9θðϕÞH2Þ

�
; ð4Þ

−2 _H ¼ κ2½ð1þ 3κ2θðϕÞH2 − κ2θðϕÞ _HÞ _ϕ2

− κ2θ0ðϕÞH _ϕ3 − 2κ2θðϕÞH _ϕ ϕ̈�; ð5Þ

where θ0 ¼ dθ=dϕ, κ2 ¼ 1=M2
Pl and from now on, we

set κ2 ¼ 1. The Klein-Gordon equation for ϕ can be
obtained as

ϕ̈ð1þ 3θðϕÞH2Þ þ 3H _ϕð1þ θðϕÞð3H2 þ 2 _HÞÞ

þ 3

2
θ0ðϕÞ _ϕ2H2 þ V 0ðϕÞ ¼ 0; ð6Þ

where V 0 ¼ dV=dϕ. Evidently, all these equations reduce
to the case of a single minimally coupled canonical scalar
field in the absence of the GNMDC term. Moreover, the
presence of the GNMDC term allows for an extra friction
term in the equations of motion thereby changing the
inflationary dynamics drastically. Using Eq. (4), we find
that the velocity of the inflaton field can be obtained as

_ϕ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½3H2 − VðϕÞ�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9θðϕÞH2

p ; ð7Þ

which implies that the real solutions of _ϕ would demand

1þ 9θðϕÞH2 > 0; ð8Þ
3H2 > VðϕÞ: ð9Þ

These conditions together impose a constraint on the
GNMDC function θðϕÞ in terms of the potential of the
inflaton field. Therefore, in order to avoid unreal values of
the inflaton velocity, we obtain the following condition that
we always impose

1þ 3θðϕÞVðϕÞ > 0: ð10Þ

Further, for a given potential VðϕÞ and the GNDMC
function θðϕÞ, we solve the background equations numeri-
cally with the number of e-folds N as the time variable by
using appropriate initial conditions on ϕ, _ϕ and H by
requiring that

(i) Inflation lasts for a long enough duration which
determines the initial value of the inflaton field
i.e. ϕi ¼ ϕðN ¼ NiÞ.

(ii) In order to have negligible deviations from slow
roll dynamics at an initial time Ni, we set the
initial condition on the Hubble parameter using
Eq. (4) as

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðϕÞ
3

þ ξ

r
; 0 < ξ ≪ 1: ð11Þ

(iii) Finally, the initial condition on _ϕ is given
by Eq. (7).

In order to understand the background evolution for a
given VðϕÞ and θðϕÞ, we have developed a numerical
module based on an exact integration of the Friedmann
equations which are subject to initial conditions as
mentioned above. This is required as we are interested
in generating primordial features in the power spectrum of
curvature perturbations that may arise due to transient
deviation from slow-roll conditions. Since the slow roll
approximation is usually not able to correctly capture
these features, we shall not discuss the slow roll approxi-
mation for the background quantities and the slow roll
results for the power spectrum of cosmological
perturbations.
We shall now discuss the evolution of linear cosmo-

logical perturbations in this scenario and focus only on the
scalar and tensor perturbations as vector perturbations
usually decay during inflation unless being sourced.
Following the standard cosmological perturbation
theory at the linear order, the second order action for
the scalar curvature perturbations R can be calculated
as [48,60]

Sð2Þ
R ¼

Z
dtd3xa3Gs

�
_R2 −

c2s
a2

ð∂RÞ2
�
; ð12Þ

where cs is the propagation speed of the scalar modes,
given by

c2s ¼
F s

Gs
; ð13Þ

and F s and Gs are defined as

F s ¼
1

a
d
dt

�
a
Θ
G2
T

�
− F T; ð14Þ

Gs ¼
Σ
Θ2

G2
T þ 3GT; ð15Þ

with

Σ ¼ X − 3H2 þ 18H2XθðϕÞ ð16Þ

Θ ¼ H½1 − 3XθðϕÞ� ð17Þ

F T ¼ 1þ XθðϕÞ ð18Þ

GT ¼ 1 − XθðϕÞ ð19Þ

In order to avoid the ghost and gradient instabilities
associated with the curvature perturbations, we must
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require that Gs > 0 and c2s > 0 which, in turn, imposes
constraints on the GNMDC coupling function θðϕÞ. In
terms of the conformal time dτ ¼ dt=a, the second order
action in Eq. (12) can be written as

Sð2Þ
R ¼

Z
dτd3xz2sðR02 − c2sð∂RÞ2Þ; ð20Þ

where zs ¼ a
ffiffiffiffiffi
Gs

p
. Using this action, the Mukhanov-Sasaki

equation for the Fourier modes of curvature perturbations
Rk can be obtained as

R00
k þ

2z0s
zs

R0
k þ c2sk2Rk ¼ 0: ð21Þ

The power spectrum of curvature perturbations is
defined by

PRðkÞ ¼
k3

2π2
jRkj2; ð22Þ

which is evaluated at the end of inflation using an exact
numerical integration of the Fourier modes equation and by
imposing the appropriate initial conditions on the Fourier
modes in the subhorizon regime.
The linear tensor perturbations are described by the

second-order action which is given by

Sð2Þ
T ¼ 1

8

Z
dtd3xa3

�
GT

_h2ij −
F T

a2
ð∇hijÞ2

�
; ð23Þ

which in terms of conformal time can be written as,

ST
ð2Þ ¼

Z
dτd3xzT2

�
h02ij − c2Tð∇hijÞ2

�
; ð24Þ

where zT ¼ a
2
ðGT=2Þ1=2 and c2T ¼ F T=GT . Finally, the

Fourier mode equation for tensor perturbations can
be obtained by varying the above action which leads to

h00k þ
2z0T
zT

h0k þ c2Tk
2hk ¼ 0; ð25Þ

and the power spectrum of tensor perturbations is
defined by

PhðkÞ ¼ 2
k3

2π2
jhkj2: ð26Þ

Note that, the power spectra for both the scalar and tensor
perturbations must be evaluated at the end of inflation or in
the super-horizon limit k=aH ≪ 1.

III. SOUND SPEED OF LINEAR PERTURBATIONS
IN GNMDC AND CMB ANOMALIES

In this section, we shall discuss our approach to avoid the
issues associated with the propagation speed of linear
perturbations and instabilities that arise in the presence
of the GNMDC term. In particular, we work in the regime
of parameter space such that we avoid the problems like
gradient instability and superluminal propagation of the
scalar perturbations.

A. Sound speed of scalar perturbations

The propagation speed of the scalar modes in GNMDC
setup is given by Eq. (13). Upon changing the time variable
to the e-folds N using dN ¼ Hdt and defining ϕN ¼
dϕ=dN, ϕNN ¼ d2ϕ=dN2, HN ¼ dH=dN, θNðϕÞ ¼
dθðϕÞ=dN, g≡ − 1

2
θðϕÞH2, and h≡ − 1

2
θNðϕÞH2 together

with some simplifications, we get

c2s ¼
�
HðgϕNðϕNðgð18gþ 8hþ 1Þϕ2

N − 4gþ 8hþ 2Þ þ 16gϕNNðgϕ2
N þ 1ÞÞ − 6gþ 1Þ

þ 4gHNðgϕ2
N þ 1Þð3gϕ2

N − 1Þ
�	�

Hðgϕ2
N þ 1Þðgð18gþ 1Þϕ2

N − 6gþ 1Þ
�

ð27Þ

As we have discussed in the previous section, we are
interested in generating features in the power spectrum due
to the presence of the GNDMC term and thus, we assume
that g and h need to be of Oð1Þ or larger to get such large
scale features. Moreover, if we also restrict ourselves to
slowly varying functions of θðϕÞ, we can assume2 jgj >
jhj ≫ H ≫ jHN j and jgj > jhj ≫ jϕN j > jϕNN j. These im-
posed hierarchies are largely based on the requirement of
having a stable inflationary phase and having a significant

effect of the GNMDC term to generate localized features in
the primordial power spectrum. Now, under these con-
ditions and taking only the leading order contributions, it is
possible to write c2s as

c2s ≈ 1 −
16g2ϕ2

N

1 − 6g
þ 16g2ϕNϕNN

1 − 6g
þ 8ghϕ2

N

1 − 6g
: ð28Þ

Since jgj > Oð1Þ to get appropriate features in the scalar
power spectra, the above expression further simplifies to

c2s ≈ 1þ 8

3
gϕ2

N −
8

3
gϕNϕNN −

4

3
hϕ2

N ≈ 1þ 8

3
gϕ2

N: ð29Þ2We have also numerically checked that these assumptions
hold quite well for the entire duration of inflation.
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For a consistent theory sans instabilities, we need
0 < c2s ≤ 1, so from the above equation, it is evident that
we need

0 ≤ θðϕÞ < 3

4ϕ2
NH

2
: ð30Þ

Note that, while the first part θðϕÞ ≥ 0 is obtained to avoid
the superluminal propagation of scalar perturbations, the
second part of the above inequality, θðϕÞ < 3

4ϕ2
NH

2 avoids

the gradient instability, which is caused whenever the sound
speed of scalar perturbations becomes imaginary. As
studied in earlier works, the presence of such a gradient
instability can cause an uncontrollable growth of scalar
perturbation modes, thereby, rendering the theory incon-
sistent, even if the background evolution is stable [61,62].
It is, therefore, necessary to ensure that the squared sound
speed of perturbation modes is always positive i.e. c2s > 0.

B. Sound speed of tensor perturbations

Following the discussion of Sec. II, the sound speed of
tensor perturbations is given by

c2T ¼ F T

GT
¼ 1þ XθðϕÞ

1 − XθðϕÞ : ð31Þ

As long as we work with negative values of θðϕÞ, we can
infer from the above equation that c2T < 1, but any positive
θðϕÞ shall lead to superluminal GWs. The recent detection
of GWs from LIGO-VIRGO collaboration and their
electromagnetic counterparts lead to a very stringent bound
on the sound speed of GWs [63,64] given as,

−3 × 10−15 < cT − 1 < 7 × 10−16: ð32Þ

But it is to note that these bounds are valid for the late
universe wherein the observed signals are originated. One
can, in principle, argue that in very early universe, these
bounds can be grossly violated.

C. Our adopted approach

While avoiding gradient instability constrains the ampli-
tude of θðϕÞ, and therefore the amplitude of local features
in the scalar power spectra, the issue of superluminality for
scalar and tensor modes is rather tricky to handle. To
generate appropriate wiggles in the primordial scalar power
spectrum, we use a localized dip of sufficient amplitude in
the function θðϕÞ. If we only consider this localized feature
on top of the minimal setup, the local dip inevitably leads
θðϕÞ to negative values. However, in the negative regime,
θðϕÞ is constrained to be θðϕÞ > −1=9H2 from Eq. (8) for
avoiding unphysical solutions. On the other hand, we need
the amplitude of θðϕÞ to be of Oð1=H2Þ to obtain any
visible features in power spectrum [56–58]. Considering

this difficulty, along with the restriction imposed by
Eq. (30) to have subluminal propagation of scalar modes,
we choose to restrict ourselves to positive values of θðϕÞ.
One immediate setback of this approach is to have super-
luminal propagation of tensor modes. As is evident from
Eq. (31), it is inevitable to have superluminal tensor modes
whenever we consider θðϕÞ ≥ 0 regime. Equation (31)
together with Eq. (30) shows that in these class of models
which induce non-negligible features in the scalar power
spectrum, superluminalities of scalar and tensor modes are
mutually exclusive. In other words, the subluminal propa-
gation of scalar modes requires θðϕÞ ≥ 0 which inevitably
leads to superluminal GWs, and vice versa.
For the viability of our model, we restrict ourselves to the

cases wherein we can completely avoid the gradient
instability and superluminality for the scalar modes but
the tensor models remain superluminal. To achieve this, we
work with θðϕÞ > 0 and propose a possible way to obtain
θðϕÞ > 0 throughout the evolution by using an extra
monomial term in θðϕÞ which will be present during the
inflationary phase but becomes negligible toward the end of
inflation. Together with this, we have a local feature term
that shall be active near the horizon exit of relevant
large scales. In this case, the suppression or wiggles due
to the local feature term will arise with respect to the
amplification coming from the monomial term and not
with respect to the minimal results. With this, we can now
write,

θðϕÞ ¼ θ0ðϕÞ þ θ1ðϕÞ; ð33Þ

where θ0ðϕÞ denotes the monomial term and θ1ðϕÞ refers to
the local term responsible for features in the spectrum. The
advantage of using this setup is twofold. First, the mono-
mial term θ0ðϕÞ will cancel out any negative contribution
coming from θ1ðϕÞ, and shall ensure that θðϕÞ is always
positive for consistency. Second, it will also control the
scalar spectral index ns, and the tensor-to-scalar ratio r. In
the context of primordial black holes forming models [65]
and Higgs inflation [49], the applications of such monomial
terms have been explored recently.
In Sec. IVA, we will discuss the choice of our θðϕÞ, to

obtain large-scale features in the primordial power spec-
trum. We show that by appropriate choice of a positive
θðϕÞ, we always reside in the subluminal regime for
scalar modes, while tensor modes remain marginally
superluminal during the inflationary evolution in our
GNMDC setup. Figure 1 shows the extent of violation
of the superluminality of tensors in terms of cT − 1 for our
best-fit GNMDC model, which is ∼Oð10−11Þ. Although
this violates the bounds from Eq. (32), but as argued
earlier, these bounds constrain the late universe physics,
while the early inflationary phase can still have deviations
from them.
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IV. CHOICE OF THE GNMDC COUPLING
FUNCTION AND INFLATIONARY MODELS

A. GNMDC coupling function θðϕÞ
1. Choice of θ0ðϕÞ

The monomial term θ0ðϕÞ is a global term that is
dynamically active throughout the duration of inflation.
The motivation to use this term is to ensure that θðϕÞ
remains positive as we impose this condition following the
discussion of our previous section. Further, to get an
unaltered reheating history and the standard radiation
domination, the contribution from this term should be
negligible toward the end of inflation. Therefore, we
essentially need a θ0ðϕÞ term whose amplitude monoton-
ically decreases during inflation. As a simple example, we
work with a monomial form of θ0ðϕÞ given as,

θ0ðϕÞ ¼ A0

�
ϕ

ϕi

�
n
: ð34Þ

The sign of index n depends on the model for the potential
of the inflaton field. For models where ϕ decreases with
time, n should be positive so that by the end of inflation,
GNMDC contribution becomes insignificant. Similarly, n
should be negative for the potentials where ϕ increases with
time. Previous studies have considered inflationary models
with a monomial GNMDC term, leading to shifting in the
values of ns and r, in comparison to their values in the
minimal setup without GNMDC. In Refs. [49,65], it has
been shown that, for a given background model, such a
monomial term with a larger index leads to a stronger shift
in the values of ns and r. In this work, we fix the power law
index of θ0ðϕÞ, with jnj ¼ 4, while its sign depends on the

potential of the inflationary model. Later in Sec. IV B, we
will explore the behavior of different inflationary potentials
VðϕÞ in the presence of such a monomial GNMDC term to
find the best one with the allowed values of ns and r. An
appropriate combination of VðϕÞ and θ0ðϕÞ leads to a
nearly scale-invariant primordial power spectrum. Next, we
will discuss the form of θ1ðϕÞ in order to introduce desired
localized features on the relevant large scales.

2. Choice of θ1ðϕÞ
The second term θ1ðϕÞ is a local term whose effects

would be significant only in the vicinity of the horizon exit
of very large scales. While the monomial term θ0ðϕÞ along
with the background model of VðϕÞ, sets the desired power
law form of inflationary scalar power spectra, this local
term is largely responsible for the superimposed oscilla-
tions on relevant scales. Previous studies [66–68] have
suggested an overall suppression and superimposed oscil-
lations at very large scales of inflationary scalar power
spectra to explain the anomalies associated with the CMB
temperature anisotropy power spectrum around multipoles
l ∼ 20–30. Therefore, to obtain such large-scale features,
we propose a suitable form of the GNMDC function θ1ðϕÞ,
such that it has a localized dip feature with a negative
amplitude. In fact, a similar functional form of the coupling
function has been used in [56], in the context of the
formation of primordial black holes, where instead of a dip,
a localized peak was introduced on relevant scales. In our
work, we use

θ1ðϕÞ ¼ −
A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðϕ−ϕ0Þ4
σ

q : ð35Þ

Here, A1 is an overall amplitude factor, ϕ0 represents the
location of large-scale features, and σ effectively deter-
mines the width of the feature. In later sections, we shall
compare this model with the data to arrive at the best-fit
constraints on various parameters. The amplitude factor A1

in Eq. (35) can be interpreted as

A1 ¼ A1;max × f

where f is a fraction, with 0 ≤ f ≤ 1. The quantity A1;max is
the maximum possible amplitude factor in θ1ðϕÞ, for a
given A0 [i.e., amplitude of θ0ðϕÞ] such that

θ0ðϕminÞ þ θ1ðϕminÞ ≥ 0;

where ϕmin corresponds to the value of the scalar field at
which θ1ðϕÞ attains its minimum or the most negative
value. This ensures that even at the most negative values of
θ1ðϕÞ, the overall θðϕÞ still remains positive, following the
discussion of Sec. III C. Note that, f ¼ 0 implies the
absence of any local diplike feature in the GNMDC

FIG. 1. The deviation of sound speed of scalar and tensor
perturbations from unity in our GNMDC model for the best-fit
parameter values of Dataset I as given in Table IV. As is evident
from the plot, the scalar modes remain subluminal throughout,
while the tensor modes are slightly superluminal in our GNMDC
model. The sound speeds corresponding to the best-fit values
from other datasets also show similar behavior.
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function, and hence the absence of any nontrivial large-
scale features in the primordial power spectra. However,
any nonzero value of f will induce suppression and
superimposed oscillations in the power spectra on very
large scales, where f controls the amplitude of these
features. This will be discussed at length in the next section.

B. Choice of different inflationary potentials

As discussed in the introduction, in order to explain the
large-scale CMB anomalies, we need appropriate scalar
power spectra with superimposed oscillations from a given
inflationary model. Specifically, to be consistent with
the CMB constraints, we need (i) an appropriate amplitude
As of the scalar power spectrum at the pivot scale [14]
(ii) the correct value of the scalar spectral index ns at the
pivot scale [14] and, (iii) sufficiently low tensor to scalar
ratio r so as to be consistent with the observational bound
[14,16]. Moreover, in order to provide a better fit to the
data, the power spectrum should have suppression at
large scales and superimposed oscillations at intermediate
scales [25,26,68,69].
In order to achieve these requirements, we have studied

three different single-field inflationary models, in the
presence of a GNMDC monomial term θ0ðϕÞ, to find
the optimal one which satisfies all these conditions. We
shall briefly discuss the advantages and disadvantages of
these different models in the following subsections and
finally work with the hilltop-quartic scenario for our
analysis.

1. The quadratic model

One of the simplest models of inflation is described by
the quadratic potential

VðϕÞ ¼ 1

2
m2ϕ2: ð36Þ

This large field model leads to a large tensor to scalar ratio
r ∼ 0.1 and has, therefore, been ruled out from recent
Planck 2018 [14] and BICEP 2021 data release [16]. With
the addition of a monomial GNMDC term θ0ðϕÞ in the
Lagrangian, it is possible to decrease r in this setup but that
simultaneously increases the scalar spectral index ns to
quite a large value, far from the best fit and thus, fails to
show any improvement with the CMB data. We study the
behavior of the quadratic model together with the GNMDC
monomial functional form θ0ðϕÞ ¼ A0ϕ

4, where we vary
the strength of the monomial term by varying the coef-
ficient A0. It is evident from Fig. 2 that even if we increase
the strength of the monomial GNMDC term by increasing
A0, the quadratic model becomes strongly disfavored,
particularly with the recent BICEP data [16], combined
with the BAO observations.

2. The Starobinsky model

The potential for the Starobinsky model, in the Einstein
frame, is given by

VðϕÞ ¼ V0

�
1 − e−

ffiffiffiffiffiffi
2=3

p
ϕ=MPl

�
2 ð37Þ

In the minimal setup, the Starobinsky model leads to the
best-fit value of ns and a very small value of r, thereby
sitting at the so-called sweet spot of the Planckþ BICEP
allowed constraints. When we modify this minimal setup
with the addition of a monomial GNMDC function with an
appropriate amplitude, it inevitably shifts the values of both
ns and r from their optimal best-fit values. We study the
Starobinsky setup in presence of the GNMDC monomial
function of the form θ0ðϕÞ ¼ A0ϕ

4, and as we can see from
Fig. 2, increasing the strength of the monomial term leads
to rendering the model inconsistent with the CMB obser-
vations. From our earlier discussion in Sec. III C, the
presence of the monomial term in the GNMDC function
is essential for a consistent model building and thus, we
find that the Starobinsky model together with GNMDC is
not a suitable scenario to work with.

FIG. 2. The plot of ns vs. r. The blue region indicates the 1-σ
and 2-σ contours associated with the reference ΛCDM model
with Planck data only while the yellow region indicates the 1-σ
and 2-σ contours corresponding to the Planckþ BICEP recent
datasets. The predictions of various inflationary models have also
been displayed on top of these contours. Among these scenarios,
the Starobinsky model lies at the sweet spot of the observational
constraints of Planck and BICEP data. Moreover, in the presence
of the monomial GNMDC term characterized by an amplitude
term A0, we find that both the quadratic and Starobinsky model
become disfavored with increasing A0 while the hilltop-quartic
model (for μ ≲ 1) provides a better fit with the data. This feature
indicates that a class of models which are otherwise inconsistent
with the observational constraints can possibly be made con-
sistent with the data by introducing a monomial GNMDC term.
For this reason, we finally use the hilltop-quartic model in our
analysis.

TIWARI, BHAUMIK, and JAIN PHYS. REV. D 107, 103513 (2023)

103513-8



3. The hilltop-quartic model

Thehilltop inflationary scenarios are small fieldmodels in
which inflation takes place near the maxima of the potential.
These models are described by the potentials of the form

VðϕÞ ¼ V0

�
1 −

�
ϕ

μ

�
p
�
: ð38Þ

According to Planck 2018 observations [14], the quartic
potential (p ¼ 4) provides a better fit to the data as compared
to the quadratic potential (p ¼ 2). Compared to the single-
parameter models such as the quadratic or the Starobinsky
model, this class of models is a two-parameter family of
models which contain an extra parameter μ. In our setup, we
start with the quartic potential with p ¼ 4 and exploit the
freedom of varying μ. This allows us comparatively large
ranges for ns and r, given that these models are well defined
only in the limit ϕ < μ [12].
As we can see in Fig. 2, in the minimal case, increasing μ

simultaneously increases both ns and r, and the scenario
becomes consistent with the Planckþ BICEP data only for
μ ≫ 1. We further study the behavior of this model in the
presence of a monomial GNMDC term θ0ðϕÞ. Since the
hilltop quartic model belongs to the class of small field
models, we work with a negative index of the monomial
term, i.e., we choose θ0ðϕÞ ¼ A0ϕ

−4, following the argu-
ments of Sec. IVA 1. The presence of this term shifts ns to a
higher value than its value in the minimal setup for a given
μ by tuning A0, as shown in Fig. 2. Thus, to get optimal
values of ns and r in the presence of θ0ðϕÞ, we need to start
with μ which corresponds to a smaller value of ns in the
minimal setup. Henceforth, in our modified setup, we
employ an extra advantage of the monomial GNMDC
function, i.e., to fix the ns issue, thereby making the hilltop-
quartic scenario viable, even in the regime μ < 1. It is
evident from Fig. 2 that for small μ if we increase the
amplitude of the monomial term, the value of ns increases,
but r does not show a significant increment, and we arrive
at the optimal values for ns and r which are consistent with
the observational bounds of Planckþ BICEP datasets.
Depending on the value of μ, the amplitude of the

monomial term can be determined. The values of μ and
θ0ðϕÞ can be chosen appropriately to obtain the desired
values of both ns and r. It is important to note that, the
hilltop-quartic model leads to a degeneracy between the
potential parameter μ and the GNMDC parameter A0,
as is also evident from Fig. 2. It is possible to fix the value
for any one of them while leaving the value of the other
parameter to be determined from the best-fit parameter
estimation methods. Moreover, this value will also depend
on which datasets are being considered for the best-fit
parameter estimation. For these values, the parameters of
θ1ðϕÞ can be adjusted such that θðϕÞ≡ θ0ðϕÞ þ θ1ðϕÞ > 0.
Finally, with these conditions in the GNMDC setup and
staying consistent with the CMB data, one can obtain

appropriate suppression and localized wiggles in the scalar
power spectra.

V. DATA ANALYSIS SETUP AND
METHODOLOGY

In this section, we shall discuss various details of our
approach toward the numerical calculation of the primor-
dial power spectrum, the methodology of our data analysis,
and the details of the datasets that we use for obtaining the
best-fit parameters constraints and the priors on various
model parameters.

A. Primordial power spectrum

The GNMDC scenario discussed in the previous section
brings about interesting and relevant oscillatory features in
the primordial scalar power spectrum. In order to
capture these oscillations precisely, we have developed a
robust numerical code that solves the complex GNMDC
equations for the evolution of the background and pertur-
bation equations to yield the primordial scalar power
spectrum. As discussed earlier, we employ the hilltop-
quartic model as our base inflationary model. While the
monomial term θ0ðϕÞ broadly controls the value of ns and r
at the pivot scale, the localized GNMDC term, i.e., θ1ðϕÞ is
largely responsible for generating features i.e. strong
dip/suppression together with superimposed localized
oscillations on very large scales. Our scenario has infla-
tionary potential parameters μ, V0, and GNMDC param-
eters A0, A1, ϕ0, and σ. Further, the maximum amplitude of
the local GNMDC term A1 is constrained to A1;max from the
requirement of an overall positive θðϕÞ as discussed in
Sec. III C.
In our numerical module, we integrate all the back-

ground and perturbation equations exactly without
incorporating any approximations. For the background
evolution, we solve the Friedmann and Klein-Gordon
equations using the slow roll initial conditions, following
our discussion of Sec. II and appendix. This requires
specifying only the initial value of the inflaton field i.e.
ϕi ¼ ϕðN ¼ NiÞ which is constrained by requiring that
inflation lasts for a long enough duration. Further, to obtain
the primordial power spectrum, we evolve the scalar
perturbations from the subhorizon regime till they become
frozen on the superhorizon scales and impose the standard
Bunch-Davies vacuum initial conditions in the sub-Hubble
regime k ≫ aH. In all our numerical analyses, we ensure
that we avoid the gradient instability and superluminality
associated with the scalar perturbations. For the choice of
the inflaton potential and the GNMDC coupling function in
our setup, we find that the tensor perturbations remain
exceedingly small (r ∼ 10−9) and thus, we do not take them
into account in the data analysis. The three parameters viz.
(ϕ0, σ, A1) of the local term θ1ðϕÞ, distinctively affect the
location, width and the amplitude of the features in the
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primordial power spectra, respectively. A glimpse of the
primordial power spectra of scalar perturbations obtained
for different parameters of our model is shown in Fig. 3 and
for each panel, we have varied one parameter while keeping
the other two fixed.
As discussed earlier in Sec. IV B 3, there exists a

degeneracy between the potential parameter μ and
θ0ðϕÞ-parameter A0. Thus, we fix the value of μ ¼ 0.09MPl

and vary A0 to achieve optimal fitting from MCMC chains.
This leaves us with five model parameters to sample: A0,
ϕ0, A1, σ, and V0. The parameters V0 and A0 respectively
fix the amplitude and the slope of the power spectrum
around the pivot scale, ϕ0 determines the location of the
suppression and oscillations in the power spectra, σ local-
izes the features to the desired scales and A1 controls the
amplitude of the local GNMDC term.

FIG. 3. Primordial power spectrum of scalar perturbations for our model. For each of the panels, we have varied one parameter while
keeping the other two fixed. These three parameters viz. (σ, A1, ϕ0) of the local term θ1ðϕÞ, distinctively affect the width, amplitude and
the location of the features in the primordial power spectra, respectively. Note that, the GNMDC term is only responsible for generating
such localized features in the spectrum. Away from the features, the spectrum is otherwise nearly scale-invariant or featureless. These
localized superimposed oscillations do lead to a better fit to the data as compared to a nearly scale-invariant power spectrum.
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B. Datasets used in our analysis

Heretofore, we have discussed the generation of large-
scale features in the scalar power spectrum due to the
GNMDC term and outlined various issues and their
resolutions for consistent model building. The next step is
to understand how such a model compare with the
observational datasets and obtain the best-fit parameter
constraints on the GNMDC parameters along with the
background cosmological parameters. We use the latest
release of the publicly available Planck 2018 CMB tempera-
ture and polarization (E-mode) anisotropy datasets [70].
Depending on the angular scales of interest and the dis-
tinguishable oscillatory features of a given model, one can
choose the likelihoods provided by Planck for both small
and large scales. Since our model primarily focuses on the
CMB anomalies on the very large scales (low multipoles),
we use the temperature and polarization likelihoods for these
scales covering multipoles l ¼ 2–29 in all the cases of our
analysis. These likelihoods are commander_dx12_
v3_2_29 and simall_100x143_offlike5_EE_
Aplanck_B for the temperature and polarization anisot-
ropies, respectively. From now on, we will refer to them as
lowT and lowE, where low indicates the low multipoles
(l ¼ 2–29), and T/E for temperature/polarization data
respectively. To probe the features of our GNMDC model
at higher multipoles (i.e., on smaller scales), we use
the Planck official likelihoods named plik_rd12_
HM_v22_TT and plik_rd12_HM_v22b_TTTEEE and
we refer to them as TT-Plik and TTTEEE-Plik respec-
tively. Furthermore, to test the robustness of our results, we
also use the recent Camspec-12.5HMcl likelihoods for
high-l, which are obtained after reanalysis of the Planck
2018 data and span a slightly different range of multipoles.
We refer to these as TT-Camspec12.5 and TTTEEE-
Camspec12.5 respectively. We work with four dataset
combinations which are listed in table I. These are lowT+
lowE+TT-Plik/Campec12.5 and lowT+lowE+
TTTEEE-Plik/Campsec12.5, taking lowT and
lowE common in all the cases.

C. Model parameters sampling

For a sampling of model parameters, we employ the
publicly available code CosmoMC which performs a detailed
Markov Chain Monte Carlo (MCMC) analysis so as to find
the best-fit values of various model parameters. The choice

of working with the standard Metropolis Hasting
sampling technique rather than nested sampling is due to
the complicated numerical module to calculate the
power spectrum in a GNMDC setup, which otherwise
runs into difficulty when working with the latter. The
code for calculating the CMB power spectrum, CAMB [71],
is contained within CosmoMC which takes as input the
background cosmological parameters including the para-
meters of the inflationary model, to yield the CMB
temperature and polarization power spectra.
In the standard ΛCDM scenario which is our base

reference model, there are six cosmological parameters
Ωb;Ωc; τ;Θs; As; ns where the first four are baryon density,
cold dark matter density, optical depth at reionization
and sound horizon respectively, while the last two are
the inflationary parameters; As setting the power spectrum
normalization at the pivot scale and ns determining the
slope of the primordial scalar power spectrum. As
we discussed earlier, in our set-up, instead of As and ns,
we have V0, A0, A1, ϕ0, and σ, and hence, a total of nine
parameters, including four cosmological parameters. In
order to generate the theoretical CMB power spectra for
various model parameters, we couple our primordial power
spectrum module to CAMB, such that it takes as input the
GNMDC inflation model parameters along with the four
background cosmological parameters.
In order to understand the improvement from our

GNMDC inflationary scenario, we compare it with the
reference ΛCDM models using CosmoMC with different
datasets. The comparison is obtained in terms of the Δχ2
defined asΔχ2 ¼ χ2ΛCDM − χ2GNMDC. To further find the true
set of model parameters that best fit the observational data
and the corresponding Δχ2, we use the likelihood maxi-
mizer algorithm BOBYQA [72] available in CosmoMC setup
which further spans the parameter space, obtained after the
MCMC sampling and identifies the better likelihood
regions in our samples. Such a detailed analysis allows
us to visualize the improvement in the fit coming from
different scales in the power spectra. Finally, to correctly
understand the improvement in the fit to each dataset, we
write down the total Δχ2 as follows

Δχ2total ¼ Δχ2lowT þ Δχ2lowE þ Δχ2high‐l þ Δχ2prior: ð39Þ

In our analysis, we explicitly provide the variation of each
of the terms with respect to the base ΛCDM model for all
the four datasets that we have considered. Note that, the
first three terms correspond to the improvement arising
from the comparison with different datasets while Δχ2prior
arises due to the priors on various model and nuisance
parameters. These nuisance parameters are additional
parameters contained in the high-l likelihoods for calibra-
tion of the data.

TABLE I. The four different likelihoods used in our analysis are
characterized by four dataset combinations.

Datasets Likelihoods used

Dataset I lowTþ lowEþ TT-Plik
Dataset II lowTþ lowEþ TTTEEE-Plik
Dataset III lowTþ lowEþ TT-Camspec12.5
Dataset IV lowTþ lowEþ TTTEEE-Camspec12.5
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D. Priors for the model parameters

The effective prior volume in the multidimensional
parameter space which is sampled from the distribution
during the CosmoMC analysis, is specified by the range of
priors on various cosmological and model parameters.
Moreover, the optimal range of priors also plays a crucial
role in determining the best-fit values of various model
parameters. For the case of our GNMDC scenario, the
priors on various cosmological and model parameters are
summarised in Table II. Among these, there are four base
cosmological parameters, corresponding to the ΛCDM
model and five model parameters, describing the
GNMDC scenario. In Sec. VA, we have already discussed
how these model parameters affect the location and
amplitude of various features arising in the power spec-
trum. We choose these parameter priors carefully and
appropriately such that we capture the essential features
in the power spectrum and also do not inflate the prior
volume of the parameter space else the convergence take a
large amount of time. Further, in our analysis, the range of
priors remains the same for all four data combinations as
outlined in Table II.

VI. RESULTS

In this section, we shall present and discuss in detail the
results of our analysis. These include the posterior dis-
tribution of the parameters obtained from the MCMC
sampling using GetDist [73], the best-fit values of model
parameters calculated using the BOBYQA routine, the
detailed Δχ2 compared to the vanilla ΛCDM model with
power-law power spectrum and finally, the best-fit residual
CMB angular power spectra, showing significant improve-
ment in fitting the Planck 2018 data. For all these cases, the
MCMC runs are analyzed after the convergence is reached
for all the chains based on the Gelman-Rubin convergence
criteria [74] and we set R − 1 ∼ 0.05 for all our chains
analysis.

The results of our data analysis are shown in figure 4
wherein we display the 1D and 2D posterior distribution of
the sampled model parameters for the dataset combinations
lowT+lowE+TT-Plik and lowT+lowE+TTTEEE-
Plik. As is evident from the figure, the posteriors for
both datasets nearly overlap with each other for all the
parameters. The posteriors also indicate that the data does
not put strong constraints on all five parameters. However,
the theoretical priors combined with the observational
datasets seem to indicate a preferred value for some
parameters. As evident from figure 4 and 5, only the
parameters ϕ0 and A1=A1;max seem to be well constrained,
with nearly closed contours.
The parameter ϕ0, which determines the position of the

prominent dip in the power spectrum, follows a near
Gaussian profile, preferring a mean value corresponding
to the diplike feature around multipoles l ∼ 20–30, thereby
improving the fit in the CMB temperature power spectrum
on large scales. Next, the parameter A1=A1;max, which
controls the amplitude of the localized GNMDC function,
also admits a nonzero mean value indicating that the data
indeed favors the presence of the local GNMDC term in our
setup, which brings nontrivial features in the CMB power
spectrum on relevant scales. The parameter σ, which
controls the width of the feature, though shows a sharp
peak corresponding to a preferred mean value but forms a
rather scattered posterior. Further, the posteriors for the
parameters A0 and V0, which collectively fix the values of
ns and r around the pivot scale, seem to be mostly prior
bound. Indeed, there exists a degeneracy between V0 and
A0, thereby, one can obtain better constraints on either of
these, by fixing the other. For the case of lowT+lowE+
TT-Camspec12.5 and lowT+lowE+TTTEEE-
Camspec12.5, we observe very similar behavior in the
posterior distribution, as shown in Fig. 5. There also exists
consistency in the best-fit constraints among all the datasets
that we have considered in our analysis.
In Table III, we have listed the mean values of all the

model parameters along with the background parameters
together with 1-σ upper and lower bounds, from our data
analysis for all four datasets. Although we have not listed
the ΛCDM parameters explicitly, we do not find any
significant shift in the background cosmological para-
meters in our analysis with respect to the ΛCDM model.

A. Best-fit values of model parameters and the CMB
power spectrum

In order to obtain further improvement in the fit and the
true best-fit values of model parameters, we use the
BOBYQA routine for all four datasets. In Table IV, we
have listed the best-fit results obtained from BOBYQA for all
the five parameters. We found that the best-fit values differ
slightly from each other for the parameters of our model.
We further quote the obtained improvement in the fit, Δχ2,
for individual likelihoods, as well as the total improvement,

TABLE II. The priors for the cosmological and model param-
eters used in our analysis. Note that, the range of priors remains
the same for all four datasets.

Base and model parameters Parameter Priors

ΛCDM parameters Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
τ [0.01, 0.8]

100Θs [0.5, 10]

GNMDC parameters A0 [21.4, 22.0]
ϕ0=ϕi [1.05, 1.055]
log10 σ [−26.0, −24.0]

V0 × 1017 [5.9, 6.17]
A1=A1;max [0.01, 0.7]
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in comparison to the base ΛCDM model with the power-
law power spectrum.
As evident from Table IV for all four datasets, we get a

significant improvement withΔχ2 ∼ 4.6–5.3 from the lowT

part, i.e., from the CMB temperature anisotropy data on
low multipoles. This is what we targeted while choosing the
toy model for θ1ðϕÞ, as the improvement mostly arises
from the prominent dip in the primordial power spectra

FIG. 4. The triangle plot of the 1D and 2D posterior distribution obtained from the CosmoMC sampling using the lowT+lowE+TT-
Plik and lowT+lowE+TTTEEE-Plik likelihoods for the five model parameters of our GNMDC set-up (excluding the four
cosmological parameters). The plot indicates that the data can place tight constraints on various model parameters.
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corresponding to large scales caused due to θ1ðϕÞ term.
There is no significant improvement coming from the lowE
polarization anisotropy data, indicating that the data is

merely sensitive to the modifications in the power spectra
introduced in our setup. In our best-fit samples, a small
improvement to the fit on smaller scales (large multipoles)

FIG. 5. The triangle plot of the 1D and 2D posterior distribution obtained from the CosmoMC sampling using the lowT+lowE+TT-
Camspec12.5 and lowT+lowE+TTTEEE-Camspec12.5 likelihoods for the five model parameters for our GNMDC set-up
(excluding the four cosmological parameters). The plot indicates that the data can provide stringent constraints on various model
parameters.
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is also seen, Δχ2 ∼ 0.8–2.3 for all four datasets. These
features on smaller scales in the CMB data can be attributed
to the decaying oscillatory features in the primordial power
spectra following the most prominent dip, as also seen in
Fig. 3. Although we mentioned that the improvement on
smaller scales is not as significant, since the features in the
power spectra are obtained to primarily focus on anomalies
on large scales. Indeed, by some other suitable choice
of coupling function θ1ðϕÞ, which induces small oscilla-
tions on relatively smaller scales in the power spectrum
similar to [66,75], one can obtain significant improvement
from these scales too. Further the χ2prior which arises from
the nuisance parameters for the likelihoods is nearly the
same as that of the reference model. Finally, in terms of
the overall improvement, we find that Δχ2total ∼ 5.3–6.8 and
the maximum improvement in Δχ2total ∼ 6.8 is obtained for
the dataset lowT+lowE+TT-Camspec12.5. On a final
note, in all four dataset combinations, the dominant
improvement in Δχ2total comes from the low multipole

temperature anisotropies data, indicating that the modifi-
cations introduced in the primordial power spectrum in our
setup, are well accommodated by the anomalous features in
CMB on low multipoles (l < 30). This summarizes the
best-fit improvement obtained for the GNMDC model that
we have considered in our analysis.
It might be very interesting to explore other coupling

functions within the GNMDC setup which might lead to an
even better improvement in the lowT regime, e.g., due to a
suppressed power spectrum on very low multipoles so as to
address the low quadrupole anomaly in the CMB as well as
lead to other characteristic modulations at higher multi-
poles to get even better fit from the high-l data.
In Fig. 6, we plot the scalar power spectra for the best-fit

values of model parameters obtained after the BOBYQA
analysis for all four datasets combinations. While the broad
behavior of the features in the spectra (a broad dip followed
by localized superimposed oscillations) remains the same,
the different datasets still suggest a slight difference in the

TABLE IV. The best-fit constraints on various model param-
eters obtained after the BOBYQA analysis for the different
likelihood combinations. The bottom rows also list each con-
tribution in Δχ2 compared to the reference ΛCDM model and
finally, the net improvement Δχ2total for our scenario correspond-
ing to different datasets.

Parameters Dataset I Dataset II Dataset III Dataset IV

A0 21.5599 21.5858 21.6669 21.6008
ϕ0=ϕi 1.0515 1.0513 1.0515 1.0513
log10 σ −25.5429 −24.9896 −25.1201 −24.7700
V0 × 1017 5.9805 6.0604 6.0265 6.0072
A1=A1;max 0.4770 0.4052 0.4743 0.3547

Δχ2lowT 5.3080 4.6490 5.0740 4.6220
Δχ2lowE −0.0110 −0.5880 −0.1160 −0.1250
Δχ2high‐l 1.27 1.90 2.3310 0.8140

Δχ2prior −0.1133 0.1596 −0.4145 0.0036

Δχ2total 6.4537 6.1206 6.8745 5.3146

TABLE III. We present the best-fit constraints on various model parameters from the MCMC analysis of the GNMDC scenario for
four dataset combinations. The mean values of all the parameters along with their 1-σ constraints are listed here. We find that the best-fit
values of model parameters are very close to each other for all the different datasets and likelihood combinations.

Parameters Dataset I Dataset II Dataset III Dataset IV

Ωbh2 0.02219� 0.00017 0.02238� 0.00013 0.02220� 0.00019 0.02225� 0.00013
Ωch2 0.1200� 0.0010 0.12022� 0.00084 0.1194� 0.0013 0.11998� 0.00099
τ 0.0535� 0.0061 0.0541� 0.0059 0.0537þ0.0062

−0.0051 0.0536þ0.0059
−0.0051

100Θs 1.04087� 0.00041 1.04091� 0.00030 1.04078� 0.00040 1.04102� 0.00027

A0 21.666þ0.089
−0.24 21.659þ0.078

−0.25 21.68þ0.14
−0.18 21.67þ0.13

−0.16
ϕ0=ϕi 1.05164þ0.00047

−0.00072 1.0516þ0.0011
−0.00074 1.05161þ0.00040

−0.00057 1.05146þ0.00045
−0.00078

log10 σ −24.96� 0.50 −24.93þ0.81
−0.39 −24.99� 0.46 −24.96� 0.45

V0 × 1017 6.047þ0.092
−0.059 > 6.04 6.043þ0.063

−0.076 6.050þ0.060
−0.072

A1=A1;max 0.32þ0.18
−0.16 0.30� 0.15 0.33þ0.17

−0.14 0.28þ0.13
−0.20

Dataset–I

Dataset–II

Dataset–III

Dataset–IV

10–4 0.001 0.010 0.100

1.5

2.0

2.5

3.0

k (Mpc–1)

P
(k
)×
10

9

FIG. 6. The scalar power spectra are plotted for the best-fit
values of our GNMDC model parameters obtained after the
BOBYQA analysis, along with a nearly scale-invariant spectrum
for the best-fit values of As and ns (in dashed). While the global
features in the spectra remain the same, the different datasets
seem to prefer these localized modulations with slightly different
magnitudes and locations.
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location and amplitude of these features. Away from these
localized features, the power spectra reduce to a nearly
scale-invariant power spectrum, as evident from the Fig. 6.
It is interesting to point out that these features strongly
resemble the features obtained in a canonical single field
inflationary model with the introduction of a step in the
inflaton potential [25,27,76]. Needless to say, our GNMDC
scenario offers a new and interesting possibility to generate
such large-scale features in the spectrum to prove to be a
better fitting model to the CMB observations. It will be
interesting to examine if the oscillatory features arising

in our model also provide a resolution to the lensing
anomaly [77,78].
Further, to understand the resulting imprints in the CMB,

we have plotted the residual CMB angular power spectra
ΔDTT

l , ΔDTE
l , and ΔDEE

l corresponding to the best-fit
values of the model parameters for all the four datasets
which are displayed in Fig. 7. The top panel in this figure
corresponds to datasets I and II, while the lower is
plotted for the datasets III and IV. It is evident from this
figure that all these best-fit CMB spectra show similar
features. Our GNMDC scenario is not able to address the

FIG. 7. The residual CMB angular power spectra are plotted for our GNMDC scenario with respect to the base ΛCDM model,
corresponding to the best-fit parameters obtained from BOBYQA analysis for all the four datasets (mentioned in table IV). The
improvement arising from the low-l regime turns out to be more significant than the high-l regime.
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low quadrupole. Still, it results in oscillatory features
around l ∼ 20–30, which improves the overall fit in the
low-l regime as compared to the base featureless model.
Further, we do not get any significant improvement in the
E-mode polarization autocorrelation data (DEE

l ), suggesting
that such a setup may not improve the fit to the same
beyond the standard model. Notably, the improvement
arising from the high-l regime seems to somewhat differ
from each other for all four datasets. Our scenario does
generate tiny small-scale features but not as relevant and
prominent as the clock signals, discussed in [66,68]. We
close this section with an interesting prospect that the class
of GNMDC models that we have considered in this work,
hold the promise of being viable alternatives of primordial
feature models, and they can be further expanded by
considering different forms of the GNMDC functions as
well as other mechanisms to generate prominent small scale
features.

VII. CONCLUSIONS AND DISCUSSIONS

Precision observations of CMB anisotropies over the last
few decades are one of the most outstanding achievements
of modern cosmology. These anisotropies contain crucial
information about the evolution of the universe at the
earliest epochs, particularly during the inflationary phase.
Although the present observational data strongly favor the
standard ΛCDM model as the concordance model of the
universe, various anomalies present in the CMB data may
nevertheless hint at some new primordial physics beyond
the standard model of cosmology. Interestingly, these large-
scale anomalies have always been present in the CMB
observations from COBE, and WMAP to the most recent
and precise Planck datasets, which makes them more
intriguing to look at and understand their origins better.
While they could arise due to foreground residuals and/or
systematic effects, their origin could also be primordial,
which could point toward nontrivial dynamics beyond the
simplest inflationary models, which typically lead to a
nearly scale-invariant power spectrum on all scales.
In this paper, we have studied the cosmological

implications of the GNMDC term that arises within the
framework of Horndeski theories and explored whether
large-scale features in the CMB can be generated in this
scenario. Since the evolution of background and perturba-
tions is quite involved in this model, we have developed an
accurate numerical module to compute the primordial
spectra of scalar and tensor perturbations. Further, we have
compared our model with the CMB anisotropies data from
Planck in temperature (TT), E-mode polarization (EE), and
their cross-correlation (TE) and explored the parameter
space to find out the best-fit values of various model
parameters. We found that this class of models can indeed
generate large-scale features in the CMB angular power
spectra for a specific choice of the GNMDC function and
provide an improvement over the reference ΛCDM model

with a featureless power-law primordial spectrum.
The CMB angular power spectrum corresponding to the
best-fit parameters indicates that the dominant improve-
ment primarily arises from the low-l region with marginal
improvement from the high-l region. To our knowledge,
this is the first time that such models have been employed
to understand the origin of large-scale features in the CMB
angular power spectrum. Our results demonstrate the
possibility of explaining large-scale features in the CMB
by going beyond the canonical scalar field models without
any additional features in the inflaton potential but within
the single field inflationary framework.
The GNMDC scenario offers a richer phenomenology in

terms of freedom to choose the form of the coupling
function. Hence, it might be interesting to explore if these
models can also explain the presence of other feature
anomalies in the CMB, e.g., low quadrupole suppression
and peculiar clock features at smaller scales. As discussed
earlier, from a theoretical perspective, a model can be a
consistent physical model only if it avoids the gradient and
Ostrogradsky instabilities. However, from a statistical
perspective, a model can be termed a better alternative
only if it improves the fit to the data compared to a
reference model. Needless to say, a preferable scenario
would be the one that provides a satisfactory explanation
to multiple anomalies in the CMB observations and also
proves to be a significantly better fit to the data at the
expense of fewer additional parameters. Within this
GNMDC framework, it will also be helpful to work with
different choices of the coupling function leading to
suitable oscillations on smaller scales which can provide
a better improvement arising from smaller scales. In
addition to the CMB anisotropies data from Planck,
large-scale features in the power spectrum can, in principle,
also be independently constrained by the large-scale
structure (LSS) observations of galaxy surveys as the
primordial features also leave distinct imprints in the matter
power spectrum, as evident from figure 8. However,
localized features on scales larger than k ∼ 0.01 hMpc−1
may not be constrained by the LSS data while features on
smaller scales or running features on all scales can be
independently constrained by the LSS observations [79–
88]. Upcoming LSS surveys such as Euclid and LSST
should be able to provide better constraints on such
primordial spectral features [89,90]. Thus, LSS observa-
tions can be used as a complementary probe along with the
CMB data to constrain nontrivial features in the power
spectra and the deviations from scale invariance on sub-
CMB scales. Moreover, future 21-cm tomographic obser-
vations also have enormous potential to constrain such
primordial features to a great extent [91–93]. In addition,
spectral distortions of the CMB power spectrum provide an
entirely complementary window on the scale dependence
of the primordial power spectrum and small-scale features
since they strongly depend on the spectral amplitude at
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scales smaller than LSS. Future experiments such as PIXIE
[94] or PRISM [95] should be able to provide interesting
constraints on departures from a featureless primordial
power spectrum. All these observations from CMB,
LSS, 21-cm, and spectral distortions prove to be comple-
mentary. Together, they will provide stringent constraints
on the primordial power spectrum over a wide range of
scales.
Primordial non-Gaussianity (PNG) is also an important

probe that can provide independent constraints on the scale
dependence of the power spectrum. In particular, infla-
tionary models with features in the power spectrum are well
known to generate correlated signatures in PNG [97–102].
Therefore, present and future PNG constraints from CMB
and LSS can constrain these feature models better. Near
future CMB experiments aimed at precise measurements of
CMB E- and B-mode polarization such as CMB-S4 [103],
LiteBIRD [104,105], Simons Observatory (SO) [106,107]

and CMB-Bharat [108] should also be able to provide
relevant constraints on the small scale dynamics of infla-
tionary models with features and their cross-correlations
with other probes should further tighten the parameter
constraints. With the availability of future precise data,
many consistent models may be ruled out or strongly
constrained. The prospects of a better understanding of the
interconnection between primordial spectral features and
underlying physics will undoubtedly be improved.
Therefore, future cosmological observations offer an excit-
ing promise to constrain the primordial universe better.
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APPENDIX: GNMDC EQUATIONS FOR
BACKGROUND AND PERTURBATIONS

In this appendix, we present the GNMDC equations for
the background evolution and the scalar and tensor per-
turbations in terms of e-folds N, which we employ in our
numerical code.

1. Background equations

The Friedmann equations for our GNMDC setup, as
given in Eqs. (4) and (5), can be written in terms of N as

3H2 ¼ κ2
�
1

2
H2ϕ2

Nð9H2θðϕÞ þ 1Þ þ VðϕÞ
�
; ðA1Þ

−2HHN ¼ κ2
h
ð1þ 3κ2θðϕÞH2 − κ2θðϕÞHHNÞH2ϕ2

N − κ2θ0ðϕÞH4ϕ3
N − 2κ2θðϕÞH2ϕNðH2ϕNN þHHNϕNÞ

i
; ðA2Þ

and the Klein-Gordon equation becomes

½1þ 3H2θðϕÞ�ðH2ϕNN þHHNϕNÞ þ 3H2ϕN ½ð3H2 þ 2HHNÞθðϕÞ þ 1� þ 3

2
H4ϕ2

Nθ
0ðϕÞ þ V 0ðϕÞ ¼ 0; ðA3Þ

where ϕN ¼ dϕ=dN, ϕNN ¼ d2ϕ=dN2, HN ¼ dH=dN and θ0ðϕÞ ¼ dθðϕÞ=dϕ. We set κ ¼ 1 in our numerical code.

FIG. 8. The linear matter power spectrum at z ¼ 0 (top) and the
residuals (below) for our scenario for the best-fit values of model
parameters. Precise LSS observations contain the enormous
potential to constrain features in the spectrum independently
but not the features on very large scales as those scales remain
inaccessible by LSS [96].
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2. Scalar and tensor perturbations

The Mukhanov-Sasaki equation for the Fourier modes of curvature perturbationsRk, as given in Eq. (21), can be further
written in terms of N as follows

d2Rk

dN2
þ
�
1þHN

H
þ 2zsN

zs

�
dRk

dN
þ
�
k2c2s
a2H2

�
Rk ¼ 0: ðA4Þ

Here, zsN ¼ dzs=dN and c2s and zsN=zs are given by

c2s ¼
1

ððH2θðϕÞϕ2
N − 2Þð9H4θðϕÞ2ϕ2

N −H2θðϕÞðϕ2
N − 6Þ þ 2Þ2Þ ½H

4θðϕÞ3ϕ2
Nð−6H4ϕ5

Nθ
0ðϕÞ þH2ð3ϕ4

N − 244ϕ2
N þ 420Þ

− 48ϕNV 0ðϕÞÞ þ 2θðϕÞ2ð12H6ϕ5
Nθ

0ðϕÞ þ 24H2ϕNV 0ðϕÞ þH4ð−7ϕ4
N þ 100ϕ2

N − 36ÞÞ
− 4H2θðϕÞð6H2ϕ3

Nθ
0ðϕÞ− 5ϕ2

N þ 12Þ þ 6H6θðϕÞ4ϕ4
Nð13H2ðϕ2

N − 9Þ þ 2ϕNV 0ðϕÞÞ þ 351H10θðϕÞ5ϕ6
N − 8�

zsN
zs

¼ 1

ðH2ϕNðH2ϕ2
NθðϕÞ− 2Þð3H2ϕ2

NθðϕÞ− 2Þð9H4ϕ2
NθðϕÞ2 −H2ðϕ2

N − 6ÞθðϕÞ þ 2Þ2Þ ½H
2ϕNð3H8ϕ4

NθðϕÞ3ðϕ5
Nθ

0ðϕÞ

þ ð−20ϕ4
N þ 54ϕ2

N þ 936ÞθðϕÞÞ:−H6ϕ2
NθðϕÞ2ð2ð5ϕ2

N þ 24Þϕ3
Nθ

0ðϕÞ þ ð3ϕ6
N − 220ϕ4

N − 132ϕ2
N þ 720ÞθðϕÞÞ

þ 2H4θðϕÞð2ðϕ2
N þ 24Þϕ3

Nθ
0ðϕÞ þ ð7ϕ6

N − 132ϕ4
N þ 60ϕ2

N − 144ÞθðϕÞÞ− 4H2ðð5ϕ4
N − 36ϕ2

N þ 48ÞθðϕÞ− 2ϕ3
Nθ

0ðϕÞÞ
þ 972H12ϕ8

NθðϕÞ6 þ 27H10ϕ6
Nðϕ2

N − 84ÞθðϕÞ5 þ 8ðϕ2
N − 4ÞÞ þV 0ðϕÞð27H10ϕ8

NθðϕÞ5 − 9H8ϕ6
Nðϕ2

N þ 12ÞθðϕÞ4
þ 8H6ϕ4

Nð5ϕ2
N þ 24ÞθðϕÞ3:− 8H4ϕ2

Nð7ϕ2
N þ 18ÞθðϕÞ2 þ 16H2ð2ϕ2

N − 3ÞθðϕÞ− 16Þ� ðA5Þ

The Fourier mode equation for the tensor perturbations hk in terms of N can be written as

d2hk
dN2

þ
�
1þHN

H
þ 2zTN

zT

�
dhk
dN

þ
�
c2Tk

2

a2H2

�
hk ¼ 0; ðA6Þ

where

c2T ¼ 1þH2θðϕÞϕ2
N=2

1 −H2θðϕÞϕ2
N=2

ðA7Þ

and

zTN

zT
¼ 1

ð2ðH2θðϕÞϕ2
N − 2Þð9H4θðϕÞ2ϕ2

N −H2θðϕÞðϕ2
N − 6Þ þ 2ÞÞ ½2H

2ðϕ3
Nθ

0ðϕÞ þ θðϕÞ2ϕ3
NV

0ðϕÞ − 2θðϕÞðϕ2
N þ 6ÞÞ

þH4θðϕÞϕ2
Nð4θðϕÞð4ϕ2

N − 15Þ − ϕ3
Nθ

0ðϕÞÞ þ 72H6θðϕÞ3ϕ4
N − 4ðθðϕÞϕNV 0ðϕÞ þ 2Þ�:

As mentioned earlier, the mode equation (A4) for Rk is evolved for each Fourier mode with the Bunch-Davies initial
conditions imposed on Rk and its derivative when the modes are deep inside the horizon (subhorizon regime, i.e.,
k=aH ≫ 1). In terms of conformal time τ, we can write

RkðτÞjk≫aH ¼ 1

zs

e−icskτffiffiffiffiffiffiffiffiffi
2csk

p :

Similarly, the Bunch-Davies initial conditions for the tensors on hk are similar to those of scalars with cs → cT and zs → zT .
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