
Leptogenesis via inflaton mass terms in nonminimally coupled inflation

Kit Lloyd-Stubbs * and John McDonald†

Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

(Received 15 January 2023; accepted 17 March 2023; published 11 May 2023)

We consider a model of baryogenesis based on adding lepton number-violating quadratic mass terms to
the inflaton potential of a nonminimally coupled inflation model. The L-violating mass terms generate a
lepton asymmetry in a complex inflaton field via the mass term Affleck-Dine mechanism, which is
transferred to the Standard Model (SM) sector when the inflaton decays to right-handed (RH) neutrinos.
The model is minimal in that it requires only the SM sector, RH neutrinos, and a nonminimally coupled
inflaton sector. We find that baryon isocurvature fluctuations can be observable in metric inflation but are
negligible in Palatini inflation. The model is compatible with reheating temperatures that may be detectable
in the observable primordial gravitational waves predicted by metric inflation.
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I. INTRODUCTION

Baryogenesis is an essential feature of a complete model
of particle cosmology. In the absence of a fundamental
theory of particle physics, a minimal model-building
approach seems most likely to lead to the correct solution,
by virtue of its fewer assumptions. A minimal model of
particle physics and cosmology consists of the Standard
Model sector, neutrino masses via right-handed (RH)
neutrinos, a dark matter candidate, and an inflaton
sector. In this case there is a limited range of possibilities
for generating the baryon asymmetry. The cases most
commonly considered are electroweak baryogenesis [1]
and leptogenesis via out-of-equilibrium decays of RH
neutrinos [2–4].
Another possibility is the generation of the asymmetry

via the decay of the inflaton. This could occur via out-of-
equilibrium decay of the inflaton if it has the required CP-
and B-violating decay modes [5,6]. Alternatively, the
asymmetry could first be generated in the inflaton field
itself via the Affleck-Dine (AD) [7] mechanism [8–16].
This is arguably the simplest mechanism for generating the
baryon asymmetry, requiring only (B − L)-violating terms
in the potential of a complex scalar inflaton and a decay
mode to transfer the asymmetry to the SM sector.
In a previous paper [15] we discussed a new implemen-

tation of AD inflation, in which the asymmetry is generated

at late times by (B − L)-violating quadratic potential terms
(mass terms) during the rapid coherent oscillations of a
complex inflaton.1 This results in an oscillating asymmetry
in the inflaton condensate, with mean value equal to zero.
Nevertheless, when the asymmetry is transferred to the SM
sector, the net asymmetry is nonzero.
Inflation models are constrained by present bounds on

the range of scalar spectral index values and the upper
bound on the tensor-to-scalar ratio. One class of models
that provides a good fit to observations are the non-
minimally coupled inflation models [18]. There are two
favored implementations of this model, based on either the
metric formalism of general relativity (GR), as in conven-
tional Higgs inflation [19], or the Palatini formalism [20].
Such models can be driven by a renormalizable λϕ4 inflaton
potential with a value for λ that is not very small compared
to 1. Nonminimally coupled inflation therefore provides a
good candidate for the inflaton sector of a minimal model
of particle cosmology.
In our previous paper [15] we discussed the general

idea of baryogenesis via inflaton mass terms. However, we
did not consider our results in the context of a specific
inflation model. In this paper we present a minimal model
based on nonminimally coupled inflation. Inflaton mass
term AD baryogenesis and leptogenesis have also recently
been applied in the context of models which relate infla-
tion and baryon asymmetry generation to neutrino-
antineutrino oscillations [21]; to neutrino masses combined
with pseudo-Goldstone dark matter [22], WIMP dark*a.lloyd-stubbs@lancaster.ac.uk
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1The AD mechanism based on mass terms was previously
considered in a different context in [17]. This analysis does not
include the case of final asymmetry generation from averaging
over a rapidly oscillating AD asymmetry.
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matter [23], and axion dark matter [24]; and to cogenesis of
the baryon asymmetry and dark matter density [25].
The minimal model we consider consists of the SM

sector extended by RH neutrinos plus a complex inflaton
sector, with a global Uð1ÞL symmetry. To this we add
Uð1ÞL-breaking mass terms for the inflaton and the RH
neutrinos. The baryon asymmetry is generated by creating a
lepton asymmetry in the inflaton field via the mass term AD
mechanism, which is subsequently transferred to the SM
sector via inflaton decays to RH neutrinos.
The paper is organized as follows. In Sec. II we introduce

our leptogenesis model. In Sec. III we review the essential
results of nonminimally coupled inflation in the metric and
Palatini formalisms. In Sec. IV we review and elaborate
upon the general results of [15] for the mass term AD
mechanism and apply the results to our leptogenesis model.
In Sec. V we discuss condensate decay, reheating, and the
conditions to ensure that there is no asymmetry washout.
We also discuss the consistency of the assumptions made
in the derivation of the analytical results. In Sec. VI we
discuss the possibility of generating observable baryon
isocurvature perturbations. In Sec. VII we discuss the
conditions under which the quadratic Uð1ÞL-breaking infla-
ton potential terms dominate the quartic Uð1ÞL-breaking
terms. In Sec. VIII we present our conclusions.

II. A MINIMAL MODEL FOR AFFLECK-DINE
LEPTOGENESIS VIA INFLATON

MASS TERMS

A. Observable sector

A complex inflaton Φ has a general renormalizable
potential given by2

VðΦÞ ¼ m2
ϕjΦj2 þ λΦjΦj4 − ðAΦ2 þ H:c:Þ

− ðBΦ3 þ H:c:Þ − ðCΦ4 þ H:c:Þ: ð1Þ

In the limit A ¼ B ¼ C ¼ 0 this has a global Uð1Þ
symmetry, Φ → eiαΦ, which corresponds to the lepton
number in the model we are considering. The A, B, and C
terms are L-violating terms that can be used to generate a
lepton asymmetry in the inflaton condensate via the AD
mechanism. For simplicity, we assume that there is an
unbroken discrete symmetry of the potential, Φ ↔ −Φ, so
that B ¼ 0. Generation of the baryon asymmetry in non-
minimally coupled inflation via the quartic C term has
previously been considered in [13] and [14]. Here we focus
on generation via the A term [15], which has quite different
dynamics.
In order to transfer the asymmetry to the SM sector, we

couple the inflaton to the RH neutrinos via

Lint ¼ −yΦΦNc
RNR − hνNc

RHL −mNNc
RNR þ H:c:; ð2Þ

where Φ has lepton number −2. We have also included the
Yukawa coupling hν of the RH neutrino to the HiggsH and
the lepton L doublets, and an L-violating mass for the RH
neutrinos. These result in a type-I neutrino mass matrix
once the Higgs expectation value v is introduced. For the
case of a single generation, which we use as a represen-
tative example, this results in a heavy eigenvalue with mass
approximately equal to mN and a light eigenvalue mν ≈
m2

D=mN corresponding to the mass of the observed neu-
trinos, where mD ¼ hνv=

ffiffiffi
2

p
. Note that hν is then related to

the observed neutrino masses by

hν ¼
ffiffiffi
2

p

v
ðmνmNÞ1=2; ð3Þ

where v ¼ 246 GeV is the Higgs vacuum expectation
value.
In addition to Eq. (2), there can be a natural L-conserving

portal coupling to the Higgs doublet of the form
λΦHjΦj2jHj2. Therefore, the process of reheating could
be due to either perturbative decay of the Φ condensate
scalars to RH neutrinos or parametric resonance to Higgs
boson pairs. Other possibilities are decay or annihilation
of the inflaton via the nonminimal coupling or graviton
exchange. Here we focus on reheating via perturbative
decay to RH neutrinos. We will comment on the conditions
for perturbative decay to RH neutrinos to dominate
reheating and on how the results could change if reheating
was dominated by the portal coupling or other processes.

B. Inflation sector

The renormalizable potential in Eq. (1) is naturally
compatible with nonminimally coupled inflation. The
action of the inflaton sector is

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
1þ 2ξjΦj2

M2
Pl

�
M2

PlR
2

− ∂μΦ†
∂
μΦ−VðΦÞ

�
;

ð4Þ

with signature ð−;þ;þ;þÞ. In general, inflation will occur
along a random value of θ, where Φ ¼ ϕeiθ=

ffiffiffi
2

p
. During

inflation we consider the A terms and C terms to be
negligible, in which case the action can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
1þ ξϕ2

M2
Pl

�
M2

PlR
2

−
1

2
∂μϕ∂

μϕ − VðϕÞ
�
;

ð5Þ

where
2We do not include a linear term as this can always be

eliminated by a redefinition of Φ and the A, B, and C terms.
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VðϕÞ ¼ m2
Φϕ

2

2
þ λΦϕ

4

4
: ð6Þ

Inflation is analyzed in the Einstein frame, with the action

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

PlR̃
2

−
1

2

�
Ω2 þ 6sξ2ϕ2

M2
Pl

�
∂μϕ∂

μϕ

Ω4

− VEðϕÞ
�
; ð7Þ

where s ¼ 1 for the metric formalism and s ¼ 0 for the
Palatini formalism, and the Einstein frame potential is

VEðϕÞ ¼
VðϕÞ
Ω4

: ð8Þ

The contractions of indices and R̃ are now defined in terms
of g̃μ ν, where g̃μ ν ¼ Ω2gμ ν and

Ω2 ¼ 1þ ξϕ2

M2
Pl

: ð9Þ

III. NONMINIMALLY COUPLED INFLATION
IN THE METRIC AND PALATINI

FORMALISMS

In this section we summarize the key results of non-
minimally coupled inflation that are relevant to the lepto-
genesis model.

A. Inflation observables

The amplitude of the power spectrum is

As ¼
λΦN2

72π2ξ2
ðmetricÞ; As ¼

λΦN2

12π2ξ
ðPalatiniÞ;

ð10Þ

where N is the number of e-foldings corresponding to the
pivot scale. The scalar spectral index is the same for both
the metric and Palatini,

ns ≈ 1 −
2

N
: ð11Þ

The tensor-to-scalar ratio is

r ¼ 12

N2
ðmetricÞ; r ¼ 2

ξN2
ðPalatiniÞ: ð12Þ

B. Nonminimal coupling

From the observed amplitude of the power spectrum,
As ¼ 2.1 × 10−9, it follows from Eq. (10) that

ξ ¼ 820N
ffiffiffiffiffi
λΦ

p
ðmetricÞ ð13Þ

and

ξ ¼ 4.0 × 106N2λΦ ðPalatiniÞ: ð14Þ
The corresponding values for N ¼ 55 are ξ ¼ 4.5 ×
104

ffiffiffiffiffi
λΦ

p
for the metric case and ξ ¼ 1.2 × 1010λΦ for the

Palatini case.
Using these, Eq. (12) with N ¼ 55 gives, for the tensor-

to-scalar ratio, r ≈ 0.004 in the metric model and r ≈ 5.5 ×
10−14=λΦ for the Palatini model.

C. ϕ for which nonminimally coupled
dynamics are negligible

The values of ϕ at which the Einstein and Jordan frame
actions become completely equivalent are

ϕ < ϕc ¼
MPlffiffiffi
6

p
ξ

ðmetricÞ ð15Þ

and

ϕ < ϕc ¼
MPlffiffiffi
ξ

p ðPalatiniÞ: ð16Þ

IV. AFFLECK-DINE VIA INFLATON
MASS TERMS

In [15] we introduced AD baryogenesis via quadratic
inflaton potential terms. In this section we review and
expand upon the analytical results of [15]. In particular, we
compare the analytic predictions for the baryon or lepton
number-to-entropy ratio with the results of a complete
numerical calculation based on solving the field equations,
where we show almost perfect agreement with the ana-
lytical results. We then apply our analytical results to the
leptogenesis model.

A. Analytical lepton asymmetry

In terms of Φ ¼ ðϕ1 þ iϕ2Þ=
ffiffiffi
2

p
, the inflaton potential is

VðΦÞ ¼ 1

2
ðm2

Φ − 2AÞϕ2
1 þ

1

2
ðm2

Φ þ 2AÞϕ2
2 þ

λΦ
4
ðϕ2

1 þϕ2
2Þ2;
ð17Þ

where, without loss of generality, we can define A to be real
and positive by a Uð1ÞL rotation of Φ. The field equations,
including the decay terms, are

ϕ̈1 þ 3H _ϕ1 þ ΓΦ _ϕ1 ¼ −m2
1ϕ1 − λΦðϕ2

1 þ ϕ2
2Þϕ1 ð18Þ

and

ϕ̈2 þ 3H _ϕ2 þ ΓΦ _ϕ2 ¼ −m2
2ϕ2 − λΦðϕ2

1 þ ϕ2
2Þϕ2; ð19Þ
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where

m2
1 ¼ m2

Φ − 2A; m2
2 ¼ m2

Φ þ 2A; ð20Þ

and ΓΦ is the inflaton decay rate. In the limit λΦ → 0 the
equations for ϕ1 and ϕ2 are decoupled from each other,
with coherently oscillating solutions for ϕ1 and ϕ2 with
different angular frequencies m1 and m2.
As long as the A terms do not become dynamically

significant until after the coherent oscillations are domi-
nated by the jΦj2 term in the potential, and neglecting the
decay terms for now, the solution for the coherently
oscillating field is accurately described by considering
only the mass terms in the potential,

VðΦÞ ¼ m2
ΦjΦj2 − ðAΦ2 þ H:c:Þ; ϕ < ϕ�; ð21Þ

where ϕ� ¼ mΦ=
ffiffiffiffiffi
λΦ

p
is the value of ϕ (with

Φ ¼ ϕeiθ=
ffiffiffi
2

p
) below which the field equations become

dominated by the jΦj2 term. The field at late times, t > t�,
where ϕ ¼ ϕ� at t ¼ t�, is then

ϕ1 ¼ ϕ1; �

�
a�
a

�
3=2

cosðm1ðt − t�ÞÞ;

ϕ2 ¼ ϕ2; �

�
a�
a

�
3=2

cosðm2ðt − t�ÞÞ; ð22Þ

assuming that the asymmetry at t ≤ t� is zero. The lepton
asymmetry in the condensate [with LðΦÞ ¼ −2] is given by

nLðtÞ ¼ iLðΦÞðΦ† _Φ − _Φ†ΦÞ ¼ −2ð _ϕ1ϕ2 − _ϕ2ϕ1Þ: ð23Þ

Assuming that 2A ≪ m2
Φ, and neglecting inflaton decay for

the moment, the lepton asymmetry to leading order in
A=m2

Φ is

nLðtÞ ¼ −2ϕ1; �ϕ2; �

�
a�
a

�
3
�
mΦ sin

�
2Aðt − t�Þ

mΦ

�

þ A
mΦ

sinð2mΦðt − t�ÞÞ
�
: ð24Þ

On averaging over the rapid coherent oscillations of ϕ, the
second term in Eq. (24) averages to zero, and the con-
densate lepton asymmetry at t > t� is

n0LðtÞ ¼ −2ϕ1; �ϕ2; �

�
a�
a

�
3

mΦ sin

�
2Aðt − t�Þ

mΦ

�
; ð25Þ

where the superscript 0 denotes the absence of decays.
Therefore, the asymmetry in the condensate will oscillate
about zero with period Tasy given by

Tasy ¼
πmΦ

A
: ð26Þ

Defining the comoving lepton asymmetry in the inflaton
field by nLcðtÞ≡ ðaðtÞ=a�Þ3nLðtÞ, where a� is the scale
factor at t� [nLcðtÞ is constant when there is no production
or decay of the asymmetry], in the absence of decays [15],
we obtain

n0LcðtÞ ¼ −
ϕ2�mΦ sinð2θÞ

2
sin

�
2Aðt − t�Þ

mΦ

�
: ð27Þ

In the limit where Γ2
Φ ≪ m2 and H2 ≪ m2, the inclusion

of the decay terms multiplies the solutions for ϕ1 and ϕ2 by
a factor e−ΓΦðt−t�Þ=2 and n0Lc by a factor e

−ΓΦðt−t�Þ; therefore,

nLcðtÞ ¼ −
ϕ2� sinð2θÞmΦe−ΓΦðt−t�Þ

2
sin

�
2Aðt − t�Þ

mΦ

�
: ð28Þ

The lepton asymmetry transferred to the SM sector by
inflaton decays is then given by

n̂L cðtÞ ¼
Z

t

t�
ΓΦnLcðtÞdt ¼ −

ΓΦϕ
2� sinð2θÞmΦ

2

×
Z

t

t�
e−ΓΦðt−t�Þ sin

�
2Aðt − t�Þ

mΦ

�
dt; ð29Þ

where “hat” denotes the transferred asymmetry. The total
comoving asymmetry transferred to the SM sector in the
limit t → ∞ is then

n̂L c;tot ¼
−ΓΦϕ

2� sinð2θÞm2
Φ

2A

�
1þ

�
ΓΦmΦ

2A

�
2
�

−1
: ð30Þ

There are two regimes for A, corresponding to the cases
where the inflaton lifetime τΦ is short (ΓΦ ≫ 2A=mΦ) and
long (ΓΦ ≪ 2A=mΦ) compared to 2A=mΦ ≡ Tasy=2π. The
resulting transferred asymmetry is

n̂c;tot ¼
−2Aϕ2� sinð2θÞ

ΓΦ

�
τΦ ≪

Tasy

2π

�
ð31Þ

and

n̂c;tot ¼
−ΓΦϕ

2�m2
Φ sinð2θÞ

2A

�
τΦ ≫

Tasy

2π

�
: ð32Þ

The maximum possible lepton asymmetry is at
ΓΦmΦ=2A ¼ 1, corresponding to τΦ ¼ Tasy=2π,

n̂c;max ¼ −
mΦϕ

2� sinð2θÞ
2

: ð33Þ

In order to have an analytical relation for the baryon-
number-to-entropy ratio of the condensate, we use the
approximation that the Universe is matter dominated until
Γϕ ¼ H, at which time the energy in the condensate and
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the total final lepton number asymmetry are instantly trans-
ferred to radiation and the SM sector lepton number
asymmetry. We will check the accuracy of this approxima-
tion later in this section. In this case, the decay rate
of the field is related to the reheating temperature TR by
ΓΦ ¼ kTR

T2
R=MPl, where kTR

¼ ðπ2gðTRÞ=90Þ1=2 and gðTÞ
is the number of relativistic degrees of freedom. To
convert the total comoving lepton asymmetry to the physical
asymmetry at T ≤ TR, we multiply n̂L tot by ða�=aðTRÞÞ3 ¼
HðTRÞ2=H2� ¼ 6k2TR

T4
R=m

2
Φϕ

2�. The final lepton-number-to-
entropy ratio after inflaton decay at TR, where the entropy
density is given by s ¼ 4k2TT

3, is then

nL
s

¼ −
3

4

kTR
T3
R sin ð2θÞ
AMPl

�
τΦ ≫

Tasy

2π

�
ð34Þ

and

nL
s

¼ −
3AMPl sinð2θÞ
kTR

TRm2
ϕ

�
τΦ ≪

Tasy

2π

�
: ð35Þ

The maximum possible asymmetry is

nL;max

s
¼ −

3TR sin ð2θÞ
4mΦ

: ð36Þ

The transferred lepton asymmetry is partially converted
to a baryon asymmetry via (Bþ L)-violating sphaleron
fluctuations, with the final baryon-asymmetry-to-entropy
ratio nB=s given by [26,27]

nB
s

¼ −
28

79

n̂L
s
: ð37Þ

The final baryon asymmetry is then

nB
s

¼ 3.7 × 10−21
m2

Φ
A

�
TR

108 GeV

�
3
�
1013 GeV

mΦ

�
2

sinð2θÞ
�
τΦ ≫

Tasy

2π

�
ð38Þ

and

nB
s

¼ 7.7 × 109
A
m2

Φ

�
108 GeV

TR

�
sin ð2θÞ

�
τΦ ≪

Tasy

2π

�
;

ð39Þ

where we have normalized the expression to some repre-
sentative values of TR and mΦ. The maximum possible
asymmetry is

nB;max

s
¼ 2.7 × 10−6

�
TR

108 GeV

��
1013 GeV

mΦ

�
sin ð2θÞ:

ð40Þ

The observed baryon-to-entropy ratio is ðnB=sÞobs ¼
0.861� 0.005 × 10−10. In order to account for the
observed asymmetry, we therefore require that

A1=2

mΦ
¼ 6.7 × 10−6 sin1=2 ð2θÞ

�
1013 GeV

mΦ

��
TR

108 GeV

�
3=2

�
τΦ ≫

Tasy

2π

�
ð41Þ

and

A1=2

mΦ
¼ 1.1 × 10−10

�
TR

108 GeV

�
1=2

�
1

sin ð2θÞ
�

1=2

�
τΦ ≪

Tasy

2π

�
: ð42Þ

B. Numerical lepton asymmetry

In order to check our analytical expressions, we have
solved the complete field equations and included the
continuous transfer of energy from the decaying inflaton
condensate to radiation via

dρrad
dt

þ 4Hρrad ¼ ΓΦρΦ: ð43Þ

In the figures we show the exact numerical solution
for two cases, τΦ ¼ Tasy and τΦ ¼ 5Tasy. In Figs. 1–3
we show the evolution of the comoving condensate
asymmetry, the comoving transferred asymmetry, and the

FIG. 1. Numerical comoving condensate lepton asymmetry for
the case τΦ ¼ Tasy, with mΦ ¼ 1016 GeV, A1=2 ¼ 1013 GeV,
λΦ ¼ 0.1, and sinð2θÞ ¼ −1, illustrating the oscillations of the
condensate asymmetry about zero.
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lepton-number-to-entropy ratio for the case τΦ ¼ Tasy,
with mΦ ¼ 1016 GeV, A1=2 ¼ 1013 GeV, and λΦ ¼ 0.1.
(The comoving asymmetries are given in Planck units.)
For this case TR ¼ 4.8 × 1013 GeV using the instantaneous
decay expression. In Figs. 4–6 we show the corresponding
results for the case with τΦ ¼ 5Tasy, in which case
TR ¼ 2.1 × 1013 GeV. In order to test the analytical
predictions, we have chosen values of mΦ and ΓΦ which
allow for the numerical solution of the field equations
without extreme differences between the field oscillation
time and the Φ lifetime, even though these values do not
produce realistic lepton asymmetries.
The analytical prediction for the lepton-number-to-

entropy ratio from Eq. (34) for the case τΦ ¼ Tasy is

�
nL
s

�

analytical
¼ 1.15 × 10−3; ð44Þ

where we have used gðTRÞ ¼ 100 and set sinð2θÞ ¼ −1 to
have a positive lepton asymmetry. The corresponding
numerical result from Fig. 3 is

�
nL
s

�

numerical
¼ 1.106 × 10−3: ð45Þ

The analytical prediction for the lepton-number-to-entropy
ratio for the case τΦ ¼ 5Tasy is

�
nL
s

�

analytical
¼ 1.03 × 10−4: ð46Þ

The corresponding numerical result from Fig. 6 is

�
nL
s

�

numerical
¼ 9.80 × 10−5: ð47Þ

FIG. 2. Comoving transferred lepton asymmetry for the case
τΦ ¼ Tasy, showing the nonzero net transferred asymmetry.

FIG. 3. Lepton-number-to-entropy ratio for the case τΦ ¼ Tasy.
The late-time final value almost coincides with the analytical
prediction from Eq. (34).

FIG. 4. Numerical comoving condensate lepton asymmetry for
the case τΦ ¼ 5Tasy, with mΦ ¼ 1016 GeV, A1=2 ¼ 1013 GeV,
λΦ ¼ 0.1, sinð2θÞ ¼ −1, and TR ¼ 2.1 × 1013 GeV, illustrating
more rapid oscillations of the condensate asymmetry.

FIG. 5. Comoving transferred lepton asymmetry for the case
τΦ ¼ 5Tasy, showing the nonzero net transferred asymmetry.
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Therefore, the analytical solution gives a very accurate
estimate of the final lepton-to-entropy ratio.

C. Consistency of the assumption that AD
leptogenesis occurs during jΦj2 domination

The above analysis assumes that the lepton asymmetry is
entirely generated when the potential is dominated by the
jΦj2 term. The condition for this assumption to be valid is
that the A terms do not significantly influence the motion of
the ϕ1 and ϕ2 fields until ϕ < ϕ�, when the potential is
dominated by the jΦj2 term. This is true if the mass of the
angular field perturbations about the minimum of the
potential as a function of θ for a given ϕ is less than H
when ϕ ≥ ϕ�. This can be understood by considering the
field equations in terms of the radial and angular variables
Φ ¼ ϕeiθ=

ffiffiffi
2

p
,

ϕ̈þ 3H _ϕ ¼ −ðm2
Φ þ 2λΦjΦj2Þϕ − 2Aϕ cosð2θÞ ð48Þ

and

ϕθ̈ þ 2_θ _ϕþ3Hϕ_θ ¼ 2Aϕ sinð2θÞ: ð49Þ

For A real and positive, the minimum of the potential is
along the direction θ ¼ π=2. To estimate the condition for
the angle θ to be unaffected during the ϕ oscillations, we
can consider a small perturbation of θ from the minimum
direction. For convenience, we change the variable to θ̂ ¼
π=2 − θ so that the minimum direction becomes θ̂ ¼ 0. The
equations then become

ϕ̈þ 3H _ϕ ¼ −ðm2
Φ þ 2λΦjΦj2Þϕþ 2Aϕ cosð2θ̂Þ ð50Þ

and

ϕ ̈θ̂ þ 2
_̂θ _ϕþ3Hϕ _̂θ ¼ −2Aϕ sinð2θ̂Þ: ð51Þ

Then, for θ̂ ≪ 1, we have

ϕ̈þ 3H _ϕ ¼ −ðm2
Φ − 2λΦjΦj2 − 2AÞϕ ð52Þ

and

ϕ ̈θ̂ þ
�
3H þ 2

_ϕ

ϕ

�
ϕ _̂θ ¼ 4Aϕθ̂: ð53Þ

From the rhs of Eq. (53), if we average over the ϕ
oscillations and consider ϕ to be a constant, and define
a field σ ¼ ϕθ̂, then the mass of the σ field is mσ ¼

ffiffiffiffiffiffi
4A

p
.

Thus, we can expect the dynamics of the angular field to
be unaffected by the A term if m2

σ < H2. If this is the case,
we can effectively consider A ¼ 0 in Eq. (53), so θ equal to
a constant will be a solution. Therefore, as long as
4A < H2, the AD dynamics due to the A term will be
negligible. We therefore require that this is satisfied at
ϕ≳ ϕ� ¼ mΦ=

ffiffiffiffiffi
λΦ

p
. Let ϕAD be the value of the field at

which 4A ¼ H2 and the phase field evolution (and so
Affleck-Dine dynamics) becomes important. We then
require that ϕAD < ϕ�, which means that

4A < H2�: ð54Þ
At ϕ ¼ ϕ�, Vðϕ�Þ ¼ m2

Φϕ
2�=2þ λΦϕ

4�=4 ¼ 3m4
Φ=4λΦ and

H� ¼ ðVðϕ�Þ=3M2
PlÞ1=2 ¼ m2

Φ=2
ffiffiffiffiffi
λΦ

p
MPl. The condition

in Eq. (54) then becomes

A1=2

mΦ
<
A1=2
th

mΦ
¼ m
4

ffiffiffiffiffi
λΦ

p
MPl

¼ 1.04× 10−6λ−1=2Φ

�
mΦ

1013 GeV

�
;

ð55Þ
where Ath is the value of A below which the threshold
approximation is valid. For A < Ath, the asymmetry will be
entirely generated during ϕ2 oscillations, and the analytical
approximation is valid. In [15] it was confirmed numeri-
cally that if Eq. (55) is satisfied, then the analytical
prediction for the asymmetry based on jΦj2 domination
is valid. If this condition is not satisfied and the L-violating
mass terms become dynamical during the ϕ4 oscillation-
dominated era, then there is an additional suppression of
the asymmetry due to the evolution of the phase during
ϕ4-dominated oscillations [15].

D. Consistency with nonminimally coupled inflation

In our calculation of the asymmetry we have assumed
that the effect of the nonminimal coupling is negligible.
This requires that the ϕ2-dominated evolution begins after
the modification of the dynamics due to the nonminimal

FIG. 6. Lepton-number-to-entropy ratio for the case
τΦ ¼ 5Tasy. The late-time final value almost coincides with
the analytical prediction from Eq. (34). (We have shown the
values of nL=s starting from At=mΦ ¼ 10 in order to emphasize
the late-time value.)
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coupling becomes negligible. We therefore require that
ϕ� < ϕc, where ϕc is the value of the inflaton field at which
the nonminimal coupling strongly modifies the dynamics.
For the metric case ϕc is given by Eq. (15) and for the
Palatini case by Eq. (16). The condition ϕ� ¼ mΦ=

ffiffiffiffiffi
λΦ

p
<

ϕc then gives, for the metric case,

mΦ <

ffiffiffiffiffi
λΦ

p
MPlffiffiffi
6

p
ξ

ð56Þ

and, for the Palatini case,

mΦ <

ffiffiffiffiffi
λΦ

p
MPlffiffiffi
ξ

p : ð57Þ

Using the expressions in Eqs. (13) and (14) for ξ atN ¼ 55,
which give ξ ¼ 4.5 × 104

ffiffiffiffiffi
λΦ

p
for the metric case and ξ ¼

1.2 × 1010λΦ for the Palatini case, we obtain the same
condition for both the metric and Palatini cases,

mΦ < 2.2 × 1013 GeV: ð58Þ

V. LEPTON ASYMMETRY TRANSFER,
REHEATING, AND WASHOUT

A. Lepton asymmetry transfer and reheating

We assume that reheating occurs through the perturba-
tive decay of the condensate scalars to RH neutrinos. In
this case, reheating and lepton number transfer to the SM
sector occur simultaneously. The inflaton decay rate for
Φ → NRNR is

ΓΦ ¼ y2ΦmΦ

8π
: ð59Þ

As usual, we define TR to be the effective temperature at
which the Universe becomes dominated by relativistic
particles after Φ decay, in this case, right-handed neutrinos.
The RH neutrinos will subsequently decay to light SM
particles via NR → HL, at which time the Universe rapidly
thermalizes to a temperature Tth ≤ TR. If the NR decay rate
is fast enough that they decay immediately after being
produced, then Tth ¼ TR.
As a specific example to show that reheating and

lepton asymmetry transfer can easily be achieved without
washout occurring due to L-violating scattering pro-
cesses, we consider the case with mΦ ¼ 1013 GeV and
TR ¼ 108 GeV, with mN assumed to be small compared to
the inflaton mass but large compared to the reheating
temperature, mN ¼ 1010 GeV. In this case the number
density of RH neutrinos in thermal equilibrium is strongly
Boltzmann suppressed. The reheating temperature is deter-
mined by ΓΦ ¼ HðTRÞ ¼ kTR

T2
R=MPl. The coupling yΦ

required for a given effective decay temperature is then

yΦ ¼ 1.9 × 10−7
�
1013 GeV

mΦ

�
1=2

�
TR

108 GeV

�
: ð60Þ

The rest frame NR → HL decay rate is

ΓNR
¼ h2νmN

8π
¼ mνm2

N

4πv2
; ð61Þ

where we have used Eq. (3). The energy of NR immediately
after pair production will be EN ¼ mΦ=2. Assuming that
mΦ ≫ mN , the produced NR are relativistic, EN ≫ mN , so
the decay rate of theNR will be reduced by the time-dilation
factor mN=EN. The condition that NR can decay immedi-
ately after production is then

mN

EN
ΓNR

> HðTRÞ ⇒
mνm3

N

2πv2mΦ
>

kTT2
R

MPl
: ð62Þ

This is satisfied if

mν > 5.2 × 10−5 eV ×

�
mΦ

1013 GeV

��
1010 GeV

mN

�
3

×

�
TR

108 GeV

�
2

: ð63Þ

Thus, if we consider mν to be of the order of the observed
neutrino mass splittings, mν ∼ 0.01–0.1 eV, then in this
example, both reheating and the thermalization of the SM
thermal background will occur immediately when the
inflaton decays since the RH neutrinos immediately decay
to SM particles.

B. Absence of washout

We next consider the condition for the SM lepton
asymmetry to avoid washout after being transferred
from the inflaton condensate. Processes involving thermal
background RH neutrinos will be very strongly Boltzmann
suppressed since mN=TR ¼ 100 for this example. ΔL ¼ 2
scattering processes can occur via heavy N exchange
between LH. The resulting Weinberg operator is

h2ν
MN

LHLH; ð64Þ

and the thermal scattering rate is [28]

ΓW ¼ h4ν
4π

T3

m2
N
¼ m2

νT3

πv4
; ð65Þ

where have used the relation Eq. (3). Requiring that this is
less than H at reheating gives the bound

TR <
kTπv4

m2
νMPl

¼ 1.6 × 1012
�
0.1 eV
mν

�
2

GeV: ð66Þ
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Therefore, for mN ¼ 1010 GeV, TR ¼ 108 GeV, and
mν ≲ 0.1 eV, there is no danger of washout of the lepton
asymmetry after it transfers to the SM sector.
Thus, with mΦ ¼ 1013 GeV, mN ¼ 1010 GeV, and

TR ¼ 108 GeV, the inflaton condensate will decay to
relativistic RH neutrino pairs which immediately decay
to LH pairs and thermalize the SM thermal background.
Thermal L-violating scattering processes are ineffective;
therefore, the lepton asymmetry successfully transfers to
the SM sector without danger of washout. The final baryon
asymmetry is produced by (Bþ L)-violating sphaleron
fluctuations, which partially convert the lepton asymmetry
to a baryon asymmetry.
We note that reheating temperature in this example,

TR ¼ 108 GeV, is within the range 106–108 GeV that may
be observable in the spectrum of primordial gravitational
waves with r ¼ 0.001–0.1 [29]. This is in contrast to the
case of thermal leptogenesis, which requires that TR ≳
109 GeV [2–4]. For the metric nonminimally coupled
inflation model, the tensor-to-scalar index is r ¼ 0.004,
which is large enough to be observed by next-generation
telescopes such as LiteBird [30]. Therefore, the model
could explain both the observed baryon asymmetry and a
future observation of primordial gravitational waves with a
reheating signature in their spectrum.

C. Condensate decay via the Higgs portal, via the
nonminimal coupling and via gravitational decay

1. Decay via the Higgs portal

In the above analysis, we have considered reheating to
occur through perturbative decays of the inflaton to right-
handed neutrinos. In general, we expect that a Higgs portal
coupling of the inflaton to the Higgs doublet bosons exists,
as it cannot be suppressed by any symmetry. This can allow
condensate decay via annihilation of the condensate sca-
lars. Here we estimate an upper limit on the coupling of the
inflaton to the Higgs boson doublet for condensate decay to
right-handed neutrinos to dominate reheating.
The portal coupling is

λΦHjΦj2jHj2 ¼ λΦH

4
ϕ2

X4

i¼1

h2i ; ð67Þ

where hi are the real scalars of the Higgs doublet. To
estimate the decay of the condensate to the Higgs doublet
scalars, we use the results given in Appendix A of [31]. For
a single real Higgs scalar in Eq. (67), the condensate decay
rate has the form

Γportal ¼
Cλ2ΦHρϕ
256πm3

eff

; ð68Þ

where the effective mass of the condensate scalars is
m2

eff ¼ V 00ðϕÞ and ρϕ ≡ VðϕÞ, where ϕ is the amplitude
of oscillation. The constant C depends on the potential.
For the ϕ2 potential, meff ¼ mϕ and C ¼ 1. For the ϕ4

potential, meff ¼
ffiffiffiffiffiffiffiffi
3λΦ

p
ϕ and C ≈ 18 [31].

We want to ensure that the condensate decay rate via the
Higgs portal is less than H for all ϕ. We first derive the
condition on λΦH for this to be true at ϕ < ϕ�. We then
show that if decay does not occur at ϕ < ϕ� then it will not
occur at ϕ > ϕ�.
At ϕ < ϕ� we have a ϕ2 potential. Therefore, ρϕ ¼

m2
Φϕ

2=2 and

Γportal ≈
λ2ΦHϕ

2

128πmΦ
; ð69Þ

where we have summed over all four real scalars of
the Higgs doublet. The condition that Γportal ≲H ¼
mϕ=

ffiffiffi
6

p
MPl at ϕ < ϕ� is strongest at ϕ ¼ ϕ�, where it

requires that

λΦH ≲
�
128πffiffiffi

6
p

�
1=2

�
mΦ

MPl

�
1=2

λ1=4Φ : ð70Þ

Therefore,

λΦH ≲ 2.6 × 10−2λ1=4Φ

�
mΦ

1013 GeV

�
1=2

: ð71Þ

Thus, only a moderate suppression of the Higgs portal
coupling is required in the example we are considering.
At ϕ > ϕ� we have meff ∝ ϕ and V ∝ ϕ4. Therefore,

Γportal ∝ VðϕÞ=m3
eff ∝ ϕ. Since H ∝ V1=2 ∝ ϕ2, it follows

that if Γportal < H at ϕ ¼ ϕ�, then this will also be true at
ϕ > ϕ�. Thus, Eq. (71) is sufficient to ensure that decay via
the Higgs portal is negligible.
If the portal coupling were to dominate reheating, then

the symmetric component of the inflaton condensate could
decay earlier, but the asymmetric component would remain
in the form of a maximally asymmetric Φ condensate, with
a circular orbit in the field space, until decay to RH
neutrinos occurred. As a result, there could be two separate
reheating events, with initial reheating leaving a maximally
asymmetric inflaton condensate, which could later domi-
nate the radiation density and eventually decay to RH
neutrinos, reheating the Universe a second time.

2. Decay via the nonminimal coupling

The inflaton has a large nonminimal quadratic coupling
to R, suggesting that annihilations to SM particles via the
nonminimal coupling could be important. To estimate the
decay rate of the condensate to SM particles, we extend
the nonminimally coupled action to include the SM Higgs
doublet.
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In the Einstein frame, even in the absence of perturbative
interactions between the inflaton and SM sectors, the
nonminimal coupling will create nonrenormalizable
interactions. The important terms in the Einstein frame
Lagrangian are

−
1

Ω2
∂μH†

∂
μH −

λhjHj4
Ω4

: ð72Þ

During ϕ oscillations after inflation, we have
ξϕ2=M2

Pl ≪ 1, and we can therefore expand the conformal
factors. We then obtain, for the leading-order nonrenorma-
lizable interactions between ϕ and each real Higgs scalar hi,

ξ

2M2
Pl

ϕ2
X4

i¼1

∂μhi∂μhi þ
λhξ

2M2
Pl

ϕ2

�X4

i¼1

h2i

�2

: ð73Þ

These interactions allow the scalars in the condensate to
annihilate to Higgs scalars.
To estimate the annihilation rate, we consider the first

interaction in Eq. (73); the second should give a similar
annihilation rate, having a suppression due to λh but an
enhancement due to the larger phase space for decay to 4hi.
Since we have annihilation of zero momentum scalars,
the final-state Higgs will have energy Eh ¼ mΦ=2 and
momenta k1 and k2 such that k1:k2 ¼ 2E2

h ¼ m2
Φ=2. We can

therefore replace the first term in Eq. (73) by an effective
portal coupling

X4

i¼1

ξm2
Φ

4M2
Pl

ϕ2h2i : ð74Þ

We can then apply the previous analysis of the portal
coupling with λΦH → ξm2

Φ=M
2
Pl. From Eq. (70) the con-

dition for annihilations to Higgs bosons via the nonminimal
coupling to be negligible is

mΦ ≲ λ1=6Φ

ξ2=3

�
128πffiffiffi

6
p

�
1=3

MPl: ð75Þ

For metric inflation with N ¼ 55, we have ξ ¼ 4.5×
104

ffiffiffiffiffi
λΦ

p
. Therefore, Eq. (75) becomes

mΦ ≲ 1.0 × 1016 GeV

λ1=6Φ

: ð76Þ

For Palatini inflation with N ¼ 55, we have ξ ¼ 1.2×
1010λΦ, and Eq. (75) becomes

mΦ ≲ 2.5 × 1012 GeV

λ1=2Φ

: ð77Þ

The bound on mΦ is easily satisfied for metric inflation
when mΦ is small enough for nonminimal dynamics to be

negligible, mΦ < 2.2 × 1013 GeV. For Palatini inflation, a
mild suppression of λΦ, with λΦ less than about 0.01, would
be necessary to satisfy Eq. (77) at the dynamical upper limit
of mΦ.

3. Gravitational decay of the condensate

Assuming that the ϕ ↔ −ϕ symmetry of the potential is
unbroken by gravitational interactions, any purely gravi-
tational decay of the condensate will involve graviton
exchange processes with ϕ2 and therefore annihilation of
the condensate scalars to SM particles. In this case we
expect that annihilation via the nonminimal coupling,
which is characterized by a mass scale MPl=

ffiffiffi
ξ

p
, will easily

dominate any purely gravitational annihilation mode scaled
byMPl. Therefore, we expect that direct gravitational decay
of the condensate will generally be negligible if decay via
the nonminimal coupling is negligible.
It is known that gravitational instantons can break global

symmetries, which could lead to Uð1ÞL- and Z2-breaking
couplings of the inflaton to SM particles. However, being
a nonperturbative effect, the strength of the couplings is
strongly dependent upon the UV completion of gravity,
with an exponential suppression e−S due to the instanton
tunneling action S in addition to suppression by the Planck
scale. Therefore, there is no reason to assume that this effect
will significantly modify reheating.

VI. BARYON ISOCURVATURE PERTURBATIONS

We next consider the possibility of observable baryon
isocurvature perturbations in this model. For A1=2 < mΦ ≪
H during inflation, the phase θ of Φ is effectively a
massless field. Therefore, quantum fluctuations of θ will
give rise to baryon isocurvature perturbations. The magni-
tude of the isocurvature perturbations will depend upon
the specific nonminimally coupled inflation model being
considered: metric or Palatini. In nonminimally coupled
inflation models in the Einstein frame, the kinetic term for
ϕ2 [where Φ ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
] is

1

2Ω2
∂μϕ2∂

μϕ2; ð78Þ

where

Ω2 ¼ 1þ ξðϕ2
1 þ ϕ2

2Þ
M2

Pl

: ð79Þ

During inflation, the inflaton, which we choose to be ϕ1,
has a slow-rolling background value ϕ1, while by defining
θ to be zero along ϕ1, we can consider ϕ2 to be purely due
to quantum fluctuations. Treating ϕ̄1 as effectively constant
on the timescales over which the ϕ2 quantum fluctuations
are produced, and with ξϕ̄2

1=M
2
Pl ≫ 1 during inflation, the

ϕ2 kinetic term is
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M2
Pl

2ξϕ̄2
1

∂μϕ2∂
μϕ2: ð80Þ

The fluctuations of the phase θ are related to the fluctua-
tions of ϕ2 by

Φ ¼ ϕffiffiffi
2

p eiθ ¼ 1ffiffiffi
2

p ðϕ1 þ iϕ2Þ ⇒
ϕ̄ffiffiffi
2

p ð1þ iδθÞ

¼ 1ffiffiffi
2

p ðϕ̄1 þ iδϕ2Þ ⇒ δθ ¼ δϕ2

ϕ̄1

; ϕ̄1 ¼ ϕ̄: ð81Þ

To obtain the quantum fluctuation of ϕ2, which will give
the fluctuation of the phase, we transform to a canonically
normalized field χ2, where

χ2 ¼
MPlffiffiffi
ξ

p
ϕ̄1

ϕ2: ð82Þ

Therefore,

δθ ¼
ffiffiffi
ξ

p
MPl

δχ2: ð83Þ

Since χ2 is a massless field, it will develop a quantum
fluctuation with the standard power spectrum

Pδχ2 ¼
H2

4π2
: ð84Þ

The corresponding power spectrum of the phase fluctua-
tions is then

Pδθ ¼
ξ

M2
Pl

Pδχ2 ¼
ξH2

4π2M2
Pl

: ð85Þ

The global Uð1ÞL symmetry ensures that this fluctuation
applies at all values of θ. From Eqs. (34) and (35), the
lepton number and hence baryon number are proportional
to sinð2θÞ; therefore,

δnB
nB

¼ 2δθ

tanð2θÞ : ð86Þ

Fluctuations of θ will therefore produce an isocurvature
perturbation

I ¼ Ωb

Ωdm

δnB
nB

¼ Ωb

Ωdm

2δθ

tanð2θÞ ; ð87Þ

where we have written this as an equivalent CDM iso-
curvature perturbation I for comparison with the results of
Planck [32]. Planck gives constraints in terms of the
parameter βiso for CDM isocurvature perturbations, where

βiso ¼
PI

PR þ PI
ð88Þ

and PR ≡ As is the curvature perturbation power. From
Eq. (87),

PI ¼
�
Ωb

Ωdm

�
2 4

tan2ð2θÞPδθ ¼
�
Ωb

Ωdm

�
2 1

tan2ð2θÞ
ξH2

π2M2
Pl

:

ð89Þ
The ratio PI=PR is related to βiso by

PI

PR
¼ βiso

1 − βiso
: ð90Þ

Assuming that βiso ≪ 1, the prediction for βiso is

βiso ¼
ξH2

π2M2
PlAs tan2ð2θÞ

�
Ωb

Ωdm

�
2

: ð91Þ

In both the metric and the Palatini models, the value of
the Einstein frame potential on the plateau during inflation
is given by

VE ¼ λΦM4
Pl

4ξ2
: ð92Þ

Thus,

H ¼
�
λΦ
12

�
1=2MPl

ξ
: ð93Þ

Therefore, the model predicts that

βiso ¼
λΦ

12π2ξAs tan2ð2θÞ
�
Ωb

Ωdm

�
2

: ð94Þ

The value of ξ at N ¼ 55 in the metric model
is ξ ¼ 4.5 × 104

ffiffiffiffiffi
λΦ

p
. Therefore, the metric model predicts

that

βiso;metric ¼
3.1

ffiffiffiffiffi
λΦ

p
tan2ð2θÞ : ð95Þ

Planck (2018) obtains the 2σ upper bound βiso < 0.038
[32]. Therefore, the metric model satisfies the isocurvature
bound if

λΦ < 1.5 × 10−4 tan4ð2θÞ: ð96Þ

The value of ξ at N ¼ 55 in the Palatini model is
ξ ¼ 1.2 × 1010λΦ. Therefore, the Palatini model predicts
that

βiso;Palatini ¼
1.2 × 10−5

tan2ð2θÞ : ð97Þ
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Thus, the Palatini model easily satisfies the present obser-
vational bound independently of λΦ, assuming that tanð2θÞ
is not unusually small.
Therefore, there is an upper bound on λΦ for the metric

model to be consistent with the present bound on iso-
curvature perturbations. Significantly, baryon isocurvature
perturbations close to the present observational limit
are possible in the metric model if λΦ ∼ 10−4 tan4ð2θÞ.
Therefore, the metric model would be able to explain a
future observation of baryon isocurvature perturbations
close to the present limit. In contrast, the Palatini model
prediction is much smaller than the present isocurvature
bound independently of λΦ, assuming that tanð2θÞ is not
unusually small.

VII. QUADRATIC VERSUS QUARTIC
Uð1ÞL-BREAKING TERMS

In our analysis we have assumed that leptogenesis is due
to the quadratic A term. In general, we would also expect a
quartic C term to exist. AD leptogenesis via a C term in
nonminimally coupled inflation has been studied in [13].
The dynamics in this case is quite different, with the
asymmetry being generated during inflation rather than at
late times. Here we consider the limits on C for which the A
term will dominate leptogenesis. The Uð1ÞL-breaking
potential terms are

AðΦ2 þΦ†2Þ þ CðΦ4 þΦ†4Þ: ð98Þ

Thus, the C term, for a given ϕ, will be less important to the
field dynamics than the A term if Cϕ2 ≲ A. We will first
consider this condition at ϕ ≤ ϕ�, when the potential is ϕ2

dominated. Note that Cϕ2 ≲ A at ϕ ¼ ϕ� requires that

Cϕ2� ¼
Cm2

Φ
λΦ

≲ A ⇒
C
λΦ

≲ A
m2

Φ
: ð99Þ

In other words, if the relative contribution of the C term to
the quartic term is no greater than the contribution of the A
term to the quadratic term, the A term will be dominant at
ϕ ≤ ϕ�. It is still possible that at ϕ > ϕ� the quartic term
could become important for large enough ϕ. However, to

influence the evolution of the phase and thus the baryon
asymmetry,Cϕ2 would also have to become larger thanH2,
where we consider Cϕ2 to be approximately the mass
squared of the phase field. At ϕ ¼ ϕ�, since we assume that
ϕAD < ϕ�, the phase is not dynamical, so A≲H2 at
ϕ ¼ ϕ�. Therefore, Cϕ2� is also less than H2 at ϕ ¼ ϕ�.
Then, since H2 ∝ ϕ4 at ϕ > ϕ�, it follows that Cϕ2 can
never exceed H2 at ϕ > ϕ� if it is less than H2 at ϕ ¼ ϕ�.
Therefore, the condition Eq. (99) is sufficient for the A term
to dominate the dynamics of the phase field throughout and
thus to dominate asymmetry generation.

VIII. CONCLUSIONS

We have discussed a minimal leptogenesis model based
on the inflaton mass term Affleck-Dine mechanism intro-
duced in [15]. The inflaton sector is a nonminimally
coupled complex inflaton, which couples to the Standard
Model via RH neutrinos. We have reviewed the analytical
predictions for the baryon asymmetry and compared these
to some examples of complete numerical solutions, con-
firming their accuracy. We have also derived conditions for
the consistency of the analytical results. Using the ana-
lytical expressions, we have shown that the model can
easily generate the observed baryon asymmetry. In the case
of the model with a metric nonminimally coupled inflaton
sector, the model can produce baryon isocurvature pertur-
bations that are close to the present observational bound.
The model is also consistent with the range of reheating
temperatures, TR ¼ 106–108 GeV, that could be detected
in the spectrum of observable primordial gravitational
waves predicted by the metric model. This is in contrast
to the case of conventional thermal leptogenesis, which
requires that TR ≳ 109 GeV. The Palatini model predicts
that both the baryon isocurvature perturbations and pri-
mordial gravitational waves are much smaller than the
present and the expected future observational limits.
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