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The tomography of the polarized Sunyaev-Zeldvich effect due to free electrons of galaxy clusters can be
used to constrain the nature of dark energy because Cosmic Microwave Background quadrupoles at
different redshifts as the polarization source are sensitive to the Integrated Sachs-Wolfe effect. Here we
show that the low multipoles of the temperature and E-mode polarization anisotropies from the all-sky
CMB can improve the constraint further through the correlation between them and the CMB quadrupoles
viewed from the galaxy clusters. Using a Monte Carlo simulation, we find that low multipoles of the
temperature and E-mode polarization anisotropies potentially improve the constraint on the equation of
state of dark energy parameter by about 17 percent.
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I. INTRODUCTION

Dark energy, which is causing the current accelerated
expansion of the universe [1,2], has two main effects on the
temperature anisotropies of the cosmic microwave back-
ground (CMB). One is to change the angular distance to the
final scattering surface of the CMB, and the other is the
Integrated Sachs-Wolfe (ISW) effect, which creates new
temperature fluctuations due to the decay of the gravita-
tional potential of the large-scale structure. The ISW effect
is a characteristic effect that indicates that the universe
is deviating from the matter-dominated one. However,
because the temperature fluctuations produced by this
effect are smaller than those produced in the early universe
in the standard cosmological model (the so-called SW
effect), they are masked by the dispersion of the fluctua-
tions, making it difficult to obtain a statistically significant
enough signal to approach the nature of dark energy.
Therefore, the CMB constraint on dark energy-related
parameters is weak because the ISW effect suffers from
sizable cosmic variance errors in the CMB temperature
anisotropy spectrum on large scales [3,4].
The Kamionkowski and Loeb method [5] is an effective

way to detect the ISW effect without this cosmic variance.

This method uses the fact that the polarization angle of
CMB photons scattered by free electrons in a galaxy cluster
is determined by the quadrupole temperature fluctuations
of the CMB as seen from that cluster [6] and allows us to
reconstruct the three-dimensional density fluctuations of
the universe on large scales [7–10]. While avoiding cosmic
variance by fixing the realization of the initial density
fluctuations, the direct detection of the ISW effect is
possible by tomographic use of clusters of galaxies at
various redshifts [11–13]. Our previous study using simple
Monte Carlo simulations has shown that it is possible to
constrain the dark energy equation of state parameters more
accurately through the ISW effect than conventional meth-
ods based on the power spectra [14]. The method can also
be useful for the studies of the power asymmetry of CMB
polarization and density field [15], cosmic birefringence
[16], and the reionization optical depth [17]. Hereafter, the
method of estimating remote quadrupoles at z > 0 using
CMB polarization from galaxy clusters will be referred to
as the KL method.
In our previous study [14], we used the quadrupole

anisotropies of the CMB as a diagnostic of the ISW effect.
Specifically, we compared the quadrupole anisotropy of our
CMB estimated from the three-dimensional density fluc-
tuations on large scales reconstructed by the KL method,
with the actual quadrupole anisotropy that can be directly
observed by the all-sky CMB experiments such as Planck.
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In fact, it has been shown that the three-dimensionally
reconstructed density fluctuations on large scales should be
correlated not only with the quadrupoles but also with
higher temperature multipoles and E-mode polarization
fluctuations on large angular scales [18]. Therefore, this
paper aims to clarify to what extent the addition of these
fluctuations as diagnostics improves the results obtained in
previous studies.
In the next section, we review our method developed in

[14], and extend it by adding information on the temper-
ature and E-mode polarization anisotropies on large angular
scales. Section III presents our result of the future constraint
on the dark energy equation of state parameters based on
Monte Carlo simulations. In Sec. IV, we discuss and
summarize this study.

II. METHODOLOGY

A. CMB polarization from galaxy clusters

First, we consider the CMB polarization produced in
galaxy clusters. The polarization is created by Thomson
scattering of the free electrons in galaxy clusters with the
quadrupole component of the CMB anisotropy. Therefore,
if a galaxy cluster is at the position x⃗ in the comoving
coordinate, we can observe the polarization from the galaxy
cluster, which is produced by the Thomson scattering at the
conformal time τx ¼ τ0 − jx⃗jwith the present conformal τ0.
Accordingly, the observed polarization from galaxy

clusters at x⃗ can be calculated with the Stokes parameter,
Qðx⃗Þ and Uðx⃗Þ

Qðx⃗Þ � iUðx⃗Þ ¼ −
ffiffiffi
6

p

10
τCTCMBðτxÞ

×
X2
m¼−2

�2Y2mðx̂ÞaT2mðx⃗; τxÞ; ð1Þ

where τC is the optical depth of the galaxy cluster for
Thomson scattering. In Eq. (1) aT2mðx⃗; τxÞ is the quadrupole
component of the CMB temperature anisotropy observed at
the position x⃗ and the conformal time τx.
Now we consider the CMB temperature anisotropy on

the position of the comoving coordinate x⃗ at the conformal
time τx.
The CMB temperature in the direction n̂ at x⃗ and τx can

be decomposed into the isotropic part and anisotropic part,
Tðx⃗; n̂; τxÞ ¼ TCMBðx⃗; τxÞ þ ΔTðx⃗; n̂; τxÞ. Introducing the
CMB anisotropy as Δðx⃗; n̂; τxÞ≡ ΔTðx⃗; n̂; τxÞ=TCMB and
we expand the CMB anisotropy with spherical harmonic
functions Ylmðn̂Þ,

Δðx⃗; n̂; τxÞ ¼
X∞
l¼0

Xl

m¼−l
aTlmðx⃗; τxÞYlmðn̂Þ; ð2Þ

where aTlmðx⃗; τÞ is the coefficient of the spherical harmonic
expansion and the coefficient with l ¼ 2 is the quadrupole
component aT2mðx⃗; τxÞ.

On the other hand, since the CMB anisotropy is the
function of x⃗ and n̂, we can decompose it by the plane wave
function and the spherical harmonics,

Δðx⃗; n̂; τÞ ¼ 4π

Z
d3keik⃗·x⃗

X∞
l¼0

ð−iÞlΔT
l ðk⃗; τÞ

×
Xl

m¼−l
Y�
lmðk̂ÞYlmðn̂Þ: ð3Þ

Therefore, the coefficient of the spherical harmonic expan-
sion in Eq. (2) can be written as

aTlmðx⃗; τxÞ ¼ ð−iÞl4π
Z

d3keik⃗·x⃗ΔT
l ðk⃗; τxÞY�

lmðk̂Þ: ð4Þ

In our case, the cosmological linear perturbation theory
is applicable to calculate ΔT

l ðk⃗; τÞ in Eq. (3). According to
the cosmological linear perturbation theory,ΔT

l ðk⃗; τÞ can be
obtained as

ΔT
l ðk⃗; τÞ ¼ ΔT

l ðk; τÞϕiniðk⃗Þ; ð5Þ

where ϕiniðk⃗Þ is the Fourier component of the initial
curvature perturbations, and ΔT

l ðk; τÞ is the liner transfer
function which depends on the cosmological models and is
obtained from the cosmological linear perturbation theory.
We calculate ΔT

l ðk; τÞ using a publicly available code
CAMB [19].
Our aim in this paper is to study how much the KL

methods with the future CMB temperature and polarization
measurement will improve the constraint on the nature of
dark energy. For this purpose, we demonstrate the KL
methods by conducting the Monte Carlo simulation. Each
step of our simulation is summarized in Fig. 1.

FIG. 1. Flowchart diagram of our simulation sequence. We
diagnose the assumed cosmology by repeating the steps shown in
red with a different cosmological model.
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B. Monte Carlo simulation

In our simulation, to realize the CMB anisotropy at
comoving position x⃗we use transfer functions generated by
the publicly available code CAMB. Throughout this paper,
we setΛ-CDMmodel withΩbh2 ¼ 0.0226,Ωch2 ¼ 0.112,
Ωνh2 ¼ 0.00064, and h ¼ 0.7 as the reference cosmologi-
cal models.
The first step of the simulation is to generate the initial

fluctuation field ϕiniðkiÞ. Our initial fluctuation field
is given as a Gaussian random field with the power
spectrum

PðkÞ ¼ k3

2π2
PðkÞ ¼ As

�
k
k�

�
ns−1

; ð6Þ

where we set the parameters As¼ 2.1×10−9, ns¼ 0.96, and
k� ¼ 0.05.
In our methods, it is useful to employ the polar

coordinate in Fourier k-space. To sample the Fourier mode,
we divide the angular directions in Fourier space by
Healpix [20] with Nside ¼ 8. This means that the whole
sky is divided into 768 sections. For the radial mode, we
sample 60 wave number modes uniformly in logarithmic
space with a range from k ¼ 10−5 to 10−1. Thus, the
overall independent Fourier mode nk for this simulation
is 46080.
Second, we simulate the polarization produced in clus-

ters with the generated initial fluctuations ϕiniðkiÞ. In this
process, we use the transfer function Δðk; τxÞ with the
fiducial equation of state of dark energy parameter
w ¼ −1. In our simulation, we set the number of galaxy
clusters to Ncluster ¼ 6000. We distribute them randomly in
the angular direction and uniformly in redshift ranging from
z ¼ 0 to 2. We calculate the polarization, Qfiducialðx⃗iÞ and
Ufiducialðx⃗iÞ, produced by each galaxy cluster at the position
x⃗i, following the procedure described in Sec. II A.
To consider the observational uncertainties, Gaussian
noise σobs=τ ¼ 10−2 μK is added to each Qfiducialðx⃗iÞ and
Ufiducialðx⃗iÞ.
Similarly, we simulate the CMB anisotropies directly

observed at the origin with the generated initial fluctuations
ϕiniðkiÞ. In both the temperature and the polarization
anisotropy (E-mode), we calculate the angular components,
aTlmfiducial a

E
lmfiducial, in the range from l ¼ 2 to 9. Here,

as in the case for galaxy cluster polarization, we add
Gaussian noise σobs ¼ 10−2 μK to alms as observational
uncertainty.
Figures 2 and 3 show one realization example of the Q

maps for the polarization produced in galaxy clusters at
z ¼ 0.01 and 0.3. The quadrupole of the CMB temperature
observed by galaxy clusters at z ¼ 0.01 is nearly identical
to the CMB temperature quadrupole anisotropy at the
origin. Therefore, according to Eq. (1), the pattern of the
Q map on the sky is very similar to that of the CMB

temperature quadrupole anisotropy at the origin. On the
other hand, at z ¼ 0.3, the quadrupole pattern observed
at each galaxy cluster is slightly different. Therefore, the
generated Q map has a small-scale pattern due to the
difference, although the large-scale pattern is similar to
the Q map at z ¼ 0.01.
The third step is the reconstruction of the initial

fluctuations by the fitting of the polarization, Q and U,
produced by the galaxy clusters and the CMB temperature
and polarization anisotropy, aTlm, a

E
lm, directly observed at

the origin. We estimate the initial fluctuations to minimize
the function given by

ftot ¼ fpol þ fT þ fE þ fprior: ð7Þ

Each term in the right-hand side of the equation represents
the chi-square minimizations for fitting the polarization of
the galaxy cluster QðxiÞ and UðxiÞ, the temperature
anisotropy of the CMB aTlm and the polarization anisotropy
of the CMB aElm, and the prior, respectively.

FIG. 2. Example Q polarization map observed at galaxy
clusters at redshift z ¼ 0.01. Because they are produced by
quadrupoles that are nearly identical to the quadrupoles we
observe today, they have a quadrupole pattern.

FIG. 3. Same as Fig. 1, but at redshift z ¼ 0.3. While features
similar to the map at z ¼ 0.01 remain, smaller patterns develop.
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The chi-square minimizations for the polarization of the
galaxy cluster QðxiÞ and UðxiÞ can be written as

fpol ¼
XNcluster

i¼1

ðQðx⃗iÞ −Qðx⃗iÞfiducialÞ2
σ2pol

þ ðUðx⃗iÞ −Uðx⃗iÞfiducialÞ2
σ2pol

; ð8Þ

where Qðx⃗iÞ and Uðx⃗iÞ is the polarization produced in
galaxy clusters at x⃗i with the estimated initial condition and
Qðx⃗iÞfiducial and Uðx⃗iÞfiducial is the polarization obtained in
the simulation with adding the Gaussian noise with the
variance σpol due to the uncertainty in the observation of Q
and U from galaxy clusters.
We use CMB temperature anisotropy from l ¼ 3 to 9 for

fitting

fT ¼
X
l¼3

Xl

m¼−l

ðaTlm − aTlmfiducialÞ2
σ2T

; ð9Þ

where aTlm is the temperature anisotropy evaluated from the
estimated initial fluctuations, aTlmfiducial is the one obtained
from the simulation, and σT is the uncertainty in observing
CMB temperature anisotropy.
For CMB polarization E-mode, l ¼ 2mode is also added

to the fitting function

fE ¼
X
l¼2

Xl

m¼−l

ðaElm − aElmfiducialÞ2
σ2E

; ð10Þ

where aElm is the E-mode polarization anisotropy evaluated
from the estimated initial fluctuations, aElmfiducial is the one
obtained from the simulation, and σE is the uncertainty in
the observation of CMB E-mode polarization anisotropy.
To improve the accuracy of the reconstruction, we also

adopt a Gaussian prior based on power spectrum PϕðkÞ.

fprior ¼
Xnk
j

R2
iniðkjÞ

2PðkjÞ
; ð11Þ

where R2
iniðkÞ is the Fourier component of the estimated

initial fluctuations.
Tuning the estimated initial fluctuations, R2

iniðkÞ, we
search the set of R2

iniðkÞ which can minimize the function f.
The obtained set of R2

iniðkÞ is the Fourier component of the
estimated initial fluctuations which fit the polarization of
the galaxy cluster and the CMB temperature and polari-
zation anisotropy to the values in the fiducial mock
simulation.
In this process, the transfer functions are used to

calculate the observable from the initial fluctuations
ϕiniðkiÞ. Since the transfer function depends on the

cosmological parameters, different cosmologies lead to
different estimates of the initial fluctuations. In this work,
we estimate the initial fluctuations with several dark energy
state parameters w ¼ −1, −0.99, and −0.95 in order to
verify the statistical power for the dark energy state
parameter although the dark energy state parameter is
fixed to w ¼ −1 in the simulation.
In the last step, we calculate the l ¼ 2 mode temperature

anisotropy aT2m
estð0Þ observed at the origin using the

estimated initial fluctuations and compare it to the true
value aT2m

trueð0Þ≡ aT2mfiducialð0Þ calculated from the mock
simulation. Note that, in the fitting process, we do not use
the l ¼ 2 mode temperature anisotropy and reserve it for
the comparison between those from the estimated initial
fluctuations and the mock fiducial data.
Up to this point, the method has been applied to a single

mock simulation. The sequence of steps is repeated one
hundred times from the generation of the initial fluctuations
and makes one hundred pairs of aT2m

trueð0Þ and aT2m
estð0Þ.

The generated aT2m
trueð0Þ and aT2mestð0Þ pairs should agree

within statistical error if they are generated using the same
transfer function. In application to actual observations, the
cosmological parameters of the transfer function used in
the estimation process should match those of the actual
universe. Thus, the larger the difference between pairs
generated using different transfer functions, the more
effective the method is able to constrain the cosmological
parameters.
The accuracy of this method depends on errors in

polarization measurements, the number of galaxy clusters,
the optical depth of the clusters, and the redshift errors of the
clusters. In this study, we assume the most ideal conditions,
where the polarization measurement error and optical depth
of the clusters are uniform σpol=τ ¼ 10−2 μK, and the
redshift error is negligible. The number of clusters used is
assumed to be 6000 and randomly distributed. Note that,
although the angular distribution is given statistically uni-
form at random in the present simulations, it is known that, in
the actual Universe, galaxy clusters are biased objects and
their distribution is clustered. However, our simulation
reconstructs density fluctuations on scales much larger than
100Mpc. In those scales, the distribution of galaxy clusters is
almost uncorrelated and close to uniform and isotropic, even
in the real Universe. Therefore, the uniformly random
distribution of galaxy clusters is valid in our study.
The error for the CMB all-sky observation is also used

as σT ¼ σE ¼ 10−2 μK. The methodological, statistical
uncertainty in this method is a complex mixture of these
factors and can be calculated from the reconstruction error
in the pair when the correct transfer function including
w ¼ −1 is used in the estimation,

σ2method ¼
1

N

XN
i¼1

1

5
½jΔaT20ij2 þ 2jΔaT21ij2 þ 2jΔaT22ij2� ð12Þ
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where N refers to the number of simulations used, and each
Δa2m are difference of pairs

Δa2m ¼ aT2m
trueðw ¼ −1Þ − aT2m

estðw ¼ −1Þ: ð13Þ

In Eq. (12), while the m ¼ 0 component is a real number,
the m ¼ 1; 2 components are complex numbers, so the
independent components are doubled, requiring a factor of
2 on the right side.
In the setting of our simulation with Ncluster ¼ 6000,

σpol=τ ¼ 10−2 μK, Nside ¼ 8, and nkmode ¼ 60, the meth-
odological statistical uncertainty is

σmehthod ≃ 4.0 × 10−8: ð14Þ

We find out that, even when not including all-sky CMB
observations of temperature fluctuations and polarization,
almost the same values were obtained as the methodologi-
cal statistical uncertainty. Therefore, we can conclude that
the dominant uncertainty of this reconstruction comes from
the KL method.
To examine statistical power, we define the chi-square

statistic for the quadrupole as

χ2ðwÞ ¼ 1

σ2method

ðjΔaT20j2 þ 2jΔaT21j2 þ 2jΔaT22j2Þ: ð15Þ

The chi-square is an indicator to show the goodness of fit
between the cosmological model in the mock simulation
and the one used for estimation. In our case, if the equation
of state of dark energy, w, in the estimation is identical to
the one in the simulation, it ideally follows the chi-square
distribution with a degree of freedom of five. The chi-
square values are larger when different w is used in the
estimation process.
In other words, the cosmological parameters can be varied

and the cosmology can be restricted by comparing the
differences in the chi-square values Δχ2ðwÞ ¼ χ2ðwÞ−
χ2ðw ¼ −1Þ. In other words, through the comparison of
the difference in the chi-square values, Δχ2ðwÞ ¼ χ2ðwÞ−
χ2ðw ¼ −1Þ, with changing w in the estimation, we can
provide the observation constraint on w.

III. RESULT

In the previous study, only the polarization of the galaxy
clusters was used in the fitting process to reconstruct the

initial fluctuations. In this study, we investigate the improve-
ment in statistical power for the dark energy equation of state
parameter by adding temperature anisotropy andpolarization
in the all-sky CMB observations.
We set the true equation-of-state parameters of dark

energy w ¼ −1. The difference in chi-square values for
w ¼ −0.99 are hχ2ðw ¼ −0.99Þi ¼ 1.14, 1.16, and 1.33 for
galaxy clusters alone, galaxy clusters with E-mode, and
galaxy clusters with T and E modes, respectively. We
summarize the results in Table I. Figure 4 shows the
histograms of Δχ2 with 100 realizations in each case.
The difference in chi-square values for w ¼ −0.95 are

hχ2ðw ¼ −0.95Þi ¼ 16.90, 17.85, and 19.93 for galaxy
clusters alone, galaxy clusters with E-mode, and galaxy
clusters with T and E modes, respectively. We summarize
the results in Table II. Figure 5 shows the histograms ofΔχ2
with 100 realizations in each case.
For both dark energy equation of state parameters, we

obtained larger chi-square values when adding E-mode
polarization and temperature anisotropy.
This is due to the fact that E-mode polarization and

temperature anisotropy in all-sky observations are
associated with the polarization produced by galaxy
clusters.

FIG. 4. Distribution of the difference of the chi-square statistic
from the 100 simulations for w ¼ 0.99. Different histograms
show the cases obtained from fitting only to the polarization of
galaxy clusters, fitting with the E-mode, and fitting with the
E-mode and temperature anisotropies of all-sky CMB observa-
tions, as indicated in the figure.

TABLE I. Δχ2 for parameters with w ¼ −0.99.

Observable σmethod Δχ2

Only cluster polarization 4.060 × 10−8 1.137
Cluster polarization þ E-mode 4.039 × 10−8 1.163
Cluster polarization þ E&T-mode 4.014 × 10−8 1.327

TABLE II. Δχ2 for parameters with w ¼ −0.95.

Observable σmethod Δχ2

Only cluster polarization 4.060 × 10−8 16.90
Cluster polarization þ E-mode 4.039 × 10−8 17.85
Cluster polarization þ E&T-mode 4.014 × 10−8 19.93
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Thus, combining all-sky CMB observations with the
remote quadrupole technique using the polarization of
galaxy clusters can more strongly constrain the cosmology.

IV. SUMMARY AND DISCUSSION

In this paper, we study how to constrain the nature of the
dark energy using the ISWeffect by combining information
about the CMB quadrupole at high redshift obtained from
the polarization of CMB photons passing through a galaxy
cluster based on the KL method with information about
temperature and E-mode polarization fluctuations on large
angular scales at z ¼ 0. In fact, the E-mode signal comes
from the reionization epoch, which is not sensitive to the
ISW effect. Therefore, the E-mode is not directly related to
the accuracy of determining dark energy parameters; with-
out the E-mode, the density fluctuations would be recon-
structed mainly by the SW seen by the galaxy clusters and
that from our position. However, the transfer functions in
Fig. 6 show that E-mode is sensitive to density fluctuations

on a scale of about k ¼ 3 × 10−4 [1=Mpc], which is almost
the same scale the clusters at z ¼ 1 are most sensitive at.
Therefore, the E-mode adds further information on the
three-dimensional density fluctuations seen by the galaxy
clusters and that are seen from our position and indirectly
contributes to determining dark energy parameters.
In conventional analyses based on power spectra, the SW

contribution, which is unrelated to the dark energy effect,
acts like Gaussian noise and prevents the statistical detec-
tion of the ISW effect [12]. In contrast, our method can
estimate and subtract the SW contribution by reconstruct-
ing the primordial density fluctuations in three dimensions.
Thus, we can estimate the pure ISW effect due to dark
energy.
In this study, we assumed ideal conditions, where the

polarization measurement error and optical depth of the
clusters are uniform σpol=τ ¼ 10−2 μK. In reality, we need
to estimate the optical depth of individual galaxy clusters
independently from the polarization measurements through
the temperature fluctuation due to the Sunyaev-Zel’dovich
effect [21]. Note that we only need to estimate the total
optical depth of each cluster because the CMB quadrupole
is aligned on large scales, and we can expect that the CMB
quadrupole is common within each cluster. In addition, the
sensitivity of polarization measurements of each galaxy
cluster may fluctuate. In this case, the variance in Eq. (8)

σpol should read
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2pol;i þ σ2τ;i

q
, where σpol;i and στ;i are the

measurement errors of the Stokes parameters and the
optical depth of the galaxy cluster at position x⃗i,
respectively.
This method requires two strategically different CMB

observations. One is the observation of the quadrupole of
the CMB from our position, which requires high-sensitivity
all-sky observation. A planned experiment, such as
LiteBIRD [22], can observe the quadrupole with a sensi-
tivity of 3.7 × 10−4 μK, which is sufficient compared to the
error estimated in this study. On the other hand, polariza-
tion observations of galaxy clusters require a high reso-
lution of less than one arcminute, which requires a radio
telescope with a large aperture. The noise level for cluster
polarization measurements was assumed based on our
previous study, where we showed that the error level of
σ=τ ¼ 0.01 μK is needed for the constraint on w in a
few percent accuracies. This noise level is much below
the expected sensitivity of future CMB polarization
experiments, such as CMB S4 [23]. A futuristic discussion
toward detecting polarized CMB emission in clusters can
be found in [18].
In our previous paper, to limit the equation of state for

dark energy, we used only the z ¼ 0 quadrupole, which is
expected to correlate most with the polarization of CMB
photons scattered by clusters of galaxies. However, the
polarization of CMB photons scattered by clusters of
galaxies, especially at high redshifts, should correlate not

FIG. 5. Same as Fig. 3, but for w ¼ 0.95.

FIG. 6. Transfer functions of temperature quadrupole at z ¼ 0
(blue solid line) and z ¼ 1 (orange dashed line), and E-mode
quadrupole at z ¼ 0 (green dotted line). The amplitudes are
normalized to negative one at their peaks.
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only with the quadrupoles but also with higher multipoles
at z ¼ 0. Indeed, as shown in [18], CMB polarization
generated due to a galaxy cluster at a higher redshift
correlates not only with the quadrupoles but also with
higher multipoles of the current CMB temperature
fluctuations.
Compared with the cluster polarization-only constraint,

our results showed that including E-mode polarization
(l > 2) and temperature anisotropies (l > 3) improves
the constraining power for the dark energy parameter w
by 18 percent if we compare w ¼ −1 and w ¼ −0.95 dark
energy models, assuming 6000 clusters and polarization
sensitivity of σpol=τ ¼ 10−2. In our setup, this improvement
comes almost equally from the E-mode polarization (l > 2)
and temperature anisotropies (l > 3). The improvement is
due to the fact that the information on E-mode polarization
and temperature anisotropy at z ¼ 0 allowed us to solve
part of the degeneracy between the 3D density fluctuation
Fourier modes inferred from the polarization produced in
galaxy clusters.
Our method is based on polarization due to CMB

quadrupoles, which are generated by super-horizon modes

at the last scattering surface. It is, therefore, almost
insensitive to cosmological parameters that affect the
acoustic oscillation of the CMB. It is also independent
of the parameters of the primordial power spectrum, such as
ðAs; nsÞ in Eq. (6), since our method performs a direct
estimation of the three-dimensional fluctuation components
with bypassing the estimation on ðAs; nsÞ. On the other
hand, there is no doubt that the parametersΩΛ andw, which
affect the ISW, are degenerate, and actually we are
supposed to impose a limit on a certain function
fðΩΛ; wÞ ofΩΛ andw. However, with our current computa-
tional resources, it is difficult to vary the parameters and
impose a limit simultaneously, so this is future work.
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