
Gravitation with modified fluid Lagrangian:
Variational principle and an early dark energy model

S. X. Tian (田树旬)
1,* and Zong-Hong Zhu (朱宗宏)

1,2,†

1Department of Astronomy, Beijing Normal University, Beijing 100875, China
2School of Physics and Technology, Wuhan University, Wuhan 430072, China

(Received 4 September 2022; revised 17 February 2023; accepted 6 March 2023; published 10 May 2023)

The variational principle is the main approach to obtain complete and self-consistent field equations in
gravitational theories. This method works well in pure field cases such as fðRÞ and Horndeski gravities.
However, debates exist in the literature over the modification of a perfect fluid. This paper aims to clarify
this issue. For a wide class of modified fluid Lagrangians, we show that the variational principle is unable to
give complete field equations. One additional equation is required for completeness. Adopting the local
energy conservation equation gives the modified fluid a good thermodynamic interpretation. Our result is
the first modified fluid theory that can incorporate energy conservation. As an application of this
framework, we propose a specific modified fluid model to realize early dark energy triggered by the cosmic
radiation-matter transition. This model naturally explains why early dark energy occurs around matter-
radiation equality and is useful in erasing the Hubble tension.
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I. INTRODUCTION

Generally speaking, modified gravities belong to
classical field theory, in which the variational principle
is an important tool to derive the field equations [1,2].
Fluid is an important source of gravity that describes the
Universe, galaxies, and stars [3]. The equations of fluid
motion are generally given by microscopic particle physics,
not by the variational principle. In gravitational theories,
the variational principle of a general fluid is still con-
troversial, which hinders progress in modifying gravity
from the fluid side. Taub [4] first constructed the
Lagrangian of a perfect fluid, and later Schutz [5] gave
a different but also reasonable result. Gonner [6,7] was the
first to discuss a gravitational theory with a nonminimal
coupling between spacetime and a fluid. Two such theories
that have been widely discussed recently are fðR;LmÞ
gravity [8–12] and fðR; TÞ gravity [13–15]. A comment on
fðR; TÞ gravity said that the pure fluid part fðTÞ has no
physical significance and the resulting theory is exactly a
perfect fluid [16,17]. Harko and Moraes [18] refuted this
comment. In addition, energy is generally not conserved in
fðR;LmÞ and fðR; TÞ theories. A gravitational particle
creation process is needed to explain the corresponding
thermodynamics [19,20]. Is there a way to generalize a
perfect fluid that preserves energy conservation? If such a
theory exists, it can be consistent with conventional
thermodynamics, which makes the theory more attractive.

The debate on fðR; TÞ gravity and the energy conservation
issue are the first two motivations for this paper.
The third motivation is an early dark energy (EDE)

model we proposed in Ref. [21]. The EDE present at
matter-radiation equality (redshift ∼3400) can be used to
erase the Hubble tension [22–28]. However, a coincidence
problem arises in the scenario, i.e., why the energy scale of
EDE is in coincidence with that of matter-radiation equality
when their underlying physics seem unrelated [29].
Sakstein et al. [29,30] proposed a solution to this coinci-
dence problem based on neutrino physics. Their starting
point was that the neutrino mass is close to 1 eV=c2, which
is exactly the energy (temperature) scale of matter-radiation
equality. Using such a neutrino to trigger the EDE could
explain the coincidence. In Ref. [21], we proposed the new
idea that EDE may be triggered by the radiation-matter
transition to solve the coincidence problem. We discussed
that k-essence [31] is unable to realize a viable model, and
nonminimal coupling between spacetime and matter may
be required. An analysis of this possibility requires a
complete framework for gravitational theories with a
modified fluid. In this paper, we propose a much more
simple purely fluid model to realize the desired EDE.
This paper is organized as follows. Section II presents

the general framework of our approach to modify a fluid
and a demonstration in cosmology. We emphasize that we
do not consider the nonminimal coupling of spacetime
geometry and fluid matter in this paper. Section III dis-
cusses the similarities and differences between our result
and the minimal coupling cases of fðR;LmÞ gravity [10]
and fðR; TÞ gravity [13]. Section IV presents the desired
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modified fluid model for EDE. Conclusions are presented
in Sec. V.

II. GENERAL THEORY

We adopt the simplest spacetime dynamics and focus on
generalizing a perfect fluid. The action takes the form [32]

S ¼ SEH þ SF ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

þ LF

�
; ð1Þ

where κ ¼ 8πG=c4, g ¼ detðjgμνjÞ, and LF is a general
modified fluid Lagrangian. Variation of the Einstein-
Hilbert action with respect to the metric gives δSEH ¼R
d4x

ffiffiffiffiffiffi−gp
Gμνδgμν=ð2κÞ [3]. Variation of the fluid action

can be written formally as δSEH ¼ −
R
d4x

ffiffiffiffiffiffi−gp
Tμνδgμν=2,

where Tμν is the energy-momentum tensor. These varia-
tions give the Einstein field equationsGμν ¼ κTμν, which in
turn give ∇νTμν ¼ 0 based on the Bianchi identity.
More properties about the fluid are needed to derive an

explicit expression for Tμν. We assume that LF satisfies
δLF ¼ ðdLF=dnÞδn and the fluid satisfies particle number
conservation,

∇μðnuμÞ ¼ 0; ð2Þ

where n is the particle number density and uμ is the four-
velocity of the fluid. The first assumption is used to
emphasize that no derivative term of δn appears in δLF.
These two assumptions, or their equivalents, are widely
used to derive the energy-momentum tensors of perfect
fluids [4,33] and beyond [10,13]. Hawking and Ellis [33]
presented a simple way to derive δn. They started by
rewriting Eq. (2) as ð1= ffiffiffiffiffiffi−gp Þ × ∂ð ffiffiffiffiffiffi−gp

nuμÞ=∂xμ ¼ 0,
which means that δð ffiffiffiffiffiffi−gp

nuμÞ ¼ 0. Then, the variation
of n2c2 ¼ g−1ð ffiffiffiffiffiffi−gp

nuμ
ffiffiffiffiffiffi−gp

nuνÞgμν gives

δn ¼ n
2

�
gμν þ

uμuν
c2

�
δgμν: ð3Þ

Considering the expressions for δ
ffiffiffiffiffiffi−gp

and δLF, we obtain

Tμν ¼ −n
dLF

dn

uμuν
c2

þ
�
LF − n

dLF

dn

�
gμν: ð4Þ

In principle, how a fluid participates in gravitational
interactions is determined by LF. We can directly specify
an expression for LFðnÞ, such as LF ∝ n. In this case, the
fluid participates in gravitational interactions in the form of
the particle number. Alternatively, we can also assume that
LF directly depends on other thermodynamic quantities,
such as LF ∝ ρ, where ρ is the fluid mass density [32]. In
this case, the source of the gravitational interaction is ρ and
other related quantities, rather than n as in the previous
case. As we will show later, this case requires an additional

equation to determine the dependence of ρ and n, and this
equation cannot be given by the variational principle. Note
that both cases formally satisfy δLF ¼ ðdLF=dnÞδn. Now
we discuss the above two cases around the theoretical self-
consistency.
Neglecting the spacetime dynamics, if we specify an

explicit expression for LFðnÞ, there are five variables
fn; uμg to describe the fluid but six evolution or constraint
equations: {∇νTμν ¼ 0, uμuμ ¼ −c2, Eq. (2)}. The system
is overdetermined as there are more equations than
unknowns. However, the system is still self-consistent as
these six equations are not independent from each other. To
see this, we start from uμ∇νTμν ¼ 0. Substituting Eq. (4)
into this equation, we obtain

0 ¼ uμ∇νTμν ¼ ∇νðTμνuμÞ − Tμν∇νuμ

¼ ∇νðLFuνÞ −
�
LF − n

dLF

dn

�
∇νuν

¼ uν∇νLF þ n
dLF

dn
∇νuν

¼ dLF

dn
∇νðnuνÞ; ð5Þ

where the second line uses uμuμ ¼ −c2 and its derivative
uμ∇νuμ ¼ 0 [3], and the fourth line uses the chain rule
∇νLF ¼ ðdLF=dnÞ∇νn. Therefore, Eq. (2) can be derived
from f∇νTμν ¼ 0; uμuμ ¼ −c2g. For gravitational theories
with fluid models given by an explicit LFðnÞ, the Einstein
field equations together with uμuμ ¼ −c2 are complete and
self-consistent. Note that, in this case, it is not necessary to
introduce other fluid thermodynamic quantities such as the
mass density ρ and pressure p.
However, other thermodynamic quantities, e.g., ρ, are

needed to describe a perfect fluid [4,33]. If we introduce
such a quantity into the fluid Lagrangian, we have one more
variable to describe the fluid. At the same time, we need
one more equation to determine the motion of the fluid.
This equation cannot be obtained from the gravitational
field equations or variational principle. For clarity, here
we assume that LF is an explicit function of ρ; then, there
are six variables fρ; n; uμg to describe the fluid but only
five independent equations: {∇νTμν ¼ 0, uμuμ ¼ −c2}.
Note that one can repeat the proof given by Eq. (5) as
long as dρ=dn exists. In principle, the additional equation
can be arbitrary since the existing equations are under-
determined. In order to be consistent with conventional
thermodynamics, we can adopt the local energy conserva-
tion equation [3,33],

n
dρ
dn

¼ p
c2

þ ρ; ð6Þ

where p ¼ pðρÞ is given by the ordinary known equation
of state (EOS) of the fluid. Here we only consider an
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isentropic fluid. This is widely used in the studies of
modified fluids [10,13,18], and is reasonable in many
gravitational processes involving fluids, such as big bang
nucleosynthesis [35], cosmic recombination [36], and
neutron stars [37]. We would like to highlight that p
appearing in Eq. (6) is an auxiliary variable to complete the
equation, rather than given directly by the variational
principle. Adopting Eq. (6) allows us to discard the possible
gravitational particle creation process [19,20] in our frame-
work. Note that particles cannot be created in classical field
theory, and the creation is a quantum process. We believe
that the modified fluid theory is classical, rather than
quantum. This is the key reason for our pursuit of energy
conservation. For gravitational theories with fluid models
given by an explicit LFðρÞ, the equations {Gμν ¼ κTμν,
uμuμ ¼ −c2, Eq. (6)} are complete and self-consistent.
The above discussion demonstrates our core strategy for
modifying fluid theory. A more complex fluid Lagrangian
will be discussed later and compared with existing method-
ologies in the literature.
In order to demonstrate the principle discussed

above more intuitively, here we present a cosmological
application. The Universe is assumed to be described
by the flat Friedmann-Lemaître-Robertson-Walker metric
ds2 ¼ −c2dt2 þ a2dx2, where a ¼ aðtÞ, and the four-
velocity uμ ¼ ð1; 0; 0; 0Þ. Substituting these results into
the Einstein field equations with Eq. (4), we obtain

H2 ¼ −
κc2

3
LF; ð7aÞ

ä
a
¼ −

κc2

3

�
LF −

3n
2

dLF

dn

�
; ð7bÞ

where the Hubble parameter H ≡ _a=a and _ ≡ d=dt.
Independent of LF, Eq. (7) gives _nþ 3Hn ¼ 0, which is
exactly Eq. (2). If LF ¼ LFðnÞ, then Eq. (7) is complete as
there are two equations and two variables, fa; ng. If
LF ¼ LFðρÞ, then Eq. (7) is not complete as no equation
determines the evolution of ρ. In this case, one equation such
as Eq. (6) is required. For the photon gas contained in the
Universe, regardless of the expression for LFðρÞ, we can
adopt Eq. (6) with p ¼ ρc2=3 so that n ∝ a−3 and ρ ∝ a−4.
Therefore, such a fluid is consistent with conventional
thermodynamics.

III. f ðχ Þ FLUID
A perfect fluid is the main gravitational source in

general relativity. Its Lagrangian can be written as
LF ¼ −ρc2 [32,33] and the energy-momentum tensor is

generally written as TðPFÞ
μν ¼ ðρþ p=c2Þuμuν þ pgμν [38].

We emphasize that all we obtain from the variational
principle is Eq. (4). The appearance of p in Tμν is caused
by substituting Eq. (6) into Eq. (4) with LF ¼ −ρc2.

The essence of uμ∇νTμν ¼ 0 is particle number conserva-
tion [Eq. (2)], as depicted by Eq. (5), rather than energy
conservation, as is widely believed in the literature.
One generalization of the perfect fluid is to write the

Lagrangian as LF ¼ fðχÞ, where χ is a scalar related
to the fluid, e.g., n, ρ, or the trace of the conventional

energy-momentum tensor TðPFÞ ≡ gμνTðPFÞ
μν ¼ 3p − ρc2. In

our framework, the gravitational field equations of the first
two cases have been discussed before, and the case
χ ¼ TðPFÞ is formally identical to the case χ ¼ ρ.
This generalization includes the minimal coupling cases

of fðR;LmÞ gravity [10] and fðR; TÞ gravity [13]. Here
we provide a comparison of our results with those given in
the literature [8–15]. In the series of works on fðR;LmÞ
gravity [8–11], the authors used ρ to denote the rest mass
density [32], and obtained δρ from rest mass conservation.
This is essentially the same as our discussion of Eqs. (2)
and (3). They then analyzed gravitational applications by
treating Lm as an explicit function of ρ, which is similar to
the case of LF ¼ LFðnÞ in our discussions. For the case of
minimal coupling between spacetime and matter, they
obtained a result similar to our Eq. (4), and then rewrote

the result in the form of TðPFÞ
μν with a redefined mass/energy

density and pressure. Finally, a given EOS can be used to
reconstruct the explicit expression for LmðρÞ (see Sec. II in
Ref. [11] for an example). In summary, their result suggests
that one LmðρÞ corresponds to one specific EOS if the
fluid is still perfect. Note that this procedure aims to
reconstruct the Lagrangian of a perfect fluid, not to
generalize the fluid. This is self-consistent, and the result
should be equivalent to those given directly in the perfect
fluid case. Here we illustrate this equivalence with an
example. In our conventions, Eq. (4) and the form

of TðPFÞ
μν give the redefined mass density ρ̃ ¼ −LF=c2

and pressure p̃ ¼ LF − ndLF=dn. Here a tilde represents
a redefinition. These redefined quantities satisfy n dρ̃

dn ¼
p̃
c2 þ ρ̃ as uμ∇νTðPFÞ

μν ¼ 0. If the EOS wðnÞ≡ p̃=ðρ̃c2Þ is
known, then LFðnÞ is determined by

n
LF

dLF

dn
¼ wþ 1: ð8Þ

For a photon gas (w ¼ 1=3), the above equation gives
LF ∝ n4=3, which is consistent with the result obtained in
the conventional perfect fluid framework (see the analysis
of a photon gas in an expanding Universe in the perfect
fluid framework).
Considering the above discussion and the composition of

functions, one might guess that any fluid Lagrangian can be
regarded as LFðnÞ, so that Eq. (1) can only describe the
perfect fluid. In this idea, the physical mass density and
pressure should be redefined as discussed above Eq. (8),
and the redefined quantities satisfy conventional conserva-
tion laws. This is essentially the core of the comment on
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fðR; TÞ gravity given in Refs. [16,17]. However, in our
opinion, this is not true. In principle, the minimal coupling
case of fðR; TÞ gravity is intend to modify the perfect fluid,
rather than reconstruct its Lagrangian. The core of modi-
fying the fluid lies in the relationship between LF and the
physical mass density ρ. We can still generalize the perfect
fluid by modifying LFðρÞ, as we discussed earlier. We agree
with the reply given in Ref. [18] that the prior ρ has a
physical thermodynamic interpretation, and the mass den-
sity should not be redefined based on a conservation law. In
particular, there is a counterexample to Refs. [16,17]. In our
framework, both the prior ρ and the redefined ρ̃ formally
satisfy the conservation law (6) even if LFðρÞ is general.
There is no reason to define the physical mass density by
the latter one, as was done in Refs. [16,17]. Compared with
the minimal coupling case of fðR; TÞ gravity [13], our
theory can naturally incorporate the conservation law (6),
and no gravitational particle creation process [19,20] is
required.

IV. EDE IN f ðρ;wÞ FLUID
Similar to fðR;wÞ gravity we mentioned but not ana-

lyzed in Ref. [21], here we use an fðρ; wÞ fluid to realize the
EDE triggered by the cosmic radiation-matter transition.
We adopt the Lagrangian

LF ¼ −ρc2 × ½1þ α sinβð3wπÞ�; ð9Þ

where the dimensionless parameters α ¼ Oð0.1Þ and
β ¼ Oð1Þ, and the conventional fluid EOS w≡ p=ðρc2Þ.
For our EDE purpose, the fluid here includes neutrinos,
photons, baryons, and dark matter. The function sinð3wπÞ
is chosen such that the modification vanishes at w ¼ 0 and
1=3. The parameters α and β control the amplitude and
width of ΩEDE, respectively. This realization does not need
to specify an energy scale. For the gravitational theory with
Eq. (9), the complete and self-consistent field equations are
{Gμν ¼ κTμν with Eq. (4), uμuμ ¼ −c2, Eq. (6)}. Note that
here dLF

dn ¼ ∂LF

∂ρ
dρ
dn þ ∂LF

∂w
dw
dn.

For a flat Universe, the complete cosmic evolution
equations can be chosen as Eqs. (2), (6), and (7a). w is
a given variable to characterize the fluid, and Eq. (7b) can
be derived from this set of equations. The Friedmann
equation (7a) gives the relative energy density of EDE,

ΩEDE ¼ α sinβð3wπÞ
1þ α sinβð3wπÞ : ð10Þ

We define the e-folding number N ≡ lnða=a0Þ, where a0 is
the cosmic scale factor today. Then, w ¼ ð1=3Þ=½1þ
expðN − NeqÞ� for the real Universe containing radiation
and pressureless matter [21], where Neq ¼ −8.13
corresponds to matter-radiation equality [39]. Figure 1
shows the cosmic evolutions of w, ΩEDE, and the

density ρi. The parameter α ¼ 0.1 roughly corresponds to
ΩEDE ≈ 10% at matter-radiation equality, which is the
preferred value given by cosmological parameter con-
straints [22–26]. After the equality, we require that EDE
dilutes away at least as fast as radiation, which corresponds
to β ≥ 1 (see the bottom part of Fig. 1). The model with
β ≥ 1 also exhibits well in the radiation-dominated era.
This figure confirms that Eq. (9) completely realizes the
idea that EDE is triggered by the radiation-matter tran-
sition, and solves the relevant coincidence problem.
In the limit of w → 0, we obtain the pressureless perfect

fluid from Eq. (9), and then ∇νTμν ¼ 0 gives the geodesic
equations uν∇νuμ ¼ 0 [40]. In the Solar System, a planet
can be regarded as a pressureless fluid element. Therefore,
the planet moves along the geodesic even though the fluid
Lagrangian is given by Eq. (9). A nonzero wmay affect the
motion of the stars, e.g., neutron star. This effect may leave
an imprint on the gravitational waveforms of binary
neutron star mergers. There is another mechanism leading
to similar influences. The w modification can affect the
structure of neutron stars and thus the gravitational waves
from binaries through tidal interactions [41–47]. These
effects may be observable by future gravitational-wave
detectors with optimum sensitivity ranges from decihertz

FIG. 1. Cosmological evolution of the EDE triggered by the
cosmic radiation-matter transition and realized in an fðρ; wÞ
fluid. The ρi denote the density of radiation (neutrino and photon,
∝ a−4), matter (baryon and dark matter, ∝ a−3), and EDE
[¼ ðρr þ ρmÞ × α sinβð3wπÞ], and are rescaled by the matter
density at equality, ρm;eq. ΩEDE and w can be found in the main
text. The top axis denotes the cosmological redshift.
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[48] to kilohertz [49]. An analysis of these issues will be
presented in the future.

V. CONCLUSIONS

A general framework to modify a perfect fluid was
presented in this paper. The proof given by Eq. (5) paves
the way for constructing the complete and self-consistent
field equations, and allows the modified fluid to satisfy
energy conservation. Comparisons between our result and
previous works were discussed in detail. Our variational
method and result for Tμν are similar to those in Ref. [18].
The difference is that we highlight that Eq. (6) needs to be
introduced separately, and cannot be given by the varia-
tional principle. Our LFðnÞ case is equivalent to the
minimal coupling case of fðR;LmÞ gravity [10]. For the
debate on fðR; TÞ gravity [13], our fðχÞ case provides
evidence against Refs. [16,17] and supports Ref. [18], and
we conclude that there is no reason to redefine the physical
mass density based on the modified fluid Lagrangian or the
formal conservation law. Unlike the minimal coupling case
of fðR; TÞ gravity [13], the energy conservation law (6) can
be naturally incorporated into our framework. The non-
minimal coupling of spacetime and fluid was not discussed
in this paper. This generalization within our framework and
a more comprehensive comparison with fðR; TÞ gravity
will be studied in a future work.

As an application, we proposed the fðρ; wÞ fluid with
Eq. (9) to finish the idea that EDE is triggered by the
radiation-matter transition [21], which is one way to solve
the EDE coincidence problem. There are other ways to
address the EDE coincidence, e.g., neutrino-triggered EDE
[29,30,50,51], dark matter-triggered EDE [52,53], and
multiple scaling fields [54]. Compared with these models,
our model does not require an energy scale, and only
introduces two dimensionless parameters of order Oð0.1Þ
and Oð1Þ. Such properties may make the theory more
natural.
In the future, gravitational waves from binary neutron

star mergers [41–47] may be able to provide a cross-check
for our EDE model. The possible positive results given by
the relevant cross-checking can lead to robust statements
about the existence of the w modification of a perfect fluid.

ACKNOWLEDGMENTS

This work was supported by the National Natural
Science Foundation of China under Grants
No. 12021003, No. 11920101003, and No. 11633001,
and the Strategic Priority Research Program of the Chinese
Academy of Sciences under Grant No. XDB23000000.
S. X. T. was also supported by the Initiative Postdocs
Supporting Program under Grant No. BX20200065 and
China Postdoctoral Science Foundation under Grant
No. 2021M700481.

[1] S. Capozziello and M. De Laurentis, Extended theories of
gravity, Phys. Rep. 509, 167 (2011).

[2] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis,
Modified gravity and cosmology, Phys. Rep. 513, 1 (2012).

[3] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman, San Francisco, 1973), pp. 418, 563.

[4] A. H. Taub, General relativistic variational principle for
perfect fluids, Phys. Rev. 94, 1468 (1954).

[5] B. F. Schutz, Perfect fluids in general relativity: Velocity
potentials and a variational principle, Phys. Rev. D 2, 2762
(1970).

[6] H. Gonner, A metric theory of gravitation without minimal
coupling of matter and gravitational field, Z. Naturforsch. A
31, 1451 (1976).

[7] H. F. M. Gonner, Theories of gravitation with nonminimal
coupling of matter and the gravitational field, Found. Phys.
14, 865 (1984).

[8] T. Harko, Modified gravity with arbitrary coupling
between matter and geometry, Phys. Lett. B 669, 376
(2008).

[9] T. Harko, The matter Lagrangian and the energy-momentum
tensor in modified gravity with nonminimal coupling
between matter and geometry, Phys. Rev. D 81, 044021
(2010).

[10] T. Harko and F. S. N. Lobo, fðR;LmÞ gravity, Eur. Phys. J.
C 70, 373 (2010).

[11] O. Minazzoli and T. Harko, New derivation of the Lagran-
gian of a perfect fluid with a barotropic equation of state,
Phys. Rev. D 86, 087502 (2012).

[12] J. Wang and K. Liao, Energy conditions in fðR; LmÞ gravity,
Classical Quantum Gravity 29, 215016 (2012).

[13] T. Harko, F. S. N. Lobo, S. Nojiri, and S. D. Odintsov,
fðR; TÞ gravity, Phys. Rev. D 84, 024020 (2011).

[14] M. Sharif and M. Zubair, Thermodynamics in fðR; TÞ
theory of gravity, J. Cosmol. Astropart. Phys. 03 (2012) 028.

[15] E. Barrientos, F. S. N. Lobo, S. Mendoza, G. J. Olmo, and
D. Rubiera-Garcia, Metric-affine fðR; TÞ theories of gravity
and their applications, Phys. Rev. D 97, 104041 (2018).

[16] S. B. Fisher and E. D. Carlson, Reexamining fðR; TÞ
gravity, Phys. Rev. D 100, 064059 (2019).

[17] S. B. Fisher and E. D. Carlson, Reply to “Comment on
‘Reexamining fðR; TÞ gravity’”, Phys. Rev. D 101, 108502
(2020).

[18] T. Harko and P. H. R. S. Moraes, Comment on “Reexamin-
ing fðR; TÞ gravity”, Phys. Rev. D 101, 108501 (2020).

[19] T. Harko, Thermodynamic interpretation of the generalized
gravity models with geometry-matter coupling, Phys. Rev.
D 90, 044067 (2014).

GRAVITATION WITH MODIFIED FLUID LAGRANGIAN: … PHYS. REV. D 107, 103507 (2023)

103507-5

https://doi.org/10.1016/j.physrep.2011.09.003
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1103/PhysRev.94.1468
https://doi.org/10.1103/PhysRevD.2.2762
https://doi.org/10.1103/PhysRevD.2.2762
https://doi.org/10.1515/zna-1976-1202
https://doi.org/10.1515/zna-1976-1202
https://doi.org/10.1007/BF00737554
https://doi.org/10.1007/BF00737554
https://doi.org/10.1016/j.physletb.2008.10.007
https://doi.org/10.1016/j.physletb.2008.10.007
https://doi.org/10.1103/PhysRevD.81.044021
https://doi.org/10.1103/PhysRevD.81.044021
https://doi.org/10.1140/epjc/s10052-010-1467-3
https://doi.org/10.1140/epjc/s10052-010-1467-3
https://doi.org/10.1103/PhysRevD.86.087502
https://doi.org/10.1088/0264-9381/29/21/215016
https://doi.org/10.1103/PhysRevD.84.024020
https://doi.org/10.1088/1475-7516/2012/03/028
https://doi.org/10.1103/PhysRevD.97.104041
https://doi.org/10.1103/PhysRevD.100.064059
https://doi.org/10.1103/PhysRevD.101.108502
https://doi.org/10.1103/PhysRevD.101.108502
https://doi.org/10.1103/PhysRevD.101.108501
https://doi.org/10.1103/PhysRevD.90.044067
https://doi.org/10.1103/PhysRevD.90.044067


[20] M. A. S. Pinto, T. Harko, and F. S. N. Lobo, Gravitationally
induced particle production in scalar-tensor fðR; TÞ gravity,
Phys. Rev. D 106, 044043 (2022).

[21] S. X. Tian and Z.-H. Zhu, Early dark energy in k-essence,
Phys. Rev. D 103, 043518 (2021).

[22] P. Agrawal, F.-Y. Cyr-Racine, D. Pinner, and L. Randall,
Rock ‘n’ roll solutions to the Hubble tension, arXiv:
1904.01016.

[23] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski,
Early Dark Energy can Resolve the Hubble Tension, Phys.
Rev. Lett. 122, 221301 (2019).

[24] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M.
Kamionkowski, and R. Murgia, Early dark energy is not
excluded by current large-scale structure data, Phys. Rev. D
103, 123542 (2021).

[25] J. C. Hill, E. Calabrese, S. Aiola, N. Battaglia, B. Bolliet,
S. K. Choi, M. J. Devlin, A. J. Duivenvoorden, J. Dunkley,
S. Ferraro et al., Atacama cosmology telescope: Constraints
on prerecombination early dark energy, Phys. Rev. D 105,
123536 (2022).

[26] T. L. Smith, M. Lucca, V. Poulin, G. F. Abellan, L.
Balkenhol, K. Benabed, S. Galli, and R. Murgia, Hints of
early dark energy in Planck, SPT, and ACT data: New
physics or systematics?, Phys. Rev. D 106, 043526 (2022).

[27] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A.
Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, In the realm
of the Hubble tension—a review of solutions, Classical
Quantum Gravity 38, 153001 (2021).

[28] M. Kamionkowski and A. G. Riess, The Hubble tension and
early dark energy, arXiv:2211.04492.

[29] J. Sakstein and M. Trodden, Early Dark Energy from
Massive Neutrinos as a Natural Resolution of the Hubble
Tension, Phys. Rev. Lett. 124, 161301 (2020).

[30] M. Carrillo González, Q. Liang, J. Sakstein, and M.
Trodden, Neutrino-assisted early dark energy: Theory and
cosmology, J. Cosmol. Astropart. Phys. 04 (2021) 063.

[31] C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt,
Dynamical Solution to the Problem of a Small Cosmo-
logical Constant and Late-Time Cosmic Acceleration,
Phys. Rev. Lett. 85, 4438 (2000).

[32] Our conventions: We adopt the SI Units and retain all
physical constants. The metric signature is ð−;þ;þ;þÞ.
Operators ∇μ and ∂μ denote covariant and partial deriva-
tives, respectively. The Christoffel symbols, Riemann,
Ricci, Einstein tensors, and Ricci scalar are given by

Γλ
μν ¼ gλαð∂νgμα þ ∂μgνα − ∂αgμνÞ=2;

Rρ
λμν ¼ ∂μΓ

ρ
λν − ∂νΓ

ρ
λμ þ Γρ

αμΓα
λν − Γρ

ανΓα
λμ;

Rμν ¼ Rα
μαν; Gμν ¼ Rμν − gμνR=2; R ¼ Rμ

μ;

respectively. We define proper time τ by ds2 ¼ −c2dτ2, so
that the four-velocity uμ ≡ dxμ=dτ satisfies uμuμ ¼ −c2. In
particular, ρc2 equals to the energy density, which is
different with the conventions in Refs. [10] and [33], but
is consistent with conventional conventions in cosmology.

[33] S.W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time (Cambridge University Press, Cambridge,
1973), pp. 69–75. Note that we adopt the 1974 paperback
edition (latter reprints have changed some of the
conventions). Equation (2) is equivalent to the rest mass

conservation used in this book and other references. Our
convention about the metric signature is consistent with this
book (different convention results in different δn [34]). One
difference is the global coefficient 1=2 in the action [see
Eq. (1) and their Eq. (3.16)]. There is an error in the book:
The fourth interline formula on page 70 should be
2ρΔρ ¼ ðjcjcgab − jajbÞΔgab.

[34] S. Mendoza and S. Silva, The matter Lagrangian of an ideal
fluid, Int. J. Geom. Methods Mod. Phys. 18, 2150059
(2021).

[35] C. Pitrou, A. Coc, J.-P. Uzan, and E. Vangioni, Precision big
bang nucleosynthesis with improved helium-4 predictions,
Phys. Rep. 754, 1 (2018).

[36] Y. B. Zel’dovich, V. G. Kurt, and R. A. Syunyaev, Recom-
bination of hydrogen in the hot model of the universe, Sov.
Phys. JETP 28, 146 (1969).

[37] M. Oertel, M. Hempel, T. Klähn, and S. Typel, Equations of
state for supernovae and compact stars, Rev. Mod. Phys. 89,
015007 (2017).

[38] S. X. Tián, Cosmological consequences of a scalar field with
oscillating equation of state: A possible solution to the fine-
tuning and coincidence problems, Phys. Rev. D 101, 063531
(2020).

[39] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C.
Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro,
N. Bartolo, S. Basak et al. (Planck Collaboration), Planck
2018 results VI. Cosmological parameters, Astron. As-
trophys. 641, A6 (2020).

[40] K. S. Thorne and R. D. Blandford, Modern Classical
Physics (Princeton University Press, New Jersey, 2017),
p. 1184.

[41] E. E. Flanagan and T. Hinderer, Constraining neutron-star
tidal Love numbers with gravitational-wave detectors, Phys.
Rev. D 77, 021502 (2008).

[42] T. Damour and A. Nagar, Relativistic tidal properties of
neutron stars, Phys. Rev. D 80, 084035 (2009).

[43] T. Binnington and E. Poisson, Relativistic theory of tidal
Love numbers, Phys. Rev. D 80, 084018 (2009).

[44] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger,
and C. M. Biwer, Tidal Deformabilities and Radii of
Neutron Stars from the Observation of GW170817, Phys.
Rev. Lett. 121, 091102 (2018).

[45] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen,
Gravitational-Wave Constraints on the Neutron-Star-Matter
Equation of State, Phys. Rev. Lett. 120, 172703 (2018).

[46] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K.
Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari,
V. B. Adya et al. (LIGO Scientific and Virgo Collabora-
tions), GW170817: Measurements of Neutron Star Radii
and Equation of State, Phys. Rev. Lett. 121, 161101 (2018).

[47] G. Pratten, P. Schmidt, and N. Williams, Impact of
Dynamical Tides on the Reconstruction of the Neutron
Star Equation of State, Phys. Rev. Lett. 129, 081102
(2022).

[48] S. Kawamura, M. Ando, N. Seto, S. Sato, M. Musha, I.
Kawano, J. Yokoyama, T. Tanaka, K. Ioka, T. Akutsu et al.,
Space gravitational-wave antennas DECIGO and
B-DECIGO, Int. J. Mod. Phys. D 28, 1845001 (2019).

[49] K. Ackley, V. B. Adya, P. Agrawal, P. Altin, G. Ashton, M.
Bailes, E. Baltinas, A. Barbuio, D. Beniwal, C. Blair et al.,

S. X. TIAN and ZONG-HONG ZHU PHYS. REV. D 107, 103507 (2023)

103507-6

https://doi.org/10.1103/PhysRevD.106.044043
https://doi.org/10.1103/PhysRevD.103.043518
https://arXiv.org/abs/1904.01016
https://arXiv.org/abs/1904.01016
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1103/PhysRevD.103.123542
https://doi.org/10.1103/PhysRevD.103.123542
https://doi.org/10.1103/PhysRevD.105.123536
https://doi.org/10.1103/PhysRevD.105.123536
https://doi.org/10.1103/PhysRevD.106.043526
https://doi.org/10.1088/1361-6382/ac086d
https://doi.org/10.1088/1361-6382/ac086d
https://arXiv.org/abs/2211.04492
https://doi.org/10.1103/PhysRevLett.124.161301
https://doi.org/10.1088/1475-7516/2021/04/063
https://doi.org/10.1103/PhysRevLett.85.4438
https://doi.org/10.1142/S0219887821500596
https://doi.org/10.1142/S0219887821500596
https://doi.org/10.1016/j.physrep.2018.04.005
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1103/PhysRevD.101.063531
https://doi.org/10.1103/PhysRevD.101.063531
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.80.084035
https://doi.org/10.1103/PhysRevD.80.084018
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevLett.120.172703
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.129.081102
https://doi.org/10.1103/PhysRevLett.129.081102
https://doi.org/10.1142/S0218271818450013


Neutron star extreme matter observatory: A kilohertz-band
gravitational-wave detector in the global network, Pub.
Astron. Soc. Aust. 37, e047 (2020).

[50] A. Gogoi, R. Kumar Sharma, P. Chanda, and S. Das, Early
mass-varying neutrino dark energy: Nugget formation and
Hubble anomaly, Astrophys. J. 915, 132 (2021).

[51] D. H. F. de Souza and R. Rosenfeld, Can neutrino-assisted
early dark energy models ameliorate the H0 tension in a
natural way?, arXiv:2302.04644.

[52] T. Karwal, M. Raveri, B. Jain, J. Khoury, and M. Trodden,
Chameleon early dark energy and the Hubble tension,
Phys. Rev. D 105, 063535 (2022).

[53] M.-X. Lin, E. McDonough, J. C. Hill, and W. Hu, A dark
matter trigger for early dark energy coincidence, arXiv:
2212.08098.

[54] V. I. Sabla and R. R. Caldwell, No H0 assistance from
assisted quintessence, Phys. Rev. D 103, 103506 (2021). In
this model, the parameter μ ¼ 3.5 Mpc−1=2 corresponds to
the EDE field mass m ¼ ℏμ2=c ≈ 10−28 eV=c2, which is
exactly the desired EDE mass scale [55].

[55] T. L. Smith, V. Poulin, and M. A. Amin, Oscillating scalar
fields and the Hubble tension: A resolution with novel
signatures, Phys. Rev. D 101, 063523 (2020).

GRAVITATION WITH MODIFIED FLUID LAGRANGIAN: … PHYS. REV. D 107, 103507 (2023)

103507-7

https://doi.org/10.1017/pasa.2020.39
https://doi.org/10.1017/pasa.2020.39
https://doi.org/10.3847/1538-4357/abfe5b
https://arXiv.org/abs/2302.04644
https://doi.org/10.1103/PhysRevD.105.063535
https://arXiv.org/abs/2212.08098
https://arXiv.org/abs/2212.08098
https://doi.org/10.1103/PhysRevD.103.103506
https://doi.org/10.1103/PhysRevD.101.063523

