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The planning and design of future experiments rely heavily on forecasting to assess the potential
scientific value provided by a hypothetical set of measurements. The Fisher information matrix, due to its
convenient properties and low computational cost, provides an especially useful forecasting tool. However,
the Fisher matrix only provides a reasonable approximation to the true likelihood when data are nearly
Gaussian distributed and observables have nearly linear dependence on the parameters of interest. Also,
Fisher forecasting techniques alone cannot be used to assess their own validity. Thorough sampling of the
exact or mock likelihood can definitively determine whether a Fisher forecast is valid, though such
sampling is often prohibitively expensive. We propose a simple test, based on the derivative approximation
for likelihoods (DALI) technique, to determine whether the Fisher matrix provides a good approximation to
the exact likelihood. We show that the Fisher matrix becomes a poor approximation to the true likelihood in
regions where two-dimensional slices of level surfaces of the DALI approximation to the likelihood differ
from two-dimensional slices of level surfaces of the Fisher approximation to the likelihood. We
demonstrate that our method accurately predicts situations in which the Fisher approximation deviates
from the true likelihood for various cosmological models and several data combinations, with only a
modest increase in computational cost compared to standard Fisher forecasts.
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I. INTRODUCTION

Parameter forecasts play an essential role in the planning,
design, and development of future experiments. For any
given model and hypothetical measurement uncertainties,
forecasting allows a determination of the precision with
which any model parameter can be measured by an
experiment before data are collected. The Fisher informa-
tion matrix [1–4] provides a particularly useful and efficient
tool for forecasting.
The Fisher matrix is straightforward to compute and

requires only OðNÞ likelihood evaluations for a model with
N parameters. The inverse of the Fisher matrix provides a
lower bound on the variances and covariances of any
unbiased estimators of model parameters, allowing for the
analytic determination of marginalized posterior variances
and constraint contours. Due largely to these virtues, Fisher
forecasting has become ubiquitous in cosmology [5–7].
On the other hand, Fisher forecasting suffers from a

number of limitations. The Fisher matrix only provides an
exact descriptionwhen the posterior is aGaussian function of
the model parameters. This condition is not met unless the
data are Gaussian distributed and the observables depend
linearly on the model parameters. Due to the assumption of

Gaussianity, the Fisher matrix always predicts symmetric,
elliptical constraint contours. When data are abundant and
model parameters are well constrained, the Fisher approxi-
mation often provides a good description. However, signifi-
cant parameter degeneracy or weakly constraining data can
lead to cases where Gaussianity provides a poor approxi-
mation; the Fisher matrix will fail to produce accurate
forecasts in these circumstances.
Forecasting techniques that do not assume a Gaussian

posterior include grid sampling [8], Markov chain
Monte Carlo (MCMC) methods [9–12], and nested sam-
pling [13–16]. These methods provide a more robust
determination of non-Gaussian posteriors and parameter
constraints, but they are much more computationally
expensive than Fisher forecasts, requiring many evaluations
of the likelihood function for each model and experimental
configuration for which a forecast is desired.
An alternative is provided by the derivative approximation

for likelihoods (DALI) technique [17,18], which can be
thought of as a non-Gaussian generalization of Fisher matrix
methods [19]. The DALImethod is muchmore efficient than
the samplingmethodsmentioned here, requiring onlyOðN2Þ
likelihood evaluations when forecasting constraints on N
parameters. The DALI method allows for some non-
Gaussian aspects of the posterior to be captured and is
capable of producing curved and asymmetric constraint
contours (see Fig. 1 for an example of curved constraint
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contours). However, the DALI method generally requires
numerical integration to calculate marginalized constraints,
in contrast to Fisher forecasts for which marginalization can
be achieved analytically. This numerical integration can be
problematic because the forecasted constraints will depend
on the details of the numerical integration, including sensi-
tivity to the convergence criterion and the choice of priors on
the parameters. Numerical integration also adds computation
time; while it is typically a modest computational cost for
modelswith fewparameters, it can be a significant burden for
models with many parameters. Furthermore, as we will
discuss below, the DALI method is not always guaranteed
to improve upon Fisher forecasts. In some cases the DALI
method provides estimates which deviate from the true
likelihood more than the Fisher approximation.
A challenge of utilizing Fisher forecasts is that the Fisher

matrix does not contain the information necessary to
determine whether the Gaussian approximation inherent
in the technique is justified. One therefore needs to employ
a technique that goes beyond the Fisher approximation in
order to determine its validity. This could be accomplished
with techniques like MCMC forecasts, but this would
become prohibitively expensive to carry out for every
model and every experimental configuration where a
forecast is desired. One of the main goals of this paper
is to demonstrate a means by which we can leverage the
DALI method to quickly check the validity of Fisher
forecasts, without needing to do the numerical integration
required to produce a full set of marginalized constraint
contours in the DALI method.
Previous studies have demonstrated limitations of Fisher

forecasting and identified some sources for its inaccuracies
in certain situations [20–26]. We rely here on a method of

testing the validity of the Fisher technique that should apply
quite generally. Our approach utilizes the DALI method to
determine when the Fisher approximation fails to accu-
rately match the true likelihood. Various schemes for
utilizing the DALI methods to more precisely approximate
weakly non-Gaussian likelihoods have also been devel-
oped [27,28].
This paper is organized as follows. In Sec. II, we review

the DALI formalism [17,18]. In Sec. III, we develop a test
to determine whether Fisher forecasts are expected to
receive nontrivial corrections, based on the shapes of
two-dimensional cross sections of the posterior estimated
with the DALI method. We then go on to demonstrate the
method using cosmological forecasts using expansion
history observations, the cosmic microwave background
(CMB) power spectrum, and primordial abundance mea-
surements. We describe the details of the forecasts in
Sec. IV and present the results in Sec. V. We comment
on some limitations of the DALI method in Sec. VI and
conclude in Sec. VII.

II. DALI FORMALISM

The starting point for both the Fisher and DALI fore-
casting methods is a Taylor series expansion of the log-
likelihood L ¼ − logP in the model parameters pα about
the best-fit point defined by pα

fid, where “log” refers to the
natural logarithm. Here, P is the posterior, and α is an index
that runs from 1 toN, whereN is the number of parameters.
The fiducial best-fit point is typically chosen based on
knowledge of the fit of the model to some existing set of
observational data. The Fisher approximation treats this
expansion to the lowest nontrivial order, resulting in an
approximate log-likelihood which is second-order in the
difference between model parameters pα and their fiducial
best-fit values pα

fid (since first derivatives of the likelihood
vanish at the best-fit point). The posterior in the Fisher
approximation is then a Gaussian, which can be written as

P ≈N 0 exp

�
−
1

2
FαβΔpαΔpβ

�
; ð1Þ

where repeated indices are summed, N 0 is a normalization
constant, Δpα ≔ pα − pα

fid, and

Fαβ ≔ μ;αMμ;β: ð2Þ

In Eq. (2), μ is a vector of the observables predicted by a
given model evaluated at the fiducial values of the model’s
parameters, and M ≔ C−1 is the inverse of the covariance
matrix of the data. We assume for simplicity that the
covariance matrix does not depend on the model param-
eters. The vectors μα are contracted with M in the data
space, so that the components Fαβ of the Fisher matrix can

also be written as Fαβ ¼ μi;αMijμ
j
;β, where latin indices run

FIG. 1. An example of the breakdown of the Fisher approxi-
mation. Figure 1 shows constraint contours computed from the
exact likelihood (orange), Fisher approximation (purple), and
DALI approximation (green) for a simple wCDM model fitted to
baryon acoustic oscillation (BAO) data. See Sec. IV for descrip-
tions of wCDM and of the BAO data. Here and elsewhere, H0 is
shown in units of km s−1 Mpc−1.
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from 1 to n, n being the number of data points. There is no
difference, in this paper, between tensor components with
upper and lower indices.
The derivative approximation for likelihoods (DALI)

method treats the Taylor series expansion of the posterior at
higher order, thereby accounting for non-Gaussian param-
eter dependence in the posterior [17]. A straightforward
expansion in terms of Δpα leads to divergent approxima-
tions of the posterior, but the series can be rearranged in
order of derivatives of the observables μ such that the
posterior is normalizable and positive definite at every
order. The “doublet-DALI” approximation of the posterior
is the lowest order correction to the Fisher approximation,
and it is given by

P ¼ N 1 exp

�
−
1

2
FαβΔpαΔpβ −

1

2
GαβγΔpαΔpβΔpγ

−
1

8
HαβγδΔpαΔpβΔpγΔpδ

�
þOð3Þ; ð3Þ

where

Gαβγ ≔ μ;αβMμ;γ; ð4Þ

and

Hαβγδ ≔ μ;αβMμ;γδ; ð5Þ

and the notation Oð3Þ refers to terms higher than second
order in the derivatives of μ. The DALI expansion can be
carried out to any order, but in this paper, we focus on the
Fisher and the doublet-DALI approximations, since the
doublet-DALI approximation suffices for testing the validity
of the Fisher approximation, as will be described in the next
section. In the rest of this paper, wewill refer to the “doublet-
DALI” approximation as the “DALI” approximation.

III. FISHER VALIDITY TEST

The Fisher approximation can break down if the
observables predicted by a given model depend on the
model’s parameters in a nonlinear fashion. This leads to
non-Gaussian correlations among the model parameters
represented by terms containing second- or higher-order
derivatives of μ. These non-Gaussian correlations manifest
themselves in the form of nonellipsoidal (often banana-
shaped) constraint contours when the posterior is plotted in
parameter space. Ellipsoidal constraint contours are convex
everywhere, while nonellipsoidal constraint contours can
be concave in some regions of the parameter space. We can
therefore leverage the DALI method, which is sensitive to
nonlinear parameter dependence of the posterior, to signal
the breakdown of the Fisher approximation.
Qualitatively, this can be achieved by choosing any two

of the N parameters fpαg and assigning the remaining

N − 2 parameters their fiducial values. This is equivalent to
taking a two-dimensional cross section of the (N − 1)-
dimensional constant-P hypersurface, on which one can
plot the level curves of the functions,

C ¼ 1

2
FαβΔpαΔpβ ð6Þ

and

C ¼ 1

2
FαβΔpαΔpβ þ 1

2
GαβγΔpαΔpβΔpγ

þ 1

8
HαβγδΔpαΔpβΔpγΔpδ ð7Þ

for various values of C. Because Eq. (7) describes the level
curves of the DALI approximation, and Eq. (6) describes
the level curves of the Fisher approximation, one just needs
to visually examine the extent to which the level curves of
Eq. (7) deviate from those of Eq. (6) to assess the validity of
the Fisher approximation. In Sec. V, we show the results of
this test.
As an optional supplement to the cross section test, a

quantitative measure that can be used to indicate a differ-
ence between the Fisher and DALI approximations to the
likelihood hypersurfaces is the extrinsic curvature of the
level curves. To compute the extrinsic curvature as a
function of model parameters, we define the constraint
equation,

ΦðpαÞ ≔ LðpαÞ − C ¼ 0; ð8Þ

and a unit normal vector,

nα ≔
Φ;αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gαβΦ;αΦ;β

q ; ð9Þ

such that the extrinsic curvature, in two dimensions, is

K¼ nα;α¼
Φ;00ðΦ;1Þ2þΦ;11ðΦ;0Þ2−2Φ;0Φ;1Φ;01

½ðΦ;0Þ2þðΦ;1Þ2�3=2
: ð10Þ

If K < 0 at any points on a two-dimensional cross section
of the parameter space, then the two-dimensional like-
lihood level curves will be concave at those points. Since
the Fisher-approximated level curves are convex every-
where, concavity of the DALI-approximated level curves
signals a region in which the two approximations differ
(though they can differ for other reasons). Identifying
regions in which the DALI-approximated level curves
exhibit concavity can aid in finding cases in which the
Fisher approximation breaks down, especially since regions
of concavity can be detected without the necessity of
making plots. We show the level curves and points where
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the DALI level curves are concave in Figs. 2–9. Different
approaches to the geometry of likelihood contours and its
applications have been discussed elsewhere [29–32].

IV. DATA AND FORECASTS

The sets of observables that we study fall into three
categories: measurements of the expansion history in the
range z ≤ 2.73, CMB observations, and measurements of
primordial light element abundances. To obtain forecast
constraints, we consider predictions of the expansion history
data from three models (two-parameter flat ΛCDM, three-
parameter nonflatΛCDM, and three-parameter flatwCDM).
We study an eight-parameter flat ΛCDM model with the
CMB data, and we examine three-parameter models of big
bang nucleosynthesis (BBN) with the primordial abundance
observations.
The reader should keep in mind that our aim is not to use

theDALI formalism to obtain new constraints or forecasts on
cosmologicalmodel parameters.Ourmodels and data should
be seen merely as a proving ground for our proposed Fisher
validity test. We only intend to show some examples of what

can be donewith the formalism, in addition to analyzing how
and why the DALI approximation breaks down.

A. Expansion history data

The expansion history measurements we use consist of a
set of cosmic chronometer and standard ruler data. The
cosmic chronometer [HðzÞ] data, collected from [33–39],
comprise a set of uncorrelated measurements of the Hubble
parameter as a function of redshift and are compiled in [40].
The standard ruler data can be broken down into two

subsets: baryon acoustic oscillation (BAO) and quasar
angular size (QSO). The BAO subset consists of eleven
distance and Hubble parameter measurements, collected
from Refs. [41–45] and compiled in Table 1 of Ref. [46].
Unlike the HðzÞ data, subsets of these BAO data are
correlated; we use the covariance matrices given by
Eq. (20) in Ref. [47] and Eq. (8) of Ref. [46] to account
for the correlations (see references for further details).
The QSO subset comprises measurements of the angular

sizes of 120 intermediate-luminosity quasars, from knowl-
edge of the intrinsic linear size lm of the quasars within the
sample, and measurements of their angular diameter dis-
tances at a given redshift. These measurements were
taken from Ref. [48]. In contrast to the recent analysis
of Ref. [49], we do not vary lm as a free parameter. We
choose instead to follow the practice of Refs. [40,47] in
setting lm ¼ 11.03 pc while ignoring the relatively small
uncertainty of 0.25 pc.
We fit three simple models to the data using the Fisher

and DALI approximations, and compare these fits to those
obtained from the exact (i.e., not approximated using the
DALI method) likelihoods. The first, and simplest, model is
the two-parameter ΛCDM model, with an expansion
history characterized by the Hubble parameter,

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ 1 −Ωm

q
: ð11Þ

This model has two parameters: the Hubble constant, H0,
and the nonrelativistic mass density in units of the critical
mass density, Ωm. Throughout this article, “ΛCDM” stands
for “Λ Cold Dark Matter”, where Λ refers to the cosmo-
logical constant, and cold dark matter is the dominant
contributor to the nonrelativistic mass density. We also
consider the nonflat ΛCDM model, with the Hubble
parameter,

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ Ωkð1þ zÞ2 þΩΛ

q
: ð12Þ

This model adds one free parameter compared to two-
parameter ΛCDM: the mass density of the cosmological
constant Λ in units of the critical mass density, ΩΛ. In
contrast to two-parameter ΛCDM, the three-parameter
ΛCDM model can have curved spatial hypersurfaces, with
the amount of curvature quantified by the curvature energy
density parameter in units of the critical mass density,

FIG. 2. The lower triangle shows the fit of the exact likelihood,
DALI, and Fisher approximations to QSO data in the flat ΛCDM
model. Orange and green filled contours in the lower left panel
correspond to 1- and 2-σ confidence contours for the exact
likelihood and DALI approximation, respectively, and purple
unfilled contours correspond to 1- and 2-σ confidence contours
for the Fisher approximation. The upper right panel shows a two-
dimensional slice through the 1- and 2-σ likelihood hypersurfaces
at the fiducial best-fit point. The purple dotted curves represent
the slice through the Fisher hypersurface, dashed green curves
represent the slice through the DALI hypersurface, and red dots
indicate points at which the slice through the DALI hypersurface
is concave (which occurs wherever K < 0).
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Ωk ≔ 1 −Ωm −ΩΛ. Finally, we consider a flat wCDM
model in which the dark energy is represented by a perfect
fluid with equation of state pX

ρX
¼ wX, and a Hubble

parameter given by

HðzÞ ¼H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ð1−ΩmÞð1þ zÞ3ð1þwXÞ

q
: ð13Þ

This model is a simple generalization of flat ΛCDM, which
allows for simple time variation of the dark energy density
through the factor ð1þ zÞ3ð1þwXÞ.1 Here, the free parameters
are H0, Ωm, and wX.
To estimate the exact likelihood corresponding to the

expansion history data, we use Cobaya [50,51]2 to sample
over the exact likelihoods and the DALI-approximated
likelihoods, usingCobaya’sMCMCsampler (adapted from
CosmoMC [10,12]). For the expansion history data, we
used a convergence criterion of either R − 1 ¼ 10−5 or
R − 1 ¼ 5 × 10−6, depending on the model and data
combination.

B. CMB forecasts

The unlensed CMB, lensing deflection, and lensed CMB
power spectra used in our forecasts are computed with the
CAMB Boltzmann code [52,53].3 Lensing reconstruc-
tion noise is calculated with CLASS_delens4 according
to the implementation detailed in [54], and Fisher and
DALI forecasts are calculated using FisherLens.5

The two CMB experimental noise configurations that we
consider are given in Table I, and we assume Gaussian
noise with temperature power spectrum of the form,

NTT
l ¼ Δ2

T exp

�
lðlþ 1Þ θ

2
FWHM

8 log 2

�
: ð14Þ

Here, ΔT is the instrumental noise in μK-rad, θFWHM
is the full-width at half-maximum beam size in radians,
and we assume fully polarized detectors such that
NEE

l ¼ NBB
l ¼ 2NTT

l .
The elements of the Fisher matrix are given by

FCMB
αβ ¼

X
l1;l2

X
XY;WZ

∂CXY
l1

∂pα

h
CovXY;WZ

l1l2

i
−1 ∂CWZ

l2

∂pβ ; ð15Þ

where pα are the cosmological parameters of interest, and
XY, WZ run over TT, TE, EE, and dd. The lensing
deflection spectrum is Cdd

l ¼ lðlþ 1ÞCϕϕ
l . The elements

of the DALI tensors needed for the doublet-DALI
approximation are given by

GCMB
αβγ ¼

X
l1;l2

X
XY;WZ

∂CXY
l1

∂pα
∂pβ

h
CovXY;WZ

l1l2

i
−1 ∂CWZ

l2

∂pγ ð16Þ

and

HCMB
αβγδ ¼

X
l1;l2

X
XY;WZ

∂CXY
l1

∂pα
∂pβ

h
CovXY;WZ

l1l2

i
−1 ∂CWZ

l2

∂pγ
∂pδ : ð17Þ

For TT spectra, the sums over l go from lmin ¼ 30 to
lmax ¼ 3000, and when performing lensing reconstruction,
we take lmax ¼ 3000 for temperature; for polarization
spectra, we take lmax ¼ 5000. For the lensing spectrum,
we include in the sums the modes from lmin ¼ 2 to
lmax ¼ 5000. We assume a sky fraction of fsky ¼ 0.6,
and we include a prior on τ with στ ¼ 0.007. The
cosmological parameters, fiducial values, and step sizes
for numerical derivatives used in our forecasts are given in
Table II. We specify the primordial Helium abundance such
that it is consistent with predictions from BBN.
Gravitational lensing of the primary CMB changes the

statistics of the temperature and polarization anisotropies,
coupling modes of different l and leading to non-Gaussian
off diagonal contributions to the power spectrum covari-
ance matrix. Neglecting these contributions when perform-
ing parameter forecasts will lead to overly optimistic
estimates of parameter constraints, since one is effectively
reducing the number of independent l modes [54]. In this
work, we do not include the lensing-induced non-Gaussian
covariances in our forecasts, in order to facilitate consistent
comparison with the results of our mock likelihood
analysis, which assumes Gaussian statistics for the CMB

TABLE I. Noise levels for CMB experiments used in forecasts.
Experiment A corresponds approximately to the beam size and
white noise level expected from Simons Observatory [55], and
experiment B corresponds to that of CMB-S4 [56,57].

Label ΔT (μK-arcmin) θFWHM (arcmin)

Experiment A 5 1.4
Experiment B 1 1.4

TABLE II. Fiducial cosmological parameters and step sizes for
numerical derivatives used in forecasts, reproduced from [58].

Parameter Fiducial value Step size

Ωch2 0.1197 0.0030
Ωbh2 0.0222 8.0 × 10−4

θs 0.010409 5.0 × 10−5

τ 0.060 0.020
As 2.196 × 10−9 0.1 × 10−9

ns 0.9655 0.010
Neff 3.046 0.080
mν (meV) 60 20

1Because the model has flat spatial hypersurfaces, the dark
energy density in units of the critical mass density must obey the
constraint ΩX ¼ 1 − Ωm.

2https://github.com/CobayaSampler/cobaya.
3https://camb.info/.
4https://github.com/selimhotinli/class_delens/.
5https://github.com/ctrendafilova/FisherLens.
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anisotropies. Neglecting the lensing-induced non-Gaussian
covariances leads to slightly tighter constraint contours
when forecasting using lensed CMB power spectra, but we
do not expect it to significantly impact their shape.
In addition to information from CMB forecasts, we also

include information from baryon acoustic oscillation
(BAO) experiments. The elements of the Fisher information
matrix are given by

FBAO
αβ ¼

X
a

1

σ2f;a

∂fa
∂pα

∂fa
∂pβ ; ð18Þ

where fa ≡ fðzaÞ ¼ rs=dVðzaÞ; rs is the sound horizon at
photon-baryon decoupling, and dV is the volume distance
to source galaxies at redshifts za. Similarly to the CMB
case, the relevant BAO DALI tensors are given by

GBAO
αβγ ¼

X
a

1

σ2f;a

∂fa
∂pα

∂pβ

∂fa
∂pγ ð19Þ

and

HBAO
αβγδ ¼

X
a

1

σ2f;a

∂fa
∂pα

∂pβ

∂fa
∂pγ

∂pδ : ð20Þ

The forecasted fractional errors in fa for the DESI experi-
ment are given in Table III.
To estimate the exact likelihood corresponding to our

CMBexperiments defined above, we useCobaya to sample
over the posterior. Lensed CMB power spectra and lensing
spectra are computed using the CAMB cosmological
Boltzmann code [52,53]. Our likelihood code is based on
the mock CMB likelihood from MontePython [11].
We define the log-likelihood function as [59]

LðfClgjfĈlgÞ ¼ −
1

2

X
l

ð2lþ 1Þfsky

× fTr½ĈlC−1
l � − ln jĈlC−1

l j − kg; ð21Þ

where k counts the number of correlated Gaussian fields
included in the forecast. Ĉl corresponds to simulated CMB
power spectra calculated according to our fiducial values
and representing our mock experimental data. Cl are
functions of the cosmological parameters, sampled over
by Cobaya. When using temperature, E-mode polariza-
tion, and lensing information, we have k ¼ 3, and the Cl
become 3 × 3 matrices given by

Cl ¼

2
64
CTT
l þ NTT

l CTE
l 0

CTE
l CEE

l þ NEE
l 0

0 0 Cdd
l þ Ndd

l

3
75: ð22Þ

The Ĉl matrices have the same functional form in terms of
their respective CMB anisotropy and noise power spectra.
The sky fraction and fiducial parameter values are the same
as those used in the Fisher and DALI forecasts, and we
include a Gaussian prior on τ with στ ¼ 0.007.
We use the same l ranges in all forecasts, with the Cl

and Ĉl matrices taking a different form depending on the
value of l in the sum in Eq. (21). For 2 ≤ l < 30,

Cl ¼ ½Cdd
l þ Ndd

l �: ð23Þ

For 30 ≤ l ≤ 3000, the matrices take the form given in
Eq. (22). Finally, for 3000 < l ≤ 5000, we want to exclude
TT information, while keeping TE and EE. We accomplish
this by setting the TT entry to be the same in both Cl and
Ĉl, in both cases using the simulated CMB power spectrum
representing mock data, so that the difference does not
contribute to the likelihood.
For BAO data, our log-likelihood function is defined as

L
��

rs
dV

�				
�
r̂s
dV

��
¼ −

1

2

X
z

�
rs
dV

−
r̂s
dV

�
2
�
σ

�
rs
dV

��
−2
:

ð24Þ

From CAMB, we get the angular diameter distance, dA, the
Hubble rate, H, and the radius of the sound horizon at the
drag epoch, rsðzdÞ, and we calculate rs=dV with

dVðzÞ ¼ ½czð1þ zÞ2d2AðzÞH−1ðzÞ�1=3; ð25Þ

at each of the redshifts specified in Table III [58]. Whether
our mock likelihood forecasts include BAO or only CMB
data, we use a convergence criterion of R − 1 ¼ 0.01.

C. Primordial abundance measurements

We utilize observations of the light element abundances
to place constraints on the baryon-to-photon ratio,
η10 ≡ η × 1010, the light relic density, Nν, and the neutron
lifetime, τn. We focus on observations of the primordial

TABLE III. Expected fractional uncertainties on rs=dV from
forecast DESI data, reproduced from [58].

Redshift
σðrs=dV Þ
ðrs=dV Þ (%) Redshift

σðrs=dV Þ
ðrs=dV Þ (%)

0.15 1.89 1.05 0.59
0.25 1.26 1.15 0.60
0.35 0.98 1.25 0.57
0.45 0.80 1.35 0.66
0.55 0.68 1.45 0.75
0.65 0.60 1.55 0.95
0.75 0.52 1.65 1.48
0.85 0.51 1.75 2.28
0.95 0.56 1.85 3.03
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abundance of deuterium, D=H, and the primordial mass
fraction of helium-4, Yp.
To predict the primordial abundances for a given set of

cosmological parameters, we use the publicly available
PArthENoPE software6 [60–62]. We utilize the standard
settings for PArthENoPE discussed in [62] with a nine-nuclide
nuclear network, with nuclear rates fixed at their best-fit
values. Our choice to fix nuclear rates will give errors that
are slightly tighter than other published results. We believe
this choice is justified because, as mentioned in Sec. IV, our
goal is not to present fully robust constraints, but to test the
validity of the Fisher approximation.
We found that numerical second derivatives of the

primordial abundances predicted by PArthENoPE were not
sufficiently stable for use in our analysis. In order to
calculate the derivatives used in the Fisher matrix and
DALI tensors, we therefore used the semianalytic
parametrization of the light element abundances from
Ref. [63],

Yp ¼ 0.24695

�
η10

6.123

�
0.039

�
Nν

3.0

�
0.163

�
τn

879.4 s

�
0.729

;

ð26Þ

and

D
H
¼ 2.493× 10−5

�
η10

6.123

�
−1.634

�
Nν

3.0

�
0.405

�
τn

879.4 s

�
0.418

:

ð27Þ

The observational errors on the primordial abundances
are assumed to be Gaussian and are taken to be σðYpÞ ¼
0.0040 from Ref. [64] and σðD=HÞ ¼ 0.030 × 10−5 from
Ref. [65]. We consider two different uncertainties for the
neutron lifetime discussed below. The exact likelihood
follows a form analogous to Eq. (24). We used Cobaya to
sample over model parameters for both the DALI approxi-
mation and the exact likelihood, using PArthENoPE to
compute the primordial abundances at each sampled
point for the exact likelihood. A convergence criterion of
R − 1 ¼ 0.005 was used for both the DALI and exact
likelihood sampling.

V. CROSS-SECTION TEST RESULTS

Here, we apply the cross section test described in Sec. III
to the models and datasets described in Sec. IV.

A. Expansion history data

We present our key findings in Figs. 2–6. For both the
flat ΛCDM and flat wCDM models, the Fisher approxi-
mation and DALI approximation to the likelihood level

curves show significant differences. This can be seen very
clearly in Fig. 2, which shows the results of the cross
section test applied to the flat ΛCDM model with QSO
data. In the top right panel, the 1- and 2-σ confidence
contours derived from the Fisher approximation are shown
as purple dotted curves, the 1- and 2-σ confidence contours
derived from the DALI approximation are shown as green
dashed curves, and the red dots represent points in the
parameter space at which contours of constant likelihood
are concave, K < 0. As discussed in Sec. III, if the
confidence contours in a region of parameter space have
negative extrinsic curvature, then the confidence contours
are concave there. From the marginalized contours shown
in the triangle plot, we can see that the exact likelihood and
the DALI approximation are concave, and that the con-
cavity points in the direction of increasing H0, and slightly
in the direction of increasing Ωm, matching what we see in
the upper panel of Fig. 2. A similar conclusion can be
drawn from Fig. 3, which shows the results of the cross
section test and MCMC sampling applied to the flat ΛCDM
model with HðzÞ data. In this case, because the HðzÞ data
give tighter constraints on the cosmological model param-
eters, the difference between the exact and DALI contours
is less pronounced. Nevertheless, the cross section test
indicates that the Fisher approximation is not fully valid in
parts of the parameter space, and comparison with the exact
likelihood confirms the breakdown of the Fisher approxi-
mation. In contrast, Fig. 4 shows a case in which the Fisher
approximation works well, at least out to 2σ. In this figure,
the upper right panel displays the results of the cross section
test applied to the flat ΛCDM model with BAO data, and

FIG. 3. The same as Fig. 2, but using HðzÞ data to fit the flat
ΛCDM model.6http://parthenope.na.infn.it/.
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the triangle plot displays the marginalized confidence
contours obtained from MCMC sampling of the same
model and data. From the triangle plot, we can see no
difference between the exact likelihood or the DALI
approximation, and the confidence contours of both align
closely with the confidence contours of the Fisher approxi-
mation. From the upper panel of Fig. 4, we can see that
while there is negative extrinsic curvature in some regions
of the parameter space, these regions do not overlap with
the 2σ confidence contours, and the Fisher approximation
and DALI approximation predict similar level curves of the
likelihood. The Fisher approximation is therefore adequate
within 2σ of the best-fit point.
Figure 5 shows an application of the cross section test to

the three-parameter flat wCDM model, along with a
triangle plot showing the marginalized contours obtained
from MCMC sampling. The panels in the upper right
triangle of this figure show two-dimensional cross sections
of the Fisher and DALI approximations to the flat wCDM
likelihood. In each of these upper right panels, the model
parameter not shown is held fixed at its best-fit value
obtained from the fit to the exact likelihood. For example,
in the top middle panel, w ¼ −1.3 whileΩm andH0 are left
free to vary. In these cross section panels, as in Figs. 2–4,
purple dotted curves represent the likelihood contours
derived from the Fisher approximation, and green dashed
curves represent the likelihood contours derived from the
DALI approximation. Red dots indicate regions of the
parameter space in which K < 0. The main difference
between the flat wCDM and the flat ΛCDM results is that,
because we apply the cross section test to slices of the
(approximate) likelihood for flat wCDM, it is not as easy to

compare these results to what we would expect from an
inspection of the marginalized constraint contours shown in
the lower left panels of Fig. 5. Nevertheless, we can see
from the lower left panels that the Fisher approximation
provides a poor approximation of the exact likelihood, and
while the DALI approximation is not significantly better, it
does roughly capture the shape of the exact likelihood. The
concavity of the DALI contours is evident in the Ωm-H0

and Ωm-w panels of Fig. 5, and the output of the curvature
calculation reflects this.
Figure 6 shows the marginalized and cross-sectional

constraint contours for a flat wCDM model, though here
the model is fitted to BAO data only. The unmarginalized
cross sections from the DALI and Fisher approximations
agree well to 2σ, except for the H0-w cross section, which
shows noticeable disagreement between DALI and Fisher
even at 1σ. This example demonstrates that one should be
wary of the Fisher approximation when the DALI approxi-
mation to the likelihood differs from the Fisher approxima-
tion in the vicinity of the best-fit point, even if only for a
subset of parameters.

B. CMB forecasts

Figure 7 shows results for CMB forecasts for experiment
B defined in Table I, using the methods described in

FIG. 4. The same as Fig. 2, but using BAO data to fit the flat
ΛCDM model. FIG. 5. The lower triangle, below the bold “staircase” running

through the middle of the figure, shows the one- and two-
dimensional marginalized constraints on the parameters of the flat
wCDM model fitted to HðzÞ data. The upper triangle shows two-
dimensional cross sections through the Fisher- and DALI-
approximated likelihoods, where the red dots represent points
at which the DALI-approximated likelihood is concave. All other
colors are the same as in Figs. 2–4.
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Sec. IV B. The cross section with the most pronounced
deviation from an ellipsoidal shape is the Ωch2-mν cross
section, shown in the top-right panel. This is consistent
with a general pattern we can see by examining Fig. 7.
Specifically, we find that there is noticeable disagreement
between the Fisher forecast and the mock likelihood
forecast for the two-dimensional marginalized parameter
constraints involving mν and Ωch2. We find one isolated
point of negative extrinsic curvature in the As-τ cross
section, but it is located far from the 2σ region of interest,
and the Fisher and DALI cross sections match closely.
Accordingly, we find that the Fisher-approximated mar-
ginalized contour for As and τ matches well with that
obtained from the mock likelihood.
There is one more source of discrepancy between the

Fisher and mock likelihood forecasts that results not from
the breakdown of the Fisher approximation, but rather from
the marginalization procedure. Marginalized Fisher con-
straints are computed by simply inverting the Fisher matrix,
which implicitly treats all parameters as if they take values
from −∞ to þ∞. However, sampling the mock likelihood
is only possible in regions where parameters take physi-
cally meaningful values. This makes little difference for
parameters whose fiducial values are many standard devi-
ations away from the nonphysical regime. However, in the
case considered here, mν is physically restricted to be non-
negative, and the fiducial value of 60 meV lies only about
1σ from 0. As a result, marginalized constraints obtained
with the mock likelihood (and the DALI approximation)

show deviation from the Fisher forecast for parameters that
are degenerate with mν. This causes some nonellipticity of
the marginalized contours involving As and τ on the low
end of each of these parameters. One could choose to also
marginalize the Fisher forecasts by sampling the Fisher-
approximated likelihood, restricting to the same parameter
range. We tested this procedure and found in that case the
difference in the low end of the marginalized constraints on
As and τ between the Fisher forecast and the mock
likelihood disappeared, though the disagreement on the
high end of these parameters (and on mν) resulting from
concavity of the likelihood contours remained.
In Table IV, we present the upper and lower 68% con-

fidence intervals for mν for several sets of CMB forecasts.
One might be surprised by the fourth line, corresponding to
the results presented in Fig. 7, which shows that the Fisher
forecast produces larger errors than the DALI and mock
likelihood forecasts. This behavior can be understood in
terms of the nonellipticity discussed above. (Similar
behavior can be seen in Fig. 5.) In Table IV, we show
two additional forecasts involving experiment B, where the
Fisher forecasted errors closely match those from the DALI
and mock likelihood treatments. Firstly, we show the effect
of including BAO constraints in the forecast, which tightens
mν contours and results in similar constraints predicted by
all three forecasting methods. One can also change the
fiducial value of mν, for example to 200 meV, which shifts
the constraints away from the mν ¼ 0 cutoff and the
contours regain their elliptical, Gaussian shapes, with
constraints once again being similar across each of the
three methods.

C. Primordial abundance measurements

The results of the analysis with primordial abundance
measurements, detailed in Sec. IV C, are shown in Figs. 8
and 9. The plots use the same observational uncertainties on
D=H and Yp, but different uncertainties on the neutron
lifetime τn.
Figure 8 shows the results with σðτnÞ ¼ 0.6 s, which is

the current global average [66]. The concavity of the cross
section of the DALI approximation to the likelihood shown
in the Nν-η10 panel shows that the Fisher approximation is
near the edge of its applicability, especially as one moves
toward the tails of the distribution. This is reflected in the
marginalized likelihood contours, which show that the 1-σ
constraints agree well among the Fisher, DALI, and exact
likelihood treatments, though there are slight differences
among the 2-σ contours. Figure 9 shows the results of the
same analysis but with a much weaker constraint on the
neutron lifetime of σðτnÞ ¼ 30 s. All parameters are more
weakly constrained in this case, and the deviation of the
Fisher approximation from the exact likelihood becomes
more prominent.
These cases show concavity in the DALI-approximated

likelihood cross sections, suggesting that the Fisher

FIG. 6. The same as Fig. 5, but using BAO data to fit the flat
wCDM model.
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approximation may not be valid in some parts of parameter
space. However, one can see that the deviation from
ellipticity is small, and the level curves of the Fisher and
DALI approximations do not significantly differ. One

would therefore expect that the Fisher approximation
provides a good approximation to the exact likelihood,
which we can see is borne out in the comparison of the
marginalized constraint contours at least out to 2σ.

FIG. 7. Constraint contours for CMB experiment B, from the three methods discussed in the text. The fiducial value of mν is taken to
be 60 meV, and BAO data are not included. In the top-right panel, one can see the negative extrinsic curvature present in the Ωch2-mν

cross section. This is consistent with the lower-left panel, where one can see that the constraint contours from the DALI and mock
likelihood predictions are curved, and they do not agree well with the Fisher forecast. Although they do not show any points of negative
extrinsic curvature in the likelihood cross sections, the othermν marginalized contours also show disagreement between the results from
the Fisher method, and the DALI and mock likelihood methods, for the reasons discussed in the text. Neutrino masses are reported
in meV.
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VI. LIMITATIONS OF DALI APPROXIMATION

We have demonstrated how two-dimensional slices of
the DALI approximation to the likelihood level curves can
be used to detect where the Fisher approximation breaks
down. One might reasonably wonder whether Fisher
forecasts should simply be replaced with the DALI
approximation for all parameter forecasts, given that our
cross section test requires the computation of the relevant
ingredients for a DALI forecast. In this section, we discuss
some reasons to be cautious about inferring forecasted
parameter constraints from the DALI formalism, at least
without careful validation of the results.

A. Numerical/convergence issues

Obtaining marginalized constraints in the DALI formal-
ism requires numerical integration of the approximated
likelihood. Compared to evaluation of the exact likelihood,
the DALI formalism can offer a significant reduction in
computation time, since it requires many fewer evaluations
of the likelihood. However, this numerical integration, even
if it is faster, introduces some undesirable sensitivity to
numerical details. For example, MCMC techniques often
rely upon a convergence criterion related to the Gelman-
Rubin statistic R − 1 comparing the variance of means
among Markov chains to the mean of the variance of
samples within each chain [67]. The choice of this

TABLE IV. Forecasted upper and lower 68% confidence in-
tervals for mν in meV derived using the Fisher matrix, the DALI
technique, and a mock likelihood. Fisher gives a larger interval
than DALI or the mock likelihood when the fiducial value of mν

is 60 meV, as discussed in more detail in the text. The three
forecasting techniques yield similar confidence intervals when
one sets the fiducial value of mν to be more than 1σ away from
0 meV, or when BAO data are included to further tighten forecast
constraints.

Configuration
Fiducial

mν Fisher DALI
Mock

likelihood

Experiment A 60 60� 60 66þ27
−55 70þ30

−57
Experiment A
w=BAO

60 60� 27 59� 25 60� 27

Experiment A 200 200� 41 200þ43
−38 200þ45

−39
Exp B 60 60� 54 64þ30

−49 65þ29
−53

Experiment B
w=BAO

60 60� 25 59� 24 60þ28
−24

Experiment B 200 200� 32 200þ34
−30 200þ34

−29

FIG. 8. Parameter constraints from primordial abundance
measurements assuming σðτnÞ ¼ 0.6 s in accordance with the
current global average [66]. Concavity of the DALI contour in the
top middle panel suggests that the Fisher approximation may be
suspect over some range of parameter space. The marginalized
2-σ contours of the exact likelihood shown in the bottom panels
show a very slight deviation from the Fisher approximation.

FIG. 9. Same as Fig. 8 but with σðτnÞ ¼ 30 s. One can see that
as observational constraints are weakened, the deviation from the
Fisher approximation becomes more prominent.
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convergence criterion can often impact the results that will
be found in a given case. One can typically produce more
stable and repeatable results at the cost of extra computa-
tional time by requiring a tighter convergence criterion,
though this can become quite costly when one requires
robust predictions more than a few σ away from the best-
fit point.
One might hope that summary statistics, like the variance

of a given marginalized parameter constraint, might be
mostly insensitive to numerical details. However, we find
that this is not reliably the case in our DALI forecasts. From
Fig. 4, we can see that for the flat ΛCDM model with BAO
data, both the DALI and the Fisher approximations appear
to agree with the constraint contours of the exact likelihood
(at least to within 2σ). If we calculate the variances of the
model parameters using the exact, Fisher, and DALI
likelihoods, however, we find less agreement than what
seems to be implied by the figure. Table V shows the results
of these calculations. We computed the variances of the
model parameters, using both the exact likelihood and the
DALI approximation, in several runs. We found that while
the variances of the parameters computed using the exact
likelihood exhibited relatively little variation, the variances
computed using the DALI approximation can show as
much as a 61% deviation from the variance averaged across
all runs (in the case of Ωm in run 1).
Another sensitivity to numerical details arises in the

treatment of priors. Numerical integration requires that
some choices be made about the range over which to
sample parameters. One will generally find different
marginalized constraints for different choices of priors,
and it is not always obvious which choice should be made.
For example, when model parameters are subject to
physical constraints (such as for parameters that are only
physically meaningful when greater than or equal to zero),

it might seem natural to place this restriction on the
numerical integration. However, this treatment of priors
will lead to marginalized constraints that should not be
compared directly to what is obtained by inverting the
Fisher matrix (which formally integrates all parameters
over all real numbers). This discussion does not imply that
anything is wrong with any particular choice of priors used
when carrying out numerical integration, but the fact that
the results will depend on that choice makes the resulting
forecasts less transparent.

B. Toy models

Though it may be possible to overcome the numerical
issues discussed in the previous subsection, we now turn to
cases in which the DALI approximation to the likelihood is
worse than the Fisher approximation. We focus on two toy
models, both of which depend on a single parameter a. In
the first model, the observable x takes the form x ¼ a2, and
in the second model, x takes the form x ¼ ð1þ a2Þ1=4. The
key difference between these two models is that the first
exhibits superlinear (quadratic) dependence on a, while the
second exhibits sublinear dependence on a.7

We tested the behavior of both the Fisher and DALI
approximations against that of the exact likelihood for each
model by plotting logðPÞ versus a, where P is the posterior.
These plots are shown in Figs. 10 and 11. From Fig. 10, we
can see that the DALI approximation matches the exact
likelihood perfectly when the given model has quadratic
parameter dependence. The Fisher approximation, as
expected, only works well in the vicinity of one of the
critical points of logðPÞ. Figure 11, by contrast, shows a
very different picture. For our sublinear model, both the

TABLE V. Variances of parameters of flat ΛCDM model fitted
to BAO data, computed with the exact likelihood, the DALI
approximation of the likelihood, and the Fisher approximation of
the likelihood. We used a convergence criterion of
R − 1 ¼ 5 × 10−6. Across all four runs, the variances computed
with the exact likelihood are fairly stable, while the variances
computed with the DALI approximation exhibit larger-amplitude
fluctuations.

Run Parameter Exact DALI

1 H0 1.08 1.49
Ωm 0.000287 0.000879

2 H0 1.08 1.10
Ωm 0.000287 0.000283

3 H0 1.10 1.23
Ωm 0.000288 0.000548

4 H0 1.11 1.10
Ωm 0.000289 0.000414

Fisher H0 1.00
Ωm 0.000270

FIG. 10. Toy model of the form x ¼ a2. The assumed un-
certainty on x is σx ¼ 2, and the fiducial value of a is taken to
be a ¼ 1.

7For a discussion of sublinear parameter dependence in the
context of Fisher forecasts, see, e.g., Ref. [68].
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Fisher and DALI approximations describe the exact like-
lihood well near one of the critical points of logðPÞ, but
they both break down far from the critical point.
Furthermore, the DALI approximation to the likelihood
exhibits a spurious peak at large values of a that does not
appear in the Fisher approximation. We can see that the
DALI approximation to the likelihood is strictly worse than
the Fisher approximation for that region of parameter space
in this model.

VII. CONCLUSION

We have developed a scheme to test the validity of the
Fisher approximation that is based on the DALI formalism.
We showed how two-dimensional slices of the level curves
of the DALI approximation to the likelihood can be used to
detect the breakdown of the Fisher approximation.
We applied our cross section test to three cosmological

datasets: expansion history data, forecasted CMB observa-
tions, and primordial light element abundance measure-
ments. Cases that exhibited concavity of likelihood contours

and significant differences between the cross sections of the
DALI-approximated and Fisher-approximated likelihood
level curves typically showed significant deviation of the
Fisher approximation from the true likelihood, suggesting
that Fisher forecasts were insufficient in these cases. While
we focused here on cosmological forecasting, the techniques
we developed are applicable to any statistical forecast where
Fisher forecasting can be employed.
In the cases where the Fisher formalism breaks down, we

found that the DALI forecasts sometimes provide a better
match to the true likelihood. However, we do not generally
recommend that DALI forecasts should replace Fisher
forecasts. We discussed how numerical issues can compli-
cate interpretation of DALI forecasts and also how DALI
forecasts in some cases perform worse than the correspond-
ing Fisher forecasts. We therefore recommend that the cross
section test described here be used as a means to check the
validity of Fisher forecasts, and that one should instead rely
on sampling of the true likelihood in cases where the Fisher
formalism breaks down.
Fisher forecasts are by no means perfect and are built on

assumptions that we often know to be violated at some level
by real observations. However, the efficiency with which
the Fisher matrix can be computed and the simplicity of its
interpretation ensure that the Fisher formalism will con-
tinue to hold a prominent role in forecasting. The test we
developed here provides a means to test the validity of
Fisher forecasts in any given scenario, and its application
will help to discriminate the cases where we should be
reasonably confident in Fisher forecasts from those in
which a more complete treatment is required.
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