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The stochastic spectral expansion method offers a simple framework for calculations in de Sitter
spacetimes. We show how to extend its reach to metastable vacuum states, both in the case when the
potential is bounded from below, and when it is unbounded from below and therefore no stable vacuum
state exists. In both cases, the decay rate of the metastable vacuum is given by the lowest nonzero
eigenvalue associated to the Fokker–Planck equation. We show how the corresponding eigenfunction
determines the field probability distribution which can be used to compute correlation functions and other
observables in the metastable vacuum state.

DOI: 10.1103/PhysRevD.107.103504

I. INTRODUCTION

Recently, there has been significant interest in under-
standing vacuum instability of scalar field theories in the
early Universe [1], largely motivated by the observation that
the electroweak vacuum state appears to be unstable in the
Standard Model for the measured values of its parameters
[2,3]. In order for the Universe to exist in the electroweak
vacuum today, its decay rate must have been sufficiently low
throughout the cosmological history such that no vacuum
decay events have taken place anywhere in our past light-
cone. This requirement can place significant constraint on
cosmological scenarios [1] and, for example, on the value of
the nonminimal curvature coupling of the Higgs field [4,5].
For vacuum decay during inflation, one can simplify

calculations considerably by approximating the inflationary
metric with the de Sitter spacetime. In that case, there are
two main approaches for calculating the vacuum decay rate:
the instanton method [6,7], and the stochastic Starobinsky-
Yokoyama method [8,9]. In this paper, we will focus on the
latter, and show how it can be used to determine non-
perturbatively both the vacuum decay rate and also, to a
certain extent, the properties of the metastable state.
The stochastic formalism [9] provides a powerful frame-

work to deal with light scalar fields in de Sitter space. It
uses a stochastic Langevin equation to describe the

dynamics of the long-wavelength field modes, with a noise
term that arises from the short-wavelength quantum modes.
The method has been used by many authors to calculate the
rate of vacuum decay [10–16], using different prescriptions
which give slightly different results. Although they agree
on the stochastic equations themselves, there has been no
consensus on how the decay rate should be defined in the
context of the stochastic theory.
The spectral expansion method [9,17–20] gives a power-

ful technique for solving the stochastic system in terms of a
the eigenvalues and eigenfunctions of a Schrödinger-like
equation. In this paper we investigate vacuum decay using
this approach. It is known that the vacuum decay rate is
given by the lowest nonzero eigenvalue [17], which can be
obtained to very high precision by solving the eigenvalue
equation. As we will show, this result applies both when the
potential is bounded from below and when it is unbounded,
in which case no stable vacuum state exists.
When considering cosmological scenarios in which the

observer itself is in the metastable vacuum state, as appears to
be the case for the electroweak vacuum, it is also important
to be able to compute observables such as correlation
functions in that state. This requires knowledge of the field
probability distribution in the false vacuum state. We show
that for potentials that are unbounded from below, this can be
obtained unambiguously from the eigenfunctions of the
eigenvalue equation associated with the Fokker–Planck
equation. We also find a function that can be given the same
interpretation when the potential is bounded from below.

II. THE STOCHASTIC FORMALISM

Consider a scalar field ϕ in de Sitter space with potential
VðϕÞ such that the field is light [V00ðϕÞ < H2] and its
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contribution to the total energy is small (V < 3H2M2
P).

Under those assumptions, the stochastic approach starts by
treating the field as mainly long-wave modes (which can be
thought as ϕ averaged over a constant volume slightly
larger than a Hubble volume) and short-wave quantum
modes ξ that are modeled as a white noise term with the
appropriate correlation properties. With this treatment, it is
possible to write a Langevin equation satisfied by the long-
wave modes [9] (which we call ϕ from now on),

d
dt

ϕ ¼ −
1

3H
V 0ðϕÞ þ ξðtÞ

with hξðt1Þξðt2Þi ¼
H3

4π2
δðt1 − t2Þ: ð1Þ

From this, it can be derived [9] that the probability
distribution for ϕ, Pðt;ϕÞ, satisfies the Fokker–Planck
equation

∂Pðt;ϕÞ
∂t

¼ H3

4π2

�
1

2

∂
2

∂ϕ2
þ v0

∂

∂ϕ
þ v00

�
Pðt;ϕÞ; ð2Þ

where we have introduced the rescaled potential
vðϕÞ ¼ 4π2

3H4 VðϕÞ.
This equation admits linearly independent solutions of

the form

Pnðt;ϕÞ ¼ e−vðϕÞe−ΛntψnðϕÞ; ð3Þ

where ψn and Λn are eigenfunctions and eigenvalues,
respectively, of the differential equation

�
−
1

2

∂
2

∂ϕ2
þWðϕÞ

�
ψn ¼

4π2Λn

H3
ψn; ð4Þ

with

WðϕÞ ¼ 1

2
ðv0ðϕÞ2 − v00ðϕÞÞ: ð5Þ

The eigenfunctions are chosen to be orthonormal,

Z
dϕψmðϕÞψnðϕÞ ¼ δmn: ð6Þ

It is straightforward to check that the function

ψ0ðϕÞ ∝ e−vðϕÞ ð7Þ

satisfies Eq. (4) with Λ0 ¼ 0 and if it satisfies the
appropriate boundary conditions, it is therefore an eigen-
function with zero eigenvalue.

The time evolution of the probability distribution can
therefore be expressed as

Pðt;ϕÞ ¼ ψ0ðϕÞ
X
n

anψnðϕÞe−Λnðt−t0Þ ð8Þ

where the coefficients an can be determined from the initial
conditions as

an ¼
Z

dϕ
ψnðϕÞ
ψ0ðϕÞ

Pðt0;ϕÞ: ð9Þ

It is useful to note that Eq. (4) has the form of the time-
independent Schrödinger equation with the Hamiltonian

H ¼ −
1

2

∂
2

∂ϕ2
þWðϕÞ; ð10Þ

where role of the potential is played by the function WðϕÞ.
Furthermore, this Hamiltonian is supersymmetric [21] in
the sense that it can be written as H ¼ A†A, where

A ¼ 1ffiffiffi
2

p
�

d
dϕ

þ v0ðϕÞ
�
; A† ¼ 1ffiffiffi

2
p

�
−

d
dϕ

þ v0ðϕÞ
�
:

ð11Þ

This Hamiltonian has a superpartner

H̃ ¼ AA† ¼ −
1

2

∂
2

∂ϕ2
þ W̃ðϕÞ; ð12Þ

where

W̃ðϕÞ ¼ 1

2
ðv0ðϕÞ2 þ v00ðϕÞÞ; ð13Þ

with the property that if ψ is an eigenfunction of H with
eigenvalue Λ, then ψ̃ ¼ Aψ satisfies

H̃ ψ̃ ¼ AA†Aψ ¼ AHψ ¼ ΛAψ ¼ Λψ̃ ; ð14Þ

and is therefore an eigenfunction of H with the same
eigenvalue Λ. The exception to this is the function ψ0

defined in Eq. (7), which satisfies Aψ0 ¼ 0, and therefore
maps to zero under the supersymmetry transformation.
Therefore, as a consequence of supersymmetry, the

spectra of H and H̃ are identical, apart from possible zero
eigenvalues, and the eigenfunctions are related by the
mapping

ψ̃n ¼ Aψn; ψn ¼
1

Λn
A†ψ̃n: ð15Þ

The form ofH also implies that the eigenvaluesΛn are non-
negative.
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It is also worth noting that the W̃ defined in Eq. (13) can
be written as

W̃ðϕÞ ¼ 1

2
ðṽ0ðϕÞ2 − ṽ00ðϕÞÞ; ð16Þ

with ṽðϕÞ ¼ −vðϕÞ. Therefore the supersymmetry trans-
formation can be interpreted as flipping the sign of the
potential VðϕÞ.

III. VACUUM DECAY FOR BOUNDED
POTENTIALS

Let us now assume that the potential is bounded from
below, and grows sufficiently fast when ϕ → �∞, so that
the function

PeqðϕÞ ¼ ψ0ðϕÞ2 ∝ e−2vðϕÞ ð17Þ
is normalizable. In that case, we can see from Eq. (8) that it
is a time-independent solution of the Fokker–Planck
equation (2) and therefore corresponds to the equilibrium
state of the system.
Let us also assume that the lowest nonzero eigenvalue is

much smaller than the others, Λ1 ≪ Λ2. This is the case
when the potential VðϕÞ has a local minimum separated
from the global minimum by a sufficiently high potential
barrier. In classical field theory we would then identify the
local minimum as a false vacuum state, and the global
minimum as the true vacuum. Our aim now is to find the
corresponding interpretation in the stochastic theory, in
which states correspond to probability distributions rather
than single field values.
Assuming this hierarchy of eigenvalues, the probability

distribution at asymptotically late times is given by

Pðt;ϕÞ ¼ PeqðϕÞ þ c0ψ0ðϕÞψ1ðϕÞe−Λ1t þOðe−Λ2tÞ; ð18Þ
where again c0 is a constant that can be determined from
initial conditions.
By interpreting the result (18) in terms of false vacuum

decay, we can extract information about the false vacuum
and its decay rate. To do this, we assume that the system has
a long-lived metastable false vacuum state corresponding
to some field probability distribution, which we denote
by P1ðϕÞ, and which we would like to determine. If the
system is initially (at time t0) in this metastable state,
we expect that at any later time t > t0, it has an exponentially
decreasing probability p1ðtÞ ¼ expð−Γðt − t0ÞÞ of being
still in the false vacuum state P1ðϕÞ. Here Γ is the false
vacuum decay rate. Correspondingly, the system has prob-
ability ð1 − p1Þ of being in the true vacuum state PeqðϕÞ.
The field probability distribution in such a mixed state is

Pðt;ϕÞ ¼ ð1 − p1ðtÞÞPeqðϕÞ þ p1ðtÞP1ðϕÞ
¼ PeqðϕÞ þ p1ðtÞðP1ðϕÞ − PeqðϕÞÞ: ð19Þ

Identifying this with Eq. (18), we can see that this
interpretation requires that Γ ¼ Λ1, i.e., the false vacuum
decay rate is given by the lowest nonzero eigenvalue.
Furthermore, this identification suggests that we should

be able to find the false vacuum probability distribution
P1ðϕÞ by assuming the mixed state (18), and following it
back to the time t0 when the system was fully in the false
vacuum state. This gives

P1ðϕÞ ¼ Pðt0;ϕÞ ¼ PeqðϕÞ þ c̄0ψ0ðϕÞψ1ðϕÞ; ð20Þ

where c̄0 ¼ c0 expð−Λ1t0Þ. This is a correctly normalized
probability distribution because the eigenvalues are
orthogonal,

Z
dϕP1ðϕÞ ¼

Z
dϕPeqðϕÞ þ c̄0

Z
dϕψ0ðϕÞψ1ðϕÞ

¼
Z

dϕPeqðϕÞ ¼ 1: ð21Þ

However, Eq. (20) depends on the value that is chosen
for the coefficient c̄0 or, equivalently, the choice of the
initial time t0, i.e., how far back in time one follows the
evolution. In order for P1 to be a well-defined probability
distribution, it needs to be non-negative, and this means that
there is a limit: The coefficient c̄0 has to be in the range1

−
1

max ψ1

ψ0

≤ c̄0 ≤ −
1

min ψ1

ψ0

: ð22Þ

This suggests that the two possible optimal choices for
c̄0, corresponding to the earliest possible choices for t0, are
the two extremes of the range (22). In practice, the ratio
ψ1=ψ0 is often a monotonic function and can be chosen to
be an increasing function, in which case these two choices
correspond to the limits of ϕ → ∞ and ϕ → −∞, respec-
tively. If the false minimum is, say, to the right of the true
minimum, the appropriate choice for P1 is the one in which
the probability distribution is localized towards the positive
values of ϕ, which means that c̄0 > 0, and hence

c̄0 ¼ −
1

max ψ1

ψ0

¼ − lim
ϕ→∞

ψ0ðϕÞ
ψ1ðϕÞ

: ð23Þ

In summary, when the potential is bounded from below,
the decay rate of the false vacuum state is given by the lowest
nonzero eigenvalue, Γ ¼ Λ1, and the field probability
distribution in this false vacuum state can be written as

P1ðϕÞ ¼ ψ0ðϕÞ
�
ψ0ðϕÞ −

�
lim
ϕ0→∞

ψ0ðϕ0Þ
ψ1ðϕ0Þ

�
ψ1ðϕÞ

�
: ð24Þ

1This assumes that ψ0 has been chosen to be positive. Because
ψ1 has one zero, max ψ1

ψ0
> 0 > min ψ1

ψ0
.
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IV. VACUUM DECAY FOR UNBOUNDED
POTENTIALS

Interestingly, the stochastic formalism can be also
applied to potentials that are unbounded from below.
Such potentials are interesting for many reasons; the
Standard Model potential at very high energies can be
described by a negative quartic potential, and more gen-
erally, effective field theories with unknown high-energy
origins can be described with unbounded potentials without
necessarily jeopardizing their physical applicability.
Let us assume that we have a potential VðϕÞ that is finite

everywhere but is not bounded from below, so that it
approaches −∞ as either ϕ → ∞ or ϕ → −∞, or both. In
that case the function ψ0ðϕÞ defined by Eq. (7) still satisfies
the eigenvalue equation (4) with Λ0 ¼ 0, but it does not
satisfy the correct boundary conditions and it is therefore
not a valid eigenfunction. Correspondingly, PeqðϕÞ defined
by Eq. (17) is not normalizable, and therefore does not give
an equilibrium probability distribution.
Instead, the lowest eigenvalue, which we denote by Λ1 is

positive, and the corresponding eigenfunction ψ1ðϕÞ allows
us to define the probability distribution

P1ðϕÞ ¼
1

N
ψ0ðϕÞψ1ðϕÞ; ð25Þ

where the normalization constant is

N ¼
Z

dϕψ0ðϕÞψ1ðϕÞ: ð26Þ

Note that because ψ0 is not an eigenfunction, it is not
orthogonal to ψ1, and therefore N ≠ 0. Because ψ1 is the
lowest eigenfunction, it has no zeros, and therefore P1ðϕÞ is
a non-negative function.
Of course, P1ðϕÞ is not an equilibrium probability

distribution as such. If the field has initially, at time t0,
the probability distribution P1ðϕÞ, then it follows from
Eqs. (8) and (9) that at a later time t, it has probability
distribution

Pðt;ϕÞ ¼ e−Λ1ðt−t0ÞP1ðϕÞ: ð27Þ

This shows concretely that probability is not conserved in
the case of an unbounded potential. This is because there
is a nonzero probability per unit time Γ ¼ Λ1 > 0 that
the field rolls down the potential and reaches infinity.
Therefore, just like in the case of the bounded potential,
Λ1 gives the vacuum decay rate.
If we consider an observer whose existence requires the

field ϕ to have a finite value, and which gets destroyed if
the field ever reaches infinity, then the observer will only
ever observe the conditional probability distribution which
assumes that the field is finite. At any time t, this is given by

P
�
t;ϕ

���jϕj < ∞
	
¼ Pðt;ϕÞR

∞
−∞ dϕ0Pðt;ϕ0Þ ¼ P1ðϕÞ: ð28Þ

Therefore, the observer actually observes the field in an
time-independent probability distribution P1ðϕÞ.
For this construction to work, the normalization constant

N defined in Eq. (26) must be finite. This is not obvious
because ψ0ðϕÞ diverges at infinity. We can use the super-
symmetry transformation to investigate this. If we assume
that limϕ→�∞ vðϕÞ ¼ −∞, the superpartner ṽðϕÞ ¼ −vðϕÞ
is bounded from below. Its lowest eigenfunction, with zero
eigenvalue, is

ψ̃0ðϕÞ ∝ e−ṽðϕÞ ¼ evðϕÞ: ð29Þ

We can also use the perturbative techniques from Ref. [9] to
find the asymptotic behavior of the next eigenfunction ψ̃1ðϕÞ
at large field values,

ψ̃1ðϕÞ ∝ ψ̃0ðϕÞ − 2ϵ1ψ̃0ðϕÞ
Z

∞

ϕ
dϕ0

Z
ϕ0

ϕ
dϕ00e2ṽðϕ00Þ−2ṽðϕ0Þ;

ð30Þ

where ϵ1 ¼ 4π2Λ1=H3 is the perturbative expansion param-
eter. Applying the inverse supersymmetry transformation
(15), we find the perturbative expression for the lowest
eigenstate in the original unstable theory,

ψ1ðϕÞ ¼
1

Λ1

A†ψ̃1ðϕÞ ∝ e−vðϕÞ
Z

∞

ϕ
dϕ0e2vðϕ0Þ: ð31Þ

Note that, in fact, this is the same as Φð1Þ
st defined in Eq. (52)

of [9].
If we assume that vðϕÞ ∼ −gϕα, α > 0, as ϕ → ∞, then

ψ1ðϕÞ ∼ Γ
�
1

α
;ϕα

�
∼ ϕ1−αe−gϕ

α
; ð32Þ

where Γðs; xÞ is the incomplete gamma function. The
probability distributionP1ðϕÞ then behaves asymptotically as

P1ðϕÞ ∼ ϕ1−α; ð33Þ

and is normalizable if α > 2. Therefore the construction
works for unstable potentials that are steeper than harmonic.
In this paper we will restrict our analysis to that case only.
As a consistency check, we can also see that the time-

dependent probability distribution Pðt;ϕÞ satisfies the
continuity equation

∂P
∂t

¼ ∂

∂ϕ
J; ð34Þ

where
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JðϕÞ ¼ H3

4π2

�
1

2

∂P
∂ϕ

þ v0P
�
: ð35Þ

Integrating over ϕ, Eq. (27) implies

−Λ1 ¼ lim
ϕ→∞

ðJðϕÞ − Jð−ϕÞÞ ¼ lim
ϕ→∞

H3

2π2
v0ðϕÞP1ðϕÞ; ð36Þ

where we have assumed a symmetric potential,
vð−ϕÞ ¼ vðϕÞ, for simplicity. From this we can see that
we must have

P1ðϕÞ ∼
2π2Λ1

H3

1

jv0ðϕÞj ; ð37Þ

which is consistent with Eq. (33). In the case of
nonsymmetric potentials, while Eq. (37) would have a
different constant prefactor, it would still be proportional
to 1=jv0ðϕÞj.
In summary, for an unbounded potential, the vacuum

decay rate is give by Γ ¼ Λ1, just like for bounded
potentials, and the false vacuum “equilibrium” probability
distribution is given by Eq. (25).

V. NUMERICAL RESULTS

In this section we take our discussion above and apply it
to a concrete case. We start by considering the bounded
scalar potential

VþðϕÞ ¼ 3H4

4π2
vþ ¼ μ3ϕ −

1

2
m̄2ϕ2 þ λϕ4; ð38Þ

where λ > 0, and the unbounded potential V−ðϕÞ ¼
−VþðϕÞ, which is also the superpartner of Vþ. In the
following we will use superscripts þ and − to indicate
whether the quantity relates to the bounded or unbounded
from below cases respectively.
As help for numerical calculations, we will cast the

rescaled potential vþ as a function of dimensionless
parameters ᾱ ¼ m̄2=λ

1
2H2, β ¼ μ3=λ

1
4H3 and the dimension-

less scalar field ϕ̂ ¼ λ
1
4Ω
H ϕ where Ω ¼ 1þ ffiffiffī

α
p þ β. This

results in the dimensionless potential

3Ω
π2

vþ ¼ 4βϕ̂þ 2ᾱϕ̂2 þ ϕ̂4: ð39Þ

We show vþ and v− ¼ −v in Fig. 1 (for ᾱ ¼ 0.8 and
β ¼ 0.1) to illustrate that one is a bounded potential with
true and false vacua and the other an unbounded potential
with a minimum around the origin.
The eigenvalue equation (4) can be easily solved numeri-

cally to get the eigenvalues Λþ
i (Λ−

i ) and the eigenfunctions
ψþ
i (ψ−

i ) of H
þ (H̃þ ¼ H−), the Hamiltonian correspond-

ing to vþ (v−). In this work we chose to use Mathematica’s

NDEigensystem. In Fig. 3 we show Λ1 and Λ2 as a
function of ᾱ and β. For larger values of ᾱ the potential
barrier grows and so does the hierarchy, making Λ1 ≪ Λ2

as expected. This is means that our starting assumption is
valid, and that we can identify Λ1 as the vacuum decay rate.
For larger β the hierarchy decreases as the relative depth
of the true vacuum increases and the barrier height lowers.
For large enough β the false vacuum disappears.
As discussed in Sec. II, supersymmetry implies that the

eigenvalues of the two Hamiltonians should be equal, and
the eigenfunctions should be related by the supersymmetry
transformation (15). We show this in Fig. 2. It is interesting
to note that the SUSY transformation, as expected, does not
work for the ground state ψþ

0 ∝ e−v
þ
. As we discussed, ψþ

0

corresponds to a vanishing eigenvalue and gets annihilated
by the SUSY transformation. For clarity, we show the
function ψ−

0 ∝ e−v
−
, which diverges at z → ∞ and thus is

not really part of H− ’s spectrum.

FIG. 1. The shapes of vþ (left) and v− (right) for ᾱ ¼ 0.8 and
β ¼ 0.1.

FIG. 2. Numerical results for the SUSY transformation of the
eigenfunctions of (4) for ᾱ ¼ 0.8 and β ¼ 0.1. Left: Eigenfunc-
tions of the bounded potential; center: The SUSY-transformed
eigenfunction; right: Eigenfunctions of the unbounded potential.
All eigenfunctions have been rescaled to help visualization.
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By choosing values for ᾱ and β, we can see how different
scenarios lead to qualitatively different probability distri-
butions for the scalar field.
Considering the bounded case VþðϕÞ first, the first two

eigenfunctions ψþ
0 and ψþ

1 are shown in Fig. 4, as well
as the functions Pþ

1 given by Eq. (20) and Pþ
eq given by

Eq. (17). In Sec. III, it was argued that Pþ
1 can be

interpreted as the probability distribution of the field ϕ
in the metastable vacuum. For ᾱ ¼ 1.2, when the barrier
between the false and true vacua is high, it is localized
around the false vacuum, in agreement with this interpre-
tation. For ᾱ ¼ 0.8, the barrier is lower, and in that case the
probability distribution Pþ

1 extends to the true vacuum side.
For the unbounded case V−ðϕÞ, the field probability

distribution in the metastable state P−
1 is given by Eq. (25).

This function is shown in Fig. 5, where we can see that
it is indeed localized around the local minimum of the
potential. For comparison, we are also showing the function
P−
eq defined also by Eq. (17), which would be the

equilibrium state for a bounded potential, but which is
not normalizable in the unbounded case. We can see that
near the local minimum, P−

1 ðϕÞ ≈ P−
eqðϕÞ, as one would

expect, because if the lifetime of the metastable vacuum is

sufficiently long, it should be almost indistinguishable from
a stable vacuum state.
We also explored the validity of the expected asymptotic

behavior, by comparing the full numerical calculation of P−
1

to the expression in Eq. (37). As the latter assumes a
symmetric potential, there will be a relative constant factor
when compared to the numerical results, though the crucial
insight is that it will be proportional to 1=ðv−Þ0 regardless.
We checked this for a range of parameter combinations,
showing very good agreement, and we show a typical
example in Fig. 6. Given that our analytical approximation
is only valid for large field values, the agreement with the
numerical results gets better for larger ϕ.

VI. DISCUSSION

In this article, we have shown how the Starobinsky–
Yokoyama stochastic approach can be used to describe

FIG. 3. Change of Λ1 and Λ2 as function of the potential
parameters around the point ᾱ ¼ 0.8, β ¼ 0.1. Note that this
figure is identical in both bounded and unbounded from below
cases. Our analysis is valid when Λ1 ≪ Λ2.

FIG. 4. Comparison between ψþ
0 , ψ

þ
1 (left) and Peq, P

þ
1 (right)

for two sets of parameter values. The corresponding potentials are
shown for illustration.

FIG. 5. Comparison between ψ−
0 , ψ

−
1 (left) and P−

eq, P−
1 (right)

for a nonsymmetric (top) potential and a symmetric (bottom)
potential. The corresponding potentials are shown for illustration.

FIG. 6. The numerical probability density for large field values
compared to Eq. (37). On the left, for smaller field values, we
show a linear scale while on the right we switch to logarithmic for
larger field values. Both expressions agree very well from ϕ̂ ∼ 4
and continue to do so across several orders of magnitude.
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vacuum decay in scalar field theories in de Sitter space,
both in the case of potentials that are bounded and
unbounded from below. In both cases, the decay rate per
unit time of the metastable vacuum is given by the lowest
nonzero eigenvalue of the eigenvalue equation associated to
the Fokker–Planck equation, which is a known result from
stochastic analysis [17]. The result is valid when this
eigenvalue is much smaller than other nonzero eigenvalues.
We also showed that the corresponding eigenfunction

determines the observables in the metastable vacuum state.
In the case of an unbounded potential, the relation is
straightforward and unambiguous. In bounded potentials,
a probability distribution cannot be uniquely associated
with the metastable vacuum state, but by following the
time evolution backwards as far as possible, we determined
a function that can be given that interpretation. These
probability distributions are useful for computing predic-
tions for observables that would be measured by an
observer in the metastable vacuum.
In this article, we focused on vacuum decay within the

stochastic approach. This approach is often used when
studying inflation, treating a slow-rolling inflaton field as a
scalar field in a fixed de Sitter background. This is usually a
good approximation, even though the Hubble rate is not
technically constant, but slowly varies due to slow-roll [22].
In our work, we instead considered a light scalar field in

a fixed de Sitter background, which can be interpreted as a
spectator field during an inflationary period, regardless of
whether it is driven by an inflaton field. In the case that it is,
our calculations are applicable when the inflaton does not
interact with the spectator field and the constant Hubble
rate approximation is valid. If the inflaton would have
interactions with the scalar field, the calculation would
follow much in the same way, with the crucial difference
that we would have a system of coupled differential
equations [23]. Although this is a more involved calculation
from a technical perspective, we do not expect the
eigenfunctions to show different properties than those
demonstrated in this work, or the conclusions to change.
We will explore this explicitly in future work. Additionally,

our approach has a more subtle limitation: If the potential
barrier is high enough to allow potential values much
greater than 3H2M2

P (and thus significantly contribute to
spacetime expansion), then during the phase transition
process the fixed de Sitter background assumption would
no longer be valid. In that case, backreaction effects must
be included.
That said, the Higgs field with a mass parameter of the

order of the electroweak scale is generally compatible with
our assumptions, and the formalism and methods presented
in this article facilitate phenomenological studies of phase
transitions and vacuum decay during inflation. In the case of
the Standard Model, which famously exhibits an unbounded
potential at higher energies [2], the prediction of a single
vacuum decay event in the past light cone would rule out the
theory, and hence require some new physics beyond the
Standard Model. More generally, phase transitions during
inflation imply a primordial gravitational wave signature that
will be probed at future experiments [24]. This paper sets the
ground for such precision calculations.
We demonstrate in a separate paper [25] that the results

agree with the Hawking–Moss calculation in quantum field
theory when it is valid, but the stochastic result is also
applicable beyond that. However, the stochastic calculation
does not describe fully quantum Coleman-de Luccia
transitions [6], which are dominant at low Hubble rates.
We also show how quantum corrections can be incorpo-
rated at one-loop order. Therefore, the stochastic theory
gives a precise and widely applicable way of studying false
vacuum decay in de Sitter with high Hubble rate.
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