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We derive an approximate analytical expression of the maximum mass of relativistic self-gravitating
Bose-Einstein condensates with repulsive or attractive jφj4 self-interaction. This expression interpolates
between the general relativistic maximum mass of noninteracting bosons stars, the general relativistic
maximum mass of bosons stars with a repulsive self-interaction in the Thomas-Fermi limit, and the
Newtonian maximum mass of dilute axion stars with an attractive self-interaction [P. H. Chavanis, Phys.
Rev. D 84, 043531 (2011)]. We obtain the general structure of our formula from simple considerations and
determine the numerical coefficients in order to recover the exact asymptotic expressions of the maximum
mass in particular limits. As a result, our formula should provide a relevant approximation of the maximum
mass of relativistic boson stars for any value (positive and negative) of the self-interaction parameter.
We discuss the evolution of the system above the maximum mass and consider application of our results to
dark matter halos and inflaton clusters. We also make a short review of boson stars and Bose-Einstein
condensate dark matter halos and point out analogies with models of extended elementary particles.
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I. INTRODUCTION

The concept of boson stars was introduced by Kaup [1]
and Ruffini and Bonazzola [2] (see also Refs. [3–5]) in the
1960s in a rather academic manner without explicit con-
nection to any astrophysical object. They were just hypo-
thetical stars governed by the laws of general relativity and
quantum mechanics. In a sense, boson stars are the descend-
ants of the so-called “geons” of Wheeler [6], except that they
are built from scalar particles of spin 0 instead of electro-
magnetic field, i.e., spin-1 bosons.1 Kaup [1] and Ruffini and
Bonazzola [2] considered the T ¼ 0 limit in which bosons
form Bose-Einstein condensates (BECs). In that case, all the

bosons are in the same quantum state described by a
unique complex wave function φðxμÞ satisfying the Klein-
Gordon-Einstein (KGE) equations.2 This semiclassical
equation is valid in the Hartree-Fock approximation for
the second quantized two-body problem [2]. Boson stars can
be regarded as macroscopic quantum states that are only
prevented from collapsing gravitationally by the Heisenberg
uncertainty principle. No Schwarzschild-type event horizon
occurs in these objects since their density profile extends
to infinity. Kaup [1] and Ruffini and Bonazzola [2] showed
that equilibrium states can exist only below a maximum
mass MGR

max ¼ 0.633M2
P=m set by general relativity, where

MP ¼ ðℏc=GÞ1=2 is the Planck mass. Above this maximum
mass, the star is expected to collapse and form a black hole
(or evaporate). Their results were rederived and confirmed in
Refs. [21–27]. The maximum mass of boson stars is the
counterpart of the maximum mass of fermion stars, such as
white dwarf stars and neutron stars. The maximum mass of
white dwarf stars MWD

max ¼ 3.10M3
P=ðμHÞ2, where H is the

proton mass and μ is the molecular weight, was found by
Chandrasekhar [28] and the maximum mass of neutron stars
MNS

max ¼ 0.384M3
P=m

2, where m is the neutron mass, was
found by Oppenheimer and Volkoff [29].
Boson stars can be viewed as complex scalar fields (SFs)

or anisotropic fluids [1,2], while fermion stars are isotropic

1The geon, which is a gravitational electromagnetic entity, was
originally introduced by Wheeler [6] as a localized nonsingular
solution of the Einstein-Maxwell equations. A geon consists of a
spherical shell of electromagnetic radiation held together by its
own gravitational attraction. It realizes to some extent the
proposal of Einstein [7] and Einstein and Rosen [8]: “Is an
atomistic theory of matter and electricity conceivable which,
while excluding singularities in the field, makes use of no other
fields than those of the gravitational field and those of the
electromagnetic field in the sense of Maxwell?” and some of the
goals of the unitary field theory [9–15]. These objects, however,
were found to be unstable [6,16] leading to the belief that
gravitational collapse is inevitable. In the following years,
transferring the ideas of Mach and Einstein to the microcosmos,
many researchers tried to find a model that describes an
elementary particle in terms of a semiclassical field coupled
to the Einstein equations. These extended particles resemble
geons [6] or wormholes [17–19]. Kaup [1] presented the notion
of a Klein-Gordon geon that was later called a boson star.

2See Ref. [20] for a short account of the early history of wave
mechanics (Schrödinger, Klein-Gordon, Dirac, and Gross-
Pitaevskii equations) and an exhaustive list of references.
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fluids [30]. Despite this distinguished feature, there exist
remarkable similarities between boson stars and fermion
stars. The mass-central density relation Mðρ0Þ and the
radius-central density relation Rðρ0Þ of boson stars exhibit
damped oscillations [1,2,23,26,31–38] and the mass-radius
relation MðRÞ has a snail-like (spiral) structure [23,35,38].
The series of equilibria becomes unstable after the first
mass peak and a new mode of stability is lost at each
subsequent turning point of mass like in the case of neutron
stars [30]. These stability results can be established from
the study of the pulsation equation [32–34,39,40]3 or from
the energy principle [26] stating that a stable equilibrium
state is a minimum of mass energy Mc2 at fixed particle
number N (the charge or the number of bosons minus
antibosons is conserved for a complex SF). The variational
principle for the first variations δM − αδN ¼ 0 implies
that Mðρ0Þ and Nðρ0Þ are extremal at the same points,
precisely where a mode of pulsation vanishes [26,27].
The mass-particle number relation MðNÞ is plotted in
Refs. [26,27,36–38]. The MðNÞ curve presents cusps at
the critical points where Mðρ0Þ and Nðρ0Þ are extremal. It
forms a zigzag course of smaller and smaller extension
associated with the spiral nature of the mass-radius relation.
Kusmartsev et al. [36–38] used theMðNÞ curve interpreted
as a bifurcation diagram to investigate the dynamical
stability of boson stars by invoking Arnold’s classification
of singularities in catastrophe theory [42,43] and the
Whitney theorem [44], which were previously applied in
Ref. [45] to nongravitational solitons. If the mass becomes
larger after a cusp, a new mode of instability appears.
Inversely, if the mass becomes smaller after a cusp, a
mode of instability disappears.4 Seidel and Suen [35],

Kusmartsev et al. [36–38], and Guzmán [51,52] showed
that a stable boson star that is slightly perturbed will
oscillate with a fundamental frequency, emit SF radiation,
and settle down into a new equilibrium configuration
with less mass, while an unstable boson star will, in
general, collapse to a black hole or migrate to the stable
branch. They also mentioned that the binding energy
Eb ¼ ðM − NmÞc2 can become positive, signaling the
existence of configurations with excess energy. Such
configurations are always unstable against a collective
transformation in which they are dispersed into free
particles at infinity [1,31]. These results are remarkably
similar to those obtained for neutron stars [30]. However,
there also exist crucial differences between boson and
fermion stars. In particular, boson stars are stabilized by the
Heisenberg uncertainty principle, while fermion stars are
stabilized by the Pauli exclusion principle. This difference
is reflected in the scaling with m of the maximum mass of
stable configurations. The maximum mass of boson stars
scales as MGR

max ∼M2
P=m [1,2], instead of MGR

max ∼M3
P=m

2

[28,29] for fermion stars. As a result, for the same particle
mass m, the maximum mass of boson stars is smaller than
the mass of fermion stars by a factor m=MP ≪ 1. For
example, for m ∼ 1 GeV=c2 (of the order of the neutron
mass) for which m=MP ∼ 10−19, the maximum mass of
boson stars is M ∼ 10−19M⊙, while the maximum mass of
neutron stars is on the order of the solar mass. This leads to
the concept of miniboson stars [23,24,27] or minisoliton
stars [25–27] with small mass, small radius, and extremely
high densities. This property may facilitate the formation of
small black holes made of cold invisible axions (bosonic
black holes [22] or axion black holes [24]) in the axion
dominated universe. The maximum mass of boson stars
becomes on the order of the solar mass if the mass of the
bosons is very small, typically m ∼ 10−10 eV=c2.
Friedberg et al. [26] (see also [5,53–55]) computed the

radial solutions of the static KGE equations with nodes,
which correspond to excited states. They found that the
critical mass grows approximately linearly with the
number of nodes (see also [31]). Jetzer [40] showed
that the excited Bose star configurations are stable for
central densities up to the critical density.5 As a result, as
noted by Lee [25,56], by increasing the node number n
there exists an equilibrium state for any value of the mass
(at least classically). Since a boson star is a stationary
solution of the Klein-Gordon (KG) equation in its own
gravitational field, a boson star is also called a “gravita-
tional atom” [57]. The energy levels of these gravitational
atoms present an interesting fine structure for high values
of the principal quantum number. This fine splitting of the

3The pulsation equation for boson stars was derived by Gleiser
[32] and Jetzer [33] who generalized the approach developed by
Chandrasekhar [41] for an isotropic fluid in general relativity. Since
theSF is complex, theyobtained a systemof twocoupled eigenvalue
equations.Using themethod of test functions, they could only prove
that equilibrium states with a central density much larger than the
critical density (corresponding to the maximummass) are unstable.
They first suggested that the instability point may not coincidewith
the maximum mass because of anisotropic effects. But soon after,
Gleiser [39],Gleiser andWatkins [34], and Jetzer [40], following the
work of Lee and Pang [27], showed that the instability actually
occurs at themaximummass and that a newmodebecomes unstable
at each successive critical point. This is due to the fact that the
functions Mðρ0Þ and Nðρ0Þ are extremal at the same points (see
below), implying that the pulsation vanishes at these points [27].

4One can also deduce the stability of boson stars from the
Poincaré theorem [46,47] (see, e.g., Appendix C of [48] for a brief
expositionof this theorem).This approachwaspreviously applied to
the series of equilibria of isothermal self-gravitating systems that
present features similar to those of fermion and boson stars (damped
oscillations, spirals, zigzags, cusps, etc.) [48,49].Using thePoincaré
turning point argument, the stability of boson stars can be directly
inferred fromFig. 8 of [26], returning the results of [36–38].One can
also use the Poincaré turning point argument to determine the
stability of fermion stars (white dwarfs and neutron stars) [50],
returning the results of [30] based on the Wheeler MðRÞ theorem.

5Lee and Pang [27] previously argued that excited modes are
always unstable, but their claim is incorrect because they did not
require the particle number to be constant in their stability
analysis.
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energy levels may indicate a rich particlelike structure of
the quantized geons [53]. In the last stages of boson star
formation, one expects that a highly excited configuration
first forms with several nodes and that it eventually decays
into the ground state (with no node) by a combined
emission of scalar radiation and gravitational radiation.
This mechanism has been analyzed by Ferrell and
Gleiser [57] in a Newtonian approximation.
Colpi et al. [58] considered the case of bosons stars with a

repulsive λ
4ℏc jφj4 (λ > 0) self-interaction and found that the

resulting configurations differ markedly from the noninter-
acting case.6 In the Thomas-Fermi (TF) limit, the maximum
mass set by general relativity isMGR

max ¼ 0.0612
ffiffiffi
λ

p
M3

P=m
2.7

For λ ∼ 1 it exhibits the same scaling as the maximum mass
of fermion stars (Chandrasekhar’s mass). This leads to much
bigger structures than in the noninteracting case, making
them much more astrophysically interesting. They are
called “massive boson stars.” In a sense, the repulsive
self-interaction for bosons plays a role similar to the
quantum pressure arising from the Pauli exclusion principle
for fermions. Like for fermion stars and noninteracting

boson stars, the Mðρ0Þ, Rðρ0Þ, and Nðρ0Þ curves exhibit
damped oscillations [32,33,36–38,58,79,82–86], the MðRÞ
curve has a snail-like (spiral) structure [38,86], and the
MðNÞ curve displays cusps and forms a zigzag course of
smaller and smaller extension [36–38,84]. A detailed dis-
cussion of the analogy between boson stars and neutron stars
is given in Ref. [38]. Colpi et al. [58] (see also [81]) showed
that, in the TF limit, a boson star with a repulsive quartic
self-interaction is equivalent to an isotropic barotropic
fluid with a well-defined equation of state PðϵÞ.8 This
equation of state reduces to that of an n ¼ 1 polytrope at
low densities (nonrelativistic limit) and to the linear law
P ∼ ϵ=3 similar to the equation of state of radiation at
high densities (ultrarelativistic limit). This strengthens
the analogy between boson stars and neutron stars that
display the same asymptotics at high densities. In these
objects, the speed of sound is always less than the speed
of light. However, ultrarelativistic configurations are
dynamically unstable according to the Poincaré criterion
because they are located after the first turning point of
mass [86]. Cold mixed boson-fermion stars have been
studied by Henriques et al. [88–90] and Jetzer [91].
Jetzer and Scialom [92,93] showed that the static solutions

of the KGE equation for a real SF have a naked singularity at
the origin and that they are always dynamically unstable.
This result is in agreement with the cosmic censorship
conjecture, which excludes spacetimes with naked singu-
larities [94]. In particular, general relativistic real massless
SFs are unstable.9 This conclusion is in agreement with the
result of Christodoulou [105,106] (see also [107,108]) who
showed that all time-dependent spherically symmetric sol-
utions of the KGE equations with m ¼ λ ¼ 0 must either
disperse to infinity or form a black hole. Real SFs (like
axions) do not admit regular static solutions to the KGE
equations because there is no conserved Noether current
leading to particle number (or charge) conservation.10 It is
possible to construct regular solutions that are periodic in
time when M < MGR

max ¼ 0.606M2
P=m [111,112]. However,

6The first investigations of the KGE equations with a self-
interaction potential were carried out by Mielke and Scherzer [53]
(see also [54,55,59–61]). They used a −jφj4 þ jφj6 potential
obtained from a nonlinear Heisenberg-Pauli-Weyl [62–64] spinor
equation in a curved spacetime produced by the energy-momentum
tensor of the spinor fields via the Einstein equations. This work was
done in the context of particle physics (independent from the context
of boson stars) in order to describe classically extended particles
consisting of confined quarks. In that case, the Einstein-type field
equations account for strong interactions on a curved spacetime of
hadronic dimensions characterized by a modified Planck length of
strong gravity [65–74]. Algebraic complications resulting from the
spinor structurewere avoidedbyconsideringSFs coupled togravity.
In order to maintain a similar dynamics, a scalar self-interaction
VðφÞ was formally obtained by “squaring” the fundamental non-
linear spinor equation. This provides a model for a unitary field
theory of extended particles resembling the geons of Wheeler,
which are held together by self-generated gravitational forces and
are composed of localized fundamental classical fields described by
theEinstein-Maxwell equations.The coupling of gravity to neutrino
fields had been previously considered by Brill and Wheeler [75].
Theirworkprovided the appropriategroundwork for an extension to
nonlinear “spinor geons” satisfying the Dirac-Einstein equations
considered in [53]. On the other hand, Lee and co-workers
[25,76,77] investigated a Higgs-type potential [78] with symmetry
breaking of the degenerate vacuum form. They called the solutions
of their KGE equations “nontopological soliton stars” and found
that the maximum mass of these scalar [76] or fermion [77] soliton
stars has units ofM4

P=m
3, which is huge—on the order of the mass

of the Universe ∼ 1020M⊙—in comparison with a boson or a
neutron star (for the case of comparable boson and fermion masses
m ∼ 1 GeV=c2). Nishimura and Yamaguchi [79] constructed a
neutron star using an equation of state of an isotropic fluid built
fromHiggs bosons. Their work showed that the limit for such boson
stars can possibly exceed the limiting mass of 3.2M⊙ for neutron
stars [80].

7Tkachev [81] independently considered the case of bosons stars
with a repulsive jφj4 self-interaction and obtained the scaling of the
maximum mass MGR

max ∼
ffiffiffi
λ

p
M3

P=m
2 from qualitative arguments.

8See Ref. [87] and Appendix B for a detailed derivation of this
equation of state. The hydrodynamic description of boson stars
with a repulsive self-interaction in the TF limit has been studied
in detail by Chavanis and Harko [86] in the framework of the
Oppenheimer-Volkoff equations.

9Real massless SFs coupled to Einstein gravity were first
considered by Bergmann and Leipnik [95] and Yilmaz [96]
(see also [97]). They are known to admit exact static solutions
which were discovered by Buchdahl [98] for a special case. In the
framework of the Jordan-Brans-Dicke-Thiry theory, these solu-
tions already appeared in Ref. [99] and correspond to those found
by Majumdar [100] for the Einstein-Maxwell system. Later,
the solutions discovered by Buchdahl [98] were rederived by
Wyman [101] (see also [102,103]) and generalized to spacetimes
of arbitrary dimensions by Xanthopoulos and Zannias [104].

10Note that particle number conservation is approximately
restored in the nonrelativistic limit so that Newtonian boson stars
made of a real SF, like dilute axion stars, become stable in that
limit [109,110].
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on a long timescale (which can nevertheless exceed the age of the Universe), these “oscillatons” are unstable and disperse to
infinity or form a black hole.
Nontopological solitons [12–14,54,55,60,61,113–137] may be regarded as the nongravitational precursors of boson stars.11

For a specificHiggs-type self-interaction potentialVðφÞ, they are localized solutions of a nonlinearKGequation in flat spacetime.
These solitonsweremeant to represent elementary particles extending in space (i.e., particleswith a structure), pursuing the initial
goal of Einstein andRosen [7–9],Menius andRosen [10], Finkelstein et al. [11,12,15], Dirac [150–153], and deBroglie [154]. In
flat spacetime, according to Derrick’s theorem [118], no stable time-independent solution of finite energy exists for a nonlinearly
coupled real SF in dimension larger than 1. Nontopological solitons may, however, have a very long lifetime if their rate of
dissolution is small [119]. Objects similar to nontopological solitons are calledQ balls [155], fermionQballs [156–159], neutrino
balls [160], and quark nuggets [161] in the case of spinors.Q balls [155] are stabilized by their conserved chargeQ. Bound further
by their self-gravity, Q stars [156–159] may model neutron stars with a mass larger than ∼3M⊙. Other SFs arise from axion
[162–166], inflaton or dilaton fields [167] with their corresponding compact objects axion stars [81,163,168] and dilaton stars
[167]. The dilaton field arises in the process of aKaluza-Klein–type dimensional reduction of supergravity or superstringmodels.
These real SFs couple to gravity similarly to the Brans-Dicke field of scalar-tensor theories. The dilaton stars [167] are stable
because of a conserved dilaton current and charge in such models. In an extended model [169] with Higgs field and dilaton
coupling, there occur, however, unstable branches with diverging mass for high central values of the Higgs field. Nonsingular,
time-dependent, spherically symmetric solutions of nonlinear SF theories were constructed in [170–173] and called pulsons
[170,171] or oscillons [172,173]. They characterize 3D nongravitational self-interacting real SFs described by the KG equation.
Although unstable, they are extremely long-lived. Spherically symmetric solutions (including excited states) of the KG equations
for a real or complex SF in a prescribed Schwarzschild, de Sitter, or Friedmann-Lemaître-Robertson-Walker metric were
constructed in Refs. [54,61,72,174–177] in the context of black holes, particle physics, and cosmology. More recently, Rosen
[178,179] revived his old idea of an elementary particle built out of SFs within the framework of the KG or Proca equations
coupled to the Einstein equations.12 He developed amodel of particles (interpreted as gravitational solitons) closely related to the
model of boson stars, being apparently unaware of the vast literature on this subject.13 In a sense, Wheeler’s geon concept has

11The KG equation with an attractive jφj4 self-interaction was introduced by Finkelstein et al. [12] and by Rosen and Rosenstock [13,14]
(see Schiff [138,139] and Malenka [140] for the case of a repulsive φ4 self-interaction in the context of nonlinear meson theory for heavy
nuclei; see also Goldstone [141], Higgs [78], and Nielsen and Olesen [142] for a Mexican hat potential withm2 < 0 and λ > 0). The sine-
Gordon equation was introduced by Petiau [114], Skyrme [115,116], and Enz [117] in the context of particle physics (see also the analogy
with Bloch walls in magnetic crystals [143] and the motion of a slide dislocation in a crystalline structure [144–147]). The name “sine-
Gordon equation” first appeared in Ref. [127] and was coined by Kruskal (it is more precise than the name “nonlinear KG equation” [126]).
The concept and the name “soliton” were introduced by Zabusky and Kruskal [148] in the context of the Korteweg–de Vries (KdV)
equation [149]. The analogy between the sine-Gordon equation and the KdV equation was first pointed out by Rubinstein [127].

12See also the concept of Proca stars introduced in [180,181].
13It is fascinating to realize that the KG equation coupled to the Maxwell and Einstein equations have been introduced independently by

different communities to describe either boson stars in astrophysics (with the usual gravitational constantG) or elementary particles (with a
modified gravitational constantGf). Thiswas foreseenbyEinstein [7] in 1919: “There are reasons for thinking that the elementary formations
which go tomake up the atomare held together by gravitational forces.”Models of extended elementary particles have been constructed from
theMaxwell equationswith Poincaré stress [153,182–186], nonlinearMaxwell equations [187–190],Maxwell-Einstein equations [6,7,191],
KG-Maxwell equations [9–11], (multifield) self-interacting KG equations [12–14,54,55,60,61,113–137], (massless) self-interacting Dirac
equations [12,15,59,113,128,192–202], Dirac-Maxwell equations [203–207], KG-Maxwell-Einstein equations [3,208–210], (multifield)
self-interacting KG-Maxwell equations [209,211–213], self-interacting Dirac-Maxwell equations [214–216], self-interacting Dirac-KG
equations [131,217], self-interacting Dirac-KG-Maxwell equations [218], self-interacting KG-Einstein equations [53,219–221], KG-
Einstein equations [72,178], Einstein-Maxwell equations for a charged fluidwith a vacuumequationof stateP ¼ −ϵ [222–226],Yang-Mills-
Einstein equations [227,228], Proca equations [179], Weyl equations [229], Dirac-Einstein equations [230], Dirac-Maxwell-Einstein
equations [231,232], self-interacting (Higgs) KG-Maxwell-Einstein equations [233], and gravitational Dirac-Maxwell [234] equations. In
Maxwell’s theory of electromagnetism, charged particles appear as singularities in the field. The field equations breakdownat singular points,
and so separate equations of motion have to be prescribed for the particles. Einstein and Infeld [235] emphasized that a proper field theory
knows only fields and not particles and that particles should only emerge from the fields themselves. They write: “Could we not reject the
concept of matter and build a pure field physics? We could regard matter as the region in space where the field is extremely strong.” In the
unitary field theories listed above, particles appear not as singularities but as small volumes inwhich the energy and the charge of the field are
concentrated. These unitary field models are necessarily nonlinear in order to avoid singularities. All the properties of the particles, such as
their equation of motion, follow from the field equations. Other authors [65–72,191,236–240] developed analogies between elementary
particles and Schwarzschild [241,242], Kerr-Newmann [243–245], and Reissner-Nordström [246,247] black holes. Carneiro [248] writes:
“The strong gravity approach [71–74] tries to derive the hadron properties from a scaling down of gravitational theory, treating particles as
black-hole-type solutions. It is based on the scale invariance of general relativity. With this philosophy, we can think the Universe as a self-
similar structure, with the same physical laws appearing at different scales.” Kodama [220,221] found a stable static, singularity-free, finite
energy solution of theKGE equationswith aϕ4 potential that extends the usual 1Dkink solution [132,133]. The spacetime geometry implied
resembles that of the Einstein-Rosen bridge [8] of the Schwarzschild geometry, i.e., two asymptotically flat spaces connected by a bridge
(a “black soliton” or a kind of wormhole in the sense of Wheeler [6,17–19]).
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anticipated the nonintegrable soliton solutions of classical
nonlinear field theory.We refer to specific reviews on solitons
in particle physics [249–251], soliton stars [252], and boson
stars [253–261] for more information on the subject.
Boson stars associated with a complex SF can be formed

from a dissipationless relaxation process called “gravita-
tional cooling” [262]. This process has a counterpart in
stellar dynamics. Collisionless stellar systems are known to
experience a process of violent relaxation [263] during
which they form a centrally dense core by sending some
stars at large distances in an extended halo. Similarly, a
bosonic cloud will settle to a unique boson star by ejecting
part of the scalar matter.14 Since there is no viscous term
in the KG equation, the radiation of the SF is the only
mechanism. The emission of gravitational waves also
occurs in the absence of spherical symmetry. Boson star
solutions in their ground state or in excited configurations
have been used in the context of dark matter (DM) to fit the
observed rotation curves of dwarf and spiral galaxies (see
the introduction of Ref. [265] for a short review of early
works on this topic). Indeed, if bosons are ultralight, with a
mass m ∼ 10−22 eV=c2, they can form compact objects of
Galactic size (see [266,267] and references therein).15

Therefore, ultralight axions (ULAs) have been invoked
in models of DM halos. In the context of DM, Newtonian
gravity is usually a good approximation, so we can use the
Schrödinger-Poisson or Gross-Pitaevskii-Poisson (GPP)
equations instead of the KGE equations. A Newtonian
boson star is a stationary solution of these equations.
However, models of DM halos based on a pure boson star
solution (soliton) are usually not successful, especially in
the case of large DM halos. Indeed, the mechanism of
gravitational cooling [262] typically leads to a “core-halo”
structure with a quantum core (soliton) in its ground state
surrounded by an extended halo resulting from the quantum
interferences of the excited states. This core-halo structure
has been evidenced in numerical simulations of the
Schrödinger-Poisson equations [268–276] and can be
heuristically explained by an adaptation of Lynden-Bell’s
statistical theory of violent relaxation [263,277] as dis-
cussed in Ref. [264]. The quantum core may solve the core-
cusp problem [278] of the cold dark matter model and the
halo, which is similar to an isothermal or a Navarro-Frenk-
White profile, accounts for the flat rotation curves of the
galaxies. This type of core-halo configuration leads to more
realistic models of DM halos than a pure BEC solution and
has been the subject of intensive research over the last few
years (see, e.g., an exhaustive list of references in [267] and
in the recent reviews [279–286]).

In the nonrelativistic limit, theKGEequations reduce to the
Schrödinger-Poisson equations in the noninteracting limit or
to the GPP equations when the bosons interact through a jφj4
potential.16 Using the Madelung [289] transformation, one
can introduce a hydrodynamic representation of these equa-
tions in the form of compressible Euler equations with an
additional quantum potential. The complete mass-radius
relation of nonrelativistic self-gravitating BECs with repul-
sive or attractive self-interactions was obtained in [265,290],
either exactly by solving the GPP equations numerically, or
analytically (approximately) by using variational methods
based on the minimization of energy at fixed mass and
employing a Gaussian ansatz for the wave function. For
noninteracting bosons, one obtains the mass-radius relation
M ¼ 9.95ℏ2=ðGm2R99Þ [290,291], showing that the radius
of the star decreases as its mass increases [similar to the
mass-radius relation M ¼ 1.49 × 10−3 h6=½G3m3ðμHÞ5R3�
of nonrelativistic white dwarf stars [292]]. For a repulsive
self-interaction, the mass-radius relation is modified at high
masses. In the TF regime, corresponding to M → þ∞,
the star is equivalent to a polytrope of index n ¼ 1, and
the radius of the BEC tends to a minimum value RTF ¼
πðasℏ2=Gm3Þ1=2 [81,265,293–297] independent of its mass.
These latter results were extended in the general relativistic
regime by Chavanis and Harko [86] using a hydrodynamic
approach (see also [298] for a complementary discussion).
This leads to the concept of general relativisticBEC starswith
a maximum mass MGR

max ¼ 0.307ℏc2
ffiffiffiffiffi
as

p
=ðGmÞ3=2 [86]

equivalent to the one found in Ref. [58]. Chavanis and
Harko [86] suggested that, because of their superfluid core,
neutron stars could be considered as BEC stars. Indeed,
neutrons could form Cooper pairs and behave as bosons of
mass 2mn (where mn is the neutron mass). Since the
maximum mass of BEC stars depends on the self-interaction
parameter, it can be larger than the Oppenheimer-Volkoff
limit MOV¼0.376ðℏc=GÞ3=2=m2

n¼0.7M⊙ obtained when
the neutron star is modeled as an ideal Fermi gas. This could
explain certain observations of neutron stars with a mass
∼2M⊙ [299], which cannot be explained with the
Oppenheimer-Volkoff model.
On the other hand, bosons can have an attractive λ

4ℏc jφj4
(λ < 0) self-interaction. This is the case, in particular, for
quantum chromodynamics (QCD) axions with a mass m ∼
10−4 eV=c2 and a negative scattering length as ∼ −5.8 ×
10−53 m (corresponding to a self-interaction constant λ ∼
−7.39 × 10−49 and a decay constant f ¼ 5.82 × 1010 GeV).
Axions are hypothetical pseudo-Nambu-Goldstone bosons

14See [264] for a description of the analogy between gravi-
tational cooling and violent relaxation.

15More massive bosons with a mass 10−22 ≤ m ≤ 10−3 eV=c2
can also form compact objects of Galactic size provided that they
are self-interacting with a dimensionless self-interacting constant
in the range 0 ≤ λ ≤ 10−15 [267].

16The nonrelativistic limit of the KGE equations is discussed
in [20,287,288] for a complex SF and in [109,110] for a real SF.
In the case of a complex SF, the potential that appears in the GP
equation is the same as the potential that appears in the KG
equation. In the case of a real SF, they are usually different (see
Appendices B and C for a detailed discussion).
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of the Peccei-Quinn [300] phase transition associated with a
Uð1Þ symmetry that solves the strong charge parity (CP)
problem of QCD. They are described by a real SF φ with a
cosine self-interaction potential. Axions are possible DM
candidates [301]. Their role in cosmology has been first
investigated in Refs. [302–305]. The cosmological evolution
of axions was considered by Hogan and Rees [162] and Kolb
and Tkachev [163–166]. In the early Universe, self-gravity
between axions can be neglected so they are governed by the
(relativistic) sine-Gordon equation in an expanding back-
ground. Because of the attractive self-interaction, axions
can form miniclusters of mass Maxiton ∼ 10−12M⊙ and size
Raxiton ∼ 109 m called axion miniclusters [162] or “axitons”
[164]. Tkachev [81,168] took self-gravity into account and
considered the possibility to form axion stars by Jeans
instability.17 He assumed a repulsive λ

4ℏc jφj4 (λ > 0) self-
interaction between axions and found a maximum mass
MGR

max ∼
ffiffiffi
λ

p
M3

p=m2 (see footnote 7). However, when the
self-interaction is attractive (λ < 0), the equilibrium state of
axion stars results from the balance between the gravita-
tional attraction, the attractive self-interaction, and the
repulsive quantum potential. There is an equilibrium state
only below a maximum mass MNR

max ¼ 1.012ℏ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p
or MNR

max ¼ 5.073MP=
ffiffiffiffiffijλjp
, which was first identified by

Chavanis [265,281,290]. This is the maximum mass
of dilute axion stars [306]. Note that this maximum
mass is a purely nonrelativistic (NR) result, contrary to
the maximum mass of boson and fermion stars discussed
above, which is due to general relativity (GR). For dilute
QCD axion stars, one findsMNR

max ¼ 6.46 × 10−14M⊙ and a
corresponding radius R�

99 ¼ 227 km, which are on
the order of the mass and size of asteroids (by comparison,
the Kaup mass is MGR

max ¼ 8.46 × 10−7M⊙ and the Kaup
radius is RGR� ¼ 1.19 × 10−2 m). This leads to the notion
of “axteroids.” For ULAs, we can have a much larger
maximummass, on the order of Galactic masses. Its precise
value depends, however, on the values of m and as, which
are not well known. Taking m ¼ 2.92 × 10−22 eV=c2 and
as ¼ −3.18 × 10−68 fm (corresponding to λ ¼ −1.18 ×
10−96 and f ¼ 1.34 × 1017 GeV) predicted in [267], we
get MNR

max ¼ 5.10 × 1010M⊙ and R�
99 ¼ 1.09 pc (by com-

parison, the Kaup mass is MGR
max ¼ 2.90 × 1011M⊙ and the

Kaup radius is RGR� ¼ 0.132 pc). ForM < MNR
max, the mass-

radius relation displays two branches of solutions
[265,290]. There are two possible equilibrium states for
the same mass. The equilibrium states with R > R� are
stable (energy minima) and the equilibrium states with
R < R� are unstable (energy maxima). The stability of
axion stars can be determined by applying the Poincaré
turning point argument [265,290]. The stable solutions

define the branch of dilute axion stars and the mass MNR
max

represents their maximum mass (the unstable solutions
correspond to nongravitational BECs) [265,290]. For
M > MNR

max, there is no equilibrium state and the axion
star collapses [307]. This leads to (i) a bosenova with the
emission of relativistic axions if we take special relativity
into account [308], (ii) a black hole if the conditions
where general relativity prevails are fulfilled [309,310],
or (iii) the formation of a dense axion star [311] if we take
into account higher order terms in the expansion of the
self-interaction potential like, e.g., a repulsive jφj6 self-
interaction [109,312] that can stabilize the star against
gravitational collapse.18 The axion star can also fragment
into several stable pieces (axion “drops”) of mass
M0 < Mmax [318,319], thereby preventing its complete
collapse. We refer to [260,316] and to the Introduction
of [110] for recent reviews on axion stars and for an
exhaustive list of references.
These results have been applied to DM halos made of

ULAs. Bose-Einstein condensate dark matter (BECDM)
halos, also called fuzzy dark matter (FDM) halos or scalar
field DM halos, typically have a core-halo structure made
of a quantum core (soliton) in its ground state surrounded
by an approximately isothermal envelope (atmosphere)
arising from the quantum interferences of excited states
[264,272,320,321]. This core-halo structure results
from a process of gravitational cooling [262] and violent
relaxation [263,277]. The results given in Refs. [265,290]
describe the ground state of a self-gravitating BEC so they
apply either to the “minimum halo” of mass ðMhÞmin∼
108M⊙, which is a completely condensed object without
envelope (atmosphere), or to the quantum core Mc of large
DM halos of mass Mh ≥ ðMhÞmin. A general expression of
the core mass-halo mass relation McðMhÞ for BECDM
halos with an arbitrary self-interaction has been obtained
in [267,321–324] from thermodynamical considerations
(see also [269,271,273,325,326] for other justifications).
The mass Mc of the quantum core increases with the halo
mass Mh. For noninteracting bosons and for bosons with a
repulsive self-interaction, it can be shown that the core mass

17He introduced the names “gravitationally bound axion
condensates” [81] and “axionic Bose stars” [168], becoming
later “axion stars.”

18Visinelli et al. [313] and Eby et al. [314] argue that
relativistic effects are crucial on the branch of dense axion stars
while self-gravity is negligible. As a result, dense axion stars
correspond to “pseudobreathers,” “oscillons,” or “axitons,” which
are described by the sine-Gordon equation (they can be viewed as
the 3D version of usual 1D “breathers” [315]). For a real SF, these
objects are known to be unstable due to a particle number
changing process, such as the 3 → 1 process, and to decay via
emission of relativistic axions. Visinelli et al. [313] and Eby et al.
[314] argue that the decay timescale is much shorter than any
cosmological timescale so that dense axion stars are not physi-
cally relevant. This conclusion is, however, contested by Braaten
and Zhang [316] who argue that dense axion stars can be long-
lived. Note that dense axion stars described by a complex SF
(axion boson stars [317]) would be stable in the relativistic regime
because of charge conservation.
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Mc is always much smaller than the maximum mass MGR
max

set by general relativity, so the quantum core cannot collapse
toward a supermassive black hole (SMBH) [267,323,324].
For bosons with an attractive self-interaction, the core mass
Mc could reach the maximum mass MNR

max of Ref. [265]
in sufficiently large DM halos and collapse [267,323,324].
The outcome of the collapse in that case would be a
dense axion “star” (soliton),19 a black hole, a bosenova,
or axion drops [109,307–314,316,318,319]. The conditions
for this collapse require, however, stronger self-interactions
(f < 1015 GeV) that those (1016 ≤ f ≤ 1018 GeV) com-
monly allowed by particle physics and cosmology (see
[267,306] for more details). Furthermore, since f ≪ MP the
collapse leads to a dense axion star or to a bosenova, not to
a SMBH. These results can also find applications in the
context of inflaton clusters and inflaton stars that could form
in the very early Universe [327–330]. There is a complete
analogy between inflaton clusters and BECDM halos, so that
most of the results obtained for BECDM halos (core-halo
solution, core mass-radius relation, core mass-halo mass
relation, etc.) can be exported to the context of inflaton
clusters. In particular, if the SF has an attractive self-
interaction, inflaton stars can be stable only below the
maximum mass MNR

max of Ref. [265]. Padilla et al. [331]
argued that, above that critical mass, the inflaton star
collapses and forms a black hole. That could be a new
mechanism to form primordial black holes (PBHs) during
the phase of reheating following inflation. However, accord-
ing to the results of Refs. [109,308,311], it is also possible
that the collapse of inflaton stars leads to a bosenova or a
dense inflaton star rather than a black hole. Primordial black
holes of mass ∼1 g can form only in sufficiently massive
inflaton clusters of mass Mh ∼ 1014 g and they rapidly
evaporate on a timescale 10−30 s. We suggest that bosenova
and dense inflaton stars may occur in less massive inflaton

clusters if the bosons have a sufficiently attractive self-
interaction. In addition to the quantum core of DM halos
[267,322–324] and inflaton clusters [331], other applications
of the maximum mass of self-gravitating BECs with an
attractive self-interaction (like dilute axion stars) [265,290]
have been discussed in Refs. [332–339].
In this paper, we provide a simple approximate

analytical expression of the maximum mass of relativistic
self-gravitating BECs with an arbitrary jφj4 self-
interaction. This expression interpolates between the
general relativistic maximum mass of noninteracting
bosons stars, the general relativistic maximum mass of
bosons stars with a repulsive self-interaction in the TF
limit, and the nonrelativistic maximum mass of dilute
axion stars with an attractive self-interaction. It therefore
connects the different expressions obtained in the liter-
ature reviewed above (see Table I for a summary). We
obtain the general structure of our formula from simple
considerations and determine the numerical coefficients in
order to recover the exact asymptotic expressions of the
maximum mass in particular limits. We also show that the
predictions from the Gaussian ansatz are in good agree-
ment with the exact values. As a result, our formula should
provide a relevant approximation of the maximum mass of
relativistic boson stars for any value (positive or negative)
of the self-interaction parameter.
The paper is organized as follows. In Sec. II, we

recall the basic equations describing nonrelativistic self-
gravitating BECs. In Sec. III, we discuss the exact mass-
radius relation of nonrelativistic self-gravitating BECs
obtained by solving the GPP equations numerically.
In Sec. IV, we show that we can obtain an analytical
approximation of the mass-radius relation from an f
ansatz. We determine the coefficients of this relation so
as to recover the exact results in particular limits. In
Sec. V, we recall the expression of the exact maximum
mass of general relativistic BECs obtained by solving
the KGE equations numerically. In Secs. VI and VII, we
obtain an analytical approximation of the maximum mass

TABLE I. Maximum mass Mmax of different types of fermion and boson stars. It is interesting to note that all the
scalings MP, M2

P=m, M3
P=m

2, and M4
P=m

3 are represented. We have also indicated the minimum radius R� and the
maximum compactness Cmax ¼ GMmax=R�c2 of the star. The compactness of a Schwarzschild black hole is
CS ¼ 1=2. The Buchdahl inequality for a barotropic relativistic star imposes C ≤ 4=9 ¼ 0.444. The ratio between
the star radius R and the Schwarzschild radius RS ¼ 2GM=c2 is R=RS ¼ Rc2=ð2GMÞ ¼ 1=ð2CÞ. It is restricted by
the Buchdahl inequality R ≥ ð9=8ÞRS so that a barotropic relativistic star cannot be a black hole.

Mmax R� Cmax R�=RS

White dwarfs [28] 3.10M3
P=ðμHÞ2 0 ∞ 0

Neutron stars [29] 0.384M3
P=m

2 3.35ðℏ3=Gm4cÞ1=2 0.114 4.37
Miniboson (minisoliton) stars [1,2] 0.633M2

P=m 6.03ℏ=mc 0.105 4.76
Massive boson stars [58,86] 0.0612

ffiffiffi
λ

p
M3

P=m
2 0.383

ffiffiffi
λ

p ðℏ3=Gm4cÞ1=2 0.160 3.13
Soliton star [25,56,76,77] M4

P=m
3

Oscillatons (real SF) [111,112] 0.606M2
P=m

Dilute axion stars [265,290] 5.07MP=
ffiffiffiffiffijλjp

1.10
ffiffiffiffiffijλjp ðℏ3=Gm4cÞ1=2 4.61 ðm=MPÞ2=jλj

19By an abuse of language, we will sometimes use the term
axion star to designate the quantum core of axionic DM halos.
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of self-gravitating BECs as a function of the scattering
length as of the bosons for a repulsive or an attractive self-
interaction. We determine the coefficients of this relation so
as to recover the exact results in the noninteracting limit
(as ¼ 0), in the TF limit (for as > 0), and in the non-
relativistic limit (for as < 0). In Sec. VIII, we summarize the
main results of our study. In Sec. IX, we reexpress our results
in terms of the dimensionless self-interaction constant λ or in
terms of the axion decay constant f, and we discuss whether
the collapse of the BEC star above the maximum mass leads
to a black hole or a bosenova. In Sec. X, we apply our results
to DM halos and inflaton clusters and discuss whether the
solitonic core of these systems can become unstable in
realistic situations. We conclude in Sec. XI. The Appendices
provide complements to our main results. In particular, we
develop interesting analogies between self-gravitating BECs
and models of extended elementary particles.

II. NONRELATIVISTIC SELF-GRAVITATING
BECs

In this section, we recall basic results applying to
nonrelativistic self-gravitating BECs at T ¼ 0 described
by the GPP equations (see Refs. [265,290,320] for more
details).

A. Gross-Pitaevskii-Poisson equations

We assume that DM is made of bosons (like the axion)
in the form of BECs at T ¼ 0. We use a nonrelativistic
approach based on Newtonian gravity. The evolution of the
wave function ψðr; tÞ of a self-gravitating BEC is governed
by the GPP equations

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þ 4πasℏ2

m2
jψ j2ψ þmΦψ ; ð1Þ

ΔΦ ¼ 4πGjψ j2; ð2Þ

where Φðr; tÞ is the gravitational potential and m is the
mass of the bosons.20 The mass density of the BEC is
ρðr; tÞ ¼ jψ j2. The first term in Eq. (1) is the kinetic term,
which accounts for the Heisenberg uncertainty principle.
The second term takes into account the self-interaction of
the bosons via a jψ j4 potential [see Eq. (B55)],

Vðjψ j2Þ ¼ 2πasℏ2

m3
jψ j4; ð3Þ

where as is the scattering length of the bosons. The
interaction between the bosons is repulsive when as > 0
and attractive when as < 0. The third term accounts for the
self-gravity of the BEC.

The GPP equations conserve the mass

M ¼
Z

jψ j2dr ð4Þ

and the energy

Etot ¼
ℏ2

2m2

Z
j∇ψ j2drþ 2πasℏ2

m3

Z
jψ j4drþ 1

2

Z
jψ j2Φdr;

ð5Þ

which is the sum of the kinetic energy Θ, the internal
energy U ¼ R Vðjψ j2Þdr, and the gravitational energy W
(i.e., Etot ¼ Θþ U þW).

B. Madelung transformation

Writing the wave function as

ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðr; tÞ

p
eiSðr;tÞ=ℏ; ð6Þ

where ρðr; tÞ is the mass density and Sðr; tÞ is the action,
and making the Madelung [289] transformation

ρðr; tÞ ¼ jψ j2 and u ¼ ∇S
m

; ð7Þ

where uðr; tÞ is the velocity field, the GPP equations (1)
and (2) can be written under the form of hydrodynamic
equations

∂ρ

∂t
þ∇ · ðρuÞ ¼ 0; ð8Þ

∂S
∂t

þ ð∇SÞ2
2m

þQþ 4πasℏ2

m2
ρþmΦ ¼ 0; ð9Þ

∂u
∂t

þ ðu ·∇Þu ¼ −
1

m
∇Q −

1

ρ
∇P −∇Φ; ð10Þ

ΔΦ ¼ 4πGρ; ð11Þ

where

Q ¼ −
ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p ¼ −
ℏ2

4m

�
Δρ
ρ

−
1

2

ð∇ρÞ2
ρ2

�
ð12Þ

is the quantum potential taking into account the Heisenberg
uncertainty principle,

hðρÞ ¼ V 0ðρÞ ¼ 4πasℏ2

m3
ρ ð13Þ

20The derivation of the GPP equations (1) and (2) from the
KGE equations is discussed in Appendices B and C and
references therein.
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is the enthalpy, and

P ¼ ρV 0ðρÞ − VðρÞ ¼ ρ2
�
VðρÞ
ρ

�0
¼ 2πasℏ2

m3
ρ2 ð14Þ

is the pressure arising from the self-interaction of the bosons
VðρÞ ¼ 2πasℏ2ρ2=m3 (see Appendix B). This quadratic
equation of state is a particular polytropic equation of
state P ¼ Kργ of index γ ¼ 2 and polytropic constant
K ¼ 2πasℏ2=m3. The hydrodynamic equations (8)–(11)
are called the quantum Euler-Poisson equations.
Equation (8) is the continuity equation, Eq. (9) is the
quantum Hamilton-Jacobi (or Bernoulli) equation,
Eq. (10) is the quantum Euler equation, and Eq. (11) is
the Poisson equation. In the TF limit where the quantum
potential Q can be neglected (formally ℏ ¼ 0),21 they
become equivalent to the classical Euler-Poisson equations
for a barotropic gas [340].
The quantum Euler equations conserve the mass

M ¼
Z

ρdr ð15Þ

and the energy

Etot ¼ Θc þ ΘQ þU þW; ð16Þ
which is the sum of the classical kinetic energy

Θc ¼
Z

ρ
u2

2
dr; ð17Þ

the quantum kinetic energy

ΘQ ¼ ℏ2

8m2

Z ð∇ρÞ2
ρ

dr ¼ 1

m

Z
ρQdr; ð18Þ

the internal energy

U ¼
Z

VðρÞdr ¼
Z

ρ

Z
ρ Pðρ0Þ

ρ02
dρ0dr ¼

Z
2πasℏ2

m3
ρ2dr;

ð19Þ
and the gravitational energy

W ¼ 1

2

Z
ρΦdr: ð20Þ

At equilibrium, the classical (macroscopic) kinetic energy
vanishes and we get

Etot ¼ ΘQ þU þW: ð21Þ

C. Equilibrium states

A stationary solution of GPP equations is of the form

ψðr; tÞ ¼ ϕðrÞe−iEt=ℏ; ð22Þ

where ϕðrÞ ¼ ffiffiffiffiffiffiffiffiffi
ρðrÞp

and E are real. Substituting Eq. (22)
into Eqs. (1) and (2), we obtain the eigenvalue problem

−
ℏ2

2m
Δϕþ 4πasℏ2

m2
ϕ3 þmΦϕ ¼ Eϕ; ð23Þ

Δϕ ¼ 4πGϕ2; ð24Þ

determining the eigenfunctions ϕnðrÞ and the eigenvalues
En. For the fundamental mode (the one with the lowest
energy) the wave function ϕðrÞ is spherically symmetric
and has no node so that the density profile decreases
monotonically with the radial distance. Dividing Eq. (23)
by ϕ and using ρ ¼ ϕ2, we obtain the identity

Qþ 4πasℏ2

m2
ρþmΦ ¼ E; ð25Þ

which can also be obtained from the quantum
Hamilton-Jacobi (or Bernoulli) equation (9) by setting
S ¼ −Et.
Equivalent results can be obtained from the hydrody-

namic equations (8)–(11). Indeed, the condition of quantum
hydrostatic equilibrium, corresponding to a steady state of
the quantum Euler equation (10), reads

ρ

m
∇Qþ∇Pþ ρ∇Φ ¼ 0: ð26Þ

Dividing Eq. (26) by ρ and integrating the resulting
expression with the help of Eq. (14), we recover Eq. (25),
where E appears as a constant of integration. On the other
hand, combining Eq. (26) with the Poisson equation (11),
we obtain the fundamental differential equation of quantum
hydrostatic equilibrium

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−
4πasℏ2

m3
Δρ ¼ 4πGρ: ð27Þ

This equation describes the balance between the quantum
potential taking into account the Heisenberg uncertainty
principle, the pressure due to the self-interaction of the
bosons, and the self-gravity.
These results can also be obtained from an energy

principle. Indeed, one can show (see Appendix B of [267])
that (i) an equilibrium state of the GPP equations is an
extremum of energy Etot at fixed mass M and that (ii) an
equilibrium state is stable if, and only if, it is a minimum of

21We note that ℏ appears in the quantum potential Q and in the
self-interaction constant g ¼ 4πasℏ2=m3. The TF limit (corre-
sponding to ℏ → 0 with fixed 4πasℏ2=m3) amounts to neglecting
Q but not g.
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energy at fixedmass.We are led, therefore, to considering the
minimization problem

minfEtot j M fixedg: ð28Þ
Writing the variational problem for the first variations
(extremization problem) as

δEtot −
μ

m
δM ¼ 0; ð29Þ

where μ (global chemical potential) is a Lagrange multiplier
taking into account the mass constraint, we obtain u ¼ 0 and

Qþ 4πasℏ2

m2
ρþmΦ ¼ μ: ð30Þ

This relation is equivalent to Eq. (25) provided that we
make the identification E ¼ μ. Therefore, the eigenenergy E
coincides with the global chemical potential μ. Equation (30)
is also equivalent to the condition of quantum hydrostatic
equilibrium (26). Therefore, an extremum of energy at
fixed mass is an equilibrium state of the GPP equations.
Furthermore, among all possible equilibria, only minima of
energy at fixedmass are dynamically stablewith respect to the
GPP equations (maxima or saddle points are linearly unsta-
ble). The stability of an equilibriumstate canbe establishedby
studying the sign of the second variations of energy or by
solving an equation of pulsations. These methods are equiv-
alent and lead to a complicated eigenvalue problem (see
Appendix B of [267]). The stability of an equilibrium state
can also be directly established, without having to solve an
eigenvalue problem, by plotting the series of equilibria and
using the Poincaré [46,47] turning point criterion applied to
the curve μðMÞ, the Wheeler [30] theorem applied to the
curveMðRÞ, or theWhitney theorem [44] applied to the curve
EtotðMÞ (see Refs. [109,265,290] for a specific application of
these methods to the case of axion stars).

III. EXACT MASS-RADIUS RELATION OF
NONRELATIVISTIC SELF-GRAVITATING BECs

The fundamental equation (27) of quantum hydrostatic
equilibrium for a self-gravitating BEC has been solved
numerically (exactly) in our previous paper [290] for an
arbitrary jψ j4 self-interaction (repulsive or attractive). The
nodeless solution describes a compact gravitational quan-
tum object (soliton/BEC) in its ground state. From this
solution, we have determined the exact mass-radius relation
of nonrelativistic BEC stars (see Figs. 1 and 2 below). Here,
we recall some exact results obtained in particular limits
that will be useful in the following.

A. Noninteracting bosons

For noninteracting bosons (as ¼ 0), the equation of
quantum hydrostatic equilibrium (27) reduces to

ℏ2

2m2
Δ
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�

¼ 4πGρ: ð31Þ

It can be solved numerically to obtain the density profile.
The mass-radius relation is given by [290,291]

M ¼ 9.95
ℏ2

Gm2R99

; ð32Þ

where R99 represents the radius containing 99% of the
mass (the density profile extends to infinity, so it has not
a compact support). The mass decreases as the radius
increases. The equilibrium states are all stable.
Remark.—The scaling of the mass-radius relation (32)

can be understood by writing that the radiusR of the BEC is
on the order of the de Broglie wavelength of the bosons
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R

99

0

50

100

150

M

a
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TF limit

NI limit

(S)

FIG. 1. Mass-radius relation of self-gravitating BECs with
as > 0 [full line, exact result [290]; dotted line, Gaussian ansatz
[265]; dashed line, fit from Eq. (53) with a ¼ 9.946 and b ¼ π].
The mass is normalized by Ma ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Gmas

p
and the radius by

Ra ¼ ðasℏ2=Gm3Þ1=2.
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FIG. 2. Mass-radius relation of self-gravitating BECs with
as < 0 [full line, exact result [290]; dotted line, Gaussian ansatz
[265]; dashed line, fit from Eq. (53) with a ¼ 11.1 and b ¼ 5.5].
The mass is normalized by Ma ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p
and the radius by

Ra ¼ ðjasjℏ2=Gm3Þ1=2.
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λdB ¼ ℏ=ðmvÞ constructed with the virial velocity
v ∼ ðGM=RÞ1=2.

B. Bosons with a repulsive self-interaction

For bosons with a repulsive self-interaction (as > 0), the
exact mass-radius relation is represented in Fig. 1. The
mass decreases as the radius increases. In the TF limit
M ≫ Ma ¼ ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Gmas

p
, where the quantum potential can

be neglected, the system is equivalent to a polytrope of
index γ ¼ 2. The equation of quantum hydrostatic equi-
librium (27) reduces to

Δρþ Gm3

asℏ2
ρ ¼ 0: ð33Þ

This equation is equivalent to the Lane-Emden equation of
index n ¼ 1 [292]. It can be solved analytically leading to a
density profile of the form22

ρðrÞ ¼ ρ0RTF

πr
sin

�
πr
RTF

�
: ð34Þ

In the TF limit, the equilibrium states have a unique radius
given by [81,265,293–297]

RTF ¼ π

�
asℏ2

Gm3

�
1=2

; ð35Þ

which is independent of their massM. This is the minimum
radius of self-gravitating BECs with a repulsive self-
interaction. In the noninteracting (NI) limit M ≪ Ma ¼
ℏ=

ffiffiffiffiffiffiffiffiffiffiffiffi
Gmas

p
and R ≫ RTF, we recover Eq. (32).

Remark.—Let us recall some basic results valid in the
TF limit [265] that we shall need later. The central density
of the self-gravitating BEC is determined by its mass
according to

ρ0 ¼
πM
4R3

TF
: ð36Þ

Its total energy is

Etot ¼ −
GM2

2RTF
: ð37Þ

When slightly displaced from its equilibrium configuration,
the BEC oscillates with a pulsation that is on the order of the
inverse dynamical time (see [265] for more precise results)

tD ∼
1ffiffiffiffiffiffiffiffi
Gρ0

p ∼
�
R3
TF

GM

�
1=2

: ð38Þ

C. Bosons with an attractive self-interaction

For bosons with an attractive self-interaction (as < 0),
the exact mass-radius relation is represented in Fig. 2. The
mass increases as the radius increases, reaches a maximum
value [265,290]

MNR
max ¼ 1.012

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p ð39Þ

at

R�
99 ¼ 5.5

�jasjℏ2

Gm3

�
1=2

; ð40Þ

and decreases. MNR
max is the maximum mass of dilute axion

stars [306]. There is no equilibrium state with M > MNR
max.

In that case, the BEC is expected to collapse [307].
The outcome of the collapse (dense axion star, black
hole, bosenova, axion drops, etc.) is discussed in
[109,307–313,318,319]. For M < Mmax, there are two
possible equilibrium states with the same mass. The
equilibrium states with R > R�

99 are stable and the equi-
librium states with R < R�

99 are unstable. This can be
shown by using the Poincaré criterion, the Wheeler
theorem, the Whitney theorem, or by investigating the
sign of the squared pulsation [109,265,290]. We note that
the maximum mass is connected to the minimum stable
radius by

MNR
max ¼ 5.57

ℏ2

Gm2R�
99

; ð41Þ

which presents the same scaling as Eq. (32).
In the nongravitational (NG) limit M ≪ MNR

max and
R ≪ R�

99, the equation of quantum hydrostatic equilibrium
(27) reduces to

−
ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p þ 4πasℏ2

m2
ρ ¼ E: ð42Þ

This equation is equivalent to the ordinary (nongravita-
tional) GP equation with an attractive self-interaction. It can
be solved numerically to obtain the density profile. The
mass-radius relation is given by (see, e.g., [290])

M ¼ 0.275
mR99

jasj
: ð43Þ

These equilibrium states are unstable. In the NI limit
M ≪ MNR

max and R ≫ R�
99, we recover Eq. (32). These

equilibrium states are stable.

22This analytical solution was first given by Ritter [341] in the
context of self-gravitating polytropic spheres. It was previously
used by Laplace [342] to model the Earth’s interior (see foot-
note 10 in [267]).
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IV. APPROXIMATEMASS-RADIUS RELATION OF
NONRELATIVISTIC SELF-GRAVITATING BECs

FROM THE f ANSATZ

In Ref. [265], using a Gaussian ansatz for the wave
function, we have obtained an approximate analytical
expression of the mass-radius relation of self-gravitating
BECs. In Ref. [267], we have shown that the form of this
relation is independent of the precise shape of the wave
function. The shape of the wave function just determines
the coefficients entering in this relation. We have then
proposed to determine these coefficients by matching the
asymptotic expressions of the analytical (approximate) mass-
radius relation with the asymptotic expressions of the exact
(numerical)mass-radius relationobtained in [290].Webriefly
recall this procedure below.

A. f ansatz

Stable BEC stars (axion stars or the quantum core of
BECDM halos) correspond to minima of energy Etot at
fixed mass M. We can obtain an approximate analytical
form of the mass-radius relation by making an ansatz
for the wave function.23 To be as general as possible, we
consider an ansatz of the form (that we call f ansatz)

ρðr; tÞ ¼ M
RðtÞ3 f

�
r

RðtÞ
�
; ð44Þ

where fðxÞ is an arbitrary (physical) function. We imposeR
fðxÞdx ¼ 1 to satisfy the normalization condition (or the

conservation of mass). On the other hand, the gravitational
potential can be determined from the Poisson equation (11).
Using Eq. (44), we obtain

Φðr; tÞ ¼ GM
RðtÞ g

�
r

RðtÞ
�
; ð45Þ

where gðxÞ is the solution of

Δg ¼ 4πfðxÞ: ð46Þ
We can now use the ansatz (44)–(46) to determine the
different functionals that appear in the energy from
Eq. (16). We find

ΘQ ¼ σ
ℏ2M
m2R2

with σ ¼ 1

8

Z ð∇fÞ2
f

dx; ð47Þ

U ¼ ζ
2πasℏ2M2

m3R3
with ζ ¼

Z
f2ðxÞdx; ð48Þ

W ¼ −ν
GM2

R
with ν ¼ −

1

2

Z
fðxÞgðxÞdx: ð49Þ

If we use a Gaussian ansatz fðxÞ ¼ 1
π3=2

e−x
2

, the values
of the coefficients are σG ¼ 3=4, ζG ¼ 1=ð2πÞ3=2, and
νG ¼ 1=

ffiffiffiffiffiffi
2π

p
[265].

With the ansatz from Eq. (44), the total energy can be
written as

EtotðRÞ ¼ σ
ℏ2M
m2R2

− ν
GM2

R
þ ζ

2πasℏ2M2

m3R3
: ð50Þ

At equilibrium, the condition E0
minðRÞ ¼ 0 (extremum of

energy) gives the mass-radius relation24

−2σ
ℏ2M
m2R3

þ ν
GM2

R2
− 6πζ

asℏ2M2

m3R4
¼ 0 ð51Þ

or, equivalently,

M ¼
2σ
ν

ℏ2

Gm2R

1 − 6πζ
ν

asℏ2

Gm3R2

: ð52Þ

The BEC is stable provided that E00
totðRÞ > 0, which

corresponds to the requirement that the equilibrium state
is a minimum of energy or, equivalently, that the squared
pulsation is positive [265].
We see that the form of the analytical mass-radius

relation is independent of the ansatz. Indeed, it is always
given by

M ¼ a ℏ2

Gm2R

1 − b2 asℏ2

Gm3R2

; ð53Þ

where only the values of the coefficients a and b depend on
the ansatz. Following Ref. [267], we shall determine the
coefficients a and b so as to recover the exact mass-radius
relation in some particular limits. We finally note that the
mass-radius relation can be written under the normalized
form

M
Ms

¼
Rs
R

1 ∓ ðRs
R Þ2

; ð54Þ

with Rs ¼ bðjasjℏ2=Gm3Þ1=2 andMs ¼ ða=bÞℏ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p
(the upper sign corresponds to a repulsive self-interaction
and the lower sign to an attractive self-interaction).
Remark.—With the Gaussian ansatz, we get a�G¼

2σG=νG¼3.76 and b�G¼ð6πζG=νGÞ1=2¼1.73. However,
below, we shall identify the radius R with R99, not with
the radius R of the f ansatz defined in Eq. (44). Since
R99 ¼ 2.38167R with the Gaussian ansatz [265], we obtain
aG ¼ 2.38167a�G ¼ 8.96 and bG ¼ 2.38167b�G ¼ 4.12 to

23Here, we restrict ourselves to the equilibrium state, so we just
need to make an ansatz for the density profile. See Sec. 8 of [320]
for a more general study.

24As shown in [265,307,320], the mass-radius relation can also
be obtained from the equilibrium virial theorem or from the
Lagrangian formalism.
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be compared with the more exact values of a and b found
below [see Eqs. (57) and (60)].

B. Noninteracting bosons

For noninteracting bosons (as ¼ 0), the mass-radius
relation from Eq. (53) reduces to

M ¼ a
ℏ2

Gm2R
: ð55Þ

If we identify R with the radius R99 containing 99% of the
mass and compare Eq. (55) with the exact mass-radius
relation of noninteracting self-gravitating BECs from
Eq. (32), we get a ¼ 9.946.
Remark.—The density profile of a noninteracting self-

gravitating BEC (soliton) is often fitted by the empirical
profile introduced by Schive et al. [268,269]. In
Ref. [321], we have shown that a Gaussian profile [265],
which is simpler, also fits the soliton quite well up to the
halo radius (see Fig. 2 of [321]). A Gaussian profile
with the mass-radius relation from Eq. (53) may also
provide a convenient approximation of the density profile
of self-gravitating BECs with repulsive or attractive
self-interaction.

C. Repulsive self-interaction

For bosons with a repulsive self-interaction (as > 0), in
the TF limit (ℏ → 0 with fixed g ¼ 4πasℏ2=m3), the mass-
radius relation from Eq. (53) reduces to

R ¼ b

�
asℏ2

Gm3

�
1=2

: ð56Þ

If we identify R with the radius at which the density
vanishes and compare Eq. (56) with the exact radius of self-
gravitating BECs in the TF limit from Eq. (35), we get
b ¼ π. On the other hand, in the noninteracting limit,
we recover the result from Eq. (55) leading to a ¼ 9.946.
We shall adopt these values of a and b in the repulsive case
(see Fig. 1 for a comparison with the exact result).
Therefore, we take

a ¼ 9.946; b ¼ π ðrepulsiveÞ: ð57Þ

D. Attractive self-interaction

For bosons with an attractive self-interaction (as < 0),
the mass-radius relation from Eq. (53) displays a maximum
mass

Mmax ¼
a
2b

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p at R� ¼ b

�jasjℏ2

Gm3

�
1=2

: ð58Þ

They are connected by

Mmax ¼
a
2

ℏ2

Gm2R�
: ð59Þ

If we identify R� with the radius ðR�Þ99 containing 99% of
the mass and compare Eq. (58) with the exact values of
the maximum mass and of the corresponding radius from
Eqs. (39) and (40), we get b ¼ 5.5 and a=2b ¼ 1.012,
leading to a ¼ 11.1. We shall adopt these values in the
attractive case (see Fig. 2 for a comparison with the exact
result). Therefore, we take

a ¼ 11.1; b ¼ 5.5 ðattractiveÞ: ð60Þ
We note that the value a ¼ 11.1 obtained from the
maximum mass is relatively close to the value a ¼ 9.946
obtained in the noninteracting limit (see Sec. IV B). In the
nongravitational limit, the mass-radius relation from
Eq. (53) reduces to

M ¼ a
b2

mR
jasj

: ð61Þ

The value a=b2 ¼ 0.367 obtained from the maximum mass
is relatively close to the exact value 0.275 from Eq. (43).
This is a consistency check.

V. EXACT MAXIMUM MASS OF BOSON STARS
DUE TO GENERAL RELATIVITY

In this section, we recall the expression of the maximum
mass of general relativistic BECs (boson stars) at T ¼ 0
described by the KGE equations. Above that maximum
mass, the system collapses toward a black hole.

A. Noninteracting bosons

The maximum mass and the minimum radius of a
noninteracting boson star set by general relativity are [1,2]

MGR
max ¼ 0.633

ℏc
Gm

; RGR� ¼ 6.03
ℏ
mc

: ð62Þ

They satisfy the relation

RGR� ¼ 9.53
GMmax

c2
: ð63Þ

The compactness at the maximum mass is C≡GMmax=
RGR� c2 ¼ 0.105.25 These scalings can be obtained as

25We have adopted the value of the radius RGR� ¼ 6.03ℏ=mc
given by Seidel and Suen [35]. This is the radius containing 95%
of the mass. The radius containing 99% of the mass is larger,
implying a smaller compactness. For example, Choi et al. [343]
consider the radius containing 99% of the mass and find a
maximum compactness C ≃ 0.08 (see also [344]). This yields
RGR� ¼ 7.91ℏ=mc.

MAXIMUM MASS OF RELATIVISTIC SELF-GRAVITATING … PHYS. REV. D 107, 103503 (2023)

103503-13



explained in Appendix B.2 of [265] (see also Secs. VI
and VII). The Kaup radius is on the order of the Compton
wavelength of the boson.

B. Repulsive self-interaction in the TF limit

The maximum mass and the minimum radius of a boson
star with a repulsive jφj4 self-interaction in the TF limit set
by general relativity are [58,86]

MGR
max ¼ 0.307

ℏc2
ffiffiffiffiffi
as

p
ðGmÞ3=2 ; R� ¼ 1.92

�
asℏ2

Gm3

�
1=2

: ð64Þ

They satisfy the relation

RGR� ¼ 6.25
GMmax

c2
: ð65Þ

The compactness at the maximum mass is C≡GMmax=
RGR� c2 ¼ 0.16 [86]. These scalings can be obtained as
explained in Appendix B 3 of [265] (see also Sec. VI). The
critical radius R� is of the same order as the minimum
radius RTF of a nonrelativistic self-interacting BEC in the
TF approximation (see Sec. III B).
Remark.—In the TF limit, a self-interacting complex SF

is equivalent to a fluid with a barotropic equation of state
PðϵÞ determined by the potential Vðjφj2Þ (see Appendix B).
In the case of a repulsive jφj4 self-interaction [see
Eq. (B76)], the equation of state is given by Eq. (B83).
The mass-radius relation of the boson star, and its maxi-
mum mass (64), may therefore be obtained by solving the
Oppenheimer-Volkoff equation of hydrostatic equilibrium,
as done in Ref. [86], instead of solving the KGE equations,
as done in Ref. [58].

VI. RELATIVISTIC CORRECTIONS AS WE
APPROACH THE SCHWARZSCHILD RADIUS

A relativistic star becomes dynamically unstable
when its radius approaches the Schwarzschild radius
RS ¼ 2GM=c2 [41]. The condition R ∼ RS combined with
the nonrelativistic mass-radius relation of the star deter-
mines the order of magnitude of its maximum mass MGR

max
due to general relativity (see Appendix B of [265]). Let us
apply this argument to BEC stars (see Figs. 3 and 4 for an
illustration).
Substituting R ¼ kGM=c2 with k ∼ 1 into Eq. (53),

we obtain after simplification

Mmax ¼
�
a
k

�
1=2 ℏc

Gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

ak
asc2

Gm

r
: ð66Þ

This equation is of the form

Mmax ¼ A
ℏc
Gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B

asc2

Gm

r
; ð67Þ

with A ¼ ða=kÞ1=2 and B ¼ b2=ak. The radius correspond-
ing to the maximum mass is

R� ¼
kGMmax

c2
: ð68Þ

Substituting Eqs. (66) and (67) into Eq. (68), we get

R� ¼
ffiffiffiffiffi
ka

p ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

ak
asc2

Gm

r
ð69Þ

and

R� ¼ kA
ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B

asc2

Gm

r
: ð70Þ
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FIG. 3. Graphical construction determining the maximum mass
of self-gravitating BECs with as > 0 due to general relativity.
We use the normalization of Fig. 1. The maximum mass Mmax is
qualitatively obtained by taking the intersection between the
mass-radius relation MðRÞ of Newtonian BECs and the
Schwarzschild line R ¼ kGM=c2 (in scaled variables its slope
is kGm=jasjc2).

0 10 20 30 40 50
R

99

0

0.2

0.4

0.6

0.8

1

1.2

M

a
s
 < 0

M
max

M
max

(U)

(S)(U)

(S)

|a
s
| << Gm/c

2

|a
s
| >> Gm/c

2

FIG. 4. Same as Fig. 3 for as < 0. An intersection exists only
when jasjc2=Gm is sufficiently small (see the main text for
details). When jasjc2=Gm is large, the maximum mass is given
by the nonrelativistic limit (39) or by relativistic corrections in the
quantum potential (see Sec. VII).
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If we define the compactness of the relativistic star at the
maximum mass by

C ¼ GMmax

R�c2
; ð71Þ

we obtain

C ¼ 1

k
: ð72Þ

By construction, our approximations assume that the
compactness is independent of the value of as. Of course,
this is not rigorously true. However, this is a reasonable
approximation, as we can see by considering the exact
values of the compactness of boson stars in two extreme
limits (see Sec. V), namely, the noninteracting limit
(C ¼ 0.105) and the TF limit (C ¼ 0.16).
We shall now determine the values of A and B in Eq. (67)

in order to match the exact results from Secs. VA and V B.

A. Noninteracting limit

In the noninteracting limit (as ¼ 0), Eqs. (66)–(70)
reduce to

Mmax ¼
�
a
k

�
1=2 ℏc

Gm
¼ A

ℏc
Gm

ð73Þ

and

R� ¼
ffiffiffiffiffi
ka

p ℏ
mc

¼ kA
ℏ
mc

: ð74Þ

This returns the maximummass (62) of miniboson stars [1].
Comparing Eqs. (73) and (74) with Eqs. (62) and (63), we
get A ¼ 0.633 and k ¼ 1=C ¼ 9.53.
Remark.—With these values of A and k we obtain a ¼

kA2 ¼ 3.82 instead of the value a ¼ 9.946 (or aG ¼ 8.96)
computed in Sec. IV.

B. TF limit

For boson stars with a repulsive self-interaction in the TF
limit (ℏ → 0 with fixed g ¼ 4πasℏ2=m3), Eqs. (66)–(70)
reduce to

Mmax ¼
b
k

�
asℏ2c4

G3m3

�
1=2

¼ A
ffiffiffiffi
B

p �
asℏ2c4

G3m3

�
1=2

ð75Þ

and

R� ¼ b

�
asℏ2

Gm3

�
1=2

¼ kA
ffiffiffiffi
B

p �
asℏ2

Gm3

�
1=2

: ð76Þ

This returns the maximum mass (64) of massive boson
stars [58,86]. Note that R� is independent of k. Comparing
Eqs. (75) and (76) with Eqs. (64) and (65), we get A

ffiffiffiffi
B

p ¼
0.307 and k ¼ 1=C ¼ 6.25. Taking A ¼ 0.633 from
Sec. VI A, we get B ¼ 0.235.
Remark.—With these values of A and k we obtain

a ¼ kA2 ¼ 2.50 and b ¼ kA
ffiffiffiffi
B

p ¼ 1.92 instead of the
values a¼9.946 and b¼π (or aG¼8.96 and bG ¼ 4.12)
computed in Sec. IV.

C. Interpolation formulas

Using the previous results, we can obtain simple inter-
polation formulas for the maximum mass and minimum
radius of boson stars. We shall take

A ¼ 0.633; B ¼ 0.235; k ¼ 6.25: ð77Þ

In this manner, the asymptotic expressions of the maximum
mass are exact. The value of the radius is also exact in the
TF limit. By contrast, the value of the radius is not exact
(but approximately correct) for noninteracting bosons
because of the slow change of compactness with the
self-interaction, which is not taken into account in our
approach. We propose therefore the interpolation formulas

Mmax ¼ 0.633
ℏc
Gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.235

asc2

Gm

r
; ð78Þ

R� ¼ 3.96
ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.235

asc2

Gm

r
: ð79Þ

We note that these expressions are defined only for
as > −4.25Gm=c2 (see Fig. 4). This suggests that the
present treatment is only reliable for positive values of the
scattering length. This is because the maximum mass of
boson stars with an attractive self-interaction (as < 0) is
essentially a nonrelativistic result [265]. Therefore, rela-
tivistic corrections in the maximum mass do not come
from the fact that the radius of the star approaches the
Schwarzschild radius, but rather from relativistic correc-
tions arising in the quantum potential as discussed in
Sec. VII below.
For as → 0, Eqs. (78) and (79) reduce to

Mmax ≃ 0.633
ℏc
Gm

�
1þ 0.118

asc2

Gm

�
; ð80Þ

R� ≃ 3.96
ℏ
mc

�
1þ 0.118

asc2

Gm

�
: ð81Þ
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D. Improved interpolation formulas

We can improve the preceding interpolation formulas by
allowing the parameter B to be different in the expressions
(67) and (70) determining the maximum mass and the
corresponding radius. We write

Mmax ¼ A
ℏc
Gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B

asc2

Gm

r
; ð82Þ

R� ¼ A0 ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B0 asc

2

Gm

r
; ð83Þ

and we determine the constants A, B, A0, and B0 so as to
reproduce the exact asymptotic behaviors from Eqs. (62)
and (64). In this manner, we obtain

A¼0.633; B¼0.235; A0 ¼6.03; B0 ¼0.101; ð84Þ
leading to

Mmax ¼ 0.633
ℏc
Gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.235

asc2

Gm

r
; ð85Þ

R� ¼ 6.03
ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.101

asc2

Gm

r
: ð86Þ

This gives a maximum compactness

C ¼ 0.105

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.235 asc2

Gm

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.101 asc2

Gm

q ; ð87Þ

depending on as, and going from C ¼ 0.105 in the
noninteracting limit as ¼ 0 to C ¼ 0.160 in the TF
limit as → þ∞.

VII. RELATIVISTIC CORRECTIONS IN THE
QUANTUM POTENTIAL

A. Relativistic Hamiltonian

In the weak gravity limit, the relativistic Hamiltonian is
given by H ¼ Rþ∞

0 T0
04πr

2dr, where the time-time com-
ponent T0

0 of the energy-momentum tensor is given by
Eq. (B53). If we introduce the pseudo-wave-function
ψðr; tÞ ¼ e−iEt=ℏϕðrÞ, where E includes relativistic correc-
tions, one can show [343,345] that the Hamiltonian
decomposes into H ¼ Mc2 þHNR þHR, where the first
term is the rest-mass energy (with M ¼ Nm), the second
term is the nonrelativistic Hamiltonian, and the third term is
the relativistic correction to the kinetic energy (or quantum
potential). From Eq. (B53), we see that the kinetic energy is
equal to

Hkin ¼
ℏ2

2m2

Z �
1þ 2Φ

c2

�
j∇ψ j2dr: ð88Þ

Consequently, the relativistic correction to the kinetic
energy is

HR ¼ ℏ2

m2c2

Z
Φj∇ψ j2dr: ð89Þ

Using the hydrodynamic representation of the SF (see
Sec. II B) and ignoring the rest-mass term, which is just a
constant, the total energy taking into account relativistic
corrections in the quantum potential is Etot ¼ ENR þ ER,
where ENR is given by Eq. (16) and

ER ¼ ℏ2

m2c2

Z
ð∇ ffiffiffi

ρ
p Þ2Φdr: ð90Þ

Using the f ansatz of Sec. IV, we obtain

ER ¼ ℏ2GM2

m2c2R3

Z
ð∇ ffiffiffi

f
p

Þ2gdx: ð91Þ

Since the value of the integral is negative, we can write

ER¼−χ
ℏ2GM2

m2c2R3
with χ¼−

Z
ð∇ ffiffiffi

f
p

Þ2gdx>0: ð92Þ

If we use a Gaussian ansatz, we get χG ≃ 0.997 (see
Appendix A).
Combining Eqs. (50) and (92), we find that the total

energy is

EtotðRÞ ¼ σ
ℏ2M
m2R2

− ν
GM2

R
þ ζ

2πasℏ2M2

m3R3
− χ

ℏ2GM2

m2c2R3
:

ð93Þ

Remarkably, the scaling of the relativistic correction ER is
the same as the scaling of the internal energy U arising
from the self-interaction of the bosons (for a jφj4 self-
interaction). As a result, the total energy of a relativistic
BEC star can be rewritten as

EtotðRÞ ¼ σ
ℏ2M
m2R2

− ν
GM2

R
þ ζ

2πasℏ2M2

m3R3

�
1 − κ

Gm
asc2

�
ð94Þ

with

κ ¼ χ

2πζ
: ð95Þ

If we use a Gaussian ansatz, we get κG ¼ 2.50. We see that
the results of the nonrelativistic study [265] remain valid
provided that we make the substitution

as → as

�
1 − κ

Gm
asc2

�
≡ a�s : ð96Þ

PIERRE-HENRI CHAVANIS PHYS. REV. D 107, 103503 (2023)

103503-16



In particular, according to Eqs. (53) and (96), the mass-
radius relation of relativistic BEC stars is

M ¼ a ℏ2

Gm2R

1 − b2 asℏ2

Gm3R2

�
1 − κ Gm

asc2

� : ð97Þ

Since we have used scaled variables, Figs. 1 and 2 remain
the same. We just have to replace as by a�s in the
normalization. There is a critical scattering length

ðasÞc ¼ κ
Gm
c2

¼ κ
rS
2
; ð98Þ

where rS ¼ 2Gm=c2 is the Schwarzschild (gravitational)
radius of the bosons [346]. When as ¼ ðasÞc, the effective
scattering length vanishes (a�s ¼ 0). When as ≥ ðasÞc
(i.e., a�s ≥ 0), the mass-radius relation is monotonic like
in Fig. 1. When as < ðasÞc (i.e., a�s < 0), it displays a
maximum mass like in Fig. 2. Therefore, when relativistic
corrections are taken into account in the quantum potential,
we find the existence of a maximum mass not only when
as < 0 but also when 0 ≤ as < κGm=c2. Using Eqs. (58)
and (96), the maximum mass and the corresponding radius
are given by

Mmax ¼
a
2b

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjas − κ Gm

c2 j
q ; ð99Þ

R� ¼ b

�jas − κ Gm
c2 jℏ2

Gm3

�1=2

: ð100Þ

They can be written as

Mmax ¼ C
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjas − κ Gm
c2 j

q ; ð101Þ

R� ¼ D

�jas − κ Gm
c2 jℏ2

Gm3

�1=2

; ð102Þ

with C ¼ a=2b and D ¼ b.
Remark.—Using the values a ¼ 11.1 and b ¼ 5.5 of

Eq. (60) we obtain C ¼ 1.012 and D ¼ 5.5. Using the
values aG ¼ 8.96 and bG ¼ 4.12 of the Gaussian ansatz,
we find that C ¼ 1.09 and D ¼ 4.12.

B. Noninteracting limit

In the noninteracting limit (as ¼ 0), Eqs. (99)–(102)
reduce to

Mmax ¼
a

2b
ffiffiffi
κ

p ℏc
Gm

¼ Cffiffiffi
κ

p ℏc
Gm

; ð103Þ

R� ¼ b
ffiffiffi
κ

p ℏ
mc

¼ D
ffiffiffi
κ

p ℏ
mc

; ð104Þ

R� ¼
2b2κ
a

GMmax

c2
¼ Dκ

C
GMmax

c2
: ð105Þ

This returns the maximummass (62) of miniboson stars [1].
The compactness at the maximum mass is C ¼ a=ð2b2κÞ ¼
C=ðDκÞ. Comparing Eqs. (103)–(105) with Eqs. (62)
and (63), we get C=

ffiffiffi
κ

p ¼ 0.633 and D
ffiffiffi
κ

p ¼ 6.03.
Remark.— Using the values aG ¼ 8.96, bG ¼ 4.12, and

κG ¼ 2.50 of the Gaussian ansatz, we find that Mmax ¼
0.688ℏc=Gm, R� ¼ 6.51ℏ=mc, and C ¼ 0.106 in good
agreement with the exact values Mmax ¼ 0.633ℏc=Gm,
R� ¼ 6.03ℏ=mc, and C ¼ 0.105 [1]. This is remarkable
because these predictions are obtained without numerical
calculation. In particular, the compactness is predicted
almost exactly. We also find that the relativistic mass-
radius relation is given by [see Eq. (97) with as ¼ 0]

M ¼ a ℏ2

Gm2R

1þ b2κ ℏ2

m2c2R2

: ð106Þ

Its graphical representation can be deduced from Fig. 2
by taking Ma ¼ ℏc=ð ffiffiffi

κ
p

GmÞ and Ra ¼
ffiffiffi
κ

p
ℏ=mc (corre-

sponding to as → a�s ¼ −κGm=c2).

C. Attractive self-interaction

For bosons with an attractive self-interaction (as < 0),
the expression (101) of the maximum mass is defined for
all as. When as → −∞, we obtain

Mmax ¼
a
2b

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p ¼ C
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ; ð107Þ

R� ¼ b

�jasjℏ2

Gm3

�
1=2

¼ D

�jasjℏ2

Gm3

�
1=2

: ð108Þ

This returns the maximum mass (39) of nonrelativistic
dilute axion stars [265]. Comparing Eqs. (107) and (108)
with Eqs. (39) and (40) we get C ¼ 1.012 and D ¼ 5.5.
Combined with the results of Sec. VII B, we see that we
cannot satisfy all the constraints (we have four equations
for three unknowns). The idea is to privilege exact
asymptotic results for the maximum mass with respect
to the radius. Therefore, we will take C ¼ 1.012 and
C=

ffiffiffi
κ

p ¼ 0.633. This gives κ ¼ 2.56 in good agreement
with the value κG ¼ 2.50 obtained from the Gaussian
ansatz. Then, from the results of Sec. VII B, we get
D ¼ 6.03=

ffiffiffi
κ

p ¼ 3.77 and from the results of this section
D ¼ 5.5. The disagreement between these two values is not
too strong. In the following, we shall adopt D ¼ 5.5.
Remark.—Using the values aG ¼ 8.96 and bG ¼ 4.12 of

the Gaussian ansatz, we get Mmax ¼ 1.09ℏ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p
,

R� ¼ 4.12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jasjℏ2=Gm3

p
, and C ¼ 0.264Gm=jasjc2

in good agreement with the exact values
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Mmax ¼ 1.012ℏ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmjasj

p
, R� ¼ 5.5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jasjℏ2=Gm3

p
, and

C ¼ 0.184Gm=jasjc2 [265]. This is remarkable because
these predictions are obtained without numerical calcula-
tion. In particular, the maximum mass is predicted
almost exactly.

D. Repulsive self-interaction

For bosons with a repulsive self-interaction (as > 0), the
expression (101) of the maximum mass is defined only for
as < κGm=c2. In particular, it does not return the maxi-
mum mass of massive boson stars [58,86] from Eq. (64) in
the TF limit (i.e., when as → þ∞). Indeed, the maximum
mass from Eq. (101) diverges when as → κGm=c2 and the
mass-radius relation from Eq. (97) does not display a
maximum mass when as > κGm=c2. This means that
relativistic corrections of strong gravity as we approach
the Schwarzschild radius, besides the relativistic correction
ER of weak gravity in the quantum potential, are important
in that case as discussed in Sec. VI.

E. Interpolation formulas

Using the previous results, we can obtain simple inter-
polation formulas for the maximum mass and minimum
radius of boson stars. We shall take

C ¼ 1.012; D ¼ 5.5; κ ¼ 2.56: ð109Þ

In this manner, the asymptotic expressions of the maximum
mass for as ¼ 0 and as → −∞ are exact. The asymptotic
expression of the corresponding radius is also exact for
as → −∞, while it is only approximate for as ¼ 0. We
propose, therefore, the interpolation formulas

Mmax ¼ 1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjas − 2.56 Gm
c2 j

q ; ð110Þ

R� ¼ 5.5

�jas − 2.56 Gm
c2 jℏ2

Gm3

�1=2

: ð111Þ

We note that these expressions are defined only for
as < 2.56Gm=c2.26 This suggests that the present treatment
is only reliable for negative values of the scattering length.
This is because the maximum mass of boson stars with a
repulsive self-interaction (as ≥ 0) is a general relativistic
result that is essentially due to the fact that the radius of the
system approaches the Schwarzschild radius as shown in

Sec. VI. It is not directly due to relativistic corrections in
the quantum potential.
For as → 0, Eqs. (110) and (111) reduce to

Mmax ≃ 0.633
ℏc
Gm

�
1þ 0.195

asc2

Gm

�
; ð112Þ

R� ≃ 8.8
ℏ
mc

�
1 − 0.195

asc2

Gm

�
: ð113Þ

Comparing Eqs. (112) and (113) with Eqs. (80) and (81),
we see that the expressions coincide approximately for the
maximum mass, while they strongly differ for the radius
because the values of the radius at as ¼ 0 and the signs in
front of the correction asc2=Gm are not the same. This is
why we have privileged the behavior of R� at as → �∞
rather than at as ¼ 0.
Remark.—Using the values aG ¼ 8.96, bG ¼ 4.12, and

κG ¼ 2.50 of the Gaussian ansatz to evaluate the coef-
ficients in Eqs. (99) and (100), we get

Mmax ¼ 1.09
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjas − 2.50 Gm
c2 j

q ; ð114Þ

R� ¼ 4.12

�jas − 2.50 Gm
c2 jℏ2

Gm3

�1=2

: ð115Þ

We stress that these results are obtained from the Gaussian
ansatz without numerical calculation. They are in good
agreement with the interpolation formulas (110) and (111),
which rely on the exact asymptotic expressions of the
maximum mass and minimum radius obtained numerically.

F. Improved interpolation formulas

We can improve the preceding interpolation formulas
by allowing the parameter κ to be different in the expres-
sions (101) and (102) determining the maximum mass and
the corresponding radius. We write

Mmax ¼ C
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjas − κ Gm
c2 j

q ; ð116Þ

R� ¼ D

�jas − κ0 Gmc2 jℏ2

Gm3

�1=2

; ð117Þ

and we determine the constants C, D, κ, and κ0 so as to
reproduce the exact asymptotic behaviors from Eqs. (39),
(40), and (62). In this manner, we obtain

C ¼ 1.012; D ¼ 5.5; κ ¼ 2.56; κ0 ¼ 1.20;

ð118Þ

26The bound as < 2.56Gm=c2 obtained when we consider
relativistic corrections to the quantum potential is “antisymmet-
ric” with respect to the bound as > −4.25Gm=c2 found in
Sec. VI when we consider the criterion based on the Schwarzs-
child radius. This shows that the two approaches are comple-
mentary to each other.
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leading to

Mmax ¼ 1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjas − 2.56 Gm
c2 j

q ; ð119Þ

R� ¼ 5.5
�jas − 1.20 Gm

c2 jℏ2

Gm3

�1=2

: ð120Þ

This gives a maximum compactness

C ¼ 0.184 Gm
c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

as − 2.56 Gm
c2

��
as − 1.20 Gm

c2

�r ; ð121Þ

depending on as, and going from C ¼ 0.105 in the non-
interacting limit as ¼ 0 to C ∼ 0.184Gm=jasjc2 in the
nonrelativistic limit as → −∞.

VIII. SUMMARY OF THE MAIN RESULTS

In this section, we summarize the results obtained
previously for boson stars with repulsive or attractive
self-interaction. The maximum mass, minimum radius,
and maximum compactness are plotted as a function of
the scattering length in Figs. 5–7.
For boson stars with a repulsive self-interaction

(as ≥ 0), we have obtained the following formulas [see
Eqs. (85) and (86)]:

Mmax ¼ 0.633
ℏc
Gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.235

asc2

Gm

r
; ð122Þ

R� ¼ 6.03
ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.101

asc2

Gm

r
; ð123Þ

or, equivalently,

Mmax ¼ 0.307
ℏc2

ffiffiffiffiffi
as

p
ðGmÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4.25

Gm
asc2

s
; ð124Þ

R� ¼ 1.92

�
asℏ2

Gm3

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9.90

Gm
asc2

s
: ð125Þ

These expressions interpolate between the maximum
mass and minimum radius [see Eq. (62)] of noninteracting
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FIG. 5. Maximum massMmax of boson stars normalized by the
Kaup mass MKaup corresponding to noninteracting bosons
(as ¼ 0) [1,2] as a function of the scattering length as of the
bosons normalized by their semi-Schwarzschild radius Gm=c2.
The dashed lines correspond to the TF limit (as → þ∞) [58,86]
and to the nonrelativistic limit (as → −∞) [265].
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FIG. 6. Minimum radius R� of boson stars normalized by the
Kaup radius RKaup as a function of the scattering length as of the
bosons normalized by their semi-Schwarzschild radius Gm=c2.
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FIG. 7. Maximum compactness C ¼ GMmax=R�c2 of boson
stars as a function of the scattering length as of the bosons
normalized by their semi-Schwarzschild radius Gm=c2. The
noninteracting limit (as ¼ 0) corresponds to miniboson stars
(C ¼ 0.105) [1,2], the TF limit (as → þ∞) corresponds to
massive boson stars (C ¼ 0.16) [58,86], and the nonrelativistic
limit (as → −∞) corresponds to dilute axion stars (C → 0)
[265,290,306].
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bosons stars [1,2] and the maximum mass and minimum
radius [see Eq. (64)] of bosons stars with a strong repulsive
self-interaction (TF limit) [58,86]. The maximum mass is
due to general relativity in the strong gravity regime.
We expect these approximate results to be more accurate
for as ≫ rS ¼ Gm=c2 than for as ≪ rS. We see that a
repulsive self-interaction increases the maximum mass
and the minimum radius of noninteracting boson stars.
Therefore, a repulsive self-interaction delays the collapse.
Equations (124) and (125) also give the quantum correc-
tions to the TF approximation used to obtain Eq. (64)
[58,86]. We see that quantum corrections increase the
maximum mass and minimum radius with respect to
the TF approximation. The maximum compactness
C ¼ GMmax=R�c2 can be obtained as a function of the
scattering length as from Eqs. (122)–(125) [see Eq. (87)].
It goes from C ¼ 0.105 in the noninteracting case (as ¼ 0)
to C ¼ 0.16 in the TF limit (as → þ∞).
For boson stars with an attractive self-interaction

(as ≤ 0), like axions, we have obtained the following
formulas [see Eqs. (119) and (120)]:

Mmax ¼ 0.633
ℏc
Gm

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.391 jasjc2

Gm

q ; ð126Þ

R� ¼ 6.03
ℏ
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.833

jasjc2
Gm

r
; ð127Þ

or, equivalently,

Mmax ¼ 1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2.56 Gm
jasjc2

q ; ð128Þ

R� ¼ 5.5

�jasjℏ2

Gm3

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1.20

Gm
jasjc2

s
: ð129Þ

These expressions interpolate between the general relativ-
istic maximum mass and minimum radius [see Eq. (62)]
of noninteracting bosons stars [1,2] and the nonrelativistic
maximum mass and minimum radius [see Eqs. (39)
and (40)] of boson stars with an attractive self-interaction
[265]. The maximummass is due to general relativity in the
strong gravity regime when jasj ≪ rS and to the attractive
self-interaction þ general relativity in the weak gravity
regime when jasj ≫ rS. We expect these approximate
results to be more accurate for jasj ≫ rS ¼ Gm=c2 than
for jasj ≪ rS. We see that an attractive self-interaction
decreases the maximum mass and increases the minimum
radius of noninteracting boson stars. Therefore, an attrac-
tive self-interaction favors the collapse. Equations (128)
and (129) also give the relativistic corrections to the
nonrelativistic results from Eqs. (39) and (40) [265,290].

We see that relativistic corrections reduce the maximum
mass and increase the minimum radius with respect to the
nonrelativistic approximation. The maximum compactness
C ¼ GMmax=R�c2 can be obtained as a function of the
scattering length as from Eqs. (126)–(129) [see Eq. (121)].
It goes from C ¼ 0.105 in the noninteracting case (as ¼ 0)
to C ¼ 0 in the nonrelativistic limit (as → −∞).

IX. BLACK HOLE OR BOSENOVA?

In the previous sections, we have expressed the maxi-
mum mass of boson stars in terms of the scattering length
as of the bosons. In the present section, we reformulate
these results in terms of the dimensionless self-interaction
constant λ or in terms of the axion decay constant f (see
Appendices B and C). Then, we discuss whether the
collapse of the boson star above the maximum mass leads
to a black hole or a bosenova. We introduce relevant
transition scales separating these two regimes.

A. Maximum mass

The dimensionless self-interaction constant and the
axion decay constant (when as < 0) are defined by27

λ

8π
¼ asmc

ℏ
; ð130Þ

f ¼
�

ℏc3m
32πjasj

�
1=2

¼ mc2

2
ffiffiffiffiffijλjp : ð131Þ

In the noninteracting limit, the maximum mass of
boson stars due to general relativity [see Eq. (62)] can
be written as

MGR
max;NI ¼ 0.633

M2
P

m
: ð132Þ

For m ∼ 1 GeV=c2 (nucleon mass), we get MGR
max;NI ∼

8.46 × 10−20M⊙ (miniboson star). The maximum mass
becomes comparable to the solar mass MGR

max;NI ∼M⊙
for m ∼ 10−10 eV=c2.
On the other hand, for boson stars with a repulsive self-

interaction, the maximummass due to general relativity can
be written, in the TF approximation, as [see Eq. (64)]

MGR
max;TF ¼ 0.0612

ffiffiffi
λ

p M3
P

m2
: ð133Þ

27Depending on whether we consider a real or a complex SF,
there may be a multiplicative factor 2=3 in the expression of λ
[see Eq. (C15)]. We adopt here the definitions from Eqs. (130)
and (131) in order to be consistent with our previous papers.
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Following Colpi et al. [58], we introduce the rescaled
dimensionless self-interaction constant

Λ ¼ λ

4π

M2
P

m2
ð134Þ

in terms of which

MGR
max;TF ¼ 0.217

ffiffiffiffi
Λ

p M2
P

m
: ð135Þ

The TF approximation is valid when

Λ ≫ 1 i:e: λ ≫
�

m
MP

�
2

: ð136Þ

Since m ≪ MP, in general, the TF approximation is valid
even when λ ∼ 1 or smaller.28 We see that when Λ ≫ 1 the
maximum mass MGR

max;TF ∼
ffiffiffiffi
Λ

p
M2

P=m of self-interacting
boson stars is much larger than the maximummassMGR

max;NI∼
M2

P=m of noninteracting boson stars. They differ by a factorffiffiffi
λ

p
MP=m. Written under the form MGR

max;TF ∼
ffiffiffi
λ

p
M3

P=m
2,

we see that, when λ ∼ 1, the maximum mass of self-
interacting boson stars is on the order of the
Chandrasekhar mass MChandra ∼M3

P=m
2 for fermion stars.

For m ∼ 1 GeV=c2 (∼ nucleon mass) the maximum mass
MGR

max;TF ∼M⊙ is on the order of the solar mass (massive
boson stars). For m ∼ 1 MeV=c2 (∼ electron mass) the
maximum mass MGR

max;TF ∼ 106M⊙ is on the order of the
mass of SMBHs in AGNs. For m ∼ 100 GeV=c2 (∼ Higgs
mass), we getMGR

max;TF ∼ 10−4M⊙. In all these examples, the
TF approximation is justified because λ ∼ 1 ≫ ðm=MPÞ2 ∼
10−38, 10−44, and 10−34, respectively.
For boson stars with an arbitrary repulsive self-

interaction, we can write the maximum mass [see
Eq. (85)] as

Mmax ¼ 0.633
M2

P

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.117Λ

p
: ð137Þ

When Λ ¼ 0, we recover Eq. (132), and when Λ ≫ 1,
we recover Eq. (135). Interestingly, our analytical for-
mula (137) is consistent with the formula Mmax ¼
ð2=πÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Λ=8
p

M2
P=m obtained by Mielke and Schunck

[257,258] from different considerations.
For axion stars with an attractive self-interaction, the

maximummass due to the self-interaction can be written, in
the nonrelativistic limit, as [see Eq. (39)]

MNR
max ¼ 5.07

MPffiffiffiffiffijλjp ¼ 10.1

�
f2ℏ

c3m2G

�
1=2

ð138Þ

or, using Eq. (134), as

MNR
max ¼ 1.43

M2
P

m
ffiffiffiffiffiffijΛjp : ð139Þ

The nonrelativistic limit is valid when

jΛj ≫ 1; i:e:; jλj ≫
�

m
MP

�
2

: ð140Þ

Since m ≪ MP, in general, the nonrelativistic approxima-
tion is valid even when jλj ∼ 1 or smaller (see footnote 28
with Λ replaced by jΛj). We see that when jΛj ≫ 1, the
maximum mass MNR

max ∼M2
P=m

ffiffiffiffiffiffijΛjp
of dilute axion stars

with an attractive self-interaction is much smaller than
the mass MGR

max;NI ∼M2
P=m of noninteracting boson stars.

They differ by a factor jλj−1=2m=MP. Written under the
form MNR

max ∼MP=
ffiffiffiffiffijλjp
, we see that, when jλj ∼ 1, the

maximum mass of dilute axion stars is on the order of the
Planck mass. For QCD axions with m ∼ 10−4 eV=c2 and
as ∼ −5.8 × 10−53 m (corresponding to λ ∼ −7.39 × 10−49

and f¼5.82×1010GeV), we getMNR
max ¼ 6.46 × 10−14M⊙

and R�
99 ¼ 227 km (axteroids). For ULAs withm ¼ 2.92 ×

10−22 eV=c2 and as ¼ −3.18 × 10−68 fm (corresponding
to λ ¼ −1.18 × 10−96 and f ¼ 1.34 × 1017 GeV) predicted
in [267], we get MNR

max¼5.10×1010M⊙ and R�
99 ¼ 1.09 pc

(DM cores). In these two examples, the nonrelativistic
approximation is justified because jλj ≫ ðm=MPÞ2 ∼ 10−64

and 10−100, respectively (the second approximation is
marginally valid).
For dilute axion stars with an arbitrary attractive

self-interaction, we can write the maximum mass [see
Eq. (119)] as

Mmax ¼ 0.633
M2

P

m
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 0.196Λ
p : ð141Þ

When Λ ¼ 0, we recover Eq. (132), and when jΛj ≫ 1, we
recover Eq. (139). We note that the formula of Mielke and
Schunck [257,258] quoted above is not valid when Λ < 0.

B. Transition scales

We introduce the transition scales

ðasÞt ¼
2Gm
c2

¼ rS; ð142Þ

λt
16π

¼ Gm2

ℏc
¼
�

m
MP

�
2

; ð143Þ

ft ¼
MPc2

8
ffiffiffi
π

p ∼ 1018 GeV: ð144Þ

28Conversely, the self-interaction is negligible if Λ ≪ 1, i.e.,
λ ≪ ðm=MPÞ2. Since m ≪ MP, the self-interaction can be
neglected only if it is extraordinarily tiny. For example, for a
boson mass m ∼ 10−22 eV=c2, the self-interaction can be ne-
glected only if jλj ≪ 10−100.
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We note that ðasÞt is on the order of the Schwarzschild
radius of the boson rS ¼ 2Gm=c2, λt is on the order of the
gravitational coupling constant αg¼Gm2=ℏc¼ðm=MPÞ2,
and ft is on the order of the Planck mass energy MPc2 ∼
1019 GeV (note that it is independent of the mass m of
the boson).
For a repulsive self-interaction (as ≥ 0), the maximum

mass MGR
max is due to general relativity. When M < MGR

max,
the boson star is stable, and when M > MGR

max, it collapses
toward a black hole. The transition between the non-
interacting regime and the TF regime occurs when
MGR

max;NI ∼MGR
max;TF, giving as ∼ ðasÞt (i.e., λ ∼ λt). When

as ≪ ðasÞt (i.e., λ ≪ λt), we are in the noninteracting
regime, and when as ≫ ðasÞt (i.e., λ ≫ λt), we are in
the TF regime. In each case, when the mass overcomes
MGR

max, a black hole is formed.
For an attractive self-interaction, the instability may be

due to general relativity or to the self-interaction of the
bosons. When as ≃ 0, the maximum mass MGR

max is due to
general relativity. When M < MGR

max;NI, the boson star is
stable, and when M > MGR

max;NI, it collapses toward a black
hole. When as → −∞ the maximum mass MNR

max is due to
the attractive self-interaction. When M < MNR

max, the dilute
axion star is stable, and when M > MNR

max, it collapses and
forms a dense axion star (stabilized by, e.g., a jφj6 repulsive
self-interaction) or explodes in a bosenova. The transition
between the noninteracting regime and the nonrelativistic
regime occurs when MNR

max ∼MGR
max;NI, giving jasj ∼ ðasÞt

(i.e., jλj ∼ λt and f ∼ ft). When jasj ≪ ðasÞt (i.e., jλj ≪ λt
or f ≫ ft), we are in the noninteracting regime. In that
case, when the mass overcomes MGR

max;NI, a black hole is
formed. When jasj ≫ ðasÞt (i.e., jλj ≫ λt or f ≪ ft),
we are in the nonrelativistic regime. In that case, when
the mass overcomesMNR

max, a dense axion star or a bosenova
is formed.
A phase diagram presenting these different possibilities

is shown in Fig. 8.

C. Triple point

A repulsive jφj6 self-interaction can stabilize a collaps-
ing axion star above the massMNR

max and allow the formation
of a dense axion star. However, a dense axion star can itself
undergo a gravitational instability of general relativistic
origin above a maximum mass estimated to be [109,110]

MGR
max;dense ¼ 0.991

�jasjℏ2c4

G3m3

�
1=2

; ð145Þ

i.e.,

MGR
max;dense ¼ 0.0988

�
ℏ3c7

G3f2m2

�
1=2

¼ 0.198
ffiffiffiffiffi
jλj

p M3
P

m2
:

ð146Þ

This mass presents the same scaling as the maximum mass
of a boson star in the TF regime [see Eq. (64)], except that,
in the present case, as < 0. We note that MGR

max;dense ∼
MGR

max;NI when jasj ∼ ðasÞt (i.e., when jλj ∼ λt and f ∼ ft).
This leads to a triple point at ∼ ½−rS;MKaup� separating
boson stars, black holes, and dense axion stars or bosenova
(see Fig. 9). This triple point was obtained numerically in
[309] and reproduced analytically (qualitatively) in [109].
When as > −ðasÞt, we expect to observe a boson star
for M < MGR

max and a black hole for M > MGR
max. When
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FIG. 8. Phase diagram of boson stars with a jφj4 self-interaction
(see text for details). We have represented the maximum mass
above which the boson star becomes unstable as a function of the
scattering length [see Eqs. (85) and (119)]. This maximum mass
is MGR

max;NI when as ¼ 0, MGR
max;TF when as ≫ ðasÞt (repulsive

case), and MNR
max when jasj ≫ ðasÞt (attractive case).
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FIG. 9. Phase diagram of boson stars with a jφj4 and a jφj6 self-
interaction (see text for details). It displays a triple point at
∼ ½−rS;MKaup� separating boson stars, black holes, and dense
axion stars or bosenova. With respect to Fig. 8, we have added
the mass MGR

max;dense above which dense axion stars (as < 0)
become general relativistically unstable and collapse toward a
black hole [the corresponding curve is MGR

max;dense=MKaup ¼
1.56ðjasjc2=GmÞ1=2]. This figure can be compared to
Fig. 31 of [109].
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as < −ðasÞt, we expect to observe a dilute axion star for
M < MNR

max, a dense axion star or a bosenova for MNR
max <

M < MGR
max;dense, and a black hole for M > MGR

max;dense.

X. APPLICATION TO DM HALOS AND INFLATON
CLUSTERS: CORE MASS–HALO MASS

RELATION

We now apply our results to DM halos and inflaton
clusters.
The results of Secs. II–IX describe the ground state of a

self-gravitating BEC. In cosmology, they characterize a
minimum halo of mass ðMhÞmin, which is a purely con-
densed object without atmosphere. Larger DM halos of
mass Mh > ðMhÞmin have a core-halo structure with a
quantum core (soliton) in its ground state and an approx-
imately isothermal atmosphere that arises from the quan-
tum interferences of excited states. This core-halo structure
has been explained in Refs. [264,272,320,321] by the
process of gravitational cooling [262] and the theory of
violent relaxation [263,277]. The results of Secs. II–IX also
apply to the quantum core of large DM halos. The massMc
of the quantum core increases with the halo mass Mh (see
Fig. 10). For noninteracting bosons and for bosons with a
repulsive self-interaction, we may wonder if the core mass
can reach the maximummassMGR

max [see Eqs. (62) and (64)]
set by general relativity and collapse toward a black
hole. For bosons with an attractive self-interaction, we
may wonder if the core mass can reach the Newtonian
maximum mass MNR

max [see Eq. (39)] and collapse toward a
dense axion star (soliton) or a black hole, or explode in a
bosenova [109,307–313,319].

A. General formalism

In Refs. [267,321–323], we have derived the core mass–
halo mass relation of DM halos (without or with the
presence of a central black hole) from a thermodynamic
approach. We have obtained a general relation McðMhÞ
valid for noninteracting bosons as well as for bosons with a
repulsive or an attractive self-interaction (and for fermions).
To obtain this relation, we have proceeded in three steps:

(i) We have first shown [321,322] that the maximiza-
tion of the Lynden-Bell entropy (justified by the
theory of violent relaxation [263,264]) at fixed mass
and energy leads to the “velocity dispersion tracing”
relation according to which the velocity dispersion
in the core v2c ∼GMc=Rc is equal to the velocity
dispersion in the halo v2h ∼GMh=rh. This relation
can be written as

vc ∼ vh ⇒
Mc

Rc
∼
Mh

rh
: ð147Þ

(ii) To determine the core mass-radius relation McðRcÞ,
we have used a Gaussian ansatz yielding [265]

Mc ¼
3.76 ℏ2

Gm2Rc

1 − 3 asℏ2

Gm3R2
c

ð148Þ

or, equivalently,

Rc ¼ 1.87
ℏ2

Gm2Mc

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.849

GmasM2
c

ℏ2

r !
:

ð149Þ

(iii) To determine the halo mass-radius relation MhðrhÞ
we have assumed that the atmosphere is iso-
thermal,29 and we have used the fact that the surface
density Σ0 of the DM halos is universal. This leads to
the halo mass-radius relation [321]

Mh ¼ 1.76Σ0r2h: ð150Þ

Combining Eqs. (147)–(150), we obtain the core mass–
halo mass relation McðMhÞ under the form

Mc ¼ 2.23
ℏΣ1=4

0 M1=4
h

G1=2m

�
1þ 1.06

as
m
Σ1=2
0 M1=2

h

�
1=2

: ð151Þ
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FIG. 10. Core mass Mc as a function of the halo mass Mh for
different values of as [see Eqs. (155) and (156)]. The mass is
normalized by ðMhÞmin. We have highlighted the curve corre-
sponding to the noninteracting case as ¼ 0 [see Eq. (157)]
and the curve corresponding to the TF limit as=a0� ≫ 1 [see
Eq. (159)]. When the self-interaction is attractive (as < 0), the
quantum core becomes unstable when it reaches the maximum
mass ðMcÞmax [see Eq. (161)]. This occurs in a halo of mass
ðMhÞmax [see Eq. (162)].

29The fact that the atmosphere should be isothermal is justified
in Ref. [264] by the Lynden-Bell [263] theory of violent
relaxation. An (approximately) isothermal atmosphere seems
to be validated by numerical simulations showing DM density
profiles decreasing as r−2 [272] and exhibiting a Maxwellian
velocity distribution [273,330,347].
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As we mentioned above, the minimum halo is a purely
condensed object without atmosphere. Writing Mc ¼ Mh,
meaning that the quantum core contains all the mass
(i.e., there is no isothermal halo around it), we obtain

ðMhÞ3=2min ¼ 4.99
ℏ2Σ1=2

0

Gm2

�
1þ 1.06

as
m
Σ1=2
0 ðMhÞ1=2min

�
: ð152Þ

This equation determines the mass ðMhÞmin of the mini-
mum halo as a function of m and as. Alternatively, for a
given value of ðMhÞmin deduced from the observations,
Eq. (152) determines a constraint between m and as.
Universal relations can be obtained by introducing an

appropriate normalization [267,322,323]. For a given
value of the minimum halo mass ðMhÞmin, we introduce
the mass scale

m0 ¼ 2.23
ℏΣ1=4

0

G1=2ðMhÞ3=4min

ð153Þ

and the self-interaction scale

a0� ¼ 2.11
ℏ

G1=2Σ1=4
0 ðMhÞ5=4min

: ð154Þ

With these scales, the normalized DM particle mass–
scattering length relation (152) can be written as

as
a0�

¼
�
m
m0

�
3

−
m
m0

; ð155Þ

and the normalized core mass–halo mass relation (151) can
be written as

Mc

ðMhÞmin
¼ m0

m

�
Mh

ðMhÞmin

�
1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm0

m
as
a0�

�
Mh

ðMhÞmin

�
1=2

s
:

ð156Þ

This leads to the universal curves plotted in Fig. 10. The
only input is the DM particle mass m or, equivalently,
its scattering length as [they are related to each other by
Eq. (155)]. The minimum halo mass ðMhÞmin obtained from
the observations determines the scales m0 and a0�.
The above relations were derived in the context of DM

halos [267,321–323]. In that case, the universal surface
density inferred from the observations is Σ0 ¼ 141M⊙=pc2

[348–350]. On the other hand, it is an observational
evidence that there is no DM halo with a mass smaller
than Mh ∼ 107–108M⊙. Taking a minimum halo mass
ðMhÞmin ¼ 108M⊙ to fix the ideas, we get m0 ¼ 2.25 ×
10−22 eV=c2 and a0� ¼ 4.95 × 10−62 fm. Then, for a given
value of the scattering length as, we obtain the boson mass
m from Eq. (155) and the core mass–halo mass relation

McðMhÞ from Eq. (156). A detailed discussion of the core
mass–halo mass relation of DM halos has been given
in [267,321–323]. For a repulsive self-interaction (or no
self-interaction) it is found that, in realistic DM halos
(Mh < 1014M⊙), the quantum core mass Mc is always
much smaller than MGR

max. Therefore, it cannot collapse
toward a black hole.30 For an attractive self-interaction, and
for values of f in the range 1016 ≤ f ≤ 1018 GeV predicted
by particle physics and cosmology [266], it is found that the
quantum core (soliton) is always stable (Mc < MNR

max) in
realistic DM halos of mass Mh < 1014M⊙.

31 However, we
must be careful about observational constraints on a DM
particle whose precise nature has not yet been established.
If f can be smaller than 1015 GeV (a possibility to
consider), the soliton can become unstable in sufficiently
large realistic DM halos and collapse. For example, for
m ∼ 10−22 eV=c2 and f∼1014GeV (corresponding to
jλj∼10−91), we find a maximum core massMNR

max∼108M⊙.
This value is of the same order as the typical mass of the
minimum halo ðMhÞmin ∼ 108M⊙, implying that the quan-
tum core of all the DM halos [Mh ≥ ðMhÞmin] would be
unstable in that case. Since f ≪ MPc2 ∼ 1019 GeV, the
collapse of the quantum core leads to a dense soliton or a
bosenova, not to a black hole (see Sec. IX).
A similar discussion has been given by Padilla et al.

[324] in the case of DM halos by using the theoretical
formalism described previously [267,321–323]. Recently,
Padilla et al. [331] applied the same formalism to inflaton
clusters [327–330]. In particular, they considered the
possibility that the self-interaction between bosons is
attractive and that the inflaton stars collapse toward a
black hole when they reach the maximum mass MNR

max [see
Eq. (39)]. Below, we complement their results and also treat
the case of a repulsive self-interaction.

30For noninteracting bosons or for bosons with a repulsive
self-interaction, we find that the core mass can reach the critical
mass (62) or (64) only in halos of mass larger than Mh ∼
10−2c4=G2Σ0 ∼ 1022M⊙, which are not realistic (the biggest DM
halos have a mass Mh ∼ 1014M⊙). Remarkably, this result is
independent of the characteristics (mass, scattering length, etc.)
of the DM particle (see Appendix C of [323]). We conclude that
the quantum core is always stable in practice and that it cannot
collapse toward a black hole. The fact that Mc ≪ MGR

max also
justifies that we use a nonrelativistic approach.

31For bosons with an attractive self-interaction, we find that the
quantum core mass can reach the critical mass (39) in realistic
halos (of mass Mh ≤ 1014M⊙) provided that the axion decay
constant f is smaller than fc ¼ 4.22 × 1015 GeV. Remarkably,
this result is independent of the DM particle mass [267,322].
However, such small values of f seem to be excluded by
constraints from cosmology and particle physics which place
f in the range 1016 ≤ f ≤ 1018 GeV. We conclude that the
quantum core is always stable in practice and that it cannot
collapse toward a dense axion star or a black hole, or explode in a
bosenova.
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The general results of Eqs. (147)–(156) remain valid in
the case of inflaton clusters except for a change of scales.
We thus have to determine the relevant scales for this
problem. Niemeyer and Easther [328] adopt a boson
mass m ¼ 6.35 × 10−6MP based on the earlier work of
Ref. [351]. In their numerical simulations, Eggemeier et al.
[329] find that inflaton halos of mass Mh ∼ 20 kg and
radius rh ∼ 10−20 m form roughly 10−24 s after the big
bang. They also observe clusters of massMh ∼ 0.01 kg and
size rh ∼ 10−22 m. From these values, one obtains the
typical surface densities Σ∼ 2× 1044 and Σ ∼ 1045 g=m2,
respectively. These results are consistent with a constant
surface density,32 but its value is considerably larger than
in the case of DM halos where Σ0 ¼ 295 g=m2. To be
specific, we shall take Σ0 ¼ 1044 g=m2. Using Eq. (153)
with m ¼ m0 ¼ 6.35 × 10−6MP ¼ 1.38 × 10−10 g, we
obtain a minimum halo mass ðMhÞmin ¼ 5.74 × 10−5 g.
There should be no inflaton cluster below this threshold
value. Then, Eq. (154) gives a0� ¼ 1.72 × 10−30 m (corre-
sponding to λ0� ¼ 17.0 and f0� ¼ 9.39 × 1012 GeV).

B. Noninteracting bosons

For noninteracting bosons, the core mass–halo mass
relation (151) reduces to

Mc ¼ 2.23

�
ℏ4Σ0Mh

G2m4

�
1=4

: ð157Þ

In the noninteracting limit, the boson mass is m ¼ m0 ¼
6.35 × 10−6MP. For an inflaton cluster of mass Mh ¼ 1 g
and radius rh ¼ 7.54 × 10−23 m, we obtain a core mass
Mc ¼ 6.59 × 10−4 g and a core radius Rc¼1.32×10−25m.
This theoretical prediction is consistent with the numerical
results of Eggemeier et al. [330] who find an inflaton star of
mass Mc ∼ 10−6 kg in a cluster of mass Mh ∼ 10−3 kg.
The maximum mass and the minimum radius of a

noninteracting boson star at T ¼ 0 set by general relativity
are given by Eqs. (62) and (63). For a boson of mass
m ¼ 6.35 × 10−6MP, we obtain MGR

max;NI ¼ 2.17 g and
RGR
min;NI ¼ 1.53 × 10−29 m. The maximum mass is much

larger than the typical quantum core mass (inflaton star)
of inflaton clusters in the simulations of Eggemeier et al.
[329,330] (Mc ≪ MGR

max;NI). Therefore, a nonrelativistic
approach is justified in most inflaton clusters. According
to Eq. (157), the mass of the soliton becomes equal to
the maximum mass (Mc ¼ MGR

max;NI) in an inflaton cluster
of mass

ðMhÞNImax ¼ 6.49 × 10−3
c4

G2Σ0

¼ 1.18 × 1014 g: ð158Þ

Remarkably, this expression is independent of the boson
mass (see Appendix C of [323]). Above that mass, the
inflaton star collapses toward a black hole. This may
provide a new mechanism for PBH formation during
reheating [331].33 Inflaton stars in less massive inflaton
clusters are stable and do not form PBHs.
Remark.—An inflaton cluster would collapse toward a

black hole as a whole if rh < 2GMh=c2. Using the
mass-radius relation from Eq. (150), this criterion gives
Mh > 0.142c4=ðG2Σ0Þ ¼ 2.57 × 1015 g. This critical mass
is 1 order of magnitude larger than the critical mass
ðMhÞNImax from Eq. (158), above which its core collapses.
This suggests that the quantum core (soliton) collapses first.

C. Repulsive self-interaction in the TF limit

For bosons with a repulsive self-interaction in the TF
limit, the core mass–halo mass relation (151) reduces to

Mc ¼ 2.30

�
ℏ2Σ0asMh

Gm3

�
1=2

: ð159Þ

In the TF limit as ≫ a0�, the ratio as=m3 is given by
as=m3 ¼ a0�=m3

0 ¼ 0.654 m=g3 [see Eq. (155)] (for
m ¼ 6.35 × 10−6MP this corresponds to λ ¼ 17.0 and
as ¼ 1.73 × 10−30 m). For an inflaton cluster of mass
Mh ¼ 1 g, we obtain a core mass Mc ¼ 7.60 × 10−3 g
and a core radius Rc ¼ 1.04 × 10−24 m.
The maximum mass and the minimum radius of a self-

interacting boson star at T ¼ 0 in the TF limit set by
general relativity are given by Eqs. (64) and (65). For a ratio
as=m3 ¼ 0.654 m=g3, we obtain MGR

max;TF ¼ 1.36 × 105 g
and RGR

min;TF ¼ 6.34 × 10−25 m. The maximum mass is
much larger than the typical quantum core mass of inflaton
clusters (Mc ≪ MGR

max;TF). Therefore, a nonrelativistic
approach is justified in most inflaton clusters. According
to Eq. (159), the mass of the soliton would be equal to
the maximum mass (Mc ¼ MGR

max;TF) in an inflaton cluster
of mass

ðMhÞTFmax ¼ 0.0178
c4

G2Σ0

¼ 3.23 × 1014 g: ð160Þ

32If the surface density of the inflaton clusters is not constant,
we should replace Σ0 byMh=ð1.76r2hÞ in Eqs. (151) and (152). In
that case, the core mass Mc depends on Mh and rh individually.
For simplicity, we will assume below that Σ0 is constant.

33We note, however, that very massive inflaton clusters are
required to form PBHs. Such massive inflaton clusters may
not be very numerous (see the much smaller typical masses
obtained in the simulations of Eggemeier et al. [329,330]).
Therefore, the quantity of PBHs produced by this mechanism
may be small. Furthermore, PBHs of mass m ∼ 1 g rapidly
evaporate by Hawking [352] radiation on a timescale
tevap ∼ G2M3=ℏc4 ∼ 10−30 s.
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Remarkably, this expression is independent of the ratio
as=m3 (see Appendix C of [323]). The comments made at
the end of Sec. X B also apply to the present situation.
There is, however, one important difference. The mass
of the PBHs formed by this mechanism is much larger than
in the noninteracting case (this is because self-interacting
boson stars [58,86] are more massive than noninteracting
boson stars [1,2]). As a result, their evaporation time is
longer. A PBH of mass m ∼ 105 g evaporates on a time-
scale tevap ∼ G2M3=ℏc4 ∼ 10−15 s. This timescale is still
short but could be significantly increased (since it depends
on the cubic power of M) if the self-interaction is larger.

D. Attractive self-interaction

For bosons with an attractive self-interaction, the core
mass–halo mass relation presents a maximum (see Fig. 10)
when the core mass reaches the critical value34

ðMcÞmax ¼ 1.085
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p ¼ 10.9

�
f2ℏ

c3m2G

�
1=2

¼ 5.44
MPffiffiffiffiffijλjp ; ð161Þ

at which it becomes unstable and collapses [265,307].
The collapse of the core, leading to a dense axion star
(soliton), a black hole (provided thatMc > MGR

max;dense), or a
bosenova [109,307–313,319], occurs in a DM halo of mass

ðMhÞmax ¼ 0.223
m2

a2sΣ0

¼ 2255
f4

ℏ2c6Σ0

¼ 141
m4c2

Σ0ℏ2λ2
:

ð162Þ

From Eqs. (161) and (162), we obtain the relation

ðMcÞmax ¼ 1.58

�
ℏ4Σ0ðMhÞmax

G2m4

�
1=4

; ð163Þ

presenting the same scaling as Eq. (157). Therefore, in
Fig. 10, the curve ðMcÞmax½ðMhÞmax� connecting the bullets
is close to the curve McðMhÞ corresponding to as ¼ 0. We
note that the maximum halo mass ðMhÞmax depends only
on f, while the maximum core mass ðMcÞmax depends on f
andm. On the other hand, the maximum core mass ðMcÞmax
depends only on λ, while the maximum halo mass ðMhÞmax
depends on λ and m.
According to Eq. (162), the value of f below

which the quantum core of an inflaton halo of mass
Mh ¼ 1 g collapses is fcrit ¼ 1.53 × 1014 GeV (for m ¼
6.35 × 10−6MP, this corresponds to λcrit ¼ −6.42 × 10−2

and ðasÞcrit ¼ −6.50 × 10−33 m). In that case, the critical
core mass is ðMcÞmax ¼ 4.68 × 10−4 g.35 Since fcrit ≪
ft ∼MPc2 ∼ 1019 GeV [i.e., jλcritj ≫ λt ∼ ðm=MPÞ2 ∼
4.03 × 10−11 and jðasÞcritj ≫ 2Gm=c2 ∼ 2.05 × 10−40 m]
and ðMcÞmax ≪ MGR

max;dense ¼ 2.71 × 104 g, the collapse
of the quantum core leads to a dense axion star (soliton)
[109,311,312] or a bosenova [308], not to a black hole
[309,310] (see Sec. IX). The possibility to form dense
inflation stars and bosenova has not been considered by
Padilla et al. [331]. The critical decay constant fcrit
becomes on the order of the Planck scale MPc2 [or jλcritj ∼
ðm=MPÞ2 and jðasÞcritj ∼ 2Gm=c2], allowing the formation
of PBHs [331], in much more massive inflaton clusters
of mass Mh ∼ 1014 g or larger. This essentially returns
the results of Sec. X B because for f ∼MPc2 we are in the
noninteracting limit. For f ≲MPc2, the attractive self-
interaction may facilitate the formation of PBHs in suffi-
ciently massive inflaton clusters.
Remark.— Equations (147)–(156) are valid in the non-

relativistic limit. When as ≤ 0, we can easily extend our
results to the relativistic regime by making the substitution
as → as − κGm=c2 [see Eq. (96)] with κG ¼ 2.50. In that
case, the maximum mass ðMcÞmax in Fig. 10 is given by
Eq. (119). It returnsMNR

max [see Eq. (39)] when jasj ≫ ðasÞt
and MGR

max;NI [see Eq. (62)] when jasj ≪ ðasÞt. If we make
the substitution from Eq. (96) in Eq. (162) and take as ¼ 0

[which is equivalent to directly taking as ¼ −κGm=c2 in
Eq. (162)], we get ðMhÞmax ¼ 0.0357c4=ðG2Σ0Þ ¼ 6.47 ×
1014 g (we have used κG ¼ 2.50). This value can be
compared to the value Mh ¼ 6.49 × 10−3c4=ðG2Σ0Þ ¼
1.18 × 1014 g obtained in Sec. X B. On the other hand,
for f ∼ ft ∼MPc2=8

ffiffiffi
π

p
(see Sec. IX), we find that

ðMhÞmax ∼ 0.0558c4=ðG2Σ0Þ. This result qualitatively
agrees with the value obtained in the noninteracting case.

E. Virial mass

Following our previous works [267,321–323], we have
defined the halo mass Mh and the halo radius rh such that
rh represents the distance at which the central density is
divided by 4. However, some authors [269,324,331] use
another definition of the halo mass and halo radius. They
introduce the virial massMv and the virial radius rv through
the relation

Mv ¼
4

3
πρ200r3v; ð164Þ

34Recall that we use here the values of the Gaussian ansatz in
order to be consistent with the general formalism of Sec. X A.

35It is comparable to the core mass corresponding to as ¼ 0 on
account of the remark following Eq. (163). On the other hand, for
m ¼ 6.35 × 10−6 MP and jλj ∼ 1, we have f ∼ 3.17 × 10−6 MPc2
[see Eq. (131)]. According to Eq. (162), the quantum core
becomes unstable in a halo of mass ðMhÞmax ¼ 4.13 × 10−3 g.
The critical core mass is then ðMcÞmax¼5.44MP¼1.18×10−4 g.

PIERRE-HENRI CHAVANIS PHYS. REV. D 107, 103503 (2023)

103503-26



where ρ200 ¼ 200ρb is 200 times the background density.
Using

GMv

rv
∼
GMh

rh
; ð165Þ

in consistency with Eq. (147), and combining this relation
with Eqs. (150) and (164), we obtain

Mh ∼
1

1.76Σ0

�
4

3
πρ200

�
2=3

M4=3
v : ð166Þ

The relation between the halo mass Mh and the virial mass
Mv exhibits the scaling Mh ∝ M4=3

v [321]. We can use this
relation to express the previous results in terms of Mv

instead of Mh. In particular, we find Mc ∝ M1=3
v for

noninteracting bosons (in agreement with [269]) and
Mc ∝ M2=3

v for bosons with a repulsive self-interaction
in the TF limit [322].

XI. CONCLUSION

In this paper, by using simple considerations, we have
obtained general approximate analytical expressions for
the maximum mass and the minimum radius of relativistic
self-gravitating Bose-Einstein condensates at T ¼ 0 with
repulsive or attractive jφj4 self-interaction (see Sec. VIII for
a summary).
For boson stars with a repulsive self-interaction, our

analytical expressions [see Eqs. (122)–(125)] interpolate
between the maximum mass and minimum radius [see
Eq. (62)] of noninteracting bosons stars [1,2] and the
maximum mass and minimum radius [see Eq. (64)] of
bosons stars with a strong self-interaction (TF limit)
[58,86]. The noninteracting regime is valid for as ≪ rS ¼
2Gm=c2 or λ ≪ ðm=MPÞ2 and the TF regime is valid for
as ≫ rS ¼ 2Gm=c2 or λ ≫ ðm=MPÞ2. In all cases, the
maximum mass has a general relativistic origin, i.e., it is
due to the fact that the radius of the star approaches the
Schwarzschild radius (strong gravity). Above the maxi-
mum mass, there is no equilibrium state and the boson star
collapses toward a black hole.
For boson stars with an attractive self-interaction (axion

stars), our analytical expressions [see Eqs. (126)–(129)]
interpolate between the general relativistic maximum
mass and minimum radius [see Eq. (62)] of noninteracting
bosons stars [1,2] and the nonrelativistic maximum
mass and minimum radius [see Eqs. (39) and (40)] of
boson stars with a strong self-interaction [265]. When
jasj ≪ rS ¼ 2Gm=c2, jλj ≪ ðm=MPÞ2, or f ≫ MPc2

(noninteracting regime), the maximum mass has a general
relativistic origin (strong gravity). Above that mass,
the boson star collapses toward a black hole. When
jasj ≫ rS ¼ 2Gm=c2, jλj ≫ ðm=MPÞ2, or f ≪ MPc2

(nonrelativistic regime), the maximum mass is essentially

due to the attractive self-interaction of the bosons and to
relativistic corrections in the kinetic energy (or quantum
potential) of the BEC (weak gravity). Above that mass, the
dilute axion star collapses toward a dense axion star or
explodes in a bosenova [it can collapse toward a black hole
only if it has a very large mass M > MGR

max;dense given by
Eqs. (145) and (146)].
We have confirmed the existence of a triple point at

ðas;MÞ ∼ ð−rS;MKaupÞ separating boson stars, black holes,
and dense axion stars or bosenova. We have considered
applications of these results to DM halos and inflaton
clusters. We have shown that the quantum core of
DM halos is stable, in general (it would collapse toward
a black hole in DM halos of massMh > 1014M⊙, which are
not realistic and it would form a dense axion star or a
bosenova in realistic halos of massMh < 1014M⊙ provided
that f < 1015 GeV, which seems to be excluded by
constraints from cosmology and particle physics).36 We
have also discussed the possibility to form PBHs in inflaton
clusters [331]. We have shown that, for noninteracting
bosons of mass m ∼ 10−5MP, the quantum core (inflaton
star) of an inflaton cluster can collapse toward a black hole
only if the inflaton cluster is sufficiently massive, on the
order ofMh ∼ 1014 g. In that case, we form a PBH of mass
∼1 g. In less massive inflaton clusters, the quantum core
is stable and no black hole can form. We have mentioned
that the amount of PBHs formed by this mechanism may
not be very large and that PBHs of mass ∼1 g quickly
evaporate (tevap ∼ 10−30 s). For bosons with a repulsive
self-interaction, the mass of the PBHs is larger and their
evaporation time longer (but still short). For bosons with an
attractive self-interaction, we have shown similarly that
PBHs of mass ∼1 g can form only in sufficiently massive
inflaton clusters of mass Mh ∼ 1014 g or larger. The
attractive self-interaction facilitates the collapse of the
quantum core (inflaton star). On the other hand, we have
suggested that, in smaller inflaton clusters, for a sufficiently
strong attractive self-interaction, the inflaton star could
become unstable and collapse toward a dense inflaton star
or explode in a bosenova (for f ∼ 1014 GeV the quantum
core of an inflaton cluster of mass Mh ∼ 1 g collapses
toward a dense axion star of mass Mc ∼ 10−4 g). The
collapse of the core cannot lead to a PBH in that case
because the core is not massive enough. The possibility to
form dense inflaton stars and bosenova was not considered
by Padilla et al. [331] and deserves a specific study [353].
Our analytical results have been obtained from a Gaussian

ansatz. This Gaussian ansatz provides a good approximation
of the exact maximum mass of nonrelativistic boson stars
with an attractive self-interaction [265,290]. It also provides

36We have, however, considered the possibility that these
constraints may be bypassed and that the quantum core of
DM halos may be unstable.
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a good approximation of the exact maximum mass of
noninteracting relativistic boson stars (see the Remarks at
the end of Secs. VII B and VII C). It is expected to provide
relatively accurate results in more general cases.
Fermion stars, such as white dwarfs and neutron stars

also possess a maximum mass due to special or general
relativity. The study of DM halos made of fermions (like
sterile neutrinos) is also of interest and can be investigated
with methods similar to those exposed in this paper (see,
e.g., [264,265,322,323,354] for the development of the
analogy between bosonic and fermionic DM).

APPENDIX A: GAUSSIAN ANSATZ TO
EVALUATE THE RELATIVISTIC CORRECTION

TO THE QUANTUM KINETIC ENERGY

For spherically symmetric density profiles, the relativ-
istic correction to the quantum kinetic energy of self-
gravitating BECs can be written as [see Eq. (90)]

ER ¼ ℏ2

m2c2

Z þ∞

0

�
d
ffiffiffi
ρ

p
dr

�
2

ΦðrÞ4πr2dr: ðA1Þ

Making a Gaussian ansatz for the density profile

ρðrÞ ¼ M
R3

1

π3=2
e−r

2=R2

; ðA2Þ

we get

ER ¼ ℏ2M
m2c2R7

4ffiffiffi
π

p
Z þ∞

0

e−r
2=R2ΦðrÞr4dr: ðA3Þ

We will evaluate ΦðrÞ in two different manners.

1. First approach

Following [343,345], we make the approximation

ΦðrÞ ¼ −
GMðrÞ

r
; ðA4Þ

where

MðrÞ ¼
Z

r

0

ρðr0Þ4πr02dr0 ðA5Þ

is the mass contained within the sphere of radius r. In that
case, Eq. (A3) becomes

ER ¼ −
ℏ2GM
m2c2R7

4ffiffiffi
π

p
Z þ∞

0

e−r
2=R2

MðrÞr3dr: ðA6Þ

With the Gaussian ansatz from Eq. (A2), we have

MðrÞ ¼ 4Mffiffiffi
π

p M
�
r
R

�
; ðA7Þ

where

MðxÞ ¼
Z

x

0

e−y
2

y2dy ¼
ffiffiffi
π

p
4

erfðxÞ − 1

2
xe−x

2

: ðA8Þ

Substituting Eqs. (A7) and (A8) into Eq. (A6), we obtain

ER ¼ −
16

π

Gℏ2M2

m2c2R3

Z þ∞

0

e−x
2

MðxÞx3dx: ðA9Þ

This leads to the expression from Eq. (92) with the
coefficient

χG ¼ 16

π

Z þ∞

0

e−x
2

MðxÞx3dx ¼ 7

4
ffiffiffiffiffiffi
2π

p ≃ 0.698: ðA10Þ

2. Second approach

For spherically symmetric systems, the gravitational
potential can be determined (without approximation at that
stage) from Newton’s law

dΦ
dr

ðrÞ ¼ GMðrÞ
r2

: ðA11Þ

Using Eq. (A7) and integrating Eq. (A11) with the
condition ΦðrÞ ∼ −GM=r at infinity, we obtain

ΦðrÞ ¼ −
4GMffiffiffi
π

p
R

Z þ∞

r=R

MðxÞ
x2

dx ¼ −
GM
r

erf

�
r
R

�
: ðA12Þ

In that case, Eq. (A3) becomes

ER ¼ −
ℏ2GM2

m2c2R3

4ffiffiffi
π

p
Z þ∞

0

e−x
2

erfðxÞx3dx: ðA13Þ

This leads to the expression from Eq. (92) with the
coefficient

χG ¼ 4ffiffiffi
π

p
Z þ∞

0

e−x
2

erfðxÞx3dx ¼ 5

2
ffiffiffiffiffiffi
2π

p ≃ 0.997: ðA14Þ

APPENDIX B: RELATIVISTIC COMPLEX SF

In this appendix, we discuss the main properties of a
relativistic complex self-interacting SF, establish its hydro-
dynamic representation, make the TF approximation, and
determine its equation of state PðϵÞ for an arbitrary self-
interaction potential Vðjφj2Þ. For a jφj4 self-interaction, we
justify the equation of state introduced by Colpi et al. [58].
We also justify the GPP equations (1) and (2) in the
nonrelativistic limit c → þ∞.
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1. Klein-Gordon-Einstein equations

We consider a relativistic complex SF φðxμÞ ¼ φðx; y;
z; tÞ, which is a continuous function of space and time.
It can represent the wave function of a relativistic
BEC [20,87]. The total action of the system, which is
the sum of the Einstein-Hilbert action of general relativity
plus the action of the SF, can be written as

S ¼
Z �

c4

16πG
Rþ L

� ffiffiffiffiffiffi
−g

p
d4x; ðB1Þ

where R is the Ricci scalar curvature, L ¼ Lðφ;φ�; ∂μφ;
∂μφ

�Þ is the Lagrangian density of the SF, and g ¼ detðgμνÞ
is the determinant of the metric tensor. We consider a
canonical Lagrangian density of the form

L ¼ 1

2
gμν∂μφ�

∂νφ − V totðjφj2Þ; ðB2Þ

where the first term is the kinetic energy and the second
term is minus the potential energy. The potential energy
can be decomposed into a rest-mass energy term and a
self-interaction energy term,

V totðjφj2Þ ¼
m2c2

2ℏ2
jφj2 þ Vðjφj2Þ: ðB3Þ

The least action principle δS ¼ 0 with respect to varia-
tions δφ (or δφ�), which is equivalent to the Euler-Lagrange
equation

Dμ

�
∂L

∂ð∂μφÞ�
�
−

∂L
∂φ� ¼ 0; ðB4Þ

yields the KG equation

□φþ 2
dV tot

djφj2 φ ¼ 0; ðB5Þ

where □¼Dμ∂
μ¼ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

gμν∂νÞ is the d’Alembertian

operator. For a free massless SF (Vtot ¼ 0), the KG
equation reduces to □φ ¼ 0. On the other hand, using
the decomposition from Eq. (B3) we can rewrite the KG
equation (B5) as

□φþm2c2

ℏ2
φþ 2

dV
djφj2 φ ¼ 0: ðB6Þ

The least action principle δS ¼ 0 with respect to varia-
tions δgμν yields the Einstein field equations

Rμν −
1

2
gμνR ¼ 8πG

c4
Tμν; ðB7Þ

where Rμν is the Ricci tensor and Tμν is the energy-
momentum (stress) tensor given by

Tμν ¼
2ffiffiffiffiffiffi−gp δS

δgμν
¼ 2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

LÞ
∂gμν

¼ 2
∂L
∂gμν

− gμνL: ðB8Þ

For a complex SF, the energy-momentum tensor takes
the form

Tν
μ ¼

∂L
∂ð∂νφÞ

∂μφþ ∂L
∂ð∂νφ�Þ ∂μφ

� − gνμL: ðB9Þ

For the Lagrangian (B2), we get

Tμν ¼
1

2
ð∂μφ�

∂νφþ ∂νφ
�
∂μφÞ − gμνL: ðB10Þ

Equations (B5) and (B7) with Eq. (B10) form the KGE
equations.
The conservation of the energy-momentum tensor,

which results from the invariance of the Lagrangian density
under continuous translations in space and time (Noether
theorem), reads

DνTμν ¼ 0: ðB11Þ

The conservation of the energy-momentum tensor is
automatically included in the Einstein equations through
the contracted Bianchi identities. The energy-momentum
four-vector is Pμ ¼ R Tμ0 ffiffiffiffiffiffi−gp

d3x. Its time component P0

is the energy, while ðP1; P2; P3Þ are the components of the
impulse P. Each component of Pμ is conserved in time,
i.e., it is a constant of the motion. Indeed,

_Pμ ¼ d
dt

Z
Tμ0 ffiffiffiffiffiffi

−g
p

d3x ¼ c
Z

∂0ðTμ0 ffiffiffiffiffiffi
−g

p Þd3x

¼ −c
Z

∂iðTμi ffiffiffiffiffiffi
−g

p Þd3x ¼ 0; ðB12Þ

where we have used Eq. (B11) with DμVμ ¼
1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

VμÞ to get the third equality.

The current of charge of a complex SF is given by

Jμ ¼ m
iℏ

�
φ

∂L
∂ð∂μφÞ

− φ� ∂L
∂ð∂μφ�Þ

�
: ðB13Þ

For the Lagrangian (B2), we obtain

Jμ ¼ −
m
2iℏ

ðφ�
∂μφ − φ∂μφ

�Þ: ðB14Þ

Using the KG equation (B5), one can show that

DμJμ ¼ 0: ðB15Þ
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This equation expresses the local conservation of the
charge. The total charge of the SF is Q¼ e

mc

R
J0

ffiffiffiffiffiffi−gp
d3x.

Proceeding as above, we easily find that _Q ¼ 0. The charge
Q is proportional to the number N of bosons provided
that antibosons are counted negatively [355]. Therefore,
Eq. (B15) also expresses the local conservation of the boson
number (Q ¼ Ne). This conservation law results via the
Noether theorem from the global Uð1Þ symmetry of the
Lagrangian, i.e., from the invariance of the Lagrangian
density under a global phase transformation φ → φe−iθ

(rotation) of the complex SF. Note that Jμ vanishes for a
real SF so that the charge and the particle number are not
conserved in that case.

2. Hydrodynamic representation

We can write the KG equation (B5) under the form of
hydrodynamic equations by using the de Broglie trans-
formation [356–358]. To that purpose, we write the SF as

φ ¼ ℏ
m

ffiffiffi
ρ

p
eimθ=ℏ; ðB16Þ

where ρ is the pseudo-rest-mass density37 and θ ¼ Stot=m
(∼ phase) is the action by unit of mass. They satisfy

ρ ¼ m2

ℏ2
jφj2 and θ ¼ ℏ

2mi
ln

�
φ

φ�

�
: ðB17Þ

Substituting Eq. (B16) into the Lagrangian density (B2),
we obtain

L ¼ 1

2
gμνρ∂μθ∂νθ þ

ℏ2

8m2ρ
gμν∂μρ∂νρ − V totðρÞ ðB18Þ

with

V totðρÞ ¼
1

2
ρc2 þ VðρÞ: ðB19Þ

The Euler-Lagrange equations for θ and ρ, resulting from
the least action principle, are

Dμ

�
∂L

∂ð∂μθÞ
�
−
∂L
∂θ

¼ 0; Dμ

�
∂L

∂ð∂μρÞ
�
−
∂L
∂ρ

¼ 0: ðB20Þ

They yield the equations of motion [20,87]

Dμðρ∂μθÞ ¼ 0; ðB21Þ

1

2
∂μθ∂

μθ −
ℏ2

2m2

□
ffiffiffi
ρ

pffiffiffi
ρ

p − V 0
totðρÞ ¼ 0: ðB22Þ

The same equations are obtained by substituting the
de Broglie transformation from Eq. (B16) into the KG
equation (B5) and separating the real and the imaginary
parts.38 Equation (B21) can be interpreted as a continuity
equation and Eq. (B22) can be interpreted as a quantum
relativistic Hamilton-Jacobi (or Bernoulli) equation with a
relativistic covariant quantum potential

QdB ¼ ℏ2

2m

□
ffiffiffi
ρ

pffiffiffi
ρ

p : ðB23Þ

The energy-momentum tensor is given, in the hydro-
dynamic representation, by

Tν
μ ¼

∂L
∂ð∂νθÞ

∂μθ þ
∂L

∂ð∂νρÞ
∂μρ − gνμL: ðB24Þ

For the Lagrangian (B18), we obtain

Tμν ¼ ρ∂μθ∂νθ þ
ℏ2

4m2ρ
∂μρ∂νρ − gμνL: ðB25Þ

This result can also be obtained from Eq. (B10) by
using Eq. (B16).
The current of charge of a complex SF is given, in the

hydrodynamic representation, by

Jμ ¼ −
∂L

∂ð∂μθÞ
: ðB26Þ

For the Lagrangian (B18), we obtain

Jμ ¼ −ρ∂μθ: ðB27Þ
This result can also be obtained from Eq. (B14) by using
Eq. (B16). We then see that the continuity equation (B21) is
equivalent to Eq. (B15). It expresses the local conservation
of the charge Q of the SF (or the local conservation of the
boson number N): Q ¼ Ne ¼ − e

mc

R
ρ∂0θ

ffiffiffiffiffiffi−gp
d3x.

3. TF approximation

In the classical limit or in the TF approximation (ℏ → 0),
the Lagrangian from Eq. (B18) reduces to

L ¼ 1

2
gμνρ∂μθ∂νθ − V totðρÞ: ðB28Þ

The Euler-Lagrange equations (B20) yield the equations of
motion

Dμðρ∂μθÞ ¼ 0; ðB29Þ

1

2
∂μθ∂

μθ − V 0
totðρÞ ¼ 0: ðB30Þ

37We stress that ρ is not the rest-mass density. It is only in the
nonrelativistic regime c → þ∞ that ρ coincides with the rest-
mass density.

38The quantity vμ ¼ ∂μθ could be interpreted as a pseudoqua-
drivelocity but it does not satisfy the identity vμvμ ¼ c2 [20,87].
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The same equations are obtained by making the TF
approximation in Eq. (B22), i.e., by neglecting the quantum
potential. Equation (B29) can be interpreted as a continuity
equation and Eq. (B30) can be interpreted as a classical
relativistic Hamilton-Jacobi (or Bernoulli) equation. We
note that the continuity equation is not affected by the TF
approximation.
Assuming V 0

tot > 0, and using Eq. (B30), we introduce
the fluid quadrivelocity

uμ ¼ −
∂μθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V 0

totðρÞ
p c; ðB31Þ

which satisfies the identity uμuμ ¼ c2. The energy-
momentum tensor is given by Eq. (B24). For the
Lagrangian (B28), we obtain

Tμν ¼ ρ∂μθ∂νθ − gμνL: ðB32Þ

This expression can also be obtained from Eq. (B25) by
making the TF approximation. Using Eq. (B31), we get

Tμν ¼ 2ρV 0
totðρÞ

uμuν
c2

− gμνL: ðB33Þ

The energy-momentum tensor (B33) can be written under
the perfect fluid form

Tμν ¼ ðϵþ PÞ uμuν
c2

− Pgμν; ðB34Þ

where ϵ is the energy density and P is the pressure,
provided that we make the identifications

P ¼ L; ϵþ P ¼ 2ρV 0
totðρÞ: ðB35Þ

Therefore, the Lagrangian plays the role of the pressure
of the fluid. Combining Eq. (B28) with the Bernoulli
equation (B30), we get

L ¼ ρV 0
totðρÞ − V totðρÞ: ðB36Þ

Therefore, according to Eqs. (B35) and (B36), the energy
density and the pressure derived from the Lagrangian (B28)
are given by [87,346]

ϵ ¼ ρV 0
totðρÞ þ V totðρÞ ¼ ρc2 þ ρV 0ðρÞ þ VðρÞ; ðB37Þ

P ¼ ρV 0
totðρÞ − V totðρÞ ¼ ρV 0ðρÞ − VðρÞ; ðB38Þ

where we have used Eq. (B19) to get the second equalities.39

Eliminating ρ between Eqs. (B37) and (B38), we obtain the

equation of state PðϵÞ. On the other hand, Eq. (B38) can be
integrated into [87]

VðρÞ ¼ ρ

Z
PðρÞ
ρ2

dρ: ðB39Þ

Equation (B38) determinesPðρÞ as a function ofVðρÞ, while
Eq. (B39) determines VðρÞ as a function of PðρÞ.

4. Rest-mass density

In the TF approximation, using Eqs. (B27) and (B31),
we can write the current as

Jμ ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

c2
V 0
totðρÞ

r
uμ: ðB40Þ

The rest-mass density ρm ¼ nm, which is related to the
charge density ρe ¼ ne by ρm ¼ ðm=eÞρe, is such that

Jμ ¼ ρmuμ: ðB41Þ

The continuity equation (B15) can then be written as

DμðρmuμÞ ¼ 0: ðB42Þ

Comparing Eq. (B40) with Eq. (B41), we find that the rest-
mass density of the SF is related to the pseudo-rest-mass
density ρ by

ρm ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

c2
V 0
totðρÞ

r
¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

c2
V 0ðρÞ

r
: ðB43Þ

In general, ρm ≠ ρ except (i) for a noninteracting SF
(V ¼ 0), (ii) when V is constant, corresponding to the
ΛFDM model (see Appendix E of [359]), (iii) and in the
nonrelativistic limit c → þ∞.
Remark.—More general results valid beyond the TF

approximation are given in [87,360].

5. Gross-Pitaevskii-Einstein equations

In order to recover the GPP equations in the non-
relativistic limit c → þ∞, we make the Klein transforma-
tion (see, e.g., [20])

φðr; tÞ ¼ ℏ
m
e−imc2t=ℏψðr; tÞ; ðB44Þ

where ψ is the pseudo-wave-function. The pseudo-rest-
mass density [see Eq. (B17)] is related to the pseudo-wave-
function by

ρ ¼ jψ j2: ðB45Þ

Mathematically, we can always make the change of
variables from Eq. (B44). However, we emphasize that it

39Equations (B37) and (B38) can also be derived for a
cosmological homogeneous SF from its hydrodynamic represen-
tation or from the virial theorem in the fast oscillation regime [346].
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is only in the nonrelativistic limit c → þ∞ that ψ has the
interpretation of a wave function and that ρ ¼ jψ j2 has the
interpretation of a mass density.
Substituting Eq. (B44) into the KG equation (B5),

we obtain after simplification the general relativistic GP
equation [20,361]

iℏc∂0ψ −
ℏ2

2m
□ψ þ 1

2
mc2ðg00 − 1Þψ

þ i
ℏc2

2
□tψ −m

dV
djψ j2 ψ ¼ 0: ðB46Þ

We note that □t can be written as □t ¼ − 1
c g

μνΓ0
μν, where

Γσ
μν are the Christoffel symbols [20]. We can similarly

express the energy-momentum tensor (B10) of the SF that
appears in the Einstein equations (B7) in terms of the
pseudo-wave-function ψ . This leads to the Gross-
Pitaevskii-Einstein (GPE) equations.

6. Weak gravity limit

In the weak gravity limit of general relativity Φ=c2 ≪ 1,
using the simplest form of the conformal Newtonian gauge,
the line element is given by

ds2 ¼ c2
�
1þ 2

Φ
c2

�
dt2 −

�
1 − 2

Φ
c2

�
δijdxidxj; ðB47Þ

whereΦðr; tÞ is the Newtonian potential.40 In that limit, the
Lagrangian of the SF is

L ¼ 1

2c2

�
1 −

2Φ
c2

�				 ∂φ
∂t

				2 − 1

2

�
1þ 2Φ

c2

�
j∇φj2

−
m2c2

2ℏ2
jφj2 − Vðjφj2Þ ðB48Þ

and the KGE equations reduce to [20,287,288]

1

c2
∂
2φ

∂t2
−
�
1þ 4Φ

c2

�
Δφ−

4

c4
∂Φ
∂t

∂φ

∂t

þ
�
1þ 2Φ

c2

�
m2c2

ℏ2
φþ 2

�
1þ 2

Φ
c2

�
dV
djφj2φ¼ 0; ðB49Þ

ΔΦ
4πG

¼ T0
0

c2

¼ 1

2c4

�
1−

2Φ
c2

�				∂φ
∂t

				2

þ 1

2c2

�
1þ 2Φ

c2

�
j∇φj2þ m2

2ℏ2
jφj2þ 1

c2
Vðjφj2Þ:

ðB50Þ

Making the Klein transformation from Eq. (B44) in
Eqs. (B48)–(B50), we obtain [20,287,288]

L ¼ ℏ2

2m2c2

�
1 −

2Φ
c2

�				 ∂ψ
∂t

				2

þ iℏ
2m

�
1 −

2Φ
c2

��
ψ� ∂ψ

∂t
− ψ

∂ψ�

∂t

�

−
ℏ2

2m2

�
1þ 2Φ

c2

�
j∇ψ j2 −Φjψ j2 − Vðjψ j2Þ; ðB51Þ

iℏ
∂ψ

∂t
−

ℏ2

2mc2
∂
2ψ

∂t2
þ ℏ2

2m

�
1þ 4Φ

c2

�
Δψ −mΦψ

−
�
1þ 2Φ

c2

�
m

dV
djψ j2 ψ þ 2ℏ2

mc4
∂Φ
∂t

�
∂ψ

∂t
−
imc2

ℏ
ψ

�
¼ 0;

ðB52Þ
ΔΦ
4πG

¼ T0
0

c2

¼
�
1−

Φ
c2

�
jψ j2þ 1

c2
Vðjψ j2Þ

þ ℏ2

2m2c4

�
1−

2Φ
c2

�				∂ψ
∂t

				2þ ℏ2

2m2c2

�
1þ 2Φ

c2

�
j∇ψ j2

−
ℏ

mc2

�
1−

2Φ
c2

�
Im
�
∂ψ

∂t
ψ�
�
: ðB53Þ

We note the identity

Im

�
∂ψ

∂t
ψ�
�

¼ 1

2i

�
ψ� ∂ψ

∂t
− ψ

∂ψ�

∂t

�
: ðB54Þ

Equations (B52) and (B53) form the GPE equations in the
weak gravity limit. In the nonrelativistic limit c → þ∞,
they reduce to the GPP equations [20,287,288]

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þmΦψ þm

dV
djψ j2 ψ ; ðB55Þ

ΔΦ ¼ 4πGjψ j2: ðB56Þ
In that case, the Lagrangian of the SF is

L ¼ iℏ
2m

�
ψ� ∂ψ

∂t
− ψ

∂ψ�

∂t

�

−
ℏ2

2m2
j∇ψ j2 −Φjψ j2 − Vðjψ j2Þ: ðB57Þ

The GPP equations (B55) and (B56) can also be rewritten
as a single equation

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þm

dV
djψ j2 ψ

− ψ

Z
Gm

jr − r0j jψ j
2ðr0; tÞdr0: ðB58Þ

40As inRefs. [20,287,288]wehaveneglected anisotropic stresses
and assumed that the lapse function Ψ is equal to the Newtonian
potential Φ. See [362,363] for a more general treatment.
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Remark.—We note that, for a complex SF, the potential
Vðjψ j2Þ, which occurs in the GP equation (B55), is equal to
the potential Vðjφj2Þ, which occurs in the KG equation (B6)
up to the change of function from Eq. (B44), leading to

jφj2 ¼ ℏ2

m2
jψ j2: ðB59Þ

This equivalence is no more true for a real SF (see [109]
and Appendix C).

7. Hydrodynamic representation of the GPE equations
in the weak gravity limit

We can write the GPE equations (B52) and (B53) in the
form of hydrodynamic equations by making the Madelung
transformation [289]

ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðr; tÞ

p
eiSðr;tÞ=ℏ; ðB60Þ

ρ ¼ jψ j2; uðr; tÞ ¼ ∇S
m

; ðB61Þ

where ρ is the pseudo-rest-mass density, S is the pseu-
doaction, and u is the pseudovelocity field (they coincide
with the mass density, the action, and the velocity field in
the nonrelativistic limit c → þ∞).
Substituting Eqs. (B60) and (B61) into the GPE

equations (B52) and (B53) and separating the real and
the imaginary parts, we obtain the system of hydrodynamic
equations [20,287,288]

∂ρ

∂t
þ∇ · ðρuÞ ¼ 1

mc2
∂

∂t

�
ρ
∂S
∂t

�
þ 4ρ

mc4
∂Φ
∂t

�
mc2 −

∂S
∂t

�

−
4Φ
c2

∇ · ðρuÞ; ðB62Þ

∂S
∂t

þ ð∇SÞ2
2m

¼ −
ℏ2

2mc2

∂
2 ffiffiρp
∂t2ffiffiffi
ρ

p þ
�
1þ 4Φ

c2

�
ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p

−
2Φ
mc2

ð∇SÞ2 −mΦ −
�
1þ 2Φ

c2

�
mhðρÞ

þ 1

2mc2

�
∂S
∂t

�
2

þ ∂Φ
∂t

ℏ2

mc4ρ
∂ρ

∂t
; ðB63Þ

∂u
∂t

þðu ·∇Þu¼−
ℏ2

2m2c2
∇
�∂

2 ffiffiρp
∂t2ffiffiffi
ρ

p
�

þ ℏ2

2m2
∇
��

1þ4Φ
c2

�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−∇Φ−

1

ρ
∇P

−
2

c2
∇ðhΦÞ− 2

c2
∇ðΦu2Þþ 1

2m2c2
∇
��

∂S
∂t

�
2
�

þ ℏ2

m2c4
∇
�
∂Φ
∂t

1

ρ

∂ρ

∂t

�
; ðB64Þ

ΔΦ
4πG

¼ ℏ2

2m2c4

�
1 −

2Φ
c2

��
1

4ρ

�
∂ρ

∂t

�
2

þ ρ

ℏ2

�
∂S
∂t

�
2
�

þ ℏ2

2m2c2

�
1þ 2Φ

c2

��
1

4ρ
ð∇ρÞ2 þ ρ

ℏ2
ð∇SÞ2

�

−
�
1 −

2Φ
c2

�
ρ

mc2
∂S
∂t

þ
�
1 −

Φ
c2

�
ρþ 1

c2
VðρÞ;

ðB65Þ
where hðρÞ is the pseudoenthalpy defined by

hðρÞ ¼ V 0ðρÞ; ðB66Þ
and PðρÞ is the pseudopressure defined by the relation
h0ðρÞ ¼ P0ðρÞ=ρ, which can be integrated into PðρÞ ¼
ρhðρÞ − R hðρÞdρ, yielding

PðρÞ ¼ ρV 0ðρÞ − VðρÞ ¼ ρ2
�
VðρÞ
ρ

�0
: ðB67Þ

Equation (B67) determines the equation of state PðρÞ for a
given self-interaction potential VðρÞ. Inversely, for a given
equation of state, the self-interaction potential reads

VðρÞ ¼ ρ

Z
PðρÞ
ρ2

dρ: ðB68Þ

The pseudo squared speed of sound is c2s ¼ P0ðρÞ ¼
ρV 00ðρÞ. The hydrodynamic equations (B62)–(B65) have a
clear physical interpretation. Equation (B62), corres-
ponding to the imaginary part of the GPE equations, is the
continuity equation expressing the conservation of the charge
of the SFQ¼ −ðe=m2c2ÞR ρð∂S=∂t−mc2Þð1− 4Φ=c2Þdr.
Equation (B63), corresponding to the real part of the
GPE equations, is the Hamilton-Jacobi (or Bernoulli) equa-
tion. Equation (B64), obtained by taking the gradient of
Eq. (B63), is the momentum equation. Equation (B65) is
the Einstein equation. We stress that the hydrodynamic
equations (B62)–(B65) are equivalent to the GPE
equations (B52) and (B53), which are themselves equivalent
to the KGE equations (B49) and (B50).41 The corresponding
Lagrangian is

L¼ ℏ2

2m2c2

�
1−

2Φ
c2

��
1

4ρ

�
∂ρ

∂t

�
2

þ ρ

ℏ2

�
∂S
∂t

�
2
�

−
ℏ2

2m2

�
1þ 2Φ

c2

��
1

4ρ
ð∇ρÞ2 þ ρ

ℏ2
ð∇SÞ2

�

−
�
1−

2Φ
c2

�
ρ

m
∂S
∂t

−Φρ−VðρÞ: ðB69Þ

41We note that the Bernoulli equation (B63) is a second degree
equation in E ¼ −∂S=∂t, which can be solved easily. We can then
substitute the solution into Eqs. (B62), (B64), and (B65) to get a
closed reduced system of equations (see Ref. [20]).
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In the nonrelativistic limit c → þ∞, the Lagrangian
reduces to

L¼−
ρ

m
∂S
∂t

−
ρ

2m2
ð∇SÞ2− ℏ2

8m2

ð∇ρÞ2
ρ

−Φρ−VðρÞ; ðB70Þ

and we obtain the quantum Euler-Poisson equations
[20,287,288]

∂ρ

∂t
þ∇ · ðρuÞ ¼ 0; ðB71Þ

∂S
∂t

þ ð∇SÞ2
2m

¼ ℏ2

2m

Δ ffiffiffi
ρ

pffiffiffi
ρ

p −mΦ −mhðρÞ; ðB72Þ

∂u
∂t

þ ðu ·∇Þu ¼ ℏ2

2m2
∇
�
Δ ffiffiffi

ρ
pffiffiffi
ρ

p
�
−∇Φ −

1

ρ
∇P; ðB73Þ

ΔΦ ¼ 4πGρ; ðB74Þ
where hðρÞ and PðρÞ are given by Eqs. (B66) and (B67)
as before.
Remark.—In the TF approximation, we can neglect

the terms containing ℏ. In that case, we have seen that
the energy density ϵ and the pressure P are given by
Eqs. (B37) and (B38). We note that Eq. (B38) coincides
with Eq. (B67). By contrast, ϵ ≠ T0

0 even if we use the
Bernoulli equation to eliminate ∂S=∂t.

8. jφj4 potential

We now consider a jφj4 (quartic) potential of the form

Vðjφj2Þ ¼ λ

4ℏc
jφj4; ðB75Þ

where λ is the dimensionless self-interaction constant. For
nonrelativistic BECs, the potential that occurs in the GP
equation (1) is usually written as in Eq. (3). Substituting
Eq. (B59) into Eq. (3), we get

Vðjφj2Þ ¼ 2πasm
ℏ2

jφj4: ðB76Þ

Comparing Eqs. (B75) and (B76), we obtain [307]

λ

8π
¼ asmc

ℏ
¼ as

λC
; ðB77Þ

where λC ¼ ℏ=mc is the Compton wavelength of the
bosons. For the jφj4 model, the KG and GP equations
take the form

□φþm2c2

ℏ2
φþ 8πasm

ℏ2
jφj2φ ¼ 0; ðB78Þ

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þmΦψ þ 4πasℏ2

m2
jψ j2ψ ¼ 0: ðB79Þ

In terms of the pseudo-rest-mass density [see Eqs. (B16)
and (B17)], the potential (B76) can be written as

VðρÞ ¼ 2πasℏ2

m3
ρ2: ðB80Þ

Substituting Eq. (B80) into Eqs. (B37) and (B38), we
obtain

ϵ ¼ ρc2
�
1þ 6πasℏ2

m3c2
ρ

�
; ðB81Þ

P ¼ 2πasℏ2

m3
ρ2: ðB82Þ

Eliminating ρ between these two equations, we get

P ¼ m3c4

72πasℏ2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 24πasℏ2

m3c4
ϵ

s
∓ 1

!2

: ðB83Þ

This relativistic equation of state PðϵÞwas first obtained by
Colpi et al. [58] in the context of boson stars. It was studied
in detail by Chavanis and Harko [86] in connection to
general relativistic BEC stars and by Li et al. [364] and
Suárez and Chavanis [346] in a BECDM cosmology (see
also [87,298,360,365,366] for related studies). This equa-
tion of state reduces to that of an n ¼ 1 polytrope [see
Eq. (B82) with ϵ ∼ ρc2] at low densities ρ ≪ m3c2=jasjℏ2

(nonrelativistic limit) and to the linear law P ∼ ϵ=3 similar
to the equation of state of the radiation at high densities
(ultrarelativistic limit).
Remark.—Sometimes, a jφj4 self-interaction potential is

written as

Vðjφj2Þ ¼ m2

2ℏ4
λsjφj4; ðB84Þ

where λs is the dimensional self-interaction constant.
Comparing Eq. (B84) with Eqs. (B75) and (B76), we get

λs ¼
4πasℏ2

m
¼ λℏ3

2m2c
: ðB85Þ

APPENDIX C: RELATIVISTIC REAL SF

In this Appendix, we discuss the main properties of a
relativistic real SF, consider the instantonic potential of
axions, take the nonrelativistic limit, and justify the GPP
equations (1)–(3) with as < 0.

1. Klein-Gordon-Einstein equations

For a real SF described by a canonical Lagrangian,

L ¼ 1

2
gμν∂μφ∂νφ −

m2c2

2ℏ2
φ2 − VðφÞ; ðC1Þ
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the KGE equations read

□φþm2c2

ℏ2
φþ dV

dφ
¼ 0; ðC2Þ

Rμν −
1

2
gμνR ¼ 8πG

c4
Tμν; ðC3Þ

with the energy-momentum tensor

Tμν ¼ ∂μφ∂νφ − gμνL: ðC4Þ

2. The nonrelativistic limit

In the nonrelativistic limit c → þ∞, where the SF
displays rapid oscillations, the KGE equations can be
simplified by averaging over the oscillations. To that
purpose, we write

φðr; tÞ ¼ 1ffiffiffi
2

p ℏ
m
½ψðr; tÞe−imc2t=ℏ þ ψ�ðr; tÞeimc2t=ℏ�; ðC5Þ

where the complex wave function ψðr; tÞ is a slowly
varying function of time (the fast oscillations eimc2t=ℏ of
the SF have been factored out). This transformation (which
is the counterpart of the Klein transformation for a real SF)
allows us to separate the fast oscillations of the SF with
pulsation ω ¼ mc2=ℏ caused by its rest mass from the slow
evolution of ψðr; tÞ. Using the simplest form of the
Newtonian gauge [see Eq. (B47)], substituting Eq. (C5)
into the KGE equations (C2)–(C4) and averaging over the
oscillations, we obtain the GPE equations (B52) and (B53)
with an effective potential Veffðjψ j2Þ [see Secs. II and III of
Ref. [109] and Appendix A of Ref. [110] for the details of
the derivation]. In the nonrelativistic limit c → þ∞, we
obtain the GPP equations (B55) and (B56) with Veffðjψ j2Þ
instead of Vðjψ j2Þ. For a real SF, the effective potential
Veffðjψ j2Þ that occurs in the GP equations (B52) and (B55)
is obtained from the potential VðφÞ that occurs in the KG
equation (C2) by first substituting Eq. (C5) into VðφÞ, then
averaging over the oscillations. It is different from the
potential that one would obtain by directly replacing φ2 by
ðℏ=mÞ2jψ j2 in the potential VðφÞ.
Remark.—General relativistic boson stars described by a

real SF have a naked singularity at the origin and are always
unstable [92,93]. It is possible to construct regular solutions
that are periodic in time provided that M < MGR

max ¼
0.606M2

P=m [111,112] but, on a long timescale (which
can nevertheless exceed the age of the Universe), these
oscillatons are unstable and disperse to infinity or form a
black hole. Their instability is basically due to the fact that
the charge (boson number) is not conserved for a real SF.
However, in the nonrelativistic limit, particle number
conservation is approximately restored and Newtonian
boson stars (like axion stars) can be stable (see Sec. III).

3. The instantonic potential of axions

Axions are hypothetical pseudo-Nambu-Goldstone
bosons of the Peccei-Quinn phase transition associated
with aUð1Þ symmetry that solves the strongCP problem of
QCD. The axion is a spin-0 particle with a very small mass
m ¼ 10−4 eV=c2 and an extremely weak self-interaction
(with a decay constant f ¼ 5.82 × 1010 GeV) arising from
nonperturbative effects in QCD. Axions have huge occu-
pation numbers, so they can be described by a classical
relativistic quantum field theory with a real SF φðr; tÞ
whose evolution is governed by the KGE equations. The
instantonic potential of axions is [300,367,368]

VðφÞ ¼ m2cf2

ℏ3

�
1 − cos

�
ℏ1=2c1=2φ

f

��
−
m2c2

2ℏ2
φ2; ðC6Þ

where m is the mass of the axion and f is the axion decay
constant. For this potential, the KG equation (C2) takes
the form

□φþm2c3=2f

ℏ5=2 sin

�
ℏ1=2c1=2φ

f

�
¼ 0: ðC7Þ

This is the general relativistic sine-Gordon equation.
Considering the dilute regime φ ≪ f=

ffiffiffiffiffiffi
ℏc

p
(which is valid,

in particular, in the nonrelativistic limit c → þ∞)42 and
expanding the cosine term of Eq. (C6) in Taylor series,
we obtain at leading order the φ4 potential,

VðφÞ ¼ −
m2c3

24f2ℏ
φ4: ðC8Þ

In that case, the KG equation (C2) takes the form

□φþm2c2

ℏ2
φ −

m2c3

6f2ℏ
φ3 ¼ 0: ðC9Þ

In the nonrelativistic limit, the effective potential Vðjψ j2Þ
appearing in the GP equation (B55) is given by [109,312]

Vðjψ j2Þ ¼ m2cf2

ℏ3

"
1 −

ℏ3c
2f2m2

jψ j2 − J0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏ3cjψ j2
f2m2

s !#
;

ðC10Þ
where J0 is the Bessel function of zeroth order.

43 If we keep
only the first term in the expansion of Eq. (C10), we obtain
the jψ j4 potential,

Vðjψ j2Þ ¼ −
ℏ3c3

16f2m2
jψ j4: ðC11Þ

42According to Eq. (C11), the axion decay constant f scales
as c3=2.

43For convenience, we write Vðjψ j2Þ instead of Veffðjψ j2Þ now
that we have explained the meaning of the effective potential
in Appendix C 2.
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This approximation is valid for dilute axion stars satisfying
jψ j2 ≪ f2m2=ℏ3c. We note that Vðjψ j2Þ≡ VðφÞ is differ-
ent from the expression that one would have naively
obtained by directly substituting φ2 ¼ ðℏ=mÞ2jψ j2 into
Eq. (C6). The difference is already apparent in the first
term of the expansion of the potential, which involves a
coefficient −1=16 [see Eq. (C11)] instead of −1=24 [see
Eq. (C8)]. They differ by a factor 2=3. This is because φ is a
real SF. Therefore, substituting φ (exact) from Eq. (C5) into
VðφÞ, then averaging over the oscillations, is different from
substituting φ2 ¼ ðℏ=mÞ2jψ j2 (already averaged over the
oscillations) into VðφÞ.
In general, a quartic potential is written as

VðφÞ ¼ λ

4ℏc
φ4; ðC12Þ

where λ is the dimensionless self-interaction constant.
Comparing Eqs. (C8) and (C12), we find that

λ ¼ −
m2c4

6f2
: ðC13Þ

On the other hand, comparing Eq. (C11) with Eq. (3),
we obtain

as ¼ −
ℏc3m
32πf2

: ðC14Þ

Equations (C13) and (C14) then yield

λ

8π
¼ 2asmc

3ℏ
: ðC15Þ

The relation between λ and as is different for a real SF and
for a complex SF (see Appendix B). They differ by a factor
2=3 for the reason indicated previously.
We note that the self-interaction constant λ or the

scattering length as is negative, so that the φ4 self-
interaction term for axions is “attractive.” This attraction
is responsible for the collapse of dilute axion stars
above the maximum mass MNR

max from Eq. (39) obtained
in Refs. [265,307]. The next order φ6 term in the expansion
of the potential (C6) has been considered in Refs. [109,312]
and turns out to be repulsive. This repulsion, which occurs
at high densities and which has a relativistic origin, may
stop the collapse of dilute axion stars and lead to the
formation of dense axion stars [311] (see, however, foot-
note 18 concerning their possible instability with respect to
relativistic decay).

APPENDIX D: SIMPLE MODEL OF EXTENDED
ELEMENTARY PARTICLE

In the main text, we have considered a self-gravitating
BEC made of N bosons of individual mass m. In the

nonrelativistic limit, the mass-radius relation of the BEC is
given by Eq. (53). Using Eq. (130), this relation can be
rewritten as

M ¼ a ℏ2

Gm2R

1 − b2 λℏ3

8πGm4cR2

: ðD1Þ

We now introduce a simple model of extended elemen-
tary particle.44 We consider a quantum particle of mass m
and we assume that it is confined by the gravitational
potential created by its own wave function. More specifi-
cally, we assume that the wave function ψðr; tÞ governed by
the GP equation (1) determines the density profile ρðr; tÞ of
the particle through the relation ρ ¼ jψ j2. The correspond-
ing density ρðr; tÞ creates, via the Poisson equation (2),
a gravitational potential Φðr; tÞ, which enters into the GP
equation (1). Finally, we identify the mass M ¼ R ρdr
produced by ρ with the mass m of the particle. This model
is similar to the model introduced by Diósi [369] who
proposed that the spreading of the wave packet of a free
particle is prevented by the gravitational potential created
by its own wave function ψ . This interpretation gives to the
Schrödinger-Poisson equation the status of a fundamental
equation of physics (i.e., more than the Schrödinger
equation alone). For the sake of generality, we complete
this model by taking into account a possible self-interaction
of the particle and consider the GPP equations (1) and (2)
with an arbitrary value of as (or λ).
In this model, the mass-radius relation of the particle is

obtained by setting M ¼ m in Eq. (D1), yielding

R2 − a
ℏ2

Gm3
R − b2

λℏ3

8πGm4c
¼ 0: ðD2Þ

The solution of this second degree equation is

R ¼ aℏ2

2Gm3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ℏ4

4G2m6
þ b2λℏ3

8πGm4c

s
: ðD3Þ

We must select the sign þ when λ ≥ 0, while the two signs
are allowed when λ < 0.

1. No self-interaction

For a noninteracting particle (λ ¼ 0), we obtain the
mass-radius relation

R ¼ a
ℏ2

Gm3
: ðD4Þ

The exact prefactor is 9.95. This returns the result obtained
in [210,234,369].45

44This model can be related to the models of extended particles
listed in footnote 13.

45These authors did not give the value of the prefactor.
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Remark.—If we apply this model to the electron of mass
m ¼ me ¼ 9.11 × 10−28 g, we obtain a radius

R ∼
ℏ2

Gm3
e
∼
�
MP

me

�
2 ℏ
mec

¼ 2.20 × 1032 m: ðD5Þ

Since MP=me ∼ 1020 ≫ 1, this radius is much larger than
the Compton wavelength of the electron λe ¼ ℏ=ðmecÞ ¼
3.86 × 10−13 m, which provides an estimate of its typical
size (see Appendix F for more details). Therefore, this
model cannot describe the electron. This is because self-
gravity is negligible at the scale of the electron (see
Appendix D 6).

2. Repulsive self-interaction

For a repulsive self-interaction (λ > 0), the mass-radius
relation is given by Eq. (D3) with the sign þ. The radius R
of the particle decreases with its mass m (see Fig. 11).
For m → 0 (noninteracting limit), we recover Eq. (D4).
For m → þ∞ (TF limit), we find that

R ∼ b

ffiffiffiffiffiffi
λ

8π

r �
ℏ3

Gm4c

�
1=2

: ðD6Þ

The exact prefactor is π. Therefore, the radius R behaves
like m−3 when m ≪ ma ¼ ð8πℏc=λGÞ1=2 and like m−2

when m ≫ ma ¼ ð8πℏc=λGÞ1=2.
Actually, in the TF approximation, we can solve

the problem exactly. Using Eq. (130), we can rewrite
Eq. (33) as

Δρþ 8πGm4c
λℏ3

ρ ¼ 0: ðD7Þ

The density profile of the extended particle, which is
determined by Eq. (D7), is given by [see Eq. (34)]

ρðrÞ ¼ ρ0R
πr

sin

�
πr
R

�
: ðD8Þ

Its radius is given by [see Eq. (35)]

R ∼ π

ffiffiffiffiffiffi
λ

8π

r �
ℏ3

Gm4c

�
1=2

ðD9Þ

and its central density is given by [see Eq. (36)]

ρ0 ¼
πm
4R3

: ðD10Þ

On the other hand, according to Eq. (37), the total energy
(gravitational þ internal) of the particle is

Etot ¼ −
Gm2

2R
: ðD11Þ

Finally, its pulsation is on the order of the inverse
dynamical time [see Eq. (38)]

tD ∼
1ffiffiffiffiffiffiffiffi
Gρ0

p ∼
�
R3

Gm

�
1=2

: ðD12Þ

Remark.—If we apply this model to the electron of
mass me ¼ 9.11 × 10−28 g and radius re ¼ e2=ðmec2Þ ¼
2.82 × 10−15 m (see Appendix F), we find that the self-
interaction constant must be equal to

λ

8π
¼ α2

π2

�
me

MP

�
2

¼ 9.45 × 10−51; ðD13Þ

where α is the fine-structure constant (F4). However, the TF
approximation is valid when λ≫ ðMP=meÞ2¼5.71×1044,
so we see that this condition is not satisfied for a particle of
mass me ≪ MP. Therefore, this model cannot describe the
electron. This is because self-gravity is negligible at the
scale of the electron (see Appendix D 6).

3. Attractive self-interaction

For an attractive self-interaction (λ < 0), the two signs
are allowed in the mass-radius relation from Eq. (D3). This
determines two branches of solutions. These two branches
merge at the maximum mass (see Fig. 12)

mmax ¼
a
2b

ffiffiffiffiffiffi
8π

jλj

s �
ℏc
G

�
1=2

; ðD14Þ

0 2 4 6 8 10
R

0

2
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m

TF

Noninteracting
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FIG. 11. Mass-radius relation of an extended elementary
particle with λ > 0. The mass is normalized by ma ¼
ð8π=λÞ1=2MP and the radius by Ra ¼ ðλ=8πÞ3=2lP (this amounts
to setting ℏ ¼ c ¼ G ¼ λ=8π ¼ 1 in the dimensional equations).
We have taken a ¼ 9.946 and b ¼ π.
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corresponding to the radius

R� ¼
4b3

a2

�jλj
8π

�
3=2
�
Gℏ
c3

�
1=2

: ðD15Þ

The exact prefactors are 1.012 and 5.5. The branch
associated with the sign þ corresponds to stable solutions.
For R → þ∞ andm → 0 (noninteracting limit), we recover
Eq. (D4). The branch associated with the sign − corre-
sponds to unstable solutions. For R → þ∞ and m → 0
(nongravitational limit), we obtain

R ∼
b2

a
jλj
8π

ℏ
mc

; ðD16Þ

where ℏ=ðmcÞ is the Compton wavelength of the particle.
The exact prefactor is 3.64.
For λ ∼ 1, the maximum mass is on the order of the

Planck mass MP ¼ ðℏc=GÞ1=2 ¼ 2.18 × 10−5 g and the
corresponding radius is on the order of the Planck length
lP ¼ ðGℏ=c3Þ1=2 ¼ 1.62 × 10−35 m, which is also the
semi-Schwarzschild radius GMP=c2 corresponding to the
Planck mass. It is interesting to see that the Schwarzschild
radius enters into the problem although we have used a
nonrelativistic approach. This is due to the definition of λ in
Eq. (130). Actually, our nonrelativistic approach is valid for
jλj ≫ 1. Therefore, the maximum mass is much smaller
than the Planck mass and its radius is much larger than
the Planck length (or Schwarzschild radius). This is
relevant to describe an elementary particle. However, in
that case, we have to take into account electrostatic forces
(see Appendix D 6), except if the particle is uncharged.
Remark.—Eliminating jλj between Eqs. (D14) and (D15),

we find that

R� ¼
a
2

ℏ2

Gm3
max

: ðD17Þ

This is the same scaling as in Eq. (D4). Therefore, as in
Appendix D 1, this model cannot describe the electron
because it would yield a too large radius. Actually, sub-
stituting m ¼ me and R¼ re¼e2=ðmec2Þ (see Appendix F)
in Eq. (D2) and introducing the fine-structure constant (F4),
we get

λ

8π
¼ 1

b2
α2
�
me

MP

�
2

−
a
b2

α: ðD18Þ

Since me ≪ MP, this formula reduces to

λ

8π
¼ −

a
b2

α; ðD19Þ

corresponding to the nongravitational limit (m ≪ mmax and
R ≫ R�). Interestingly, in this limit, the mass-radius relation
from Eq. (D16) is consistent with the mass-radius relation
of the electron [see Eq. (F2) with R ¼ re] provided that λ is
given by Eq. (D19), which is a pure number λ ¼ −0.275α ¼
−2.00 × 10−3. Unfortunately, this equilibrium state is unsta-
ble (see Sec. III C).

4. Tunnel effect

For an attractive self-interaction (λ < 0), since the stable
equilibrium state with m < mmax is only metastable, the
particle can overcome the barrier of potential by tunnel
effect and collapse (possibly becoming a black hole). It has
therefore a finite lifetime. The lifetime of a self-gravitating
BEC with an attractive self-interaction has been calculated
in [110] by using the instanton theory. It is found that
tlife ∼ eNbðMÞ, where N is the number of particles in the
BEC and bðMÞ is a function related to the barrier of
potential which tends to zero when M → Mmax. Since the
number of bosons in a boson star is huge, on the order of
N ∼ 1050–10100, the probability of a boson star to collapse
by tunnel effect is completely negligible, being of order
e−N (except when M ¼ Mmax, where it scales as N−1=5)
[110]. However, in the case of an elementary particle, we
have N ¼ 1, so the tunneling probability is determined by
the function bðmÞ.
When m → mmax, we can obtain the lifetime tlife ∼ 1=Γ

of the particle by taking N ¼ 1 in Eq. (86) of [110].
This yields

Γ ∼ 12

�
8

π2

�
1=4
�
2

�
1 −

m
mmax

��
7=8

ðασÞ1=4

× e−
24
5

ffiffi
2

p ½2ð1− m
mmax

Þ�5=4 ffiffiffiffiασp
t−1D ; ðD20Þ

where

tD ¼
�
α

ν

�
1=2 1ffiffiffiffiffiffiffiffi

Gρ0
p ¼ 6πζ

ν

�
α

ν

�
1=2 jasjℏ

Gm2
ðD21Þ

0 20 40 60 80 100
R

0

0.2

0.4

0.6

0.8

1
m

Nongravitational

Noninteracting

m
max

(S)

(U)

FIG. 12. Mass-radius relation of an extended elementary
particle with λ < 0. The mass is normalized by ma ¼
ð8π=jλjÞ1=2MP and the radius by Ra ¼ ðjλj=8πÞ3=2lP (this
amounts to setting ℏ ¼ c ¼ G ¼ jλj=8π ¼ 1 in the dimensional
equations). We have taken a ¼ 11.1 and b ¼ 5.5.
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is the dynamical time. Within the Gaussian ansatz, the
values of the coefficients are αG ¼ 3=2, σG ¼ 3=4,
ζG ¼ 1=ð2πÞ3=2, and νG ¼ 1=

ffiffiffiffiffiffi
2π

p
[110,265]. Using

Eq. (130), we can rewrite the dynamical time as

tD ∼
jλjℏ2

Gm3c
: ðD22Þ

For m ∼mmax and R ∼ R� with [see Eqs. (D14) and (D15)]

mmax ∼
MPffiffiffiffiffijλjp and R� ∼ jλj3=2lP; ðD23Þ

we obtain

tD ∼ jλj5=2tP; ðD24Þ

where tP¼ðℏG=c5Þ1=2¼5.39×10−44 s is the Planck time.
In order to have a long lifetime, we need jλj ≫ 1, hence

m ≪ MP (this condition is actually required by thevalidity of
the nonrelativistic approximation). Therefore, in this model,
elementary particles with a mass m ∼mmax ≪ MP have a
long lifetime. However, when m ≪ MP, it is generally
necessary to take into account electrostatic interactions
(see Appendix D 6), except if the particles are neutral.
Alternatively, for a particle of mass m ∼mmax ∼MP,

corresponding to jλj ∼ 1, electrostatic interactions may be
neglected (at least marginally), but the lifetime of the
particle is on the order of the Planck time tP. In that case,
we have an elementary particle of mass MP and radius lP
(on the order of the Schwarzschild radius). This “Planck
particle” (planckion) may be destabilized by tunnel effect
and collapse quasi-immediately toward a Planck black hole
of mass MP on a timescale ∼tP. This scenario should be
confirmed by a general relativistic calculation.

5. Relativistic effects

In the main text, we have determined general equations
giving the maximum mass Mmax of a relativistic self-
gravitating gas of bosons of individual mass m at T ¼ 0.
TakingM ¼ m in these equations, we obtain the maximum
mass mmax of an elementary particle described by the KGE
equations (B6) and (B7), in which the gravitational field is
produced by the wave function φ of the particle itself.
For a noninteracting particle, using Eq. (132), we get

mmax ¼ 0.796MP: ðD25Þ

The maximum mass of the elementary particle is on the
order of the Planck mass. This result may be connected to
the result of Rosen [178].
For a particle with a repulsive self-interaction in the TF

approximation (λ ≫ 1), using Eq. (133), we get

mmax ¼ 0.394λ1=6MP: ðD26Þ

The maximummass of the elementary particle is larger than
the Planck mass.
For a particle with an attractive self-interaction in the

nonrelativistic limit (jλj ≫ 1), using Eq. (138), we get

mmax ¼ 5.07
MPffiffiffiffiffijλjp : ðD27Þ

The maximum mass of the elementary particle is smaller
than the Planck mass (see Appendix D 4).
More generally, for a particle with an arbitrary repulsive

self-interaction, using the interpolation formula (137), we
obtain the relation mmaxðλÞ under the inverse form

λ

8π
¼

2.50
�
mmax
MP

�
4
− 1

0.235
�

MP
mmax

�
2

: ðD28Þ

On the other hand, for a particle with an arbitrary attractive
self-interaction, using the interpolation formula (122), we
obtain the relation mmaxðλÞ under the inverse form

λ

8π
¼

1 − 0.401
�

MP
mmax

�
4

0.391
�

MP
mmax

�
2

: ðD29Þ

Equation (D28) is a third degree equation for ðmmax=MPÞ2,
while Eq. (D29) is a second degree equation for
ðMP=mmaxÞ2. The function mmaxðλÞ is plotted in Fig. 13.
Remark.—For an attractive self-interaction, the relativ-

istic mass-radius relation of the particle can be obtained
from Eq. (D3) by making the substitution (see Sec. VII)

λ → λ

�
1 − κ

8πGm2

λcℏ

�
; ðD30Þ
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FIG. 13. Maximummassmmax of a relativistic extended elemen-
tary particle as a function of the self-interaction parameter λ.
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yielding

R ¼ aℏ2

2Gm3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ℏ4

4G2m6
þ b2λℏ3

8πGm4c

�
1 − κ

8πGm2

λcℏ

�s
:

ðD31Þ

For λ < 0, the mass-radius relation has a shape similar to
that of Fig. 12. For a noninteracting (λ ¼ 0) relativistic
particle, the mass-radius relation reduces to

R ¼ aℏ2

2Gm3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ℏ4

4G2m6
−
κb2ℏ2

m2c2

s
: ðD32Þ

It is plotted in Fig. 14. From this relation, we recover the
maximum mass (D25) and the nonrelativistic mass-radius
relation (D4) for m ≪ mmax and R ≫ R� (or c → þ∞). In
the ultrarelativistic limit m ≪ mmax and R ≪ R�, we have
m ∼ ac2R=κb2G, but these configurations are unstable.

6. Planck mass

Let us introduce the ratio between the electrostatic force
and the gravitational force F ¼ e2=Gm2, where e is the
elementary charge (the charge of the electron) and m is
the mass of the particle under consideration. Electrostatic
and gravitational forces are comparable (F ∼ 1) when
m ∼ e=

ffiffiffiffi
G

p
. Introducing the fine-structure constant (F4)

and treating α as a dimensionless number of order unity,
the condition F ∼ 1 can be rewritten as m ∼MP, where
MP ¼ ðℏc=GÞ1=2 ¼ 2.18 × 10−5 g is the Planck mass.
When m ≪ MP (i.e., e2 ≫ Gm2), the electrostatic forces
overcome the gravitational forces. For example, for the
electron of mass me ¼ 9.11 × 10−28 g, we have F ∼ 1040

(Weyl number). Therefore, self-gravity is completely
negligible at the scale of the electron. When m ≫ MP

(i.e., Gm2 ≫ e2), the gravitational forces overcome the
electrostatic forces. When m ∼MP (i.e., e2 ∼ Gm2),

corresponding to the Planck scale or the grand unification
energy scale, the gravitational and the electrostatic forces
are comparable. Therefore, models of extended elementary
charged particles that include gravitational and electrostatic
forces have masses on the order of the Planck mass MP
(up to a factor α) [210].

APPENDIX E: CHARGED BOSONS

In this Appendix, we consider the case of BECs made of
charged bosons. We assume that the bosons have a mass m
and carry a charge e. We stress that e is not necessarily
equal to the elementary charge of the electron.

1. Without self-gravity

We first ignore the gravitational interaction between
bosons and consider the electrostatic GPP equations

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þ 4πasℏ2

m2
jψ j2ψ þmΦψ ; ðE1Þ

ΔΦ ¼ −
4πe2

m2
jψ j2: ðE2Þ

Since the electrostatic interaction e2=r between two charges
is similar to the gravitational interaction −Gm2=r between
two masses (except for the change of sign), the results of
Sec. IV remain valid provided that we make the substitution
Gm2 → −e2 in the equations. Since the electrostatic force
between two charges is repulsive, and since the quantum
potential also has a repulsive nature, equilibrium states can
exist only if the self-interaction between bosons is attractive.
Therefore, in the following, we assume as < 0.
In that case, the mass-radius relation from Eq. (53)

becomes

M ¼ a ℏ2

e2R

b2 jasjℏ2
e2mR2 − 1

: ðE3Þ

The radius increases monotonically with the mass (see
Fig. 15) and tends to the asymptotic value

Rmax ¼ b

�jasjℏ2

e2m

�
1=2

ðE4Þ

when M → þ∞ (TF limit). This corresponds to the result
from Eq. (56) with the above substitution. For M → 0
(nonelectrostatic limit), we have

R ∼
b2

a
jasjM
m

; ðE5Þ

returning the result from Eq. (61). From these asymptotic
results, we obtain b ¼ π and a=b2 ¼ 0.275, yielding
a ¼ 2.71.
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FIG. 14. Mass-radius relation of a relativistic extended elemen-
tary particle without self-interaction (λ ¼ 0).
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The total energy of the BEC [see Eq. (50)] is

EtotðRÞ ¼ σ
ℏ2M
m2R2

þ ν
e2M2

m2R
− ζ

2πjasjℏ2M2

m3R3
: ðE6Þ

We see that the equilibrium state is always unstable (it is a
maximum of energy at fixed mass). This probably pre-
cludes physical applications of this model.
Remark.—In the nonelectrostatic limit (e ¼ 0 and

as < 0), we can use the exact results from Sec. III C
valid for nongravitational BECs with an attractive self-
interaction (G ¼ 0 and as < 0). In the TF limit (ℏ ¼ 0), we
can use the exact results from Sec. III B provided that we
make the substitutions Gm2 → −e2 and as → −jasj. The
density profile of the BEC is given by Eq. (34), its radius by
Eq. (E4) with b ¼ π, its central density by Eq. (36), its
energy by Etot ¼ M2e2=2m2Rmax, and the instability time
by tD ∼ ðm2R3

max=Me2Þ1=2. Therefore, in the TF limit, a gas
of charged bosons with an attractive self-interaction
(−e2 < 0 and as < 0) has the same structure as a boson
star with a repulsive self-interaction (G > 0 and as > 0).
However, a boson star with a repulsive self-interaction is
stable, while a gas of charged bosons with an attractive self-
interaction is unstable. In this connection, we note that the
total energy Etot is negative in the gravitational case and
positive in the electrostatic case.

2. With self-gravity

If we take into account the gravitational force and
the electrostatic force between bosons, we just have to
make the substitution Gm2 → Gm2 − e2 or, equivalently,
G → Gð1 − e2=Gm2Þ in the equations of Sec. IV. The
effect of the electrostatic repulsion is to decrease the value
of the gravitational constant. Introducing the dimensionless
parameter

α ¼ e2

ℏc
; ðE7Þ

coinciding with the fine-structure constant only when e is
the charge of the electron, this transformation can be
rewritten as

G → G

�
1 − α

M2
P

m2

�
; ðE8Þ

where MP ¼ ðℏc=GÞ1=2 is the Planck mass. The gravita-
tional attraction prevails over the electric repulsion (allowing
stable equilibrium states) provided that e2 < e2c ≡Gm2, i.e.,
α < αc ≡m2=M2

P. When this condition is fulfilled, the
mass-radius relation (53) becomes

M ¼
a ℏ2

ðGm2−e2ÞR
1 − b2 asℏ2

mðGm2−e2ÞR2

: ðE9Þ

Figures 1 and 2 remain valid with the new scalesMa and Ra
obtained by using the transformation (E8). There is always
an equilibrium state (for any mass M) when as ≥ 0, while
an equilibrium state exists only below the maximum mass
[see Eq. (58) with Eq. (E8)],

Mmax ¼
a
2b

ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jasj
m ðGm2 − e2Þ

q ðE10Þ

when as < 0. When e2 > e2c ¼ Gm2, the equilibrium states
are unstable.46

For relativistic bosons with a repulsive self-interaction
(as ≥ 0), substituting R ¼ kGM=c2 into Eq. (E9), we
obtain47

Mmax ¼
�
a
k

�
1=2 ℏc

Gm

�
Gm2

Gm2 − e2

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

ak
asc2

Gm

r
:

ðE11Þ

This is the general relativistic maximum mass of a charged
boson star arising from the fact that its radius approaches
the Schwarzschild radius (see Sec. VI). The electrostatic
corrections are encapsulated in the factor

�
Gm2

Gm2 − e2

�
1=2

: ðE12Þ
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FIG. 15. Mass-radius relation of charged BECs with as < 0 [for
illustration we have used Eq. (E3) with a ¼ 2.71 and b ¼ π]. The
mass is normalized by Ma ¼ ðmℏ2=e2jasjÞ1=2 and the radius by
Ra ¼ ðjasjℏ2=e2mÞ1=2.

46The results of Appendix E 1 can be generalized by making
the substitution e2 → e2 −Gm2.

47In principle, we should take into account the electrostatic
correction to the Schwarzschild radius. This correction will be
considered in a future work.

MAXIMUM MASS OF RELATIVISTIC SELF-GRAVITATING … PHYS. REV. D 107, 103503 (2023)

103503-41



Therefore, using the interpolation formulas of Sec. VIII and
including the electrostatic corrections, we get

Mmax ¼ 0.633
ℏc
Gm

�
Gm2

Gm2 − e2

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.235

asc2

Gm

r

ðE13Þ

and

R� ¼ 6.03
ℏ
mc

�
Gm2

Gm2 − e2

�
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.101

asc2

Gm

r
: ðE14Þ

For relativistic bosons with an attractive self-interaction
(as ≤ 0), making the transformation from Eq. (96) into
Eq. (E9), we obtain the mass-radius relation48

M ¼
a ℏ2

ðGm2−e2ÞR

1þ b2
jas−κGmc2 jℏ

2

mðGm2−e2ÞR2

: ðE15Þ

This mass-radius relation displays a maximum mass. Using
the interpolation formulas of Sec. VIII and including the
electrostatic corrections, we get

Mmax¼1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjas−2.56Gm
c2 j

q �
Gm2

Gm2−e2

�
1=2

ðE16Þ

and

R� ¼ 5.5

�jas − 1.20 Gm
c2 jℏ2

Gm3

�1=2� Gm2

Gm2 − e2

�
1=2

: ðE17Þ

In the noninteracting limit (as ¼ 0), using Eqs. (E13)
and (E14) or Eqs. (E16) and (E17), we obtain

Mmax ¼ 0.633
ℏc
Gm

�
Gm2

Gm2 − e2

�
1=2

; ðE18Þ

R� ¼ 6.03
ℏ
mc

�
Gm2

Gm2 − e2

�
1=2

: ðE19Þ

For e → ec ¼ Gm2, taking G ¼ ℏ ¼ c ¼ m ¼ 1 for con-
venience (we adopt the same convention below), we find
that Mmax ∼ 0.448ð1 − eÞ−1=2 and R� ∼ 4.26ð1 − eÞ−1=2.
In the TF limit (when as > 0 with as ≫ Gm=c2), using

Eqs. (E13) and (E14), we obtain

Mmax ¼ 0.307

�
asℏ2c4

G3m3

�
1=2
�

Gm2

Gm2 − e2

�
1=2

; ðE20Þ

R� ¼ 1.92

�
asℏ2

Gm3

�
1=2
�

Gm2

Gm2 − e2

�
1=2

: ðE21Þ

For e → ec ¼ Gm2, we find that Mmax ∼ 0.217ð1 − eÞ−1=2
and R� ∼ 1.36ð1 − eÞ−1=2.
In the nonrelativistic limit (when as < 0 with

jasj ≫ Gm=c2), using Eqs. (E16) and (E17), we obtain

Mmax ¼ 1.012
ℏffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmjasj
p �

Gm2

Gm2 − e2

�
1=2

; ðE22Þ

R� ¼ 5.5

�jasjℏ2

Gm3

�
1=2
�

Gm2

Gm2 − e2

�
1=2

: ðE23Þ

For e → ec ¼ Gm2, we find that Mmax ∼ 0.716ð1 − eÞ−1=2
and R� ∼ 3.89ð1 − eÞ−1=2.
Charged boson stars in general relativity have been

studied numerically by Jetzer and van der Bij in
Refs. [370,371] by solving the Klein-Gordon-Maxwell-
Einstein equations numerically. Their asymptotic results for
e → ec ¼ 1, displaying the scalings Mmax ∝ ð1 − eÞ−1=2
and R� ∝ ð1 − eÞ−1=2, are recovered by our analytical
approach.49 For the maximum mass Mmax, they obtained
the prefactors 0.44 × 21=4 ¼ 0.523 and 0.226 × 21=4 ¼
0.269 in the noninteracting and TF limits, respectively.
These numerical results are reasonably close to our
approximate analytical results 0.448 and 0.217.

3. Model of extended particles
with electrostatic interactions

We can use the foregoing results to take into account
electrostatic interactions in the models of relativistic elemen-
tary particles considered in Appendix D 5. We focus on the
case where the gravitational forces are more important than
the electrostatic forces (i.e., m > e=

ffiffiffiffi
G

p ¼ ffiffiffi
α

p
MP).

a. Nonrelativistic mass-radius relation

We can easily generalize the nonrelativistic mass-radius
relation mðRÞ from Eq. (D3) to a charged particle by
making the substitution from Eq. (E8). The general formula
is a bit cumbersome but it takes a simple form in
appropriate limits. In the noninteracting case, we get
[see Eq. (D4) with (E8)]

R ¼ a
ℏ2

Gm3
�
1 − α

M2
P

m2

� : ðE24Þ

48In principle, we should take into account the electrostatic
correction in the relativistic quantum potential. This correction
will be considered in a future work.

49These scalings do not amount to naively making the
substitution Gm2 → Gm2 − e2 in the relativistic formulas of
uncharged boson stars.
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In the TF limit when λ > 0, we get [see Eq. (D6) with (E8)]

R ∼ b

ffiffiffiffiffiffi
λ

8π

r 2
64 ℏ3

Gm4
�
1 − α

M2
P

m2

�
c

3
75
1=2

: ðE25Þ

The radius diverges when m →
ffiffiffi
α

p
MP. We recover the

nonelectrostatic case when m ≫
ffiffiffi
α

p
MP.

b. Relativistic mass-radius relation when λ ≤ 0

For an attractive self-interaction λ ≤ 0, we can easily
generalize the relativistic mass-radius relation mðRÞ from
Eq. (D31) to a charged particle by making the substitution
from Eq. (E8), except in the term that is proportional to κ,
since we have assumed that it is not affected by electrostatic
corrections (see footnote 48). The general formula is a bit
cumbersome, but for a noninteracting (λ ¼ 0) particle, it
reduces to

R ¼ aℏ2

2G
�
1 − α

M2
P

m2

�
m3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ℏ4

4G2
�
1 − α

M2
P

m2

�
2
m6

−
κb2ℏ2

m2c2
�
1 − α

M2
P

m2

�
vuut : ðE26Þ

c. Maximum mass

We now determine how electrostatic corrections affect the
maximum mass of the particle calculated in Appendix D.
For a repulsive self-interaction, using Eqs. (130) and (E7)

and making M ¼ m in Eq. (E13), we find that the relation
between the maximum particle mass mmax and the dimen-
sionless self-interaction constant λ can be expressed under
the inverse form as

λ

8π
¼

2.50 m2
max
M2

P

�
m2

max
M2

P
− α
�
− 1

0.235 M2
P

m2
max

: ðE27Þ

When α ¼ 0 (i.e., e ¼ 0), we recover Eq. (D28).
For an attractive self-interaction, using Eqs. (130)

and (E7) and making M ¼ m in Eq. (E16), we find that

jλj
8π

¼ 1.02
m2

max
M2

P
− α

− 2.56
m2

max

M2
P
: ðE28Þ

When α ¼ 0, we recover Eq. (D29).
In the noninteracting case, making M ¼ m in Eq. (E18),

we obtain

mmax ¼ MP

�
α

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2

4
þ 0.401

r �1=2
: ðE29Þ

When α ¼ 0, we recover Eq. (D25). When α ≫ 1, we
get m ∼

ffiffiffi
α

p
MP.

50

In the TF limit (when λ > 0 and λ ≫ 1), makingM ¼ m
in Eq. (E20), we obtain

λ

8π
¼ 10.6

m4
max

M4
P

�
m2

max

M2
P

− α

�
: ðE30Þ

When α ¼ 0, or when λ → þ∞, we recover Eq. (D26).
In the nonrelativistic limit (when λ < 0 with jλj ≫ 1),

making M ¼ m in Eq. (E22), we obtain

mmax ¼ MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.02

8π

jλj þ α

s
: ðE31Þ

When α ¼ 0, we recover Eq. (D27). When jλj → þ∞, we
find mmax →

ffiffiffi
α

p
MP.

4. A simple model of extended electron

We can use the results of Appendix E 1 to construct
a simple model of extended electron.51 We assume that
the wave function ψðr; tÞ governed by the Schrödinger
equation (E1) determines the density profile ρðr; tÞ of
the electron through the relation ρ ¼ jψ j2. The correspond-
ing density of charge −ρe=m creates, via the Poisson
equation (E2), an electric potential ðm=eÞΦ that enters into
the Schrödinger equation (E1). Finally, we identify the
mass m appearing in the Schrödinger equation (E1) and
the massM ¼ R ρdr produced by ρwith the massme of the
electron, following an argument similar to the one given
by Diósi [369] for the gravitational interaction (see
Appendix D).52 Of course, since the electrostatic interaction
and the quantum potential are both repulsive, this model
does not yield any equilibrium state (contrary to the
gravitational model of Diósi [369], where the gravitational
attraction compensates the repulsion of the quantum poten-
tial). Therefore, we add an attractive jψ j4 self-interaction
(λ < 0) that opposes itself to the electrostatic repulsion.
This attractive term is similar in spirit to the Poincaré stress
[183,374] introduced in the Abraham-Lorentz [182,184]
electromagnetic model of the electron to stabilize the particle
(see Appendix F 2). Using Eqs. (E3) and (130), introducing

50Recall that e is not necessarily the charge of the electron, so α
can take large values.

51This model can be related to the models of extended particles
listed in footnote 13. Unfortunately, the particle of our model
appears to be unstable.

52Vlasov [372] argued that this system of coupled Schrö-
dinger-Poisson equations was imagined by Schrödinger himself,
but Pitaevskii [373] contested that claim.
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the fine-structure constant (F4), and taking M ¼ me, we
obtain the electron mass-radius relation

m2
e þ

ae2

α2Rc2
me −

b2jλje4
8πα3c4R2

¼ 0; ðE32Þ

where a ¼ 2.71 and b ¼ π. The solution of this second
degree equation is

mec2 ¼
e2

R

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4α4
þ b2jλj
8πα3

s
−

a
2α2

9=
;: ðE33Þ

It can be written as

mec2 ¼ χðλÞ e
2

R
; ðE34Þ

with the dimensionless constant

χðλÞ ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

4α4
þ b2jλj
8πα3

s
−

a
2α2

9=
;: ðE35Þ

Interestingly, this relation is similar to the relation appearing
in the Abraham-Lorentz [182,184] model of the electron
and in the Born-Infeld [188,189] theory (see Appendix F).
Comparing Eq. (E34) with Eq. (F1), we get

R ¼ χðλÞre; ðE36Þ

where re is the classical electron radius (F2).

a. TF approximation

In the TF approximation jλj=8π ≫ a2=ð4b2αÞ, the term
proportional to me in Eq. (E32) can be neglected and
Eq. (E33) reduces to

mec2 ¼
b

α3=2

ffiffiffiffiffiffi
jλj
8π

r
e2

R
: ðE37Þ

In that case, the equilibrium state results from the balance
between the repulsive electrostatic interaction and the
attractive self-interaction. Actually, in the TF approximation,
we can solve the problem exactly. Making the substitutions
Gm2 → −e2 and as → −jasj in Eq. (33), using Eq. (130)
and introducing the fine-structure constant (F4), we obtain53

Δρþ 8πm2
ec4α3

jλje4 ρ ¼ 0: ðE38Þ

The density profile of the extended electron, which is
determined by Eq. (E38), is given by [see Eq. (34)]

ρðrÞ ¼ ρ0R
πr

sin

�
πr
R

�
: ðE39Þ

Its radius is [see Eq. (35)]

R ¼ π

α3=2

ffiffiffiffiffiffi
jλj
8π

r
e2

mec2
: ðE40Þ

It can be written as Eq. (E36) with

χTFðλÞ ¼
π

α3=2

ffiffiffiffiffiffi
jλj
8π

r
: ðE41Þ

Its central density is [see Eq. (36)]

ρ0 ¼
πme

4R3
: ðE42Þ

The timescale of the instability is of order [see Eq. (38)]

tD ∼
�

m2

ρ0e2

�
1=2

∼
�
meR3

e2

�
1=2

: ðE43Þ

Finally, according to Eq. (37), the total energy (electrostatic
þ internal) of the electron is54

Etot ¼
e2

2R
: ðE44Þ

Combining Eq. (E44) with Eq. (E34), we find that

Etot ¼
mec2

2χTFðλÞ
: ðE45Þ

If we impose that R ¼ re, we get χTFðλÞ ¼ 1. In that case,
the total energy of the electron is55

Etot ¼
1

2
mec2; ðE46Þ

53This equation is equivalent to the Lane-Emden equation for a
polytrope of index n ¼ 1, which describes the balance between
the gravitational attraction and the repulsive self-interaction. In
the present case, it describes the balance between the electrostatic
repulsion and the attractive self-interaction. However, in the
gravitational case (boson stars), the equilibrium is stable, while in
the electrostatic case (electron), it is unstable.

54The energy of the electron is positive, implying that this
configuration is unstable. By contrast, the gravitational energy of
a boson star is negative, consistent with the fact that these objects
are stable.

55We note that Etot ≠ mec2. Alternatively, we could impose
Etot ¼ mec2 and deduce that the radius of the electron is given by
mec2 ¼ e2=ð2RÞ [see Eq. (E44)], i.e., R ¼ e2=ð2mec2Þ ¼ re=2.
The relation E ¼ mc2 (sometimes with a prefactor 3=4) has a
long history in physics even before Einstein’s theory of relativity.
It appeared at the end of the 19th century when some researchers
like Thomson noticed that the electromagnetic energy is equiv-
alent to mass. It was also used by Born and Infeld in their
nonlinear electrodynamics (see Appendix F).
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where mec2 is its rest-mass energy. On the other hand, its
central density is

ρ0 ¼
π

4
ρe; ðE47Þ

where ρe is the classical electron density (F5). The timescale
of the instability is of order

tD ∼ te; ðE48Þ

where te is the chronon (F6).
The condition χTFðλÞ ¼ 1 implies that the self-interaction

constant is given by

λ

8π
¼ −

α3

π2
¼ −3.94 × 10−8: ðE49Þ

This result shows that the TF approximation jλj=8π ≫
a2=ð4b2αÞ ¼ 25.5 is not justified. One has to take into
account the contribution of the quantum potential and use the
more general mass-radius relation from Eq. (E33).

b. Nonelectrostatic limit

In the nonelectrostatic limit jλj=8π≪a2=ð4b2αÞ¼25.5,
the term proportional to m2

e in Eq. (E32) can be neglected
and Eq. (E33) reduces to

mec2 ¼
b2

a
jλj
8π

e2

αR
: ðE50Þ

In that case, the equilibrium state results from the balance
between the repulsive quantum potential and the attractive
self-interaction (see Appendix D 3). The total energy is of
order Etot ¼ 0.393mec2=ðλ=8πÞ2 [see Eq. (54) of [290]
with Eq. (130)]. If we impose that R ¼ re [i.e.,
χNEðλÞ ¼ 1], we get56

jλj
8π

¼ a
b2

α ¼ 2.00 × 10−3: ðE51Þ

This result is consistent with the condition of validity of
the nonelectrostatic limit. However, the equilibrium state is
unstable.

c. General case

In the general case, if we impose that R ¼ re [i.e.,
χðλÞ ¼ 1], we get

jλj
8π

¼ aαþ α3

b2
: ðE52Þ

Since α ≪ 1, we have in good approximation

jλj
8π

≃
a
b2

α ¼ 2.00 × 10−3; ðE53Þ

corresponding to the nonelectrostatic limit that we have
discussed previously. This is also a regime of weak self-
interaction since jλj=8π ≪ a2=ð4b2αÞ.
In conclusion, our simple model of extended electron

determines its density profile [it can be obtained by solving
the electrostatic Gross-Pitaevskii-Poisson equations (E1)
and (E2) or, in good approximation, by solving the non-
electrostatic Gross-Pitaevskii equation alone], as well as its
radius and central density. Equation (E33) with χðλÞ ¼ 1 is
consistent with the relation mec2 ¼ e2=re usually intro-
duced from qualitative considerations, but it is obtained
here from the solution of the electrostatic GPP equations.
Unfortunately, this equilibrium state is unstable. The time-
scale of the instability is [see Eq. (112) in [265])

tu ∼
mer2e
ℏ

¼ 6.87 × 10−26 s: ðE54Þ

In this model, the electron would have a very short lifetime.
Therefore, although this model correctly reproduces the
relation between the mass and the radius of the electron, it
cannot account for its stability unless a particular mecha-
nism to increase its lifetime is found. Maybe this model
could describe another elementary particle, different from
the electron. In that case, e does not need to represent the
elementary charge and the lifetime of the particle may be
enhanced.

APPENDIX F: MODELS OF EXTENDED
ELECTRON

In this appendix we present basic equations applying to
the electron and we briefly recall the historical background.

1. Basic equations

The classical radius re of the electron is defined through
the relation

E ¼ mec2 ¼
e2

re
: ðF1Þ

This equation expresses the equality (in order of magni-
tude) between the rest-mass energy of the electron and its
electrostatic energy. This is a convenient manner to define
the “radius” of the electron. This relation first appeared in
the Abraham-Lorentz [182,184] model of the extended
electron with electromagnetic mass and later in the Born-
Infeld [188,189] theory of nonlinear electrodynamics.

56This yields Etot ¼ 9.82 × 104mec2. Alternatively, we could
impose Etot ¼ mec2 and get jλj=8π ¼ 0.627 and R ¼ 313re ¼
8.82 × 10−13 m. In that case, the electron radius is on the order of
its Compton wavelength λe ¼ ℏ=ðmecÞ ¼ 3.86 × 10−13 m (see
Appendix F), which is sensible since we are using a quantum
model.
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Recalling the value of the charge of the electron
e ¼ 4.80 × 10−13 g1=2 m3=2 s−1 and its mass me ¼ 9.11×
10−28g ¼ 0.511 MeV=c2, we obtain

re ¼
e2

mec2
¼ 2.82 × 10−15 m: ðF2Þ

The Compton wavelength of the electron is λe¼ℏ=ðmecÞ¼
3.86×10−13m. It is related to the classical radius of the
electron by

λe ¼
re
α
≃ 137re; ðF3Þ

where

α ¼ e2

ℏc
≃

1

137
≃ 7.30 × 10−3 ðF4Þ

is Sommerfeld’s fine-structure constant.57 In comparison,
the Bohr (atomic) radius is aB ¼ ℏ2=ðmee2Þ ¼ re=α2 ¼
5.29 × 10−11 m. We have re ≪ λe ≪ aB. The typical elec-
tron density is

ρe ¼
me

r3e
¼ 4.07 × 1016 gm−3: ðF5Þ

The dynamical time associated with the electron is

te ¼
�
mer3e
e2

�
1=2

¼ e2

mec3
¼ re

c
¼ 3.32 × 10−24 s: ðF6Þ

This is the time it takes for a light wave to travel across
the “size” of an electron. This time first appeared in the
Abraham-Lorentz [182,184] theory of the extended elec-
tron when they tried to calculate the recoil force on an
accelerated charged particle caused by the particle emitting
electromagnetic radiation. This is also what Caldirola [375]
called the “chronon,” which is a sort of “quantum of time.”

2. Abraham-Lorentz model

In the model of extended electron developed by
Abraham [182] and Lorentz [184], the electron is consid-
ered as a spherical charge of radius R (which must be
nonzero to avoid infinite energy accumulation) with a
charge e uniformly distributed on its surface. It was
originally believed that the mass of the electron had a
purely electromagnetic nature. The electromagnetic energy
of the electron at rest (reducing to its electrostatic energy) is

E ¼ 1

2

e2

R
: ðF7Þ

On the other hand, the electromagnetic impulse (Poynting
vector) of the electron in slow motion (v ≪ c) is

p ¼ 2

3

e2

Rc2
v: ðF8Þ

It is proportional to the velocity like in the classical
mechanical relation p ¼ mv. This suggests introducing
the “electromagnetic mass” of the electron

me ¼
2

3

e2

Rc2
: ðF9Þ

This relation can also be written as

mec2 ¼
2

3

e2

R
: ðF10Þ

Comparing Eq. (F10) with Eq. (F1), we get

R ¼ 2

3
re ¼ 1.88 × 10−15 m: ðF11Þ

This is the radius of the electron in the Abraham-Lorentz
theory. In this sense, the Abraham-Lorentz theory justifies
the relation from Eq. (F1) defining the classical radius of
the electron.
For an arbitrary velocity, Lorentz [376] understood that

the charged sphere had to contract itself into an ellipsoid.
Therefore, the electrons undergo length contraction in the
line of motion. In his famous 1904 paper [377], he obtained
the relation

p ¼ 2

3

e2

Rc2
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2=c2
p : ðF12Þ

In that case, the mass of the electron depends on the
velocity as

m ¼ meffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p ; ðF13Þ

where the rest mass me is given by Eq. (F9). This relation
was discovered before Einstein’s theory of relativity. It
shows that the velocity cannot be larger than the speed of
light. On the other hand, if we combine Eqs. (F7) and (F10),
we get

E ¼ 3

4
mec2; ðF14Þ

57Since quantum effects enter at a distance of the order λe,
which is much larger than re, a purely classical electromagnetic
model of the electron is not relevant.
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instead of E ¼ mec2. Abraham [182,378] understood that a
purely charged sphere is unstable since the electric forces are
all repulsive. Poincaré [183,374] solved these problems by
introducing additional forces of nonelectromagnetic origin
(Poincaré stresses) that maintain the charges in the sphere.
These stresses prevent the electron from exploding and
contribute to 1=4 of the total energy restoring the expected
relation E ¼ mec2. Poincaré stresses were also thought of as
a dynamical explanation of Lorentz length contraction. In
this theory, the mass of the electron has an electromagnetic
part and a part due to Poincaré stresses. It is impossible that
all the mass is electromagnetic in origin. The result of
Einstein’s relativity theory [379] then showed that the
dependence of mass on velocity is not characteristic of
electromagnetic mass, but can be derived very generally
from the transformation law. After Einstein’s theory of
relativity, several authors pointed out that the electron’s
stability and the 4=3 problem are two different things [380].
However, binding forces (or confining pressure) like the
Poincaré stresses are still necessary to prevent the electron
from exploding due to Coulomb repulsion.
Remark.—The concept of electromagnetic mass was

introduced by Thomson [381] in 1881 (he discovered
the electron in 1897). He realized that the apparent mass
of a charged body in motion is larger than the mass it would
have if it were uncharged (similar considerations were
already made by Stokes [382] in hydrodynamics). The
electromagnetic mass was initially considered as a dynami-
cal explanation of the inertial mass of an object. This idea
was further developed by Heaviside [383], Thomson [384],
Searle [385], Abraham [386], and Lorentz [377,387] and
was incorporated in the Abraham-Lorentz theory of the
electron. Even before the work of Lorentz [376], Heaviside
[383], Thompson [384], and Searle [385] understood that
the mass of a charged body depends on its velocity and
becomes infinite when v → c. They concluded that no body
can move at a speed greater than the speed of light.
Heaviside [383] and Thompson [384] seem to be the first
to have isolated the factor

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2=c2

p ðF15Þ

in the energy (mass) of a charged body in motion.
Searle [385] obtained a different formula

E ¼ E0

�
c
v
ln

�
1þ v=c
1 − v=c

�
− 1

�
; ðF16Þ

where E0 ¼ e2=2R is the rest-mass energy. For v ≪ c, this
formula becomes

E ¼ E0

�
1þ 2

3

v2

c2
þ � � �

�
: ðF17Þ

Using this result, and identifying the second term of the
expansion 2

3
E0

v2

c2 with the kinetic energy
1
2
mv2, Wien [388]

obtained the relation

m ¼ 4

3

E0

c2
ðF18Þ

between the (electromagnetic) mass m and the energy of the
body at rest E0. It is apparently the first time that the famous
formula E ¼ mc2 appeared in the literature (under the form
m ¼ 4

3
EA2) with, however, the wrong prefactor 3=4.

3. Born-Infeld model

TheMaxwell equations of classical electrodynamics lead
to the description of an elementary charged particle like an
electron as a singular point in the electromagnetic field.
It was initially thought that the mass of the electron was
entirely due to its electromagnetic self-energy. However,
the self-energy of a point charge (“point electron”) in
Maxwell’s electrodynamics is infinite. Abraham [182] and
Lorentz [184], respectively, introduced the notion of rigid
and contracting electron with a finite size, but models of
extended electron need cohesive forces of nonelectromag-
netic origin (Poincaré stresses [183,374]) to stabilize the
structure (see Appendix F 2). Therefore, modifications of
the Maxwell equations were suggested first by Mie [187],
then by Born and Infeld [188,189]. Using an analogy with
special relativity, Born and Infeld developed a theory of
nonlinear electrodynamics that prevents the divergence
of the electric field produced by a point charge. They
introduced an electromagnetic Lagrangian of the form

LBI ¼ −b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

E2 − B2

b2

s
; ðF19Þ

which reduces to the Lagrangian of Maxwell electrody-
namics in the weak field limit. This Lagrangian contains a
fundamental constant b (“absolute field”), which plays
the role of the speed of light c in special relativity. In the
electrostatic case, the universal constant b is simply the
upper limit of the field strength E. As a result, the Born-
Infeld equations that replace the Maxwell equations have a
solution for the point electron with the field everywhere
finite and with a finite self-energy. Born and Infeld
computed the electrostatic energy of the electron (which
is now finite) and obtained the formula

E ¼ 1.24
4πe2

r�
; ðF20Þ

where r� ¼ ðe=bÞ1=2. They proposed to identify the electric
energy with the mass of the electron via the relation
E ¼ mec2. This yields

mec2 ¼ 1.24
4πe2

r�
: ðF21Þ
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Comparing Eq. (F21) with Eq. (F1), we get

r� ¼ 1.24 × 4πre ¼ 4.39 × 10−14 m; ðF22Þ

which may be interpreted as the effective radius of the
electron in the Born-Infeld theory. In this sense, the Born-
Infeld theory justifies the relation from Eq. (F1) defining the

classical radius of the electron. In the Born-Infeld electro-
dynamics, the electron has a finite radius because the electric
field and the electrostatic energy of a point charge are finite.
Their theory of the electron can be considered as a revival of
the old idea of the electromagnetic origin of mass; namely,
that the electron is a singularity in the electromagnetic field
and that its mass is purely electromagnetic.
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