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The matter power spectrum has been strongly constrained by astronomical measurements at large scales,
but only weakly at small scales. Compared with the standard scenario, the deviation of the matter power
spectrum at small scales has influence on the cosmological structure formation, e.g., the comoving number
density of dark matter halos. The thermal history of the intergalactic medium (IGM) can be changed if dark
matter is made of weakly interacting massive particles and can annihilate into standard model particles. The
changes of the evolution of IGM could leave imprints on the relevant astronomical observations. Taking
into account the dark matter annihilation, we investigate the impact of the deviation of matter power
spectrum at small scales on the global 21-cm signal. In view of the measurements of the global 21-cm signal
by the EDGES experiment, we explore the allowed parameter space of ms, which describes the degree of
deviation, by requiring the differential brightness temperature of the global 21-cm signal δT21 ≤ −50 mK
at redshift z ¼ 17.
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I. INTRODUCTION

The standard inflation model has predicted that the
primordial power spectrum is in a scale invariant form
ofPðkÞ∼ kns−1 [1–5]. At large scales, 10−4 ≲ k≲ 1 Mpc−1,
primordial power spectrum has been well constrained by
astronomical measurements, e.g., cosmic microwave back-
ground (CMB), large-scale structure and Lyman-α forest
[6–8]. At small scales, k≳ 1 Mpc−1, the constraints are
from the studies of, e.g., primordial black holes, ultra-
compact minihalos, galaxy luminosity functions and Silk
damping effects [9–19]. The primordial power spectrum
results in a matter power spectrum PmðkÞ ∼ kns . The
astronomical measurements such as CMB have been used
to reconstruct the matter power spectrum at large scales
10−3 ≲ k≲ 0.19 Mpc−1 [20]. Large-scale 21-cm measure-
ments could be used to probe the matter power spectrum at
small scales [21]. Any deviation of PmðkÞ at small scales
can result in the changes of the cosmological structure
formation such as the comoving number density of dark
matter halos, while no conflict with existing astronomical
measurements [22–25].
The existence of dark matter (DM) has been confirmed

by many different astronomical observations. However, the
nature of DM still keeps unknown. Different DM models
have been proposed and one of the mostly studied is weakly

interacting massive particles (WIMPs) [26,27]. The rel-
evant theory proposes that WIMPs can annihilate into
standard model particles such as electrons, positrons and
photons. These particles have interactions with that existing
in the Universe, resulting in the changes of the thermal
history of intergalactic medium (IGM) [28–43]. These
changes could leave imprints on different astronomical
observations such as the CMB and global 21-cm signal.
Furthermore, the properties of DM can be investigated
by the relevant astronomical measurements; see, e.g.,
Refs. [30–32,35–37,44,45].
As mentioned above, the deviation of the matter power

spectrum at small scales can lead to the changes of the
comoving number density of DM halos. Taking into account
the DM annihilation, it is expected that the deviation
can lead to the different thermal history of the IGM and
astronomical observations compared with the standard
scenario. The authors of [24] have investigated these effects
on the CMB observations. In this work, following the
methods in [24] we will study the impact of the deviation of
matter power spectrum at small scales on the global 21-cm
signal in the cosmic dawn.
As an important way to study the early universe, the

detection of the global 21-cm signal is very challenging
[46,47]. Recently, the experiment to detect the global epoch
of reionization signature (EDGES) reported their results of
the global 21-cm signal [48]. They found an absorption
signal centered at redshift z ∼ 17 about twice as large as
expected [47,49,50]. Note that the results of the EDGES
experiment are still controversial and require further
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verification [51–54]. On the other hand, the global 21-cm
signal can be used to investigate the properties of DM; see,
e.g, Refs. [35–39,42,55–65]. In this paper, taking into
account the DM annihilation and by requiring the differ-
ential brightness temperature of the global 21-cm signal,
e.g., δT21 ≲ −50 mK at redshift z ¼ 17, we explore the
parameter space ofms, which characterizes the deviation of
the matter power spectrum at small scales. Here we have
not included the heating effects from astrophysical proc-
esses performed in the standard scenario [50,66–68].
This paper is organized as follows. In Sec. II we present

the basically related components of the matter power
spectrum considered here, and the basic equations for
the evolution of the IGM including DM annihilation. In
Sec. III, we investigate the impact of the deviation of matter
power spectrum at small scales on the global 21-cm signal,
and then explore the allowed space of the related parameter.
The conclusions are given in Sec. IV. Throughout the paper
we will use the cosmological parameters from Planck-2018
results [4].

II. THE MATTER POWER SPECTRUM AT SMALL
SCALES AND THE EVOLUTION OF IGM

In the standard scenario, the matter power spectrum
resulted from the primordial power spectrum is in a form
of PmðkÞ ∼ kns . Many other inflation models have been
proposed and suggested that the primordial power spectrum
could be deviated at small scales while being consistent
with existing astronomical measurements at large scales.
For the most inflation models, the deviation of PðkÞ is
suggested in a form of power law growth at small scales;
see, e.g., Refs. [69–76]. In view of these factors, following
Ref. [24], we take the parametrized form of the matter
power spectrum as follows

PmðkÞ ¼
8<
:

Amkns k ≤ kp

Amk
ns
p

�
k
kp

�
ms k > kp;

ð1Þ

where the pivot scale kp ≳ 10 Mpc−1 in order to be
consistent with the available astronomical observations.
The matter power spectrum at redshift z can be written as

Pmðz; kÞ ¼ PmðkÞT2ðkÞD
2ðzÞ

D2ð0Þ ; ð2Þ

where DðzÞ is the growth factor [77,78], and TðkÞ is
transfer function [79]. Am is a constant normalized as
σ8 ¼ 0.8, where σ8 is the root mean square mass fluctuation
in a sphere of radius 8h−1 Mpc. The mass variance σ2ðzÞ is
written as follows

σ2ðz;MÞ ¼
Z

dk
k
k3Pmðz; kÞ

2π2
W2ðkRÞ; ð3Þ

whereWðxÞ is the window function and we use the form as

WðxÞ ¼ 3ðsin x − x cos xÞ
x3

: ð4Þ

Since the changes of PmðkÞ investigated here are mainly
on small scales, nonlinear effects are very important. There
are several ways to deal with nonlinear effects. For the
purpose of this work, one way is using the Zeldovich
approximation or Lagrangian perturbation theory [80–82].
Another way is using the Press-Schechter (PS) theory [83],
which has been proved to be valid and wildly used in
literature; see, e.g., Refs. [84–86]. The evolution of non-
linear effects will result in the collapse of the regions with
large density perturbation. Although on small scales the
mass variance σ2 calculated using the linear power spec-
trum is different from that of nonlinear power spectrum, PS
theory shows that the collapsed fraction can be obtained
using the linear power spectrum. In this work, we will use
PS theory to deal with nonlinear effects on small scales. On
the other hand, since we mainly focused on the effects of
dark matter annihilation within dark matter halos, there is
another method of calculating the “boost factor” (BF) to
deal with nonlinear effects. The BF can be obtained by
directly integrating the nonlinear matter power spectrum
for investigated scales at different redshifts [60,87,88].
Essentially, this method is the same as the PS theory.
For the Press-Schecter mass function, the comoving

number density of DM halos is in a form of [89]

dnðz;MÞ
dM

¼
ffiffiffi
2

π

r
ρ0
M

δc
σ2

dσ
dM

exp

�
−

δ2c
2σ2

�
; ð5Þ

where δc ¼ 1.686 is the threshold for spherical collapse. In
Fig. 1, we plot the comoving number density of DM halos
for different values of ms ¼ 1.30 and 1.60 at redshift
z ¼ 15 for pivot scale kp ¼ 100 Mpc−1. For comparison,

FIG. 1. Comoving number density of dark matter halos for
different values of ms ¼ 1.30 and 1.60 at redshift z ¼ 15 for the
pivot scale kp ¼ 100 Mpc−1. We also plot the standard scenario
for comparison (ms ¼ ns ¼ 0.96, thin solid black line).
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we also plot the standard scenario withms ¼ ns ¼ 0.96 [4].
From this plot, it can be seen that the deviation of the matter
power spectrum at small scales results in an increase of
the comoving number density of DM halos with small
masses. Since we have set the pivot scale kp ¼ 100 Mpc−1,
compared with the standard scenario, the significant differ-
ence appears for the masses of M ≲ 6 × 105M⊙.
Taking intoaccount theDMannihilation, theenergyrelease

rate per unit volume can be written as [24,29–31,37,90]

dE
dVdt

����
DM

¼ ð1þ zÞ3 hσvi
mχ

Z
dM

dn
dM

Z
4πr2ρ2χðrÞdr; ð6Þ

where hσvi is the thermally averaged cross section of DM
annihilation, and mχ is the mass of DM particle. ρχðrÞ is
the density profile of DM halos and we adopt the Navarro-
Frenk-White model for our calculations [91].
The energy released from DM annihilation can inject

into the Universe resulting in the changes of the thermal
history of IGM. The evolutions of the ionization fraction xe
and kinetic temperature Tk of the IGM are governed by the
following equations [11,29,32,92]:

ð1þ zÞ dxe
dz

¼ 1

HðzÞ ½RsðzÞ − IsðzÞ − IDMðzÞ�; ð7Þ

ð1þ zÞ dTk

dz
¼ 8σTaRT4

CMB

3mecHðzÞ
xeðTk − TCMBÞ
1þ fHe þ xe

−
2

3kBHðzÞ
KDM

1þ fHe þ xe
þ 2Tk; ð8Þ

where RsðzÞ is the standard recombination rate, IsðzÞ is the
ionization rate by standard sources. IDM and KDM are the
ionization and heating rate by DM annihilation, which can
be written as follows [11,29,32,59,92]:

IDM ¼ fiðzÞ
1

nb

1

E0

dE
dVdt

����
DM

; ð9Þ

KDM ¼ fhðzÞ
1

nb

dE
dVdt

����
DM

; ð10Þ

where nb stands for the baryon number density and
E0 ¼ 13.6 eV. fðzÞ is the fraction of the energy released
from DM annihilation injected into the IGM for ionization
and heating, respectively. Here we have used the public
code ExoCLASS [93], a branch of the public code CLASS
[94], to calculate fðzÞ numerically.

III. THE IMPACT OF THE DEVIATION ON THE
GLOBAL 21-cm SIGNAL AND CORRESPONDING

CONSTRAINTS

The quantity associated with the observations describing
the global 21-cm signal is the differential brightness

temperature δT21. Relative to the CMB background,
δT21 can be written as follows [38,42,95]

δT21 ¼ 16ð1 − xeÞ
�
Ωbh
0.02

��
1þ z
10

0.3
Ωm

�1
2

×
�
1 −

TCMB

Ts

�
mK; ð11Þ

where Ωb and Ωm are the density parameters of baryonic
matter and DM, respectively. h is the reduced Hubble
constant. Ts is the spin temperature, which is mainly
effected by background photons, collisions between the
particles and resonant scattering of Lyα photons
(Wouthuysen-Field effect) [46,47]. Taking into account
these factors and with CMB as main background, the spin
temperature can be written as follows [28,42]:

Ts ¼
TCMB þ ðyα þ ycÞTk

1þ yα þ yc
; ð12Þ

where yα is related to the Wouthuysen-Field effect and we
adopt the formula used in, e.g., Refs. [11,28,96]:

yα ¼
P10

A10

T⋆
Tk

exp
�
−
0.3ð1þ zÞ12
T

2
3

kð1þ 0.4
Tk
Þ

	
; ð13Þ

where A10 ¼ 2.85 × 10−15 s−1 is the Einstein coefficient of
hyperfine spontaneous transition. T⋆ ¼ 0.068 K corre-
sponds to the energy changes between triplet and singlet
states of neutral hydrogen atom. P10 is the radiative
deexcitation rate due to Lyα photons [46,47]. The factor
yc involves collisions between hydrogen atoms and other
particles [28,38,43,96,97],

yc ¼
ðCHH þ CeH þ CpHÞT⋆

A10Tk
; ð14Þ

where CHH;eH;pH are the deexcitation rate due to collisions
and the fitted formulas can be found in Refs. [38,43,96,97].
In order to explore the conservative allowed space of

relevant parameter, following previous works [37,59], here
we have not included any astrophysical heating source. The
main astrophysical source affecting the global 21-cm signal
is the Lyα photons related to the Wouthuysen-Field effect
[47,59,98–103]. Here we have considered that the Lyα
photons are mainly from Pop II stars. We take the virial
temperature of a halo Tvir ¼ 104 K corresponding to the
minimum halo mass. For the star formation efficiency f⋆,
we have set f⋆ ¼ 0.05 for our calculations, and we found
that larger f⋆ will slightly increase the amplitude of δT21 at
redshift z ¼ 17. We take the total number of photons from
the Pop II stars between the Lyα and the Lyman limits as
Ntot ¼ 9690. Based on these choices, we can obtain the
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global 21-cm signal at redshift z ¼ 17 with the maximum
amplitude allowed within a reasonable range of parameters.
After deriving the energy release rate per unit volume

due to DM annihilation as shown in Eq. (6), one can get the
changes of xe, Tk and Ts with redshift z using Eqs. (7), (8),
and (12). In order to include the effects of DM anni-
hilation, we have modified the public code RECFAST in
CAMB1 to solve the differential equations numerically
[11,12,29,32,59,92]. Then the differential brightness tem-
perature δT21 can be obtained with Eq. (11). In Fig. 2, we
plot the evolution of xe, Tk, and Ts for different values
of ms and kp. Compared with the standard scenario
(ms ¼ ns ¼ 0.96, thin solid lines), the ionization fraction,
kinetic temperature, and spin temperature are all increased.
Here we have set the canonical value of DM annihilation
cross section as hσvi ¼ 3 × 10−26 cm−3 s−1 and bb̄ channel
for our calculations.

In Fig. 3, the evolution of δT21 for different values of kp,
mχ , and ms are shown, respectively. For comparison, we
also plot the default case with no DM annihilation (thin
solid black line) and the standard case with no deviation of
the matter power spectrum at small scales (thin dotted black
line). For fixed DM mass mχ and power law index of the
deviation ms (top panel in Fig. 3), smaller pivot scale
results in an increase of the number density of DM halos at

FIG. 2. The evolution of xe, Tk, and Ts with redshift z for
different values of ms and kp. Here we have set mχ ¼ 100 GeV
and hσvi ¼ 3 × 10−26 cm−3 s−1. We also plot the standard
scenario for comparison (ms ¼ ns ¼ 0.96, thin solid lines).
The case without standard astrophysical heating sources is also
shown (xe: thin dot-dashed black line, Tk: thin dot-dashed brown
line, Ts: thin dotted brown line). The temperature of CMB is also
shown in the thin solid brown line.

FIG. 3. The evolution of differential brightness temperature
δT21 with redshift z for different values of kp, mχ , and ms. We
have set hσvi ¼ 3 × 10−26 cm−3 s−1 and bb̄ channel for our
calculations. For comparison, we also show the case without
any heating sources (thin solid black line) and the case for the
standard matter power spectrum ms ¼ ns with DM annihilation
(mχ ¼ 100 GeV, thin dotted black line).

1https://camb.info/.
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small masses. Therefore, the absorption amplitude of the
global 21-cm signal is reduced compared with the standard
scenario. For fixed pivot scale kp and power law index of
the deviation ms (middle panel in Fig. 3), lighter DM
corresponds to a larger DM number density. Since the DM
annihilation rate is proportional to the squared number
density, much more energy is injected into the IGM,
causing a reduction of the absorption amplitude of the
global 21-cm signal. For fixed pivot scale kp and DM mass
mχ (bottom panel in Fig. 3), larger power low index of the
deviation ms also results in an increase of the number
density of DM halos at small masses. Similar to the case of
changing pivot scale, the absorption amplitude of the global
21-cm signal is decreased for larger ms compared with the
scenario of no deviation.
In view of the results of the EDGES experiment, by

requiring the differential brightness temperature δT21 ≤
−50 mK at redshift z ¼ 17, we explore the allowed space
of parameterms for different pivot scales kp ¼ 10, 100, and
1000 Mpc−1, which is shown in Fig. 4. From this plot, it
can be seen that smaller DM mass or pivot scale corre-
sponds to a smaller value of ms. In Ref. [24], the authors
derived the upper limits on ms using the CMB observa-
tions. They found that for the parameter fhσvi=mχ ¼
3 × 10−28 cm3 s−1 Gev−1, the upper limit is ms ¼
1.43ð1.63Þ for kp ¼ 100ð1000Þh Mpc−1, and it is roughly
weaker than our result for the DM mass range considered
here.
Note that here we have not included the standard

astrophysical heating sources, e.g., the x ray from stars,
which can also heat the IGM and result in the increase of xe,
Tk, and Ts in lower redshifts [28,46,47]. For this case,
compared with our results, the amplitude of differential

brightness temperature δT21 at redshift z ¼ 17 will become
smaller, resulting in a lower allowed value of ms.
In this work, we have used the canonical value of

DM annihilation cross section for our calculations.
Many astronomical observations have been used to con-
strain hσvi depending on the DM mass [104–108]. The
authors of [105], for instance, have used the Planck-2018
datasets to get the constraints and found hσvi ≲ 3 ×
10−25ð10−24Þ cm−3 s−1 for mχ ¼ 100ð1000Þ GeV. As
shown in Eq. (6), larger value of hσvi will result in
the larger energy release rate per unit volume, and it is
excepted that the final allowed value of ms will become
smaller.
Note that the final allowed space of parameter ms can be

effected by relevant parameters, and these parameters
would be degenerate with each other. A complete way
to deal with this issue is combining the observed data of the
EDGES to obtain the distribution and correlation of
parameters by using the MCMC method. We will address
this issue in future work.

IV. CONCLUSIONS

In the standard scenario, the matter power spectrum has a
form of PmðkÞ ∼ kns . Many relevant theories indicate that
the matter power spectrum could be deviated at small scales
while being consistent with the available astronomical
observations. In this work, we have investigated the impact
of this kind of deviation on the global 21-cm signal in the
cosmic dawn, taking into account DM annihilation.
Specifically, we have adopted a power law growth of the
matter power spectrum at small scales, Pm ∼ knsp ðk=kpÞms

for k > kp ≃ 10 Mpc−1. The deviation of the matter power
spectrum at small scales results in an increase of the
comoving number density of DM halos at small masses.
The energy release rate per unit volume due to DM
annihilation becomes larger compared with the standard
scenario, resulting in the changes of the thermal history of
IGM and then the evolution of the global 21-cm signal. The
absorption amplitude of the global 21-cm signal is reduced
for smaller pivot scale kp or larger power law index ms.
Smaller DM mass mχ can also decrease the absorption
amplitude of the global 21-cm signal due to the larger
annihilation rate. In view of the results of the EDGES
experiment, we have explored the allowed parameter space
of the power law index ms for different pivot scales by
requiring the differential brightness temperature δT21 ≤
−50 mK. Smaller DM mass or pivot scale results in a
lower allowed value of ms. For a DM mass, e.g., mχ ¼
100ð1000Þ GeV, the largest allowed value is ms ¼
1.05ð1.46Þ for the pivot scale kp ¼ 100 Mpc−1.
Note that we have considered the global 21-cm signal in

the cosmic dawn that can be influenced by many other
astrophyscial factors. The global 21-cm signal in the dark

FIG. 4. The allowed space of parameter ms (shaded areas) for
different pivot scales kp ¼ 10, 100, and 1000 Mpc−1 by requiring
the differential brightness temperature δT21 ≤ −50 mK. We have
set hσvi ¼ 3 × 10−26 cm−3 s−1 and bb̄ channel for our calcula-
tions.
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ages (30≲ z≲ 300) can also be effected by the deviation of
the matter power spectrum at small scales. Compared with
the standard scenario, the global 21-cm signal in the dark
ages is very little influenced by the astrophysical processes.
Therefore, it is expected that the future detection of the
global 21-cm signal (or the 21-cm power spectrum) in the
dark ages by, e.g., the radio telescopes on the moon or
satellites around a low lunar orbit [58,109–113], could give
better constraints on the deviation of the matter power
spectrum at small scales.
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