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Ultrahigh-energy cosmic rays are almost exclusively detected through extensive air showers, which they
initiate upon interaction with the atmosphere. The longitudinal development of these air showers can
be directly observed using fluorescence detector telescopes, such as those employed at the Pierre Auger
Observatory or the Telescope Array. In this article, we discuss the properties of the Greisen function, which
was initially derived as an approximate solution to the electromagnetic cascade equations, and its ability to
describe the longitudinal shower profiles. We demonstrate that the Greisen function can be used to describe
longitudinal air-shower profiles, even for hadronic air showers. Furthermore, we discuss the possibility to
discriminate between hadrons and photons from the shape of air-shower profiles using the Greisen function.
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I. INTRODUCTION

Extensive air showers are created by cosmic rays upon
interaction with the atmosphere [1,2]. They can be detected
at the ground using surface detector arrays, or directly
observed at night using fluorescence detector telescopes.
To reconstruct the shower development and shower observ-
ables, a profile function needs to be fitted to the detector
data. Gaisser and Hillas proposed an empiric function [3]
to describe the longitudinal development of proton air
showers as an alternative to the constant intensity cut
method [4,5], which is used in surface detector experiments
to take into account the atmospheric attenuation of particles
in air showers from different zenith angles. It was shown
in [6] that the Gaisser-Hillas (GH) function can be used to
approximate a system of particles being created and
absorbed in an extended Heitler–Matthews model [7],
and can be adjusted to very closely match the Greisen
function, which is an approximation for the solutions
to the electromagnetic cascade equations [8]. Both the
Pierre Auger Observatory and the Telescope Array use
the GH function to describe their fluorescence detector
data [9,10].
In this article, we will discuss the Greisen function and

its properties, such as its connection to the shower age.
We will demonstrate the usability of the Greisen function
as an alternative to the GH function to fit longitudinal
shower profiles and present its performance to reconstruct
the depth of the shower maximum as well as the pri-
mary energy using Monte Carlo (MC) simulations of air
showers.

II. THE GREISEN FUNCTION

The average longitudinal development of electromag-
netic air showers can be very well described analyti-
cally [11]. This description holds in good approximation
also for hadronic showers, initiated by ionized nuclei,
which make up the upper end of the cosmic-ray energy
spectrum [12]. The solutions to the cascade equations
derived by Rossi and Greisen under Approximation A1

to describe extensive air showers were used to motivate
important properties in the context of air-shower physics,
such as the shower age

s ¼ 3t
tþ 2 lnðE0=EcutÞ

ð1Þ

that describes the development of an electromagnetic
shower, initiated by a primary particle of the energy E0,
after t radiation lengths, considering only the particles
above an energy of Ecut. Note that s ¼ 1 at t ¼ lnðE0=EcutÞ;
this value is usually assigned with the shower maximum.
For electromagnetic showers a reasonable choice for Ecut is
close to ≈87 MeV, which is the energy above which
electromagnetic particles on average lose more energy in
radiative shower processes than to scattering and ioniza-
tion. Furthermore, it was demonstrated that the relative rate

1Approximation A is the high-energy approximation to the
cascade equations, in which only bremsstrahlung and pair
production are considered as relevant processes.
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of change2 λ1 in the number N of particles as a function of
the surpassed radiation lengths t,

λ1 ¼
1

NðtÞ
∂NðtÞ
∂t

; ð2Þ

is similar for all electromagnetic showers at high primary
energies. Greisen introduced the approximation [8]

λ1 ≃
1

2
ðs − 1 − 3 ln sÞ; ð3Þ

which is in good agreement with the exact solution.
Originally, the parameter s describes the spectra n of
electromagnetic particles in a shower, that is approximately
given by nγ ∼ ne� ∼ E−ðsþ1Þ for particles at energies
E ≪ E0, but from Eq. (3) there exists a relation between
λ1 and s.
It is straightforward to combine Eqs. (1) to (3) and to

solve the resulting expression for NðtÞ by integration.
This yields

NðtÞ ¼ N0 exp

�
t

�
1 −

3

2
ln s

��
; ð4Þ

with a constant N0. The maximum number Nmax of
particles above the energy of Ecut ¼ 98 MeV in a cascade
initiated by a particle of energy E0 was derived in [13]
under Approximation B3 and found to be

Nmax ¼
0.31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðE0=EcutÞ
p E0

Ecut
: ð5Þ

Eq. (4) has its maximum at tmax ¼ lnðE0=EcutÞ, which
evaluates to N0E0=Ecut. Thus, solving for N0 using Eq. (5)
yields the Greisen function, which reads as

NðtÞ ¼ 0.31ffiffiffi
β

p exp

�
t

�
1 −

3

2
ln s

��
; ð6Þ

using the short notation β ¼ lnðE0=EcutÞ ¼ tmax. The
Greisen function, introduced in [14], is thus an approximate
solution to the electromagnetic cascade equations, given
in [11], combining aspects of both Approximation A and
Approximation B. There was no strict derivation given by
Kenneth Greisen himself, but a-posteriori derivations (such
as the one presented here) were provided in [15,16].
In the following, we have to overcome two major

shortcomings of the Greisen function as written in
Eq. (6). First, the Greisen function in its classical form

cannot accurately describe the point of the first interaction
of a cosmic ray with the atmosphere, since by construction
the cascade is initiated always at t ¼ 0. Second, the scale of
the Greisen function is only accurate for average electro-
magnetic showers. We will introduce a parameter ϵ to
account for this issue and demonstrate that the Greisen
function generalized this way is able to describe the
longitudinal profile of hadronic showers and the corre-
sponding shower-to-shower fluctuations.

III. THE MODIFIED GREISEN FUNCTION

The classical Greisen function, which is given in Eq. (6),
assumes that a shower starts at t ¼ 0. Furthermore, the
Greisen function is technically only able to describe
electromagnetic showers. In this section, we introduce
minor modifications to the function to describe the longi-
tudinal development of both hadronic and electromagnetic
air showers.
First, we introduce a nonzero point of the first interaction

at a slanted atmospheric depth X1, that will be described by
t1 ¼ X1=X0 using the electromagnetic radiation length4

X0 ≃ 37 g cm−2. Thus, the shower age s will be given as

s ¼ 3t0

t0 þ 2β
Θðt0Þ; ð7Þ

with t0 ¼ t − t1 and the Heaviside function Θ. To maintain
the property of the shower age, which is supposed to be 1
at the maximum of the shower, and to keep number of
radiation lengths required to reach the maximum of the
shower the same as before, we redefine β in accordance
with the previous modification as

β ¼ lnðE0=EcutÞ ¼ tmax − t1: ð8Þ

Finally, we introduce the factor ϵ, which is defined in
units of energy deposit per step length, and which can be
interpreted as the effective energy loss per particle and step
length at the shower maximum.5 Thus, the modified
Greisen profile reads as

NðtÞ≡ dE
dX

ðtÞ ¼ ϵffiffiffi
β

p exp

�
ðt − t1Þ

�
1 −

3

2
ln s

��
; ð9Þ

with NðtÞ ¼ 0 for t ≤ t1. For the sake of simplicity, here
and in the following, in the text we abbreviate the energy
deposit dE=dX with the symbol N, analogously to the
number of particles.

2We use the notation λ1, even though we do not mean to
suggest that this quantity is to be understood as a (wave) length,
to adhere to historic convention.

3Approximation B of the cascade equations augments
Approximation A by a term concerning Coulomb scattering.

4Equivalently, we use t ¼ X=X0 and tmax ¼ Xmax=X0.
5Here we ignore the factor of 0.31 from Eq. (5).
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IV. CALIBRATION OF THE GREISEN PROFILE

If Eq. (9) is used to describe the longitudinal profiles
of (hadronic) showers in terms of deposited energy rather
than a number of particles, it is necessary to examine viable
(effective) numerical values of the energy Ecut as well
as of ϵ.
We investigate the behavior of ϵ and Ecut using the MC

values of Xmax, X1, E0, and the maximum energy deposit
NðtmaxÞ of the longitudinal profiles of simulated air
showers. The simulations were produced using the
SIBYLL 2.3D [17], EPOS-LHC [18], and the QGSJET II-04 [19]
models of hadronic interactions with different primary
particles at different primary energies. All simulations
were produced in the CONEX event generator [20] at
version v7.60. We produced 1000 simulated showers at
primary energies of 1018.5 eV, 1019 eV, and 1019.5 eV
with gamma-ray, proton, and iron nuclei primary particles,
each.
Shower-to-shower fluctuations of (hadronic) air showers

will severely affect the maximum number of particles
produced in a shower as well as the absolute depth of
the shower maximum. These fluctuations, however, can be
accurately reproduced by the behavior of the Greisen
function. Rewriting Eq. (8) in terms of the slanted atmos-
pheric depth of the shower maximum Xmax and the average
radiation length X0,

β ¼ Xmax − X1

X0

; ð10Þ

we find that

Ecut ¼ E0e−β ¼ E0 exp

�
−
Xmax − X1

X0

�
: ð11Þ

Note that the explicit dependence of Ecut on E0 is canceled
by the dependence of the average Xmax on the logarithm
of the primary energy in Eq. (8). We choose an effec-
tive value for the radiation length of X0 ¼ 40 g cm−2

as a compromise for the different considered primary
particles.
In a similar manner, using the numerical maximum of a

given shower profile according to Eq. (9), the parameter ϵ
can be identified as

ϵ ¼ NðtmaxÞ
ffiffiffi
β

p
e−β: ð12Þ

As can be seen in Fig. 1, we observe a strong correlation
for the MC values of ϵ and Ecut (and thus β), assuming
Greisen-like longitudinal profiles. Furthermore, we show in
Figs. 8 and 9 that the distributions of ϵ and Ecut as well as
their relation are approximately the same even for all three
hadronic interaction models. This behavior indicates that
shower-to-shower fluctuations of hadronic showers are not

at all random, but follow certain regularities. For example, a
deeper than average value of Xmax corresponds to smaller
than average value of NðtmaxÞ (and vice-versa), if all other
parameters are fixed. Furthermore, we expect larger values
of β for photon-induced showers than for protons or iron
nuclei. Between different primaries there is a gradual
transition in the shape of the shower from very hadronic
(iron-like) to protonlike and lastly electromagnetic show-
ers, where the behavior of ϵ and Ecut can be described by a
power law,

ϵ

PeV=g cm−2 ≃
�

Ecut

1016.8 eV

�
0.97

; ð13Þ

with residuals on average within 0.2%. Note that if
expressed in terms of Xmax and X1 [cf. Eq. (11)], Ecut is
not an explicit parameter of the Greisen function. Eq. (13)
thus expresses the universal relation between the maximum
energy deposit and the extent of the shower in terms of
radiation lengths after the first interaction.
Even though ϵ appears as a pre-factor in the modified

Greisen function, the numerical values of ϵ from a best fit
are independent of the integrated profile (cf. Eqs. (11) and
(13) and Fig. 9) and thus of the energy of the primary
particle. Because Ecut does not depend on the primary
energy, ϵ solely depends on the shape of the shower. And
thus, as can be seen in Fig. 1, depends on the amount of
hadronization occuring during the shower development,
which relates to the primary mass. The integrated profile
(and thus the calorimetric energy deposit) is mainly
governed by the value of β [cf. Eq. (A2)]. For smaller
values of ϵ (e.g., photonlike showers), the shower takes
longer to reach its maximum in terms of radiation lengths.
In case of showers with a significant amount of hadroniza-
tion, where multiple cascades are effectively in super-
position (i.e., ironlike showers), we expect larger numerical
values for ϵ, corresponding to an earlier shower maximum.

FIG. 1. The behavior of ϵ and Ecut calculated from the Monte-
Carlo values of X1, Xmax, NðtmaxÞ, and E0 from simulated air
showers produced with the SIBYLL2.3D model of hadronic inter-
actions. Ecut and ϵ were obtained using Eq. (11) and Eq. (12),
respectively. The markers show data points from individual
shower simulations, the line shows a log-linear regression.
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From superposition and the Heitler-Matthews model6 [7]
one would expect ϵFe=ϵp ≃ 50 [cf. Eqs. (9) and (12)];
however, the average ratio obtained from simulations is
much smaller. From the ratio ϵFe=ϵp ≃ 10, we estimate a
difference in β of about 2.4 radiation lengths between the
average proton and iron shower to reach the shower
maximum. This is in accordance with simulations, which
imply7 hXmaxip − hXmaxiFe ≃ 100 g cm−2.

V. FITTING SIMULATED DATA

To test the ability of the Greisen function to describe
longitudinal profiles of air showers, we examine and fit
simulated shower profiles. The simulation library contains
the same configuration of primary energies, particles, and
hadronic interaction models as mentioned before. We
compare the results against results from fitting the same
showers to the very commonly used GH function, which in
terms of the slanted depth X reads as

NðXÞ ¼ Nmax

�
X − X1

Xmax − X1

�Xmax−X1
Λ

exp

�
Xmax − X

Λ

�
; ð14Þ

with NðXÞ ¼ 0 for X ≤ X1, the depth of the shower
maximum Xmax, the maximum value Nmax of the
function, and a characteristic length Λ, which is related
but not equal to the electromagnetic interaction length.
Approximately one expects Λ ≃ 3X0=2 (cf. Eq. (A1)
and [15,16]).
To describe the shape of the shower profiles, we use

Nmax, Xmax, X1, and Λ as free parameters for the GH
function, and ϵ, Xmax, X1, and X0 for the Greisen function.
We estimate the uncertainty of the individual MC data
points to 0.3 PeV=ðg cm−2Þ. The tails of the profiles
[dE=dX ≤ 0.8 PeV=ðg cm−2Þ] are not used in any of the
fits. The constant threshold for the tails as well as the
uncertainty for the data points were estimated so that
χ2=ndf is ∼1 for a mixture of proton and iron showers
with primary energies of 1019 eV. Examples of fitted
profiles of the photon, proton, and iron nucleus induced
showers are given in Fig. 2.
The χ2-distributions for the Greisen and GH functions

fitted to simulated data from SIBYLL2.3D showers at a
primary energy of 1019 eV are depicted in Fig. 3.
Additional χ2-distributions from showers simulated with
different hadronic interaction models and primary energies
are given in Fig. 10 (note that the estimated uncertainty of
the individual data points, as well as the limit for fitting the
tails was not adjusted for the different primary energies).

We find that on average for all energies and hadronic
interaction models, the average values of χ2=ndf are
smaller for the Greisen function fit, than for the fit using
a GH function, thus implying a better match of the function

FIG. 2. Example shower profiles with corresponding best fits.
The showers were initiated by a (top to bottom) gamma-ray, pro-
ton, and iron primary particle with a primary energy of 1019 eV
each, using the SIBYLL2.3D model of hadronic interactions. The
best fit values corresponding to both the Greisen function (red)
and the Gaisser-Hillas function (orange dashed) are given in each
panel along with the MC values of Xmax. Additionally, the best fit
values of Xmax are depicted by vertical lines. The profile tails
(gray data points) were disregarded for the fits. Below each panel,
the relative deviation δ ¼ ðf − dÞ=d of the function value f and
the simulated profile data d is shown for both functions in the
respective color.

6The model estimates the difference of the averages in Xmax for
proton and iron showers to be hXmaxip–hXmaxiFe ≃ 150 g cm−2.

7The effect of the depth of the first interaction is neglected.
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to the profile data. For iron showers the difference of
χ2=ndf is the largest, with values being approximately 20%
smaller for the Greisen function. The difference for proton
showers is approximately 10%, while for photon showers
the average χ2=ndf differs by less than 1%.
Furthermore, we investigate the ability of the Greisen

function to recover the depth of the shower maximum as
well as the calorimetric energy deposit of the shower. The
distributions of the residuals Xrec

max − XMC
max as a function of

the CONEX MC values of Xmax are depicted in Fig. 4. We
observe that Xmax can be recovered very accurately from
the simulated profile data using both functions, with an
average precision of about 4 g cm−2 for both fit functions.
The performance of the Greisen function of “finding” the
right depth of the shower maximum is thus approximately
equal as of the GH function.

FIG. 4. Distributions of the residuals of the reconstructed values of Xmax as a function of the CONEX MC values of Xmax

using the Greisen function (left) and the GH function (right). The showers were simulated with primary energies of 1018.5 eV,
1019 eV, and 1019.5 eV, using the SIBYLL2.3D model of hadronic interactions. The overall mean and standard deviation of
the distribution is given in the upper right corner. The distributions of residuals for the individual primary particles are colored
accordingly.

FIG. 5. Distributions of the difference of the recovered calorimetric energy Ecal and the simulated calorimetric energy deposit EMC
cal as a

function of the CONEX MC values of Xmax using the Greisen function (left) and the GH function (right). The showers were simulated
with primary energies of 1018.5 eV, 1019 eV, and 1019.5 eV, using the SIBYLL2.3D model of hadronic interactions. The overall mean and
standard deviation of the distribution is given in the upper right corner. The distributions of residuals for the individual primary particles
are colored accordingly.

FIG. 3. χ2-distributions for the Greisen and the GH functions
fitted to simulated SIBYLL2.3D air showers with primary energies
of 1019 eV. The distributions for the Greisen (GH) functions are
shown as a full (dashed) line, for each of the three primary
particles. The respective mean of each distribution is indicated by
a vertical line.
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The calorimetric energy deposit of the shower can be
obtained by integrating the fitted profile function from X1

up to∞. To obtain the calorimetric energy deposit from the
best-fit of both functions, we integrate numerically8 from
the respective best-fit value of X1 to 2000 g cm−2 ≲∞. The
relative residuals of the recovered calorimetric energy
deposit Ecal with respect to the simulated calorimetric
energy deposit EMC

cal are depicted in Fig. 5 as a function
of the CONEX MC values of Xmax. The accuracy and
precision of the recovered calorimetric energy to estimate
the primary energy is the same for the Greisen and the GH
function for all primary particles (and all hadronic inter-
action models). The performance of the Greisen function to
estimate the primary energy of the particle initiating the
shower is thus equal to the performance of the GH function.
Additionally, we present two-dimensional distributions

of X1 and X0 obtained from the Greisen function fit, as well
as X1 and Λ from the GH function fit in Fig. 11. When
fitting simulated data, both the Greisen and the GH function
appear to have the same “pathology” to produce mostly
negative best-fit values for X1. Even though the best-fit
values for X1 obtained from the Greisen function are less
negative than from the GH, this shows that the values
obtained for X1 from fitted data cannot be treated as the
point of the first interaction. Besides the absolute scale,
the distributions for the best-fit values of X1 and X0 (Λ)
depicted in Fig. 11 appear to be very similar for both the
Greisen and the GH function.

VI. MASS-COMPOSITION SENSITIVITY
OF THE GREISEN FUNCTION

In terms of the performance to obtain Xmax from
simulated data, the Greisen function is not second to the
GH function (cf. Fig. 4). Studying the depth of the shower
maximum, the same sensitivity to the mass composition as
expected from the GH function can thus be achieved using
the Greisen function.
Given the fact that ϵ is independent of the primary energy

of the shower, and that the MC distributions of ϵ [cf. Fig. 9
(left)] are dependent on the type of primary particle, it is
tempting to examine the primary-mass sensitivity of the
best-fit values of ϵ. In Fig. 6 we show the two-dimensional
distributions of the best-fit results of Xmax and ϵ. To remove
the direct dependence on the primary energy, instead of the
true Xmax, here we use

X19
max ≔ Xmax − 58 g cm−2 lgðEcal=1019 eVÞ; ð15Þ

assuming a constant decadal elongation rate of approx-
imately 58 g cm−2, and using Ecal as obtained from the
numerical integration of the best-fit function.

From Fig. 6 it is obvious that the separation of the
distributions of individual primary particles increases when
the best-fit values of ϵ are considered alongside with Xmax.
Numerically, the means of the distributions of X19

max
obtained from a fit to proton and iron shower profiles
are approximately 1.5 average standard deviations apart; on
the diagonal line, which combines the information of ϵ and
Xmax, the means of the proton and iron distributions are
separated by almost 1.9 average standard deviations.9 In
case of photon-hadron separation, the distance improves
from 1.4 to 1.6. Thus, using CONEX simulations, we see a
clear improvement in terms of the separation of primary
particles when employing the combination of ϵ and Xmax
from the Greisen function over Xmax only. Additional
indicators for photon-like showers are the obtained values
for χ2 and X0 (cf. Figs. 3 and 11). The Greisen function thus
might be useful when trying to identify ultrahigh-energy
photons in fluorescence detector data.
To compare against the behavior of the GH function, in

Fig. 12 we show the two-dimensional distributions of X19
max

and N19
max ¼ Nmax=ðEcal=1019 eVÞ, as obtained from the

GH function fitted to simulated air-shower data. As can be
seen from Fig. 12, N19

max does not yield additional infor-
mation about the mass of the primary particle on its own,
while ϵ does.

VII. FITTING THE GREISEN FUNCTION
WITH FIXED SHAPE

To boost the performance of the fitting procedure given
only poor data, the GH function can be used with con-
straints to fix the shape of the function to an expected shape
of the profile data [21]. These constraints are realized by
reparametrizing the GH function in terms of “L” and “R”
and then constraining these new parameters, which define
the width and skewness of the function, respectively

FIG. 6. Two-dimensional distributions of the best-fit values of
X19
max and ϵ using the Greisen function to fit simulated longi-

tudinal profiles of showers with primary energies of 1018.5 eV,
1019 eV, and 1019.5 eV. The curved lines show the estimated 1σ
extent of the respective distributions. All showers were simulated
using the SIBYLL2.3D model of hadronic interactions.

8The result for the calorimetric energy deposit as obtained
from the fitted and numerically integrated Greisen function is
approximately the same as using the formula given in Eq. (A2). 9For the estimation, see Eq. (A6).
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(see [21] for details). However, the average values of L and
R depend on the primary particle of the shower [22,23].
Using the Greisen function, the shape of the profile can be
determined simply by fixing or constraining the parameter
ϵ. Moreover, one can easily choose whether the function
should resemble an average gamma-ray, proton, or iron
shower, depending on the corresponding value of ϵ
(cf. Fig. 9).
To demonstrate, we fix ϵ ¼ 10−6.2 PeV=ðg cm−2Þ as a

compromise between iron-like and proton-like shower
profiles and fit the simulated data with only three free
parameters, namely X1, Xmax, and X0. As can be seen from
Fig. 7, the Xmax bias is minimal for proton showers, using
the Greisen function with an hadron-like fixed shape, but
increases for gamma-ray-induced showers and heavy
nuclei. The estimated calorimetric energy deposit, however,

is almost unaffected (the bias for hadronic showers changes
by ≈0.5%), when using only three free parameters. Lastly,
the best-fit values of Xmax and X1 become highly correlated
for the Greisen function with fixed ϵ, as it is expected from
Eqs. (10) and (12).

VIII. DISCUSSION AND SUMMARY

In this article, we present the Greisen function in its
original form and discuss its relation to the shower age
parameter s. Furthermore, we present a way to derive the
function from literature. We show that with slight mod-
ifications the Greisen function can be rewritten to match
individual simulated air-shower profiles, even from had-
ronic primaries. We confirm this statement using simulated
air showers from different primary particles at different
energies, and using different hadronic interaction models.
Contrary to popular belief, the Greisen function matches
the simulated air-shower profiles even somewhat better
than the most commonly used Gaisser-Hillas profile
function. In contrary to the Gaisser-Hillas function, which
was introduced as an alternative to the constant intensity cut
method, the Greisen function was derived to describe the
full longitudinal profiles of air showers.
We analyze the performance of the Greisen function to

recover air-shower observables from simulated profile data
assuming an ideal detector. In this analysis, we show that
the Greisen function yields approximately the same per-
formance as the Gaisser–Hillas function to determine the
calorimetric energy deposit and the depths of the shower
maxima from simulated showers at different primary
energies using different hadronic interaction models.
We identified the shape-parameter ϵ of the Greisen

function, which is primary-mass sensitive and can help
distinguishing different types of primary particles, addi-
tionally to the slanted depth of the shower maximum Xmax.
Lastly, we demonstrate that fixing ϵ can elegantly fix the
shape of the Greisen function and thus shower profiles can
be fitted even with only three free parameters. In this case,
while the recovered values of Xmax are slightly biased, the
accuracy and precision of the obtained calorimetric energy
deposit are unaffected.
We conclude that the Greisen function proves itself

useful to describe air-shower profiles and bears additional
potential for photon-hadron separation as well as mass-
composition studies, and could thus be used in the search
for light particles in air-shower data.

Code and data availability. The analysis code for this
article is available upon request under: [24].
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APPENDIX A: ADDITIONAL EXPRESSIONS

1. Alternative form of the Greisen function

The Greisen function can be rewritten as

NðtÞ ¼ ϵffiffiffi
β

p et
0ð1−3

2
ln sÞ ¼ ϵffiffiffi

β
p

�
3t0

t0 þ 2β

�
−3
2
t0

et
0
; ðA1Þ

with t0 ¼ t − t1 and β ¼ tmax − t1.

2. Integral of the Greisen function

Numerically, we find that the integrated Greisen profile,
which yields the calorimetric energy deposit and is thus a
good estimator for the primary energy, can be approxi-
mated within ∼0.5% by

Ecal ¼
Z∞

X1

ϵffiffiffi
β

p exp

�
ðt − t1Þ

�
1 −

3

2
ln s

��
dX

≃ 3.1ϵeβX0; ðA2Þ

where identified the prefactor of ∼3.1 numerically as
suitable for different values of X0 and X1. Thus, we find
that

ϵ ≃
Ecut

3.1X0

; ðA3Þ

which is in good agreement with Eq. (13).

3. Proton-iron separation using the Greisen function

The mean and standard devations of the distributions of
X19
max as well as of lgðϵ=ðPeV=ðg cm−2ÞÞÞ depicted in Fig. 6

are given in Table I. In units of the mean standard deviation

of the distributions, the average values of X19
max of protons

and iron nuclei induced showers are separated by

ξ ¼ jμpðX19
maxÞ − μFeðX19

maxÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σpðX19

maxÞ2 þ σFeðX19
maxÞ2

q ≃ 1.52: ðA4Þ

For ϵ̂ ¼ lgðϵ=ðPeV=ðg cm−2ÞÞÞ, this distance evaluates to

ζ ¼ jμpðϵ̂Þ − μFeðϵ̂Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σpðϵ̂Þ2 þ σFeðϵ̂Þ2

q ≃ 1.18: ðA5Þ

Assuming no covariance between ϵ̂ and X19
max, we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ ζ2

p
¼ 1.93: ðA6Þ

Note that Eq. (A6) is a generous estimate, since it is clear
from Fig. 6 that the covariance between ϵ̂ and X19

max is
not zero.

APPENDIX B: ADDITIONAL FIGURES

We show the effect of shower-to-shower fluctuations
for showers simulated with different hadronic interaction
models and at different primary energies. Figure 8 depicts
the universal relation between ϵ and Ecut even for the EPOS-
LHC and QGSJETII-04 hadronic interaction models, using
different primary particles and different primary energies.
In Fig. 9 we present the individual distributions of ϵ and
Ecut for all three hadronic interaction models. Note that the
histograms of the distributions for photon showers in
Fig. 9 are slightly truncated, as for individual showers
ϵ (Ecut) reaches values down to ≈1 keV=g cm−2 (≈1 MeV)
(cf. Figs. 1 and 8).

TABLE I. Mean μ and standard deviations σ of the distributions
of X19

max and ϵ as depicted in Fig. 6.

(μ, σ) X19
max=ðg cm−2Þ lgðϵ=ðPeV=ðg cm−2ÞÞÞ

γ (984.4, 107.1) ð−11.312; 4.33Þ
p (812.0, 62.2) ð−7.217; 2.57Þ
Fe (711.0, 22.5) ð−4.124; 0.49Þ
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FIG. 9. Distributions of ϵ (left) and Ecut (right) calculated according to Eqs. (11) and (12) for showers simulated using the (top to
bottom) SIBYLL2.3D, EPOS-LHC, and the QGSJETII-04 models of hadronic interactions. In each panel we show results from 9000 showers
using gammay-rays, protons, and iron nuclei as primary particles with simulated energies of 1018.5 eV, 1019.0 eV, and 1019.5 eV (1000
for each configuration).

FIG. 8. Relation of ϵ and Ecut for simulated iron (blue), proton (red), and gamma-ray (orange) showers using the EPOS-LHC (left) and
QGSJETII-04 (right) model of hadronic interactions. Ecut and ϵ were obtained using Eq. (11) and Eq. (12), respectively. In each panel we
show results from 9000 showers using gamma-rays, protons, and iron nuclei primary particles with simulated energies of 1018.5 eV,
1019.0 eV, and 1019.5 eV (1000 for each configuration).
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FIG. 11. Two-dimensional distribution of the best-fit values of X1 and X0 using the Greisen function to fit simulated longitudinal
profiles (left), and X1 andΛ using the GH function (right). The showers were simulated with primary energies of 1018.5 eV, 1019 eV, and
1019.5 eV, using the SIBYLL2.3D model of hadronic interactions. The curved lines show the estimated 1σ extent of the respective
distributions.

FIG. 10. χ2-distributions for the Greisen and the GH functions fitted to simulated EPOS-LHC air showers with primary energies of
1019.5 eV (left), and fitted to simulated QGSJETII-04 air showers with primary energies of 1018.5 eV (right). The distributions for the
Greisen (GH) functions are shown as a full (dashed) line, for each of the three primary particles. The respective mean of each distribution
is indicated by a vertical line.

FIG. 12. Two-dimensional distribution of the best-fit values of X19
max and N19

max using the GH function to fit simulated longitudinal
profiles of showers with primary energies of 1018.5 eV, 1019 eV, and 1019.5 eV. All showers were simulated using the SIBYLL2.3D model
of hadronic interactions. The curved lines show the estimated 1σ extent of the respective distributions.
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