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A large collection of equations of state (EOSs) built within the covariant density functional theory
of hadronic matter and allowing for density dependent couplings is employed to study polar f- and
p-oscillations of cold and hot compact stars. Correlations between oscillation frequencies of cold purely
nucleonic neutron stars (NSs), their global parameters as well as properties of nuclear matter (NM) are
investigated by considering a set of models from Beznogov and Raduta, [Phys. Rev. C 107, 045803 (2023)],
where a number of constraints on the saturation properties of NM, pure neutron matter and the lower bound of
the maximal NS mass were imposed within a Bayesian framework. The roles of finite temperature and exotic
particle degrees of freedom, e.g., hyperons, Δ-resonances, antikaon condensates or a hadron to quark phase
transition, are addressed by employing a family of models publicly available on COMPOSE and assuming
idealized profiles of temperature or entropy per baryon and charge fraction. We find that finite temperature
effects reduce the oscillation frequencies of nucleonic stars while the opposite effect is obtained for stars with
exotic particle degrees of freedom. When the Γ-law is employed to build finite temperature EOSs, errors in
estimating oscillation modes frequencies are of the order of 10% to 30%, depending on the mass. Throughout
this work the Cowling approximation is used.
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I. INTRODUCTION

In the presence of internal disturbances, e.g., starquakes
caused by a crust crack or a pulsar glitch, a sudden phase
transition, magnetic reconfiguration, or external disturb-
ances, e.g., accretion or tidal forces in close eccentric
binary system, compact objects such as neutron stars (NSs)
are perturbed. Restoration of equilibrium is achieved by a
series of oscillations typically classified upon the restoring
force. The study of NSs oscillations along with oscillations
in the tail of gamma-ray flare emissions from magnetars
and, for nonradial modes, gravitational wave (GW) emis-
sions can contribute to a better understanding of NSs
interiors and dense matter equation of state (EOS).
Quasinormal oscillation (QNO) modes of NSs have been

thoroughly studied in Newtonian [1] as well as general
relativity [2,3] frameworks. The f-, p- and g- modes, which
exist also in ordinary stars, including the Sun, have enjoyed
much interest. f- and p-modes, which will make the focus
of this paper, are driven by pressure. The f-(fundamental)
mode is a stable mode that exists only for nonradial
oscillations. Its frequency is proportional to the average

density of the star and depends only weakly on the details
of the stellar structure. The f-mode eigenfunctions have
no nodes inside the star and they grow towards the surface.
For NSs the f-mode frequencies range between 1 kHz
and 3 kHz. The p-(pressure) modes exist for both radial
and nonradial oscillations. Their number is infinite. Their
frequencies depend on the time it takes for the acoustic
wave to cross the star; in NSs the frequency of the
p1-mode, the lowest-order mode, ranges between 4 kHz
and 8 kHz.
The possibility to infer NSs masses and radii based on

joint measurements of at least two QNO modes and, thus,
constrain the EOS has been addressed for the first time in
Ref. [4], where oscillation frequencies and damping times
have been shown to be linked to global properties of NSs
through EOS-independent relations. References [5–8] con-
firm these findings. References [5,6] demonstrate, among
others, that νf scales with the average density of the star

through
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, while Mνp, τfR4=M3, and M=τp scale

with the compactness C ¼ M=R. Here νf, νp, τf, and τp
stand for the frequencies and damping times of f- and
p-modes and M and R denote NS mass and radius,
respectively. More recent Refs. [7,8] prove that Mνf and
M=τf can be expressed as second-order polynomials in
compactness (C ¼ M=R) to a high degree of accuracy.
A systematic investigation of the role of nuclear satu-

ration parameters on the f-mode oscillation frequencies has
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been performed recently in Ref. [9] within a covariant
density functional (CDF) model with nonlinear couplings
of the scalar-isoscalar (σ) and vector-isoscalar (ω) meson
fields. Various order coefficients in the Taylor expansion of
the energy per nucleon of symmetric matter and symmetry
energy as a function of deviation from the saturation
density of symmetric matter have been found to have a
negligible effect on νfðMÞ for 0.2≲M=M⊙ ≲ 2.2. At
variance with this, for fixed values of M, νf appeared to
be positively correlated with the value of the Dirac effective
mass of the nucleon at the saturation density (nsat) and, to a
lesser extent, with the value of nsat itself.
The interplay between properties of nuclear matter

(NM), oscillation frequencies and damping times of
f- and p- modes have been investigated also in Ref. [10].
A large bunch of unified EOS models [11] derived within
the CDF theory or, alternatively, the nonrelativistic mean
field theory of NM with Skyrme-like effective interactions
were employed. The results indicate that (i) νf of NSs with
1.2 ≤ M=M⊙ ≤ 1.8 are strongly correlated with the pres-
sure (P) of β-equilibrated matter with densities in the
range nsat ≲ nB ≲ 2.5nsat, larger mass NS being sensitive to
values of pressure at larger densities, (ii) τfð1.4M⊙Þ is
correlated with Pð2nsatÞ, (iii) νpð1.4M⊙Þ is correlated with
PðnsatÞ as well as with the slope of the symmetry energy,
(iv) the value of τf is lower (higher) for more (less) compact
stars. No effect of the NSs composition was identified.
Frequencies calculated within the Cowling approximation
were found to deviate from those calculated within a full
general relativity framework by up to 33% (for f-mode)
and 14% (for p-mode).
The CDF model with nonlinear couplings used in

Ref. [9] has been also employed in Refs. [12] and [13]
to study the impact of hyperons on f-mode oscillations.
The Cowling approximation and the linearized general
relativistic formalism have been used, respectively. Results
of Refs. [12,13] indicate that hypernuclear stars have larger
νf values with respect to their nucleonic counterparts with
equal value of gravitational mass. This modification is
straightforward to explain based on the radius reduction
upon the appearance of hyperons and the dependence of νf
on the average density of the star. The frequency range
of cold β-equilibrated hypernuclear stars computed within
the linearized general relativity framework is 1.47 kHz ≤
νf ≤ 2.45 kHz.
Protoneutron stars (PNSs) have been found to show the

same QNO modes as cold β-equilibrated NSs [14–18].
However, their frequencies and damping times depend
on the complex entropy per baryon and lepton fraction
profiles, which get modified as the PNS cools down and
deleptonizes. Roughly speaking, after bounce and up until
the star becomes a cold catalyzed NS, the frequencies of
f- and p-modes increase by several tens of percents up to
the values they reach in NSs. A more attentive investigation
of the results, however, show that at very early moments in

the postbounce evolution, νf [14,17] and νp [17] decrease in
time. The long time behavior indicates that the scaling with
average density and compactness of these oscillation modes
frequencies persists also in hot stars. The early time behavior
nevertheless suggests that, if the gradients of entropy per
baryon, temperature, lepton and/or charge fractions are too
strong, deviations from the above-mentioned trends occur.
The quasistationary evolution from the PNS stage to the cold
β-equilibrated NS was investigated in Ref. [15] using a
sequence of constant profiles of entropy per baryon and
charge fraction, but with different values in the core and the
outer layers. This allowed the authors to separately assess the
role of temperature and composition on QNO modes, their
conclusion being that entropy gradients are more important
than composition-related effects. Reference [17] has also
demonstrated that, in addition to stellar mass, QNO frequen-
cies depend on the EOS model.
The first aim of this work is to investigate correlations

between the frequencies of f- and p-oscillation modes of
cold NSs on the one hand and properties of NM and NSs on
the other hand. To this end, the fiducial set of EOS models
recently derived by two of us in Ref. [19] is used. It was
obtained within a Bayesian framework by imposing a set of
constraints to a family of EOS models derived employing a
simplified density dependent (DD) CDF approach. These
constraints correspond to properties of saturated NM,
density dependence of pressure and energy per nucleon
in pure neutron matter (PNM) and the lower limit on the
maximal NS mass. Together with other results in literature,
e.g., those of Ref. [9], where the values of the coupling
constants are adjusted such as the values of various NM
parameters are modified one by one, our work contributes
to a better understanding of the role the NS EOS plays on
oscillation modes.
The second motivation of this study is to investigate the

effects of finite temperature and exotic particle degrees of
freedom (d.o.f.) on the f- and p-modes. To this end, νf
and νp of purely nucleonic and exotic stars with controlled
profiles of entropy per baryon (or temperature) and charge
fraction are confronted against each other over the mass
range 1 ≤ M=M⊙ ≤ 2. The exotic admixtures that are
alternatively considered are the following: Λ-hyperon;
Λ, Σ−;0;þ, Ξ−;0 hyperons; Λ, Σ−;0;þ, Ξ−;0 hyperons and
Δ−;0;þ;þþ nucleonic resonances; K̄-condensates; a hadron
to quark phase transition. Similar to the family of EOSs
used for the correlation study of cold NSs, all the models
considered here belong to the category of DD CDF models.
Moreover, they rely on the same nucleonic effective
interaction. Together with the idealized thermodynamic
conditions the latter aspect is essential for discriminating
the effects of thermal and particle composition.
The article is organized as follows. In Sec. II the EOS

models employed in this work are cataloged and some of
their properties are reviewed. Thermal effects on equilib-
rium configurations of spherically-symmetric relativistic
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stars with various d.o.f. are analyzed in Sec. III. The
Cowling formalism we adopt to solve for oscillation
modes is briefly reviewed in Sec. IV. Section V investigates
correlations between f- and p-modes frequencies of cold
NS, selected global parameters of NS and NM parameters.
Thermal effects and role of exotic d.o.f. are discussed
in Sec. VI. The conclusions are drawn in Sec. VII.
Throughout this paper, we use the natural units with
c ¼ ℏ ¼ kB ¼ G ¼ 1.

II. EOS MODELS

EOS models used in this paper treat the baryonic
component within the CDF theory of strongly interacting
matter and employ effective interactions with density
dependent couplings of mesonic fields to hadrons.
For the analysis of correlations between oscillation

frequencies of cold purely nucleonic NSs and parameters
of the EOS, we employ the family of models that
corresponds to the fiducial case (“run 5”) of Ref. [19];
herewith it will be referred to as DDB*. Individual EOS
models in this family, as well as any other family in
Ref. [19], have been derived within a modified version of
the simplified DD CDF model proposed in Ref. [20].
Similar to the standard DD CDF models like DD2 [21]
or DDME2 [22], the model proposed by Malik et al. [20]
assumes that nucleon-meson couplings depend on density
and expresses them in terms of coupling values at satu-
ration. The vector-isovector ρ field is given the same
density dependence as in Refs. [21,22], while simplified
density dependencies are postulated for the scalar-isoscalar
σ and vector-isoscalar ω fields. The parameter space
associated with this model is six dimensional. Isoscalar
and isovector channels are governed by four and two
parameters, respectively. Posterior distributions of the input
parameters of the model as well as posterior distributions of
physical quantities, e.g., NM parameters and NS observ-
ables are obtained upon posing, in a Bayesian framework,
constraints from nuclear physics, ab initio calculations and
astrophysical NS observations. Malik et al. [20] opted in
favor of a minimal number of constraints: four stem from
properties of NM and correspond to the saturation density
(nsat) of symmetric nuclear matter (SNM), energy per
nucleon (Esat) and compression modulus (Ksat) of saturated
SNM and symmetry energy at saturation (Jsym); three

correspond to the pressure of PNM at the densities 0.08,
0.12 and 0.16 fm−3, as computed by means of χEFT at
N3LO in Ref. [23] but with a variance twice larger than the
one obtained in Ref. [23]; a lower limit on maximum NS
mass of 2M⊙. DDB* adopts for NM and NS the conditions
previously used in Ref. [20] but makes a different choice in
what regards PNM. The difference consists in accounting,
in addition to constraints on the pressure, also for con-
straints on the energy per nucleon; for both quantities the
original variance inferred in Ref. [23] is assumed. The
parameters of the marginalized posterior distributions of
various NM parameters and selected properties of NSs
are provided in Tables I and II, respectively. In Table II
the compliance with astrophysical NS observations is
also reported.
The effects of finite temperature and exotic particle

d.o.f. will be investigated considering a collection of
CDF models which rely on the DD2 [21] nucleon effective
interaction. Preference for DD2 [21] is due to its ability to
reproduce properties of finite nuclei; NM parameters [34];
the density dependence of the energy per nucleon in PNM
up to ≈nsat, as predicted by χEFT calculations [23,35], see
Fig. 12 in Ref. [11]; compliance with available constraints
from NS observations. The latter include: (i) maximum NS
masses higher than ≈2M⊙ [36], (ii) combined tidal deform-
ability of the two NSs in the GW170817 event in the range
110 ≤ Λ̃ ≤ 800 [28], (iii) radius of the canonical 1.4M⊙ NS
is in the range 13.02þ1.24

−1.06 km [37], (iv) radius of a 2.072M⊙
NS in the range 11.41 km ≤ R2.072 ≤ 13.69 km [27]. For
values of various NM parameters and selected properties
of NS built upon DD2, see Tables I and II, respectively.
The exotic blends that are accounted for have been selected
such as to cover most of the mixtures discussed in the
literature. They are: Λ-hyperon; Λ, Σ−;0;þ, Ξ−;0 hyperons;
Λ, Σ−;0;þ, Ξ−;0 hyperons and Δ−;0;þ;þþ nucleonic reso-
nances; K̄-condensates; a hadron to quark phase transition.
Three of the models in our set account for strangeness.

The model of Ref. [30] allows only for Λ, the less massive
hyperon, while the models of Refs. [25,31] account for Λ,
Σ−;0;þ and Ξ−;0. Following standard procedures, in all
these models the coupling constants of hyperons to the
scalar-isoscalar meson field σ are tuned such as to provide
for the hyperon at rest in saturated SNM potential well
depths in accord with data extracted from hypernuclear

TABLE I. NM properties of the density dependent effective interactions used in this work. Listed are: saturation density (nsat) of SNM;
energy per nucleon (Esat), compression modulus (Ksat), skewness (Qsat) and kurtosis (Zsat) of SNM at nsat; symmetry energy (Jsym),
its slope (Lsym), curvature (Ksym), skewness (Qsym) and kurtosis (Zsym) at nsat; Dirac effective mass of nucleons in SNM at nsat (meff ).
For DDB* median values and 68% confidence intervals are provided.

Model
nsat

(fm−3)
Esat

(MeV)
Ksat

(MeV)
Qsat

(MeV)
Zsat

(MeV)
Jsym
(MeV)

Lsym

(MeV)
Ksym

(MeV)
Qsym

(MeV)
Zsym

(MeV)
meff

(mn) Reference

DDB* 0.154þ0.0047
−0.0048 −16.1þ0.2

−0.2 244þ30
−26 −52.2þ150

−120 1400þ380
−730 31þ0.85

−0.82 44.6þ6
−5.7 −105þ16

−16 821þ120
−130 −5470þ1000

−1100 0.662þ0.039
−0.042 [19]

DD2 0.149 −16.02 242.72 168.65 5232.56 31.67 55.04 −93.23 598.14 −5149.17 0.563 [21]
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experiments [38]. To be specific, −30 MeV ≤ UðNÞ
Λ ≤

−28 MeV, −20 MeV ≤ UðNÞ
Ξ ≤ −18 MeV and UðNÞ

Σ ¼
30 MeV. Coupling constants of hyperons to vector
mesonic fields are fixed using the SU(6) quark flavor
symmetry group. The model BHB(DD2Lphi) [30] also
accounts for ΛΛ interactions mediated by the hidden
vector meson ϕ; the model OMHN(DD2Y) [31] also
accounts for YY interactions mediated by the scalar σ� and
hidden vector ϕ mesons.
In addition to the baryonic octet, the model R

(DD2YDelta) [25] accounts for Δð1232Þ resonances,
which form an isospin quadruplet. The couplings of
mesonic fields to Δs are supposed to have the same density
dependence as the couplings to nucleons. The strength of
interactions mediated by the ρ meson is considered the
same for nucleons and nucleonic resonances, gρ;ΔðnBÞ ¼
gρ;NðnBÞ; in regards to the ω and σ mesons, it is assumed
that gω;ΔðnBÞ ¼ 1.1gω;NðnBÞ and gσ;ΔðnBÞ ¼ 1.2gσ;NðnBÞ,
respectively. The latter choice leads to UðNÞ

Δ ¼ −124 MeV.
MBB(DD2K) [32] accounts for thermal (anti)kaons

and a Bose-Einstein condensate of K− mesons. The
phase transition from the nuclear to antikaon condensed
phase is second order. Nucleons in the antikaon condensed
and hadronic phases have different behaviors. Kaon-
vector meson couplings are fixed by flavor symmetry
arguments. The scalar coupling constant is fixed such that

UðNÞ
K ¼ −120 MeV.
The possibility of a hadron to quark phase transition is

addressed in BBKF(DD2(F)-SF) [33]. This model assumes
that baryonic matter consists of nucleons only and quark
matter consists of up and down quarks; quark confinement
is modeled within the string-flip model [39]. The hadron
and quark phases are derived independently and the
two phases are then merged through a mixed phase

construction. Pure hadron and quark phases are in thermal,
mechanical and baryonic chemical equilibrium. The equal-
ity of lepton chemical potentials between coexisting phases
is replaced, for convenience, by the equality of charge
fractions. The two models used here, BBKF(DD2F-SF)1.2
and BBKF(DD2-SF)1.8, differ in the treatment of both
baryonic and quark sectors. The nucleon effective inter-
action DD2F [40] is a softer version of DD2, designed
to recover agreement with data in heavy ion collisions.
Its NM properties are identical to those of DD2 and, thus,
not listed in Table I.
Properties of cold catalyzed NSs built upon the EOS

models listed above are provided in Table II, too. The
compliance with observational constraints is also reported.
We notice that upon the onset of exotic d.o.f. all the models
fulfill the ≈2M⊙ constraint on the lower bound of maxi-
mum NS mass. Mmax

G larger than 2.072M⊙, the estimated
mass of the millisecond pulsar PSR J0740þ 6620 [41],
are obtained only by BHB(DD2Lphi), MBB(DD2K) and
BBKF(DD2F-SF)1.2. These models fulfill also the con-
straint on the radius of massive NS in Ref. [27]. The model
R(DD2YDelta) provides for R1.4 a value by 0.8 km smaller
than the one provided by HS(DD2) and, together with
BBKF(DD2F-SF)1.2, agrees with constraints from
Ref. [26]. Models BHB(DD2Lphi), OMHN(DD2Y) and
MBB(DD2K) provide for the canonical NS radius the same
value as HS(DD2), the reason being that the threshold
densities for the nucleation of Λ, the first hyperon to pop
up, and K exceed the value of the central density of 1.4M⊙
NS. The early transition to deconfined matter in BBKF
(DD2-SF)1.8 entails a quite low value for R1.4.
Hot stellar matter consists of hadrons or, alternatively,

deconfined quarks, leptons and photons. Local densities of
strongly interacting particles, e.g., hadrons or quarks, and
charged leptons are such that the net charge neutrality

TABLE II. List of EOS models used in this work. For each model we provide information on: considered degrees of freedom;
maximum gravitational mass of cold β-equilibrated NS (Mmax

G ); radius of canonical 1.4M⊙ NS (R1.4); radius of a 2.072M⊙ NS (R2.072);
limits of combined tidal deformability Λ̃ ¼ 16½ðM1 þ 12M2ÞM4

1Λ1 þ ðM2 þ 12M1ÞM4
2Λ2�=13ðM1 þM2Þ5 corresponding to the

GW170817 event with an estimated total massMT ¼ 2.73þ0.04
−0.01M⊙ and a mass ratio range 0.73 ≤ q ¼ M2=M1 ≤ 1. As in Refs. [24,25],

values outside the ranges 11.80 km ≤ R1.4 ≤ 13.10 km [26]; 11.41 km ≤ R2.072 ≤ 13.69 km [27]; 110 ≤ Λ̃ ≤ 800 [28] are marked in
bold. n.a. (not available) means that quantities could not be calculated or the calculation is not meaningful (data extracted from COMPOSE

fall into the first category while those corresponding to DDB* into the second); “—” means that the quantities do not exist. Other
notations are: q stands for quarks; Λ denotes the Λ-hyperon; Δ is the Δð1232Þ resonance; Y generically denotes the Λ, Σ−;0;þ and Ξ−;0

hyperons; K respectively stands for kaons. For DDB* median values and 68% confidence intervals are provided.

Model d.o.f. Mmax
G (M⊙) R1.4 (km) R2.072 (km) Λ̃ ðq ¼ 0.73Þ Λ̃ ðq ¼ 1Þ Reference

DDB* N 2.15þ0.14
−0.1 12.6þ0.34

−0.36 n.a. 607þ118
−105 587þ112

−100 [19]
HS(DD2) N 2.42 13.2 13.1 799 758 [29]
BHB(DD2Lphi) N, Λ 2.10 13.2 12.2 790 757 [30]
OMHN(DD2Y) N, Y 2.03 13.2 — 787 756 [31]
R(DD2YDelta)(1.2;1.1;1.0) N, Y, Δ 2.05 12.3 — 470 434 [25]
MBB(DD2K) N;K− 2.19 13.2 13.0 n.a. n.a. [32]
BBKF(DD2F-SF)1.2 N, q 2.15 12.2 11.4 501 473 [33]
BBKF(DD2-SF)1.8 N, q 2.06 11.0 — 218 180 [33]

THAPA, BEZNOGOV, RADUTA, and THAKUR PHYS. REV. D 107, 103054 (2023)

103054-4



condition is fulfilled. Thermal equilibrium as well as
chemical equilibrium with respect to the strong interaction
are achieved.
EOSs used in this work, other than those of the DDB*

family, have been extracted from general purpose EOSs
tables that are publicly available online on the COMPOSE [42]
site, [43]. The COMPOSE software was used.

III. EQUILIBRIUM CONFIGURATIONS OF
COMPACT STARS

In this section we address the role of finite temperature
and exotic d.o.f. on NSs equilibrium configurations. This is
a necessary stage for understanding the modifications that
each of these features brings to oscillation modes.
In order to study in a controlled manner the effect of

thermal excitation and the role of various exotic d.o.f., NSs
with idealized profiles will be considered in this work. The
temperature1 (T) profile will be either constant or tuned
such as to generate a certain profile for the entropy per
baryon (S=A). Chemical composition will correspond to
fixed charge fractions (YQ). The thermodynamic conditions
considered here are: (i) S=A ¼ 1, YQ ¼ 0.4, (ii) S=A ¼ 2,
YQ ¼ 0.2 and (iii) T ¼ 20 MeV, YQ ¼ 0.2. Cases (i) and
(ii) correspond to a moment shortly after the core bounce
of a core collapsing star and a later time in the evolution
from a PNS to a cold deleptonized NS, respectively.
Case (iii) is purely academic and is considered for
pedagogical reasons only.
The temperature profiles for scenarios (i) and (ii) are

plotted as a function of nB in Fig. 1. Considered are the
DD2-based models of Table II. We note that, in nucleonic
matter, the temperature strongly increases with the baryonic
density and values as high as several tens MeVare reached.
Exotic matter is still hot though definitely less than the
nucleonic one. Comparison between temperature values
predicted by HS(DD2), BHB(DD2Lphi), OMHN(DD2Y)
and R(DD2YDelta) at nB ≳ 0.25 fm−3 for S=A ¼ 2, YQ ¼
0.2 or nB ≳ 0.6 fm−3 for S=A ¼ 1, YQ ¼ 0.4 indicates that
at fixed values of S=A and nB the temperature drops with
the number of particle d.o.f., in agreement with previous
results of Ref. [44]. In some circumstances the drop is
strong enough to induce, over a limited density domain,
a back-bending of the TðnBÞ-curve. Examples in this
sense are offered by the two BBKF(DD2(F)-SF) models;
R(DD2YDelta) and MBB(DD2K) at S=A ¼ 1, YQ ¼ 0.4.
The hydrostatic equilibrium of nonrotating spherically-

symmetric stars is calculated by solving the Tolman-
Oppenheimer-Volkoff equations. The M − R diagrams
of objects with various profiles of S=A (or T) and YQ

(or μL ¼ 0) and corresponding to different models are
depicted in Fig. 2. It comes out that hot stars are more

expanded than cold stars and low-mass stars are much
more affected by finite-T effects than the massive ones.
These features were expected and can be explained
considering that matter in low-mass configurations is
more diluted that in massive configurations and dilute
matter is more affected by the effects of finite T than dense
matter. We also note that, for M=M⊙ ≲ 2, hotter and more
isospin asymmetric stars are more compact than the less
hot and more isospin symmetric ones. This is in particular
the case of (S=A ¼ 2, YQ ¼ 0.2) versus (S=A ¼ 1,
YQ ¼ 0.4) objects and means that, for densities lower
than a “critical” value, composition related effects domi-
nate over the temperature related ones. This “critical”
value obviously depends on particle composition, effec-
tive interactions and thermodynamic conditions.
Depending on the d.o.f., the gravitational mass of the
most massive configurations augment or diminish with T.
When the particle composition does not change, as is the
case of HS(DD2) and the two BBKF(DD2(F)) models,
higher temperatures lead to larger masses. Models where
thermally excited species gradually replace the nucleons
show the opposite behavior. The latter is the case of
models accounting for hyperons, Δs and K̄-condensates.
In what regards the properties of exotic stars, we note that
for a given profile of S=A: (i) the maximum gravitational
mass of exotic stars is smaller than the one of purely
nucleonic NS, (ii) for a given value of the gravitational
mass, exotic NS are more compact than nucleonic stars,
(iii) the larger the number of particle d.o.f. the smaller the
maximum mass and the radii of intermediate mass NS.
The same features are observed in cold stars and, as in
their case, stem from the EOS softening upon the
appearance of exotica. The hadron to quark phase tran-
sition in BBKF(DD2-SF)1.8 is responsible for unstable

FIG. 1. Temperature as a function of baryonic number density
for (S=A ¼ 1, YQ ¼ 0.4) and (S=A ¼ 2, YQ ¼ 0.2). Predictions
of EOS models with nucleonic and exotic d.o.f., as mentioned in
the legend.

1In this paper we only speak of local temperatures; redshifted
temperatures are not used.
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branches and, in the case of S=A ¼ 2 and YQ ¼ 0.2, also
for the occurrence of twin stars. This result is again similar
to what is observed in cold NS [33].
Our results concord with those of Refs. [31,44–49].

Besides, usage of models that employ the same nucleonic
effective interaction allows to gauge the role of each extra
particle d.o.f.
To assess the reliability of the Γ-law approximation [50],

we show in Fig. 2 also the M-R diagrams obtained when
the finite-T EOS is built by employing this recipe. The
considered thermodynamic cases are (S=A ¼ 2, YQ ¼ 0.2)
and (T ¼ 20 MeV, YQ ¼ 0.2).
We remind that the Γ-law approximation consists in

supplementing cold EOS with an ideal gaslike component,

P ¼ Pcold þ ðΓth − 1Þeth; ð3:1Þ

where eth ¼ e − ecold stands for the thermal energy density
and 1.5 ≤ Γth ≤ 2. Similarly, the thermal pressure can be
defined as Pth ¼ P − Pcold. This approximation was
introduced in the 1990s as a surrogate for exact finite
temperature EOSs [50], which at that time existed in a
very limited number, but it is still in use in numerical
simulations [51–55]. Its obvious limitation consists in
disregarding effects of temperature, density or chemical
composition other than those entering eth. For a systematic
study of its performance, see Refs. [24,25].
Figure 2 shows that the use of the Γ-law results in radii

uncertainties of the order of 23%, 13% and 9% for models
with M=M⊙ ¼ 1, 1.4 and 2 at (S=A ¼ 2, YQ ¼ 0.2).

IV. PERTURBATION EQUATIONS

In order to solve for nonradial oscillations of spherically
symmetric NS the Cowling approximation [1] is used in

this work. It assumes that the spacetime is frozen, which
allows one to neglect metric perturbation. The eigenvalues
are real, meaning that oscillations are not damped.
The Lagrangian displacement vector of the fluid is

given by

ζi ¼ ½e−ΛðrÞWðt; rÞ;−Vðt; rÞ∂θ;−Vðt; rÞ sin−2 θ∂ϕ�
× r−2Ylmðθ;ϕÞ;

where V and W are functions of t and r and Ylmðθ;ϕÞ
represents the spherical harmonic function. Assuming a
harmonic dependence on time, Wðt; rÞ ¼ WðrÞ exp ðiωtÞ
and Vðt;rÞ¼VðrÞexpðiωtÞ, mode frequencies are obtained
by solving the following system of ordinary differential
equations [56]:

dWðrÞ
dr

¼ de
dp

�
ω2r2eΛðrÞ−2ΦðrÞVðrÞ þ dΦðrÞ

dr
WðrÞ

�

− lðlþ 1ÞeΛðrÞVðrÞ;
dVðrÞ
dr

¼ 2
dΦðrÞ
dr

VðrÞ − 1

r2
eΛðrÞWðrÞ; ð4:1Þ

where ΦðrÞ and ΛðrÞ are metric functions and ω stands for
the frequency.
The solution of Eqs. (4.1) with the fixed background

metric

ds2¼−e2ΦðrÞdt2þe2ΛðrÞdr2þr2dθ2þr2 sin2θdϕ2; ð4:2Þ

is obtained considering that near the origin VðrÞ and WðrÞ
behave like

WðrÞ ¼ Arlþ1; VðrÞ ¼ −
A
l
rl; ð4:3Þ

FIG. 2. Gravitational mass M versus radius for nonrotating spherically-symmetric stars. Various thermodynamic conditions,
mentioned on the figures, are considered. Predictions of nucleonic models and models with exotic d.o.f. are illustrated in the left and
right panels, respectively. The light green and blue hatched regions in the left panel illustrate the uncertainty domains associated with the
use of the Γ-law with the bounds set to Γth ¼ 1.5 and 2; they correspond to (T ¼ 20 MeV, YQ ¼ 0.2) and (S=A ¼ 2, YQ ¼ 0.2),
respectively. The light gray shaded domain corresponds to the DDB* family for cold NSs. The mass constraint fromMSP J0740þ 6620
at 68.3% confidence level [41] is represented by the horizontal shaded region.
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and the perturbed Lagrangian pressure vanishes on the
surface, which leads to

ω2eΛðRÞ−2ΦðRÞVðRÞ þ 1

R2

dΦðrÞ
dr

����
r¼R

WðRÞ ¼ 0: ð4:4Þ

In this work the eigenvalue problem, Eqs. (4.1), is solved
by the shooting method, which consists in generating
families of WðrÞ and VðrÞ corresponding to various values
of ω and then selecting those which satisfy Eq. (4.4). In this
paper we shall compute frequencies of the fundamental
f-mode as well as frequencies of the first p-mode with
l ¼ 2. The f-mode has no radial nodes, while the first
p-mode has one radial node.

V. CORRELATIONS BETWEEN OSCILLATION
FREQUENCIES OF COLD NSs, PARAMETERS

OF NM AND NS EOS

Frequencies of f- and p-oscillation modes have been
calculated within the Cowling approximation for the 105

EOS models in the DDB* family and NSs with masses
in the range 1 ≤ M=M⊙ ≤ Mmax

G . Note that each EOS in the
DDB* family has its own value ofMmax

G . Then, correlations
with parameters of NM, e.g., nsat, Xsat, Xsym and meff and
other global properties of NSs or NSs EOS have been

sought for. Here XðiÞ
sat ¼ ð∂iE0ðnB; 0Þ=∂X ðiÞÞjnB¼nsat and

XðjÞ
sym ¼ ð∂jEsymðnB; 0Þ=∂X ðjÞÞjnB¼nsat denote the parame-

ters of the Taylor expansion of the energy per nucleon of
SNM and symmetry energy, respectively, in terms of
deviations from saturation X ¼ ðnB − nsatÞ=3nsat. We start
by commenting on the correlations with parameters of NM.
Then, we turn to correlations with the pressure of NS matter
at densities in the range nsat ≤ nB ≤ 3nsat. Finally, we shall
investigate correlations with NS radii, average densities and
compactness.
The strongest correlations we have found with param-

eters of NM are illustrated in Fig. 3, where only NSs with
masses M=M⊙ ¼ 1.4 and 2 are considered. On each panel
we mention the value of Kendall rank correlation coef-
ficient [57]. We prefer Kendall coefficients to the more
commonly used Pearson coefficients due to the nonlinearity
of the most of our correlations. It comes out that νf is
negatively correlated with Ksat, Qsat, Ksym and νp is
negatively correlated with Ksat, Qsat, Lsym. These results
can be explained considering that νf scales with the average
density of the star [4,5]; νp scales with NS compactness [5];
NS radii are positively correlated with Ksat, Qsat, Lsym

and Ksym, see Fig. 7 in Ref. [19]. We also note that νp is
positively correlated with Qsym. This is attributable to the
strong and negative correlation betweenQsym and Lsym, see
Fig. 3 in Ref. [19], and to the positive correlation between
NS radii and Lsym mentioned above. The strength of these

correlations obviously depends on NS mass as matter with
different densities is probed in light and massive stars.
We also note that νf;1.4 and νp;2.0 appear to be correlated
with meff . Correlations among νf and meff have been
previously discussed in Ref. [9], where a CDF model with
nonlinear meson couplings was employed. The other
correlation discussed in Ref. [9], between νf and nsat,
does not manifest in our model. Two explanations can be
envisaged for that. The first trivial one is that this
correlation is a peculiarity of the approach used in
Ref. [9]. The second one, that we consider more plausible,
is that the limited parameter space exploration allowed by
the strongly constrained nsat in Ref. [19] hinders any
possible correlation with this quantity.
Figure 4 addresses the correlations between νf and νp

and the pressure of NS matter at various densities,
previously discussed in Ref. [10]. Our results indicate that
νp of low-mass NSs is mostly sensitive to the pressure of
NSs matter at densities around nsat while νf of high-mass
NS is mostly sensitive to the pressure of NSs matter at
densities several times the value of nsat. However, none of
these correlations are strong.
Figure 5 shows conditional probability densities (also

known as curves densities) corresponding to νf, νp and NS
properties. The relatively small dispersion of νfðncÞ curves,
where nc represents the central density, suggests that the
f-mode is mostly sensitive to dense matter properties.
We note that, according to our model, this “correlation” is
of similar strength as the one with the average density,ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, previously put forward in Refs. [4,5]. For a

quantitative estimate we mention that the values of
Kendall rank correlation coefficients are 0.83 and 0.82
for the former and the latter “correlations”, respectively.
An even stronger “correlation” links Mνp to M=R.
Indeed, the data corresponding to the 105 models in
DDB* collapse into a relatively narrow band, which
suggests that the relation between these two quantities
does not depend on the EOS [4,5]. One should keep
in mind that the term correlation is typically used for
joint probability density distributions like those plotted
on Figs. 3 and 4. The same holds for correlation
coefficients. In this paragraph we use them in a loose
sense by applying them to conditional probability density
distributions.
Before closing this section let us remind that the bulk of

literature devoted to the EOS-dependence of NS properties
has shown that the occurrence of correlations as well as
their strengths manifest a considerable model dependence.
This includes the dependence on the density functional,
constraints imposed on the posterior probability density
functions and domains of values allowed for both input and
output parameters of the model; for a recent discussion, see
Ref. [19]. We expect that similar conclusions apply also for
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FIG. 3. Correlations among oscillation frequencies of f- and p- modes in 1.4M⊙ and 2M⊙ NSs and selected parameters of NM for the
DDB* family of models. The light cyan solid and black dashed contours demonstrate 50% and 90% confidence regions, respectively.
The numbers in each panel represent Kendall rank correlation coefficients.
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correlations involving oscillation frequencies and damping
times, though the limited amount of studies available so far
can not demonstrate it. As such, it is clear that, in order for a

correlation to be considered physical, the conclusions of
several different models and approaches have to be con-
fronted. Our present results contribute to this effort.

FIG. 5. Conditional probability density (also known as curve density) plots. Left panel: f-mode frequency as a function of central
density, PðνfjncÞ. Right panel: the product ofMνp as a function of compactness, PðMνpjCÞ. The results correspond to the DDB* family
of models. The black dashed lines demonstrate 90% confidence regions. Black dotted lines show to the medians. The numbers in each
panel represent Kendall rank correlation coefficients. See text for details.

FIG. 4. Top (bottom) panel: correlations among oscillation frequencies of f- and p-modes in 1.4M⊙ and 2M⊙ NSs and the pressure of
NS matter at nsatð3nsatÞ for the DDB* family of models. The light cyan solid and black dashed contours demonstrate 50% and
90% confidence regions, respectively. The numbers in each panel represent Kendall rank correlation coefficients.
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VI. THERMAL AND COMPOSITION EFFECTS
ON OSCILLATION MODES

Temperature effects on the frequencies of f- and
p-modes of nucleonic stars are investigated in Fig. 6.
The obvious results are that hot NSs have smaller oscil-
lation frequencies than their cold counterparts and
the lighter the star the more dramatic this reduction is.
The explanation is straightforward considering that both νf
and νp scale with a negative power of R and hot stars
are more expanded than the cold ones, see Fig. 2. Similar
conclusions have been reached in Refs. [14,15], where
more realistic profiles of thermodynamic quantities were
considered. We also note that thermal effects influence
more the p-mode than the f-mode. For f-mode

oscillations, the frequencies corresponding to the maxi-
mum mass configurations and different thermodynamic
conditions lie close to each other. At variance with this,
frequencies of the p-mode are scattered. The latter result
suggests that the two oscillation modes are sensitive to
different radial shells in the star. An extra argument in favor
of this assumption is given by the opposite ranking of νp
and νf in stars with 1.2≲M=M⊙ ≲ 2.1 at (S=A ¼ 1,
YQ ¼ 0.4) and (S=A ¼ 2, YQ ¼ 0.2). As for the applicabil-
ity of the Γ-law, for models with M=M⊙ ¼ 1, 1.4 and 2
with (S=A ¼ 2, YQ ¼ 0.2) the use of this approximation
results in uncertainties of 22% (29%), 9% (24%) and 6%
(19%) for νf (νp).
Figure 7 shows that models with exotic d.o.f. have

higher νf and νp than their nucleonic counterparts. The

FIG. 6. f-mode (left panel) and p-mode (right panel) frequencies as functions of gravitational mass. The nucleonic models HS(DD2)
(curves) and DDB* (gray shaded regions) are considered. The light green and blue hatched regions illustrate the uncertainty domains
associated with the use of the Γ-law with the bounds set to Γth ¼ 1.5 and 2 for (S=A ¼ 2, YQ ¼ 0.2) and (T ¼ 20 MeV, YQ ¼ 0.2). Only
stable configurations are plotted.

FIG. 7. f- and p-mode frequencies as functions of gravitational mass for (S=A ¼ 1, YQ ¼ 0.4) [left panel] and (S=A ¼ 2, YQ ¼ 0.2)
[right panel]. The considered EOS models are mentioned in the legend. Only stable configurations are plotted.
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situation is, again, understandable considering that exotic
stars are more compact than nucleonic stars, see Fig. 2,
and qualitatively agrees with the results at zero temper-
ature in Refs. [12,13]. Out of the models plotted in Fig. 7
the most significant increase in frequencies corresponds
to R(DD2YDelta) and the two models that account for a
hadron to quark transition. These three models experience
the most drastic reduction in radii, see Fig. 2. The effect is
stronger for (S=A ¼ 2, YQ ¼ 0.2), where higher values of
temperature are reached, than for (S=A ¼ 1, YQ ¼ 0.4).
This means that the modifications entailed by the onset of
new d.o.f. dominates over those induced by the temper-
ature and that act in the opposite direction. For stars with
1.6 ≤ M=M⊙ ≤ 2 at (S=A ¼ 2, YQ ¼ 0.2) R(DD2YDelta)
and BBKF(DD2-SF)1.8 provide values of νf that are by
10% and 50% higher than those obtained with HS(DD2).
For νp the corresponding figures are 10% and 35%.

VII. CONCLUSIONS

In this paper we have investigated correlations among
frequencies of f- and p-oscillation modes of cold NSs
on the one hand and NM parameters, global parameters of
NSs and NS EOS on the other hand. The analysis was
performed using the 105 models of the DDB* family that
corresponds to the run 5 of Ref. [19]. DDB* models belong
to the DD CDF class and have been obtained in a Bayesian
investigation where a certain number of constraints on
NM parameters, density dependence of energy per nucleon
and pressure in PNM and the lower bound of maximum
NS mass have been posed. Our results show that νf is
negatively correlated with Ksat, Qsat, Ksym, the first and
latter correlations being stronger in low mass NSs; νp is
negatively (positively) correlated with Lsym (Qsym), both
correlations being stronger in low mass stars; massive NSs
also manifest correlations among νp, Ksat, Qsat; meff

somewhat impacts νf (νp) in low (large) mass stars;
PNSð3nsatÞ is weakly correlated with νf;1.4 and more
strongly with νf;2.0; PNSðnsatÞ is weakly correlated with
νp;1.4. Most of these correlations can be explained consid-
ering the scaling of νf and νp with NS average density and

compactness [4,5]. We have also shown that a correlation
exists between νf and nc, which suggests that the f-mode
probes the inner core. Quantitative differences with respect
to Refs. [9,10] are illustrative of the model dependence
of these results.
The roles of finite-T and exotic particles have been

studied by considering a bunch of models that belong to
the same DD CDF category, employ the same effective
interaction in the nucleonic sector and account for various
d.o.f. All these models are available for public use on
COMPOSE. Two sets of constant profiles of S=A and YQ have
been adopted to mimic the evolution from a PNS to a cold
deleptonized NS. Thermal effects result in a strong reduc-
tion of oscillation frequencies in nucleonic stars, they are
more important in low mass stars and influence more the
p-mode than the f-mode. Along with the observation that
νf of the most massive configurations is only marginally
affected by finite-T effects, these indicate that f- and
p-modes have different sensitivities to different density
domains. Hot stars that allow for hyperons, Δs, K̄ and
quarks have larger values of νf and νp than their nucleonic
counterparts. The explanation consists in that the stars with
exotica are more compact than the nucleonic stars. Usage of
EOSs that rely on the same effective interaction along with
consideration of most extra d.o.f. expected to appear at high
temperatures and/or densities allowed us to comprehend
which of these species alter the most the mechanical
structure of NSs and whether the pattern changes with
the thermodynamic conditions.
Uncertainties associated with the use of the Γ-law have

been gauged by confrontation with the results correspond-
ing to the exact finite-T EOS. In nucleonic stars with
constant profiles of S=A they are of the order of several
tens of percents and depend sizably on the NS mass and
thermodynamic conditions.
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