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Some recent, long-term numerical simulations of binary neutron star mergers have shown that the long-
lived remnants produced in such mergers might be affected by convective instabilities. Those would trigger
the excitation of inertial modes, providing a potential method to improve our understanding of the
rotational and thermal properties of neutron stars through the analysis of the modes’ imprint in the late
postmerger gravitational-wave signal. In this paper, we assess the detectability of those modes by injecting
numerically generated postmerger waveforms into colored Gaussian noise of second-generation and future
detectors. Signals are recovered using BayesWave, a Bayesian data-analysis algorithm that reconstructs
them through a morphology-independent approach using series of sine-Gaussian wavelets. Our study
reveals that current interferometers (i.e., the Hanford-Livingston-Virgo network) recover the peak
frequency of inertial modes only if the merger occurs at distances of up to 1 Mpc. For future detectors
such as the Einstein Telescope, the range of detection increases by about a factor 10.
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I. INTRODUCTION

Binary neutron star (BNS) mergers are among the most
important sources of gravitational waves (GWs). Their
detection offers the opportunity to improve our under-
standing of the physics of neutron stars (NSs) and, in
particular, constrain the equation of state (EOS) of such
compact objects at supranuclear densities. So far, the
LIGO-Virgo-KAGRA [1–3] Collaboration has reported
the observation of GWs from two such mergers,
GW170817 [4] and GW190425 [5]. The former event
also produced an electromagnetic (EM) counterpart,
GRB170817A/AT2017gfo [6,7], which initiated the long-
anticipated field of multimessenger astrophysics with GWs
[7,8]. The EM signature of GW170817 indicates the pres-
ence of an optical transient known as a kilonova [9–11],
providing convincing support to the theoretical claim that
identifiesBNSmergers as likely progenitors of short gamma-
ray bursts [12,13].
The investigation of the dynamics of BNS mergers, their

postmerger evolution, and their GW emission strongly
relies on numerical-relativity simulations. This field has

undergone major advances during the last few years (see
[14–20] and references therein). Depending on the initial
conditions of the binary system,mainly its totalmass and the
choice of EOS, a likely outcome of a BNS merger is a
spinning black hole (BH) surrounded by an accretion disk.
Momentarily, in a timescale of tens of milliseconds and
before the BH forms, the postmerger object can be a
hypermassive neutron star (HMNS) [21]. This is the
expected outcome when the total mass of the system is
larger than the maximummass of a cold, uniformly rotating
NS (see [22] where the maximummass for a large sample of
cold EOS determined by solving the Tolman-Oppenheimer-
Volkoff equation is shown to be in the range of 1.8–2.3M⊙).
A HMNS is supported against gravitational collapse by
both differential rotation and thermal pressure. This tran-
sient object will ultimately collapse to a BH once its support
against gravity lessens due to the loss of angular momentum
to GW emission and dissipative effects [17–20].
During the first few milliseconds after its formation, the

HMNS exhibits strong nonaxisymmetric deformations and
nonlinear oscillations, namely, combinations of oscillation
modes and spiral deformations [23–28]. This is accom-
panied by the emission of GWs in a range of frequencies
around a few kilohertz [23,29–36]. The GW spectrum of
the HMNS is characterized by the presence of many
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distinct peaks (see, e.g., [28] for a review). The detection
and interpretation of postmerger GW signals relies on a
proper understanding of the physical mechanisms generat-
ing those features in the spectrum. Through their analysis,
inference on NS properties might be possible. In particular,
information on the EOS of the remnant star can be obtained
through the study of the frequency of the m ¼ 2 f-mode
(quadrupolar mode) [37–46]. There exists a significant
amount of work to build empirical relations to infer the NS
radius from the frequency peak (fpeak) of this dominant
mode [28,47–49]. The frequency peaks of the postmerger
spectra can also be related to other NS properties, such as
the tidal coupling constant [50] or the average density [26].
The empirical relations that link the GW spectrum and
physical quantities of the HMNS can directly constrain the
EOS (see [26,28] and references therein).
On timescales longer than about 50 ms after merger,

the simulations of [51,52] (see also [53]) have shown the
appearance and growth of convective instabilities in the
remnant. The simulations, based on a piecewise polytropic
approximation for the EOS treatment supplemented by a
thermal component [54], showed that at 40–50 ms after
merger (depending on the EOS), the amplitude of them ¼ 2
f-mode, which is the dominant mode in the early and
intermediate postmerger phases, has noticeably decreased.
By that time, convective instabilities set in and trigger inertial
modes. The GW emission associated with those modes is
found to dominate over the initial m ¼ 2 f-mode at late
postmerger times, producing new distinctive peaks in the
HMNS GW spectrum. The postmerger timescales discussed
in [51,52] at which the HMNS is affected by convective
instabilities are compatible with those found by Camelio
et al. [55], who analyzed convectively unstable rotating NSs
with nonbarotropic thermal profiles (as in the case of BNS
remnants). Since inertialmodes dependon the rotation rate of
the star and they are triggered by convection, their detection
in GWs would provide a unique opportunity to probe the
rotational and thermal state of the merger remnant. As an
example, to conduct such inference, an empirical relation
between the frequency of the inertial modes and the angular
velocity and the rotation rate of the starwas proposed by [56].
The results of [51,52] indicate that the GW emission of

inertial modes in the late postmerger phase is potentially
detectable by the planned third-generation GW detectors.
In this paper, we further investigate this issue by recon-
structing the GW signals of [52] using BayesWave1

[57,58], a Bayesian data-analysis algorithm that recovers
the postmerger signal through a morphology-independent
approach using series of sine-Gaussian wavelets. To assess
the detectability of inertial modes, we perform injections
into the noise of different detectors from sources at
different distances: the current Hanford-Livingston-Virgo
(HLV) detector network [2,59,60] and the future Einstein

Telescope (ET) [61,62]. We also check the dependence of
our results on the NS EOS by using two different equations
of state, APR4 and SLy [54]. The reconstructed waveform
distributions that we obtain for each injection allows us to
infer posteriors of the peak inertial-mode frequency finertial.
Our analysis shows that inertial modes can be potentially
detected by third-generation GW detectors up to distances
of about 10 Mpc.
The paper is organized as follows: in Sec. II, we briefly

present the BayesWave algorithm and introduce the quan-
tities we use to assess the waveform reconstructions. Our
main results are presented in Sec. III where we briefly
describe the numerical-relativity simulations used to gen-
erate the waveforms employed for the injections and we
discuss the waveform reconstruction performance. Finally,
our conclusions are presented in Sec. IV.

II. WAVEFORM RECONSTRUCTION

A. The BayesWave algorithm

The goal of this work is to analyze the reconstruction of
the GW signal produced after the merger of two NSs,
particularly in the late postmerger phase. To do sowe employ
BayesWave, a Bayesian signal reconstruction algorithm that
uses Morlet-Gabor (or sine-Gaussian) wavelets [57,58] to
model morphologically unknown non-Gaussian features
with minimal assumptions [63]. In the time domain, the
two GW polarizations of the wavelets are given by

hþðtÞ ¼ Ae−ðt−t0Þ2=τ2 cos ½2πf0ðt − t0Þ þ ϕ0�; ð1Þ
h×ðtÞ ¼ ϵhþðtÞeiπ=2; ð2Þ

where A is the amplitude of the wavelet, f0 is the central
frequency, t0 is the central time,ϕ0 is the offset phase, ϵ is the
ellipticity, and τ ¼ Q=ð2πf0Þ, where Q is the quality factor
[57]. The factor eiπ=2 in Eq. (2) indicates there is a π=2
difference in the phase of both polarizations.
BayesWave employs a transdimensional reversible jump

Markov chain Monte Carlo (RJMCMC) algorithm to
sample the joint posterior of the parameters of the wavelets,
the number NW of wavelets, and ellipticity. These are used
to derive the posterior distribution of the reconstructed
waveform and, using the waveform samples, it is straight-
forward to obtain posteriors of quantities that can be
derived from the signal. This sampler ensures that the
algorithm does not overfit the data, since the addition of
wavelets to the reconstruction increases the dimensionality
of the model, which provokes a reduction of the posterior
probability. There has to be a balance between the improve-
ment of the fit and the addition of wavelets in order to
overcome the Occam penalty [64].

B. Overlap and peak frequency

A way to check how well a signal that is injected into
detector noise is recovered is the use of the overlap function1https://git.ligo.org/lscsoft/bayeswave.
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between the injected signal hi and the recovered model
from BayesWave hr,

O ¼ hhi; hri
ffiffiffiffiffiffiffiffiffiffiffiffiffiffihhi; hii

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhr; hri
p ; ð3Þ

where the inner product of two complex quantities a and b,
ha; bi, is defined as

ha; bi≡ 2

Z

∞

0

aðfÞb�ðfÞ þ a�ðfÞbðfÞ
ShðfÞ

df; ð4Þ

where ShðfÞ refers to the one-sided noise power spectral
density of the detector and the asterisk denotes complex
conjugation. The value of the overlap function ranges from
−1 to 1, being O ¼ 1 a perfect match between the injected
and the reconstructed signal, O ¼ −1 a perfect anticorre-
lation, and O ¼ 0 means no match between the signals.
One can also compute the weighted overlap from a network
of N detectors,

Onetwork ¼
P

N
k¼1hhðkÞi ; hðkÞr i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N
k¼1hhðkÞi ; hðkÞi i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N
k¼1hhðkÞr ; hðkÞr i

q ; ð5Þ

where the index k stands for the kth detector. With the
resulting overlap between the injected and reconstructed
signals from BayesWave, we assess the reconstructions for
different distances to the GW source [i.e., different signal-
to-noise ratios (SNRs)].
We also compute the peak frequency, defined as the one

corresponding to the maximum value of the fast Fourier
transform (FFT) [65] of the time-domain signal jh̃ðfÞj,
using a time window over the part of the signal we are
interested in. The segments of data have been previously
Hann windowed. We expect the peak frequencies, fpeak and
finertial, to be located in the range f ∈ ½1500; 4000� Hz
[48,52], and we will use this range to set the low- and high-
frequency cutoffs for the computation of the overlap and
the frequency peaks.

III. RESULTS

A. Summary of the numerical-relativity simulations

The waveforms we employ for our study were obtained
in the numerical-relativity simulations of BNS mergers
performed by De Pietri et al. [52]. The initial data are
generated using the LORENE code [66,67] and the initial
separation of the two stars is ≈44.3 km, which corresponds
to about four full orbits before merger. The main properties
of the initial simulation setup are reported in Table I. The
evolution of the initial data is performed using the EINSTEIN

TOOLKIT [68], an open source code based on the CACTUS

framework [69]. The simulation setup employed in the
study of [52] is the same as in [35,70,71], to which the

reader is addressed for further details, except for the
fact that π symmetry was used to reduce the computa-
tional cost by a factor 2. The EINSTEIN TOOLKIT solves
Einstein’s field equations in the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formalism [72,73] and the
general relativistic hydrodynamics equations in the
Valencia formulation [74,75]. The latter are integrated
numerically with a finite-volume algorithm based on the
Harten-Lax-Leer-Einfeldt (HLLE) Riemann solver [76,77],
the weighted essentially nonoscillatory (WENO)
reconstruction method [78,79], and the method of lines
with a fourth-order, conservative Runge-Kutta scheme [80].
The inertial modes identified in the simulations of

[51,52] are triggered by a convective instability appearing
in the nonisentropic HMNS, which was identified by
monitoring the value of the Schwarzschild discriminant.
The modes have frequencies slightly smaller than twice the
maximum angular frequency of the differentially rotating
remnant star Ωmax.

B. Waveform reconstruction performance

In order to obtain a distribution of frequency peaks,
we perform injections in BayesWave of the waveforms
computed by [52]. We use several sensitivity curves [for
Advanced LIGO, we use the power spectral density (PSD)
model aLIGOZeroDetHighPower for the two detectors
from [60], for Advanced Virgowe use the design sensitivity
from [2], and we take the ET-D configuration from [62] ] to
see the differences between current and future GW detec-
tors. The reconstructions are compared using the sensitiv-
ities of the HLV detector network and of the ET, formed by
a three-detector network on the same site. No sources of
noise and/or glitches are added; we only consider Gaussian
noise [81–83] colored by the PSD of the detector. We set
the source of the injected signals at different distances
(giving different SNRs) and assume that the source is also
optimally oriented with respect to one of the detectors
(Hanford, H1, for HLVand E3 for ET2). We set a maximum
number of wavelets of Nmax

W ¼ 100 for HLV and Nmax
W ¼

200 for ET, a maximum quality factor of Qmax ¼ 200,

TABLE I. Main properties of our two BNS simulations. The
columns report the EOS, the baryonic mass M0, the gravitational
mass (at infinite distance) M, and the compactness C ≔ M=R of
the individual stars, the total angular momentum JADM, and the
total angular velocity Ω0 of the binary system. Geometrized units
are used (c ¼ G ¼ M⊙ ¼ 1).

EOS M0 M C JADM Ω0 (krad=s)

APR4 1.4 1.2755 0.166 6.577 1.767
SLy 1.4 1.2810 0.161 6.623 1.770

2The design of the Einstein Telescope consists of three arms
forming an equilateral triangle, with three pairs of interferometers
acting as a three-detector network, E1, E2, and E3.
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n ¼ 2 × 106 iterations, and a sampling rate of 8192 Hz.
The maximum number of wavelets is different for HLVand
ET because selecting Nmax

W ¼ 100 for ET is not large
enough for the algorithm to reconstruct the signal accu-
rately, due to the high sensitivity of third-generation
detectors.
The complete GW strains and the corresponding ampli-

tude spectral density (ASD) of both injected (red) and
recovered (blue) colored time-domain signals for the APR4
EOS model of Table I are depicted in Figs. 1 and 2, using
the PSD of ET and H1, respectively, and for a source at a
distance of 3 Mpc. The blue-shaded regions show the 50%
and 90% credible intervals (CIs) of the posterior distribu-
tion of the reconstructed signal. The limits of these intervals

correspond to the values of the 25th/75th and 5th/95th
percentiles, respectively. Time windows with different
widths located at different stages of the postmerger phase
are applied to the time series. Those are indicated by the
areas depicted in yellow in the top rows of both figures. By
moving those windows over time we can follow potential
changes in the ASD during the evolution of the GW signal
and observe the emergence of different modes in the
HMNS. The black dashed line in the bottom row of the
two figures corresponds to the ASD of the injected entire
signal, from ti ¼ −20 ms (where t ¼ 0 ms corresponds to
the time of merger) to tf ¼ 140 ms. Correspondingly, the
red lines in the ASD plots show the corresponding
spectrum for the selected time-window intervals. One

FIG. 1. Injected (red) and recovered (blue) time-domain waveforms (top rows) and ASD (bottom rows) for BNS merger simulations
with the APR4 EOS. Each ASD is computed using the corresponding time window depicted in yellow in the top rows. The source is
assumed to be located at d ¼ 3 Mpc. The signals are injected into the E3 configuration of the third-generation ET observatory, whose
sensitivity curve is shown by the dashed green curve. The width of the time windows is chosen to show how the frequency peak is
displaced to lower frequencies depending on the different evolutionary stage of the postmerger remnant.

FIG. 2. Same as Fig. 1, but for the H1 detector.
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can clearly see that the peak frequency changes depending
on the time window applied to obtain the ASD, shifting to
lower frequencies for increasingly later times. We do not
include the corresponding plots for the SLy EOS model
because a similar behavior is observed in this case.
By comparing the two figures, the differences between

the reconstructions of the injections into H1 and E3 are
evident. The early postmerger signal corresponding to
the f-mode is well recovered for both types of detec-
tors. We note that this is in agreement with the previous
findings of [48], where BNS merger waveforms from the
numerical-relativity simulations of [27,84] (extending only
up to ∼15 ms after merger) were used to recover with
BayesWave the peak frequency of the f-mode. However,
when it comes to the late postmerger signal during which
the inertial modes are excited, only a third-generation
detector such as ET is able to reasonably reconstruct the
waveform. We also performed a similar study with Cosmic
Explorer [85] finding comparable results.
The waveform posterior distribution can be used to derive

some physical parameters of the HMNS. In this case, the
reconstructed signals can be used to obtain the posterior for
the dominant postmerger frequency fpeak [47–49]. For both
the overlap and the reconstructed peak frequency, we study
both the entire postmerger signal, which is dominated by the
f-mode excited at early times, and the late signal, during
which the inertial modes are excited. For completeness, the
Appendix discusses a test case using injections that only
contain the late postmerger phase.

1. Study of the full GW signal

We compute the overlap between the injected and
the recovered waveforms to test the performance of
BayesWave. In Fig. 3 we show the overlap as a function
of distance for both APR4 and SLy EOS, computed for the
HLV detector network (left panel) and for ET (right panel).

The overlap clearly decreases with the distance to the
source, as the GW signal becomes more difficult to
reconstruct. The behavior is the same for both EOS, but
the reconstruction is slightly better for the APR4 EOS at
larger distances. Note also the difference between the
detector networks: the HLV network has Onetwork ∼ 0.7
at 15 Mpc and the ET gives a similar overlap at roughly
150 Mpc. For the sake of comparison, in [48] an overlap of
∼0.9 is reported for a postmerger SNR of 5. In our case,
Onetwork ¼ 0.9 is achieved for a distance of ∼12 Mpc,
which translates to a postmerger SNR of ∼5 for both EOS.
We show the dependence of the recovered value of fpeak

with the distance to the source in Fig. 4, again considering
the full waveform, t ∈ ½−20; 140� ms, injected in a window
of 1 s of detector data, which corresponds to colored
Gaussian noise. This value, plotted with solid curves, is the
mean value obtained from the posterior distributions of the
recovered signals. We also depict the standard deviations
for both equations of state, which become larger as the
distance to the source increases. These results are consistent
with the overlap values shown in Fig. 3, since a low overlap
value gives a poorly recovered fpeak. In the case of H1 (left
panel), the dispersion starts increasing at d ∼ 13 Mpc for
APR4 and at d ∼ 17 Mpc for SLy, right where Onetwork
drops below 0.6. Concerning ET (right panel), the uncer-
tainty becomes larger at d ∼ 125 Mpc, also when
Onetwork ∼ 0.6. Notice that for high SNR the distance to
the source and the SNR are inversely proportional, and a
less accurate value of fpeak would be obtained by decreas-
ing the SNR.
In [48] an almost flat posterior distribution for a

postmerger SNR of 3 was obtained. In our case, at
25 Mpc the recovery of the frequency peak already has
a large uncertainty and corresponds to a postmerger SNR of
∼3 for both equations of state, which is consistent with the
results of [48].

FIG. 3. Detector network overlap between the full injected and recovered signals as a function of the distance to the GW source. Left:
results for the HLV network. Right: results for the ET detector. The lines indicate the mean value over the waveform posterior
distribution and the shaded areas are the standard deviations.
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In Fig. 5 we depict histograms of the numbers of
wavelets used for the reconstructions at different distances,
d ¼ f10; 50; 100g Mpc. The closer the source the larger
the number of wavelets employed, resulting in more
accurate reconstructions.

2. Study of the late postmerger phase

We turn next to analyze the reconstruction of the late
postmerger signal (t ≥ 40 ms for SLy EOS and t ≥ 80 ms
for APR4 EOS [52]). Once the maximum amplitude of
the fundamental quadrupolar f-mode has significantly
decreased, a signal with lower frequency and amplitude
appears, associated with the manifestation of inertial modes
in the remnant. The two rightmost panels of Fig. 1 clearly
show the appearance of this new peak for a source observed
at a distance of 3 Mpc. This peak is just above the
sensitivity curve of ET at a frequency of ∼2500 Hz (see
rightmost panel of Fig. 2). However, it is out of reach for
current detectors, at least for d ¼ 3 Mpc (cf. Fig. 2).
To illustrate how the BayesWave reconstruction

changes with distance, we show in Fig. 6 the injected

and reconstructed time-domain waveforms and the respec-
tive ASD reconstructions for three representative distances,
namely 5, 7, and 12 Mpc, and for BNS merger simulations
with the APR4 EOS. As before, the regions in yellow in the
top rows show the time window we use to compute
the ASD displayed in the bottom rows. The median
of the reconstructed ASD is shown with a blue solid line
and the 50% and 90% credible intervals are indicated by the
dark and light blue-shaded areas, respectively. The Hann
function (as other window functions) cuts the tails of the
time-domain signal, and thus might affect the resulting
frequency spectra. However, the inertial modes with largest
amplitude are located in the middle of the time window and
are not affected by the cut. We find that the region around
the frequency peak at f ≈ 2.5 kHz is well recovered when
the source is at 5 Mpc. On the other hand, as the distance
increases, the reconstruction worsens, as expected, and
for a source at 12 Mpc there is no frequency peak in
the reconstructed signal. The corresponding result for
current detectors is shown in Fig. 7, which depicts the
dependence of the peak-frequency recovery with distance

FIG. 5. Histograms of the number of wavelets used by BayesWave for the reconstructions of signals injected in ET coming from
sources at d ¼ f10; 50; 100g Mpc. The y axis indicates the number of iterations of the RJMCMC algorithm that use a certain number of
wavelets. At each iteration, the algorithm might add wavelets to the series, but only when the fit is improved considerably so as to
overcome the Occam penalty.

FIG. 4. Dependence of the recovered f-mode frequency peak with distance for the H1 detector (left) and for the E3 detector (right).
The solid curves are the mean values and the shaded areas represent the standard deviations of the distributions. The mean of the
recovered peak is close to the injected signal (dashed lines) for distances up to 10 Mpc for H1 and 100 Mpc for E3.
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(for d ¼ f0.5; 1; 3g Mpc) with the design sensitivity of H1.
In this case, BayesWave is not able to recover the peak
frequency of inertial modes even when the GW source is
at 3 Mpc.
In Fig. 8 we show the network overlap function of the

late postmerger signal, for both HLV and ET. The same
initial time windows as in Figs. 6 and 7 are used to compute
these overlaps. We note, however, that the final time of the
window is different for both equations of state, namely,

140 ms for the APR4 EOS and 123 ms for the SLy EOS,
respectively. For the latter, the final time is shorter since a
black hole forms at t ≈ 123.6 ms [52]. Moreover, the initial
time of the window is also different, as pointed out before,
since the emergence of the inertial modes occurs at different
times (t ∼ 40 ms for SLy and t ∼ 80 ms for APR4). For the
case of ET (right panel), at d ≈ 8 Mpc the overlap is around
0.7 for both equations of state, but it rapidly decreases to
about 0.5 at ≈12.5 Mpc. The SLy EOS gives a higher

FIG. 6. Injected (red) and recovered (blue) time-domain waveforms (top rows) and ASD (bottom rows) for sources located at
d ¼ f5; 7; 12g Mpc. Signals are injected in ET (E3). The time window used to compute the ASD only considers the last part of the
signal (yellow region). The recovery of the frequency peak degrades with the distance to the source.

FIG. 7. As in Fig. 6, but for H1 and closer source distances, d ¼ f0.5; 1; 3g Mpc.
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overlap and a more accurate finertial, but both equations of
state yield Onetwork ¼ 0 at 15 Mpc. On the other hand, for
the HLV detector network, the network overlap for both
equations of state falls rapidly to practically zero from a
distance of 1.75 Mpc.
We now focus on the recovery of the frequency peak of

these lower-frequency inertial modes finertial. Figure 9
depicts the dependence of the recovered finertial with
distance for H1 and ET. The maximum distance shown
in the plots for each detector is selected by the value at
which the reconstructions start to significantly fail. These
results are in good agreement with the overlap shown in
Fig. 8. We note that there is a slight dependence on the
EOS, as we obtain a peak frequency that is about 75 Hz
higher in the APR4 case. For the specific case of ET, at
d ¼ 12 Mpc the recovery of the peak frequency fails for
both equations of state. Up to 8 Mpc, the recovered finertial

is close to the injected one with an uncertainty of
Δfinertial ≲ 25 Hz. For the case of H1, this value of the
uncertainty of the method is obtained for much shorter
distances (d ≈ 1.0 Mpc).

IV. CONCLUSIONS

The existence of convectively unstable regions in long-
lived remnants of BNS mergers [51,52] triggers the
excitation of inertial modes, which depend on the rotational
and thermal properties of the remnant. Their presence in the
late postmerger GW signal might thus provide further
insight in our understanding of neutron star properties. In
this paper, we have studied the possibility of reconstructing
the late BNS postmerger GW signal with current and
future interferometers. To this aim, we have employed the
waveforms produced in numerical-relativity simulations of

FIG. 8. Detector overlap of the late postmerger GW signals for the HLV network (left) and ET (right). Solid lines represent the mean
values from the posterior distributions and shaded regions are the standard deviations. For both equations of state, the overlaps drop
below ≈0.75 for a source distance of about 1 Mpc for HLV and 10 Mpc for ET.

FIG. 9. Dependence with distance of the peak frequency during the late postmerger phase, for signals injected in H1 (left) and ET
(right). Solid lines and shaded areas are the mean values and the standard deviations of the distributions, respectively. For ET, the peak
frequency is well identified up to 10 Mpc for both APR4 and SLy EOS, while for H1 a satisfactory recovery is only possible for sources
up to 1 Mpc for both equations of state.
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equal-mass BNS mergers that last up to t ≈ 140 ms after
merger, performed by [51,52]. These long-lasting simula-
tions showed the excitation of oscillation modes in the
postmerger remnant with a smaller frequency and amplitude
than those of the quadrupolar f-mode which dominates the
GW spectra of the early postmerger phase. These so-called
inertial modes are triggered by a convective instability
developing in the HMNS, for which the Coriolis force acts
as the dominant restoring force [23,56,86]. The late-time
appearance of these modes has also been observed in the
BNS simulations of [53], accounting for the effects of
magnetic fields in the dynamics.
Because of their small amplitude, with a strain hðfÞ

more than 1 order of magnitude smaller than that of the
f-mode, the detectability of such inertial modes can be
challenging. In order to assess their possible detection, we
have employed the BayesWave algorithm [57,58] to
reconstruct our time-domain waveforms injected into
Gaussian noise. The signals were injected at different
distances from the source to check the range of detection
of those modes. In all cases, the source was assumed to be
optimally oriented with respect to (one of) the detectors.
Our study reveals that current GW interferometers (i.e.,

the HLV network) are able to recover the peak frequency
of inertial modes only if the BNS merger occurs at
distances of about 1 Mpc or less. However, for future
detectors such as ET, the range of detection increases by a
factor of 10, consistent with their increased sensitivity
compared to current detectors. An important point to
stress is that the difference between the frequency peaks of
the inertial modes for different EOS (APR4 and SLy) is
bigger than the difference between the peaks of the
fundamental mode in the early part of the signal. This
means that a future detection of those late postmerger
modes could give us more insight into the internal matter
and structure of a neutron star, as a result of the broken
EOS degeneracy and the relationship of those modes with
the rotational properties of differentially rotating stars. In
general, the frequency finertial changes with the EOS and
the total binary mass and it also correlates with the tidal
deformability. For the simulations discussed in this work,
finertial appears to be very close for all models because of
the properties of the initial systems, in particular, the total
mass. Employing different initial data with a wider spread
in the total mass might be something worth trying in a
future investigation. Furthermore, the value of the peak
frequency can be used to infer different physical param-
eters of the star [56], extending what has already been
done for the f-mode to infer the radius, the tidal coupling
constant, or the average density of the neutron star
[26,32,48,50]. However, as mentioned in [51], one would
need to employ perturbative studies to identify the
particular inertial modes that are excited. Such a chal-
lenging project is outside of the scope of this work, which
has purely focused on the prospects of detectability of
inertial modes.
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APPENDIX: RECONSTRUCTION OF
LATE POSTMERGER INJECTIONS

In this appendix, we consider injections that only contain
the late postmerger phase when inertial modes are active.
This test case allows us to assess the capability of
BayesWave of recovering only the part of the GW signal
containing the inertial-mode emission and to find out
whether there is an improvement with respect to the case
of full-signal injections discussed in the main text. For
APR4 we inject the signal from 80 to 140 ms after merger,
while for SLy the respective range goes from 45 to 140 ms
after merger. For this test, we only consider the ET detector.
In Figs. 10 and 11, we depict the time-domain recon-

structions and their ASD for APR4 and SLy, respectively.
The ASD of the signal of the APR4 EOS shows also a
noticeable secondary peak at a lower frequency (≈2250 Hz).
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This peak, while being present, is not so clearly prominent in
the injections and reconstructions of the full merger and
postmerger signal (see fourth column in Fig. 1). Both peaks
are properly captured by BayesWave up to a distance similar
to the one obtained when injecting the full signal. The
variability of the highlighted peaks is a sign that different
frequencies are present, at different times, on the postmerger
signal. The number of wavelets used for the reconstructions
are displayed in Fig. 12, in which the histograms show, as in
Fig. 5, the number of iterations that use a certain number of
wavelets. Since in this case BayesWave only reconstructs the

part of the signal corresponding to the inertial-mode emis-
sion, the number of wavelets employed for a distance of
10 Mpc is low.
Figure 13 shows the frequency peaks from the ASD of

the recovered signals. The larger uncertainty in the case of
the APR4 EOS is due to the secondary peak that arises in
those injections. The peak from the SLy EOS signal is
very well recovered with small uncertainty up to some
distance. Even in the case of injecting the part of the signal
corresponding to the inertial-mode emission, we obtain
similar results to the case in which we injected the full

FIG. 10. Injected (red) and recovered (blue) time-domain waveforms (top rows) and ASD (bottom rows) for sources located at
d ¼ f5; 7; 12g Mpc and for APR4 EOS. In this case the injected signal only contains the intertial-mode emission.

FIG. 11. As Fig. 10 but for the SLy EOS.
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postmerger signal. No improvements are obtained and the
peak frequency is well recovered up to a distance of
≈12 Mpc. The overlap between the injected and recon-
structed waveforms is depicted in Fig. 14. As expected,
there is a good agreement with the recovery of the
frequency peaks. The overlap drops below 0.5 at

d ≈ 12 Mpc, the largest distance at which the peak is
recovered with ET.
From these results, we conclude that BayesWave yields

no difference between reconstructing the full waveform
with an early stage in which the signal is much larger or
reconstructing only the fraction of the postmerger signal
associated with the emission of the inertial modes.
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