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Neutron stars can accumulate asymmetric dark matter (ADM) in their interiors, which affects the neutron
star’s measurable properties and makes compact objects prime targets to search for ADM. In this work, we
use Bayesian inference to explore potential neutron star mass-radius measurements, from current and future
x-ray telescopes, to constrain the bosonic ADM parameters for the case where bosonic ADM has
accumulated in the neutron star interior. We find that the current uncertainties in the baryonic equation of
state do not allow for constraints on the ADM parameter space to be made. However, we also find that
ADM cannot be excluded and the inclusion of bosonic ADM in neutron star cores relaxes the constraints on
the baryonic equation of state space. If the baryonic equation of state were more tightly constrained
independent of ADM, we find that statements about the ADM parameter space could be made. In
particular, we find that the high bosonic ADM particle mass (mχ) and low effective self-interaction strength
ðgχ=mϕÞ regime is disfavored due to the observationally and theoretically motivated constraint that neutron
stars must have at least a mass of 1M⊙. However, within the remaining parameter space, mχ and gχ=mϕ are
individually unconstrained. On the other hand, the ADM mass-fraction, i.e., the fraction of ADM mass
inside the neutron star, can be constrained by such neutron star measurements.
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I. INTRODUCTION

Neutron stars have been of great interest to astronomers
because of the rich phenomena they produce, allowing us to
probe, for example, strong gravity, cosmology, and heavy
element enrichment. For instance, neutron stars can be a
source of continuous gravitational waves, which can
provide insight into their interiors. Signals from their
mergers can also be used in determining the Hubble
constant [1,2]. Neutron stars have additionally been of
great interest to nuclear physicists because the micro-
physical behavior of ultradense neutron-rich matter is
poorly understood. Neutron stars may contain exotic states
of matter, such as hyperons or deconfined quarks [3–5].
The effects of the hypothetical components that comprise
neutron star interiors are parametrized by the equation of

state (EoS), which has traditionally been understood to only
reflect baryonic components. The EoS both theoretically
captures information about neutron star interiors and can be
deduced from measurable properties of neutron stars. Thus,
understanding the potential impact of any given component
is both theoretically and observationally important.
Recent work has shown dark matter, too, can have a

significant impact on currently measurable properties of
neutron stars, namely the masses, radii, and tidal deform-
abilities, with implications for the EoS. Dark matter cores in
neutron stars have been shown to reduce the radii, masses,
and tidal deformabilities of the stars [6–10]. If dark matter
forms a halo around neutron stars, the tidal deformabilities
and the total masses of the stars have been shown to
increase [7–11]. Thus, if dark matter is present in neutron
stars, it must be accounted for in estimates of the measurable
properties of neutron stars [6–23]. Dark matter can also
accumulate enough mass inside a neutron star to form a
black hole, which can tightly constrain dark matter
models through observations of old neutron stars [24–28].
When specific assumptions are made about the EOS, the
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dark matter particle mass, self-interaction strength, and
mass-fraction can also potentially be constrained using
neutron star and gravitational wave (GW) measurements
[9,13,14,16,18,21,29]. Specific calculations include placing
mass-fraction constraints on sub-GeV bosonic dark matter
particles [9], demonstrating that a stiffer baryonic matter
EoSwith darkmatter can evade constraints that the baryonic
matter EoS alone cannot achieve [13,14,18,21], and
calculating Bayesian parameter estimations of the dark
matter parameter space [16,29].
To quantify the effects of dark matter on neutron stars,

we calculate the percent change in mass and radius between
a baryonic neutron star with and without a dark matter core
using our algorithm described in Sec. IV. For example, if a
2.3M⊙ purely baryonic neutron star with radius of 10.7 km
is compared to a baryonic neutron star with an identical
central baryonic energy density and a dark matter core of
7% mass-fraction, the radius of the dark matter admixed
neutron star is reduced at the 6% level while the gravita-
tional mass is decreased at the 9% level. The dark matter
core increases the compactness of the neutron star within
the dark matter core radius, which reduces the neutron
star’s gravitational mass [6,8–10,21]. This demonstrates
that the presence of dark matter can have an observable
impact on neutron stars, suggesting a need to account for
this possibility in data analyses.
Searching for observable effects of the impact of dark

matter on the neutron star interior requires measurements of
the mass and radius of the neutron star. These measure-
ments can be used to characterize the mass-radius relation,
which is the relation of all possible, stable neutron star
masses and radii that can correspond to a specific EoS.
Calculating the mass-radius relation makes it possible to
obtain hypothetical EoSs of the neutron star [30]. Mass and
radius measurement techniques have been advanced by
NICER (the Neutron Star Interior Composition Explorer),
an x-ray telescope on the International Space Station [31].
NICER uses Pulse Profile Modeling [PPM, see Ref. [32],
and references therein], a technique that exploits relativistic
effects on x-rays emitted from the hot magnetic polar caps
of millisecond pulsars, i.e., neutron stars that emit beams of
radiation from their magnetic poles and have a rotational
period less than ten milliseconds. A pulse profile is a
rotationally phase-resolved x-ray count spectrum. PPM
involves a Bayesian inference of this data for a generative
relativistic ray-tracing model of the thermal emission from
hotspots on a neutron star’s surface. This analysis delivers
the posterior probability distributions of the various model
parameters, such as a neutron star’s mass and radius and a
map of the hot emitting regions, which form as magneto-
spheric particles slam into the stellar surface [32]. To date,
NICER has delivered PPM mass and radius inferences for
two neutron stars: PSR J0030þ 0451 [33,34] and PSR
J0740þ 6620 [35–37]. These mass-radius measurements
have been incorporated into numerous EoS studies, both

from the NICER team [34,36,38–40] and other groups [see
for example [41–46]].
NICER anticipates delivering improvedmass-radius con-

straints for the sources already analyzed, in addition to
results for at least threemore neutron stars, in the near future.
In the longer term, plans are being developed for large area
x-ray spectral-timing missions that will be able to carry out
PPM for a larger population of neutron stars. These include
the NASA probe-class mission concept STROBE-X (the
Spectroscopic Time-Resolving Observatory for Broadband
Energy X-rays, [47]) and the Chinese-European mission
concept eXTP (the enhanced X-ray Timing and Polarimetry
mission, [48]).
Although NICER, STROBE-X, and eXTP will perform

PPM on compact objects, current PPM techniques do not
account for a possible dark matter component in neutron
stars. Darkmatter admixed neutron stars exhibit two possible
spatial regimes: a dark matter core inside the neutron star,
and a dark matter halo extending through and beyond the
baryonic surface of the neutron star. A dark matter core is
defined when the dark matter radius, Rχ , is less than the
baryonic radius, RB. Dark matter halos are defined when the
dark matter radius is greater than the baryonic radius, i.e,
Rχ > RB. Capturing the impact of dark matter on neutron
star structure alters how PPM is executed, and will certainly
necessitate modification of the ray-tracing models currently
being used by the NICER collaboration. For example, the
existence of any halo will modify the exterior space-time. In
addition, dark matter could modify the universal relations
that are relied on to model the oblateness of the star (another
factor affecting the space-time) [16,49–51].
Two studies, [16,29], have used PPM measurements

from NICER, or GW measurements from LIGO/VIRGO,
in the context of dark matter admixed neutron stars. In [29],
the authors performed a Bayesian analysis on a fermionic
dark matter model using a fixed baryonic matter EoS. Their
inference is based on the posterior mass measurement of
PSR J0348þ 0432 from [52] and the tidal deformability
constraints from GW170817 in [53]. The Bayesian analysis
of [29] showed the fermionic dark matter EoS parameters
are independent of each other and well constrained. In [16],
the Bayesian analysis takes into account the fermionic
model described in [11] with a fixed baryonic matter EoS
and is restricted to dark matter cores and diffuse dark matter
halos. The data points used for the analysis were the mass
and radius measurements of two NICER pulsars PSR
J0740þ 6620, and PSR J0030þ 0451. For the halos,
[16] found that the fermionic particle mass is constrained
to be less than 1.5 GeV. For cores, they found that the
observational data favors a particle mass around 0.6 GeV.
However, [16] did not determine constraints on the ADM
self-interaction strength and mass-fraction. To constrain
dark matter in and around neutron stars, both studies used
Bayesian parameter estimation with PPM or GW measure-
ments and a fixed baryonic EoS.
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Here we take a different approach since the interior of
neutron stars is not well understood. The most conservative
approach to a Bayesian analysis of neutron stars is by
allowing all parameters in the EoS model to vary. In this
work, we use the mass-radius measurements of simulated
neutron stars to infer the optimal combination of baryonic
matter EoS and admixed dark matter in neutron star cores.
We assume the bosonic asymmetric dark matter (ADM)
model described in [11]. One major objective is to demon-
strate the possibility of constraining the properties of bosonic
ADM, e.g., the possible particle mass, mass-fraction of the
total accumulated ADM mass inside the neutron stars, and
the effective interaction strength of ADM. Knowing the
possible constraints on bosonic ADM will allow us to better
understand the composition of neutron stars. The other
objective is to characterize the effects on the derived
uncertainties of the baryonic matter EoS when including
ADM inside neutron stars. We study two possible scenarios
of future mass-radius measurements, the first being the
Future scenario and the other the Future-X scenario. The
Future case is modeled after a potential end of mission
scenario for NICER and takes into account six simulated
mass-radius measurements. The Future-X scenario is mod-
eled using six possible STROBE-X sources. These are
modeled at lower uncertainties than the Future case since
the STROBE-X mission is expected to provide tighter
measurements than NICER [47,54]. This work shows that
the baryonic EoS uncertainties are relaxed if the possibility
of ADM cores in neutron stars is accounted for. Additionally,
this work finds that, if the baryonic EoS is more tightly
constrained than it presently is, the possible future NICER
and STROBE-X mass-radius measurements can constrain
the ADM mass-fraction and the ratio of the bosonic ADM
particle mass and effective self-repulsion strength. We do not
find that NICER or STROBE-X can constrain the bosonic
ADM particle mass or effective self-repulsion strength using
mass-radius measurements.
This paper is organized as follows. In Sec. II, we discuss

the background on ADM. In Sec. III, we motivate the two-
fluid TOV equations and define the baryonic matter and
ADM EoSs. In Sec. IV, we introduce the baryonic matter
and ADM equation of states and their numerical imple-
mentation in the two-fluid TOV equations. In Sec. V, we
describe our inference methods, the constraints on the
ADM EoS parameter space, selection of simulated sources,
and how we conducted the Bayesian parameter estimation
for both the Future and Future-X scenarios. Lastly, in
Sec. VI, we discuss our results. Throughout this work, we
use the metric signature diagð−;þ;þ;þÞ.

II. BACKGROUND: ASYMMETRIC
DARK MATTER

Broadly, the ADM model is motivated by the observa-
tion that the mass density of dark matter in the Universe is
only approximately five times greater than that of baryonic

matter [55]. The similarity in the observed density of dark
matter to that of baryonic matter suggests a strong con-
nection in the cosmic history between them. This con-
nection suggests that, like the baryon asymmetry, at some
time in the early universe there was a tiny excess of dark
matter particles over antidark matter particles and the dark
matter particles today constitute the excess after all of the
antidark matter particles were annihilated [55,56]. This
“dark asymmetry” would allow for both significant repul-
sive self-interactions and small attractive interactions with
baryonic matter.
The [11] ADMmodel is a MeV-GeV mass-scale bosonic

dark matter particle with a repulsive self-interaction. Two
identical particles self-interact when they scatter off one
another through the exchange of a gauge boson, i.e., a force
carrier. This exchange causes the particles to attract or repel
each other. In the [11] ADM model, the repulsive self-
interaction arises from the exchange of an eV-MeV mass-
scale vector gauge boson which also carries the Standard
Model baryon number. The vector gauge boson carries the
Standard Model baryon number to create the “dark asym-
metry” mentioned previously.
The action of [11], in units of ℏ ¼ c ¼ 1, is expressed as

S ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
D�

μχ
�Dμχ þm2

χχ
�χ þ 1

2
m2

ϕϕμϕ
μ

þ 1

4
ZμνZμν − gBϕμJ

μ
B

�
; ð1Þ

where g is the determinant of the metric, χ is the charged
bosonic ADM field, χ� is the anti-ADM field, mχ is the
mass of the bosonic ADM field, ϕμ is the vector boson field
of the ADM mediator, mϕ is the mass of the vector boson
field, Zμν ¼ ∇½μϕν� ¼ ∇μϕν −∇νϕμ is the field strength
tensor of ϕμ, ∇μ is the covariant derivative, gB is the
interaction strength of ϕμ with the Standard Model baryon
number current1 JμB, Dμ ¼ ∇μ þ igχϕμ, and gχ is the
interaction strength of χ with the ϕμ vector field. This
model considers only the necessary interactions of the
bosonic ADM model: the repulsive self-interactions of
ADM, the minimal interaction of ADM to gravity, and the
interaction of ADM with baryons.
We make a few approximations that simplify deriving the

equations of motion. [58] shows that gB is constrained from
measurements of supernova SN1987A to be

gB ≤ 10−10: ð2Þ

This constraint was determined by requiring the energy
radiated due to the possible production of ϕμ, from
nucleon-nucleon Bremsstrahlung reactions in protoneutron

1See Ref. [57] for a detailed discussion of the Standard Model
baryon number current.
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stars, be consistent with the neutrino data of SN1987A.
Although robust calculations of this inequality have yet to
be done, we follow [11] in assuming gB ≪ gχ . Making this
assumption allows us to ignore the interactions between
ADM and baryonic matter, and we can neglect the gBϕμJ

μ
B

term in the action [11]. We also assume the spacetime is flat
because the effects of gravity are negligible relative to the
inverse length scales of neutron stars [8]. Assuming the
spacetime to be flat implies that in our chosen coordinate
system the determinant of the metric, g, is −r4 sin2ðθÞ.
With these approximations, the equations of motion are

½DμDμ −m2
χ �χ ¼ 0 ð3Þ

½D�
μD�μ −m2

χ �χ� ¼ 0 ð4Þ

∇μZμν þ igχ ½χ�Dνχ − ðD�νχ�Þχ� −m2
ϕϕ

ν ¼ 0: ð5Þ

From the equations of motion one can employ the mean-
field approximation to arrive at the ADM EoS which will
be described in more detail in Sec. IV.
The energy of χ and χ� in a hot dense background, such

as the background from protoneutron stars, can also be
obtained using the equations of motion. The conditions of
the background from a protoneutron star can produce
neutron Bremsstrahlung reactions of ADM [6,11].
The neutron Bremsstrahlung converts the kinetic energy
of two neutrons scattering to the gauge boson ϕμ, i.e.,
NN → NNϕμ, where NN is the pair scattering neutrons.
Since ϕμ interacts strongly with ADM and weakly
with the Standard Model baryon number current, the
Bremsstrahlung process causes the rate of the reaction
NN → NNχχ� to proceed at a comparable pace. In order to
expel the anti-ADM, one must assume that ADM is
attracted to baryons and anti-ADM is repulsed. It is due
to the asymmetry in the energies of ADM and anti-ADM,
i.e., ΔE ¼ Eχ̄ − Eχ , that expels the anti-ADM and
leaves the ADM inside the protoneutron star. Neutron
Bremsstrahlung is enhanced for young neutron stars
because they provide a sufficiently hot and dense back-
ground. Newly born neutron stars have a temperature of
approximately 5.8 × 1011K which can lead to ≈0.02MNS
ADM accumulation in the interior, where MNS is the mass
of the neutron star [6]. This mechanism would give all
neutron stars comparable ADM mass-fractions with small
differences related to the neutron star mass because this
reaction is dependent upon the constant microphysical
properties of neutron matter and ADM [11].
Another mechanism whereby ADM can accumulate in

neutron stars is the conversion of the neutron to scalar
ADM. The conversion of neutrons to scalar ADM, N → χ,
can occur because neutrons in compact objects can reach
Fermi momenta large enough to allow for the conversion
reaction [6]. For neutron stars with an age ∼10 Gyr, this
process allows for ADM to reach masses of ≈0.05MNS [6].

Similar to the neutron Bremsstrahlung of ADM mecha-
nism, neutron conversion to scalar ADM would also give
all neutron stars with equivalent mass-fractions [6,11].
Other possible scenarios, such as the collapse of a star
to a neutron star from an ADM minihalo that has been
accumulated from the local dark matter density and super-
novae of supermassive stars which can form an ADM core
inside neutron stars, have been explored in [59,60],
respectively. The previous two accumulation methods
of [59,60] would result in a variability in the ADM
mass-fraction due to their dependence on the local dark
matter density. However, if ADM is accreted, it has been
shown that the upper bound on the accreted dark matter
mass is between 10−5 − 10−8M⊙ [see Ref. [9], and refer-
ences therein]. To achieve higher mass-fractions of dark
matter than what is possible with neutron Bremmstrahlung
of ADM and the conversion of neutrons to scalar ADM,
accumulation methods, such as the absorption of dark
matter stars by baryonic matter or the accretion of baryonic
matter on to a dark matter core, have been explored in [6,9].

III. TWO-FLUID TOV EQUATIONS

Typically, neutron star interiors are modeled using a
hypothetical baryonic matter equation of state and solving
the Tolman-Oppenheimer-Volkoff (TOV) equations for the
pressure, mass, and radius given a central density [61,62].
The mass-radius relation can be calculated from the TOV
equations by varying the central density [30]. The structure
of a neutron star with an ADM component is modeled using
the two-fluid TOV equations [63], which allows for
baryonic matter and dark matter to be treated as two
separate fluids, and can be solved for the mass, radius,
and pressure profiles for both fluids using an appropriate
equation of state. The two-fluid TOV is an appropriate
treatment for studying ADM in neutron stars because the
dominant interfluid interaction between baryonic matter
and ADM is gravitational. In the two-fluid TOVequations,
the pressures and masses of both the baryonic matter and
ADM fluids are simultaneously solved numerically until
either one of the fluid pressures goes to zero. Then the
integration is broken and restarted using the single-fluid
TOVequations for the remaining fluid. Here we follow the
derivation in [64] and derive the TOV equations from
Einstein’s field equations.
First, consider a general static, spherically symmetric

metric

ds2 ¼ −c2e2αðrÞdt2 þ
�

c2r
rc2 − 2GMðrÞ

�
dr2 þ r2dΩ2: ð6Þ

If we model the neutron star as a perfect fluid, then the
energy-momentum tensor takes the form
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Tμν¼diag

�
e2αðrÞ

ϵ

c2
;

�
c2r

rc2−2GMðrÞ
�
p;r2p;r2sin2ðθÞp

�
;

ð7Þ

where p ¼ pðrÞ is the pressure, ϵ ¼ ϵðrÞ is the energy
density, and dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2. Then from the
conservation of energy-momentum ð∇μTμν ¼ 0Þ, we
obtain the TOV equations

dMðrÞ
dr

¼ 4πr2
ϵðrÞ
c2

ð8Þ

dp
dr

¼ −ðϵðrÞ þ pðrÞÞ dαðrÞ
dr

ð9Þ

dαðrÞ
dr

¼ 1

c2
Gc2MðrÞ þ 4πr3GpðrÞ

r½rc2 − 2GMðrÞ� ; ð10Þ

where MðrÞ is the gravitational mass of the stellar interior
as a function of radius, r. Since we are modeling neutron
stars mixed with dark matter, we adopt the two-fluid
formalism. The two-fluid formalism assumes that the
two fluids do not interact, except through gravity, so each
fluid satisfies its own separate conservation of energy-
momentum equation. Conservation of energy-momentum
for each separate fluid is equivalent to letting

pðrÞ ¼ pBðrÞ þ pχðrÞ ð11Þ

ϵðrÞ ¼ ϵBðrÞ þ ϵχðrÞ; ð12Þ

where ϵB and ϵχ are the baryonic matter and ADM energy
densities respectively, and pB and pχ are the pressures of
baryonic matter and ADM respectively. This choice yields
the two-fluid TOV equations:

dαðrÞ
dr

¼ 1

c2
Gc2MðrÞ þ 4πr3GpðrÞ

r½rc2 − 2GMðrÞ� ð13Þ

dpB

dr
¼ −ðϵB þ pBÞ

dαðrÞ
dr

ð14Þ

dpχ

dr
¼ −ðϵχ þ pχÞ

dαðrÞ
dr

ð15Þ

dMBðrÞ
dr

¼ 4πr2
ϵBðrÞ
c2

ð16Þ

dMχðrÞ
dr

¼ 4πr2
ϵχðrÞ
c2

; ð17Þ

where MχðrÞ is the gravitational mass of ADM, MB

is the gravitational mass of baryonic matter, and MðrÞ ¼
MBðrÞ þMχðrÞ.

When studying ADM admixed neutron stars, it is helpful
to define the ADM mass-fraction, Fχ , which gives the
relative amount of gravitational mass of ADM compared to
the total gravitational mass of the admixed neutron star. The
mass-fraction is defined as

Fχ ¼
MχðRχÞ

MχðRχÞ þMBðRBÞ
; ð18Þ

where MχðRχÞ is the total accumulated ADM gravitational
mass evaluated at the ADM core radius and MBðRBÞ
is the baryonic matter gravitational mass evaluated at the
baryonic radius. The mass-fraction is important to the
analysis of ADM in neutron stars because the ADM core
distribution is dependent on Fχ , as well as the ADM
particle mass (mχ) and the effective self-interaction strength
(gχ=mϕ) [9,16].

IV. CALCULATING THE BARYONIC
AND ADM EQUATIONS OF STATE

We expect the neutron star core to potentially have two
components: baryonic and ADM. This necessitates
accounting for two EoSs. Traditionally, the baryonic matter
EoS is represented by one or more of the many tabulated
EoSs [6,7,11,15,18,65] or the σ − ω model for the nuclear
EoS [17,21]. We use the general parametrized piece-wise
polytropic models of [38–40] with three polytropes divided
by varying transition densities [see Ref. [66] ]. Since
neutron stars have central densities above the nuclear
saturation density n0 ¼ 0.16 fm−3, uncertainties in the
EoS become significant due the higher order effects of
nucleon interactions at high densities. These uncertainties
in the EoS can be captured by calculating the nucleon
interactions within chiral effective field theory [66,67]. For
the EoS model, we employ a polytropic fit to these
calculations between 0.5n0 and 1.1n0, which we connect
at lower densities to the Baym-Pethick-Sutherland (BPS)
crust EoS [68]. At higher densities, the formalism of the
chiral effective field theory breaks down and we connect to
the piece-wise polytropic parameterization.
The second component that we need to solve the two-

fluid TOV equation is the bosonic ADM EoS of the [11]
ADM model. A derivation of the bosonic ADM EoS
calculation is detailed in Appendix, which finds

ϵχðrÞ ¼ mχc2nχ þ
g2χ
2m2

ϕ

ℏ3

c
n2χ ð19Þ

pχðrÞ ¼ −ϵχ þ μ̃χnχ ¼
g2χ
2m2

ϕ

ℏ3

c
n2χ ð20Þ

μ̃χðrÞ ¼
∂ϵχ
∂nχ

; ð21Þ
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where nχ is the number density of ADM and μ̃χ is the ADM
chemical potential in the local Lorentz frame. We note that
the overall placement of the constants ℏ and c in the last
term of Eq. (19) appear to be different from the same term
in [16]. However, we implement gχ=mϕ with units of
c2=MeV, which results in an identical placement of the
constants.
We use a numerical algorithm to compute the mass-

radius relation of constant Fχ [see Eq. (18)] using the two-
fluid TOV equation and the EoS of both baryonic matter
and ADM. As discussed in Sec. III, the mass-radius relation
of a purely baryonic neutron star is found by varying its
central energy density. However, in dark matter admixed
neutron stars, the central energy densities of both ADM and
baryonic matter can be varied to obtain a mass-radius
relation. To maintain a constant Fχ along the mass-radius
relation, the central energy densities of ADM and baryonic
matter need to be varied simultaneously. For each variation
in baryonic central energy density, there is an ADM central
energy density that will result in the desired constant mass-
fraction, Fχ;desired. To find the ADM central energy density
that results in Fχ;desired, we iteratively compute the differ-
ence between Fχ;desired and “test” mass-fractions using the
Scipy.optimize.brenth python root-finding algorithm.
The Scipy.optimize.brenth algorithm works by using
Brent’s method [see Ref. [69]] to test ADM central energy
densities until it finds a test mass-fraction that results in a
difference of zero. The ADM central energy density that
corresponds to this mass-fraction is saved. We repeat this
process until each baryonic central energy density has a
corresponding ADM central energy density which
yields Fχ;desired.
The mass-radius relation of constant Fχ is formed by

iteratively repeating the procedure discussed previously for
each considered baryonic matter central energy density. An
example of the algorithm’s result is shown in Fig. 1.

V. FUTURE AND FUTURE-X SCENARIOS

We will now show how we can constrain underlying
physics using PPM-derived mass-radius measurements. We
explain our inference framework, constraints on the ADM
parameter space, simulated source selection, and finally,
how we conducted the Bayesian analysis for two realistic
hypothetical simulated scenarios. For both the Future and
Future-X scenarios, we perform a Bayesian parameter
estimation using a fixed baryonic matter EoS and with a
varying baryonic matter EoS.

A. Inference framework

In order to infer the ADM parameters mχ , gχ=mϕ, and
Fχ , we employ nested sampling, following the framework
outlined in [38–40,70]. Letting θ be a vector containing all
baryonic and ADM EoS parameters, and ϵc a vector
containing the central baryonic and dark matter energy

densities of observed stars, we can use Bayes’ theorem to
write the posterior distribution on θ and ϵc as

pðθ; ϵcjdÞ ∝ pðθÞpðϵcjθÞpðdjθ; ϵcÞ
∝ pðθÞpðϵcjθÞp(djMðθ; ϵcÞ;Rðθ; ϵcÞ); ð22Þ

where d is the vector containing the masses and radii of the
sources from each scenario, Mðθ; ϵcÞ is the mass of a
produced admixed neutron star, and Rðθ; ϵcÞ is the radius
of the admixed neutron star. Equation (22) shows that the
posterior distribution of the baryonic and ADM parameters
is directly proportional to the product of the priors
pðθÞpðϵcjθÞ and likelihood evaluation of the sources given
the admixed neutron star mass and radii produced by the
baryonic and ADM parameters. If we furthermore equate
the likelihood function p(djMðθ; ϵcÞ;Rðθ; ϵcÞ) to the
PPM-derived mass-radius posteriors, and assume each of
these posteriors is independent of the other, we can write

pðθ; ϵcjdÞ ∝ pðθÞpðϵcjθÞ
Y
i

pðMi; RijdPPM;iÞ; ð23Þ

where dPPM;i is an element in the d vector and i runs over
the number of stars for which PPM delivers the mass and
radius.
The inference methods of [38–40,70] sample over the

central energy density. We instead sample over the
mass-fraction as defined in Eq. (18), i.e., we introduce
Fχ ¼ Fχðθ; ϵc;B; ϵc;ADMÞ and write Eq. (23) as

FIG. 1. The mass-radius relations of the ground truth models
described in Sec. V D. The first model assumes an ADM
component to be present in neutron stars (dashed-dotted orange),
while the second model does not have ADM in neutron
stars (solid blue). The two relations are overlaid with the 68%
credible interval mass measurements of NICER sources PSR
J0740þ 6620, PSR J1614-2230, and PSR J0437-4715.
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pðθ; ϵc;B;Fχ jdÞ ∝ pðθÞpðϵc;BjθÞpðFχ jθ; ϵcÞ
×
Y
i

pðMi; RijdPPM;iÞ; ð24Þ

where ϵc;B and ϵc;ADM are the central energy densities of
baryonic matter and ADM, respectively. We sample over
the mass-fraction because our mass-radius algorithm is
structured such that the dark matter energy density is
dependent on the mass-fraction.

B. Bosonic ADM EoS constraints

Here we define the prior space of each bosonic ADM
parameter we wish to study, namely mχ, gχ=mϕ, and Fχ .
These independent parameters fully characterize our
bosonic dark matter model, providing a parameter space
to explore.
To capture the bosonic ADM particle mass prior space,

we consider the physical constraints on the parameter
space placed by [27,71,72]. In Ref. [27] showed that in
order to safely avoid the ADM particles from escaping the
neutron star,

mχ ≥ 10−2 MeV: ð25Þ

This provides a lower bound on the ADM particle mass
prior space. The upper bound on the ADM particle mass
can be found by considering observations from old neutron
stars and the formation of a black holes in neutron stars
from bosonic ADM core collapse [71,72]. According
to [71], the upper bound on the ADM particle mass is
≈105–107 GeV depending on the self-interaction of the
ADM particles. In order to evade bosonic ADM core
collapse due to an inadequate self-repulsion strength, we
adopt a restrictive upper bound on mχ to be

mχ ≤ 108 MeV: ð26Þ

Although the bosonic ADM particle mass prior space is
physically constrained, the repulsive self-interaction
strength is not. To ensure the self-repulsion prior space
has a finite size, we adopt a range that captures the
interaction strengths used in [11]

10−2 ≤
gχ

mϕ=MeV
≤ 103: ð27Þ

The repulsive self-interaction strength is critical for our
bosonic dark matter model because, in the absence of any
self-repulsion, the dark matter would quickly form a black
hole and destroy the neutron star [11,60,72,73].
The final ADM parameter of our bosonic ADMmodel is

the mass-fraction, which is constrained by prior work to be
Fχ ≤ 5% [9]. This result was found by computing FχðmχÞ
at a fixed self-interaction strength for a singular baryonic
EoS. The results of the function were compared to the

1.4M⊙ neutron star tidal deformability constraint of
GW170817 from [53] and the requirement that a
mass-radius relation must have a maximum mass of at
least 2M⊙. Since we vary the baryonic EoS, we adopt the
upper bound of

Fχ ≤ 20%; ð28Þ

to account for the changes in the mass-fraction constraint
from [9]. Based on the constraints mentioned above, we set
the priors of the ADM parameter space to be

log10ðmχ=MeVÞ ∈ ½−2; 8� ð29Þ

log10

�
gχ

mϕ=MeV

�
∈ ½−2; 3� ð30Þ

Fχ ∈ ½0; 20�%: ð31Þ

In each interval above, we uniformly sample each param-
eter without considering the formation of a dark matter core
or halo. After sampling, we find all the combinations of
mχ ; gχ=mϕ, and Fχ that result in a halo configuration and
give each a zero probability density, which leaves only the
ADM core configurations in the prior space. This choice
results in the prior corner plots of Fig. 3 displaying a
nonuniform prior for each bosonic ADM parameter.

C. Source selection

Here we introduce the sources used in our Bayesian
analysis for the Future and Future-X scenarios, respec-
tively. For the Future scenario, three of the six sources are
assumed to have an a priori known mass obtained from
radio pulsar timing, corresponding to the NICER targets
PSR J0740þ 6620 [74], PSR J1614-2230 [75], and PSR
J0437-4715 [76]. For each of these known sources we
assume a 5% uncertainty in radius. Note that the current
uncertainty on the radius of PSR J0740þ 6620 reported by
NICER is closer to the ∼10% level, so achieving 5% is
very much a stretch goal even given NICER’s extended
mission lifetime to 2025. For the other three sources masses
were chosen between 1.2 − 2.1M⊙, and we assume a 10%
uncertainty in mass and radius, close to what NICER has
already delivered for the one source (PSR J0030þ 0451)
where no independent mass measurement is available.
For the Future-X case we again assume six sources, but

this timewith a 2%mass and radius uncertainty and selected
in the range of1.2 − 2.2M⊙. This scenario improves onwhat
is possible with NICER and is something we anticipate
being achievable with a large-area x-ray telescope operating
for several years [47,48,77]. For STROBE-X, we expect to
be able to make mass-radius measurements for ≈15 sources
using PPMat the�5% uncertainty level [47]. However, with
longer observations, we expect STROBE-X to provide
approximately six mass-radius measurements at the two
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percent uncertainty level which will likely provide the
strongest EoS constraints.

D. Best case Future/Future-X: Varying baryonic EoS

In both varying and fixed baryonic EoS cases, we
calculate the radii of our sources from two ground truth
models. The first ground truth model, which we call the
“ADM core” model, is described by the piecewise poly-
tropic (PP) model in Sec. IV with an ADM core defined by
the ADM parameters

mχ ¼ 15 GeV ð32Þ
gχ

mϕ=MeV
¼ 0.1 ð33Þ

Fχ ¼ 7%: ð34Þ

The second ground truth model, the “No ADM” model, is
the PP model mentioned in Sec. IV with Fχ ¼ 0%, which
simulates neutron star with no accumulated ADM, but
ADM is still taken into account during the inference. The
mass-radius relation of both ground truth models is shown
in Fig. 1. The uncertainty ellipses of each of the Future and
Future-X sources are displayed in Fig. 2. Notably, in [70],
the data points were scattered around the ground
truth model, but not centered on the ground truth like
our source ellipses are. This is more realistic. However,
given that selecting a scatter model also introduces some
arbitrariness—for example the masses at which the scatter
is smallest matters—we have chosen not to do this at this
stage. Effectively, this makes our current study a best case
scenario.
The most conservative approach to a Bayesian analysis

of neutron stars varies all parameters in the EoS model.
Therefore, the most likely EoS, and by extension mass-
radius relation, of baryonic matter and ADM can be
inferred. In Fig. 3, we show the prior distributions of the
ADM parameters for the Future and Future-X scenarios.
Both panels in Fig. 3 have similar regions in which there
is no shading, e.g., the upper left region in the
log10(gχ=ðmϕ=MeVÞ) vs log10ðmχ=MeVÞ plots. This
region is cut out because that part of the bosonic ADM
parameter space is composed of halo configurations.
In Fig. 4 and 5, we show the posterior distributions for

both the Future and Future-X scenarios. The posterior of
Fig. 4 shows that the ratio of log10 (gχ=ðmϕ=MeVÞ) and
log10ðmχ=MeVÞ forms an identical stripe that runs diago-
nally across the parameter space in all four quadrants.
Figure 4 also shows that, despite the ground truth value of
7%, the 1-D Fχ posteriors of the “ADM core” model favor
low mass fractions in both scenarios. Additionally, the 1-D
Fχ posteriors of all four plots are nearly identical and favor
low mass-fractions. From the observation that the poste-
riors of both ground truth models are nearly identical,

we conclude neither Future nor Future-X will be able to
determine if bosonic ADM is present in neutron stars.
Therefore, by extension, neither scenario will be able to
constrain the bosonic ADM parameter space within the
current uncertainties of the baryonic EoS. However, if
the actual ADM mass-fraction is not small, we find that
the ratio of gχ=mϕ and mχ is well constrained because
numerous mass-fraction values are sampled and not given a
low likelihood based on the sources from either of the
ground-truth models. This is clearly shown in Fig. 5, where
we observe that the PDF contours widen along the
log10ð gχ

ðmϕ=MeVÞ =ðmχ=MeVÞÞ axis for low Fχ.

In Fig. 6 we study our Bayesian inferences in the energy
density-pressure plane. This has the advantage of high-
lighting constraints on the baryonic matter EoS that are not
readily observable in the posterior corner plots. In all

(a)

(b)

FIG. 2. (a) Uncertainty ellipses from the 1 sigma level of a 2-D
Gaussian for each of the synthetic Future sources calculated
from both ground truth models. (b) Same as in (a), but for the 6
Future-X sources. For both panels, the corresponding ground
models are overlaid on the appropriate ellipses.
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quadrants, we consider the EoS posteriors that only vary the
baryonic EoS (Neglecting ADM) and the EoS posteriors
that additionally vary the ADM EoS (Including ADM). The
“Including ADM” posteriors correspond to the posteriors
shown in Fig. 4. For both the Future and Future-X
scenarios, Fig. 6 shows that the 95% confidence interval
of the “Including ADM” (orange dashed-dotted band) band
is noticeably wider than the 95% confidence interval of
“Neglecting ADM” (light green band). In the Future
scenario, we calculate that the “Including ADM” 95% con-
fidence interval is 12% and 20%wider than the “Neglecting
ADM” 95% confidence interval for the “ADM core” and
“No ADM” models, respectively, at log10ðϵ cm3=gÞ ¼
14.71. For Future-X, we calculate that the “Including
ADM” 95% confidence interval is 18% and 25% wider
than the “Neglecting ADM” 95% confidence interval for
the “ADM core” and “No ADM” models, respectively, at
log10ðϵ cm3=gÞ ¼ 14.71. Including ADM broadens the
95% confidence interval because ADM cores decrease
the radii of neutron stars, so the baryonic matter EoS is
allowed to be more stiff and still be consistent with mass-
radius measurements. A stiffer baryonic EoS implies the
posterior constraints from all presently observed NICER
pulsars, and the future sources of both NICER
and STROBE-X, can be relaxed if the possibility of
ADM is considered. Finally, this figure also demonstrates

Future-X’s ability to more tightly constrain the neutron star
EoS due to the tighter confidence bands in both posteriors.

E. Future/Future-X: Fixed baryonic EoS

We now consider a fixed baryonic matter EoS.
Performing a Bayesian analysis on the dark matter param-
eter space with a fixed baryonic matter EoS is similar to
previous analyses [16,29]. It is hard to envisage a situation
where we would be able to constrain the baryonic matter
EoS using neutron stars observationally independent of the
role of any ADM contribution, since ADM will also affect
gravitational wave observations. However, there are pros-
pects for reducing the uncertainty on the baryonic EoS from
lab/heavy ion collision measurements, which may be less
affected by ADM [see, e.g., [80–83]]. Here we also explore
what Future-X might be able to deliver in comparison to a
Future scenario. For the prior distribution of the bosonic
ADM parameters, we use the priors shown in Fig. 3
because the same ADM parameters were sampled over
as in the varying baryonic matter case.
Figure 7 shows the posterior distributions of the ADM

parameters. The 2-D posteriors show that the ratio of
log10(gχ=ðmϕ=MeVÞ) and log10ðmχ=MeVÞ is constrained
to a diagonal stripe. Here we notice, the high mχ and low
gχ=mϕ regime—which we characterize by the region in

FIG. 3. (Left panel) Future prior corner plot of the ADM parameters; (Right panel) The Future-X prior corner plots of the ADM
parameters. Both corner plots were generated using the corner python library [78]. For each panel, the ADM particle mass, effective self-
interaction strength, and mass-fraction are plotted against each other, where the dark shaded regions represent a higher prior probability
and lighter shaded regions represent a lower prior probability. The solid lines represent contours of constant probability, where we show
the 0.5, 1, 1.5, 2σ level contours. When the combination of parameters is a parameter plotted against itself, we have a 1-D prior
histogram. For both panels, the figure titles on the diagonal show the median value with the 0.16 and 0.84 fractional quantiles. In both
panels, we see large regions of no shading in all 2-D prior density plots.
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which mχ ≳ 106 MeV and gχ=mϕ ≲ 10−1 MeV−1—is
effectively disfavored for both Future and Future-X sce-
narios. In order to accumulate any appreciable ADM mass
in this regime, the ADM central energy density needs to be

much larger than the baryonic matter central energy
density. For example, to have Fχ ¼ 0.05% we need
ϵχðr ¼ 0Þ ∼ 108ϵBðr ¼ 0Þ for a baryonic matter EoS with
a maximum mass of ≈2.3M⊙. The resulting mass and

FIG. 4. Left two panels: Future scenario with varying baryonic matter EoS posterior corner plot; Top left: the “ADM core” ground
truth model; Bottom left: the “No ADM” ground truth model. Right two panels: Future-X scenario with varying baryonic matter EoS
corner plot; Top right: the “ADM core” ground truth model; Bottom right: the “No ADM” ground truth model. For the top 2 panels, the
solid orange lines represent the ground truth values of ADM values for the “ADM core” model. For all quadrants, the dashed blue lines
represent the 1-D priors shown in Fig. 3 for the Future and Future-X cases, respectively. The solid black lines represent the posteriors of
each case. In all panels, the ratio of log10ðgχ=ðmϕ=MeVÞÞ and log10ðmχ=MeVÞ is constrained; however, the 1-D posterior of Fχ appears
to be independent of this.
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radius of an ADM admixed neutron star from this example
has a similar radius to the baryonic matter neutron star, but
the mass is significantly smaller. In this example, the
maximum mass of the neutron star produced from baryonic
matter EoS is reduced to 0.374M⊙. Therefore, this regime
is disfavored because it does not satisfy the imposed
constraint that the produced neutron stars must have a
mass of at least 1M⊙. The 1M⊙ constraint is motivated by
the theoretical description of a neutron star early in its
evolution [see, e.g., [84]].
The 2-D posteriors of the ratio between the effective self-

repulsion strength and the bosonic ADM particle mass also
show that the stripe widens for the “No ADM” model in

both Future and Future-X scenarios. The diagonal stripe
widens in the “No ADM” model because the ground truth
mass-fraction is 0%. This allows for pairs of gχ=mϕ andmχ ,
which can produce neutron stars above the 1M⊙ constraint
for sufficiently low mass-fractions, to be given a significant
likelihood evaluation. However, these same pairs of points
would be given a low likelihood in for the “ADM core”
model because they do not produce neutron stars above the
1M⊙ constraint for mass-fractions near the ground truth
value of 7%.
According to the 1-D posterior histograms of mχ and

gχ=mϕ, we find that both parameters do not have a
significant peak. From this observation, we conclude that

FIG. 5. Left two panels: Future scenario with posterior probability density function (PDF) plotted in the Fχ vs
log10ð gχ

ðmϕ=MeVÞ =ðmχ=MeVÞÞ plane; Right two panels: Future-X scenario with posterior PDF plotted in the Fχ vs

log10ð gχ
ðmϕ=MeVÞ =ðmχ=MeVÞÞ plane. All contour plots were made with the seaborn python package [79]. For all quadrants, the

posteriors and ground truth models follow the same flow as in Fig. 4. The solid shaded regions represent the same contour levels
described in Fig. 3. In all panels, the posterior PDF contours widen along the log10 ð gχ

ðmϕ=MeVÞ =ðmχ=MeVÞÞ axis for small Fχ .
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mχ and gχ=mϕ are individually unconstrained quantities in
the remaining parameter space. However, Fig. 7 shows that
the mass-fraction 1-D posteriors do have a significant peak
and contrasts significantly to the varying baryonic EoS
case. The Fχ 1-D posterior is more Gaussian-like in shape
than its 1-D posterior in Fig. 4 because fixing the baryonic
EoS reduces the number of parameters sampled over from
10 to 3. Therefore, any degeneracies between the baryonic
EoS parameters and the ADMmass-fraction are eliminated,
which results in the mass-fraction 1-D posterior to be more
Gaussian-like. The Gaussian-like shape of the 1-D Fχ

posteriors of both Future and Future-X shows that if the
baryonic EoS is fixed, i.e., better understood than it is now,
tight constraints on Fχ can be imposed.
For Future-X, Fig. 7 shows both of the 1-D Fχ posteriors

are centered around the Fχ ground truth value. Figure 7 also
shows that the 1-D Fχ posterior distributions of the ADM
core and “No ADM” models have 4σ deviations of ≈�
9.8% and ≈�7.6%, respectively. The Future scenario also
displays that both 1-D Fχ posteriors are centered around the
ground truth value, but “ADM core” and “No ADM”
models have 4σ deviations of ≈�19.3% and ≈�14.7%,

FIG. 6. Left two panels: Future EoS plots with varying baryonic matter EoS; Right two panels: Future-X EoS plot with varying
baryonic matter EoS. Note the ground truth models used in each respective panels follows the same flow as in Fig. 4. For all panels, the
dashed black line represents the 95% prior distribution, the light and dark green band represents the 68% and 95% confidence region of
the posterior distribution when only varying the baryonic matter EoS, with both ground truth models. As a comparison, the dashed-
dotted orange line is the 95% confidence region when we additionally allow for ADM in the star, i.e., we also sample the ADM EoS
parameters. In all panels, we see that including ADM in neutron stars widens the constraints on the baryonic EoS.
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respectively. These results show that Future-X can provide
tighter 1-D Fχ posteriors than Future, highlighting Future-

X’s ability to place better constraints on the ADM mass-
fraction than Future.

VI. CONCLUSION

In this work, we adapted the Bayesian analysis of [38] to
include a bosonic ADM core component in neutron stars.
We have considered the bosonic ADM model of [11],

FIG. 7. Left two panels: Future scenario with fixed baryonic matter EoS posterior corner plot; Right two panels: Future-X scenario
with fixed baryonic matter EoS posterior corner plot. Where the priors, posteriors, diagonal figure titles, and ground truth models for
each respective panels follows the same flow as in Fig. 4. The Fχ 1-D posteriors of all quadrants are tighter than the posteriors of Fχ in
Fig. 4 and have significant peaks around their respective ground truth models. Also, the stripe shown in the log10 (gχ=ðmϕ=MeVÞ) vs
log10ðmχ=MeVÞ 2-D posteriors is noticeably wider for the “No ADM” ground truth models than the “ADM core” models.
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which describes bosonic ADM particles with self-
repulsion. We performed Bayesian inferences of the
bosonic ADM particle mass mχ , effective self-repulsion
strength gχ=mϕ, and mass-fraction Fχ , which uses synthetic
mass-radius posteriors for two different instrumentation
scenarios, namely the Future (“NICER”) and Future-X
(“STROBE-X”) scenarios. Interestingly, the synthetic
sources used for Future-X suggest that if two neutron stars
with the same mass but different radii were measured at the
2% uncertainty level, one could conclude that one neutron
star has ADM while the other does not, since both neutron
stars share the same baryonic matter EoS. A scenario like
this would hint at variation in the amount of ADM in
neutron stars.
In the cases where the baryonic matter EoS is varied, we

find the 2-D posteriors of log10 (gχ=ðmϕ=MeVÞ) and
log10ðmχ=MeVÞ are identical in all plots. For the mass-
fraction, we find the 1-D posteriors of the “ADM core”
model are not centered around the ground truth mass-
fraction value in both scenarios. We also find that the 1-D
Fχ posteriors are nearly identical in all four quadrants.
These results show that, within the current uncertainties of
the baryonic EoS, Future and Future-X will not be able to
determine if ADM present in neutron stars nor will they be
able to provide constraints on the bosonic ADM parameter
space. Although, if the actual ADM mass-fraction is not
very small, the ratio of gχ=mϕ and mχ is well constrained,
which is demonstrated by the wider PDF contours in the
low Fχ regime of Fig. 5.
In the energy density-pressure plane, we find the stat-

istical uncertainty in the inference of the neutron star EoS is
widened when the possibility of an ADM core is taken into
account. For example, at log10ðϵ cm3=gÞ ¼ 14.71, the
Future baryonic EoS uncertainty increased by 12.19%
and 19.62% for both ground truth models when including
ADM, while Future-X showed a 17.79% and 24.98%
increase. This shows that the current uncertainties of the
baryonic EoS are being underestimated because the pos-
sibility of dark matter in neutron stars is being ignored. We
recommend that projections of future datasets—and data
analysis pipelines—should account for the possibility that
neutron stars contain ADM cores.
The ADM posteriors differ significantly from the pos-

teriors of the varying baryonic EoS case when the baryonic
matter EoS is fixed. Both Future and Future-X show that
the high ADM particle mass (mχ ≳ 106 MeV) and low
effective self-interaction strength (gχ=mϕ ≲ 0.1 MeV−1)
regime is disfavored due to the observational and theoreti-
cal constraint that neutron stars must have a mass above
1M⊙. The diagonal stripe in the 2-D posteriors of mχ and
gχ=mϕ is wider for the “No ADM” model in both scenarios
because the ground truth mass-fraction for the “No ADM”
model is lower than the “ADM core” model ground truth
mass-fraction. This allows for points in the gχ=mϕ −mχ

plane that do not satisfy the 1M⊙ constraint for mass-
fractions close to the “ADM core” ground truth to be given
a higher likelihood in the “No ADM” model. Although the
2-D posteriors show that the ratio of mχ and gχ=mϕ is
constrained, we find the individual quantities are not well
constrained. However, the 1-D Fχ posteriors are well
constrained due to their Gaussian-like shapes and are
centered around the ground truth value. We find the 1-D
Fχ posteriors of Future have 4σ deviations of ≈�19.3%
and≈� 14.7% for the “ADM core” and “No ADM” ground
truth models, respectively. For the Future-X 1-D Fχ

posteriors, we find the “ADM core” model has a 4σ
deviation of ≈�9.8% and the “No ADM” model has a
4σ deviation of ≈�7.6%. This highlights that Future-X
will be able to provide stronger constraints on the bosonic
ADM mass-fraction than Future. Our results show that, if
the baryonic EoS is known better than it is currently, Fχ can
be tightly constrained and constraints on the ratio of the
bosonic ADM particle mass and effective self-interaction
strength can be inferred. This work demonstrates NASA
missions, NICER and STROBE-X, will not be able to
provide constraints on bosonic ADM under the current
uncertainties of the baryonic EoS. However, if the baryonic
EoS uncertainties are tightened independent of ADM,
NICER and STROBE-X demonstrate an ability to constrain
the ratio of mχ and gχ=mϕ and Fχ , but not the individual
quantities of mχ and gχ=mϕ in the [11] bosonic
ADM model.
These results are physically reasonable because the

bosonic ADM particle mass and effective self-interaction
significantly impact the distribution of the ADM core. This
is most evident in the 1-D posteriors of Fig. 7 since it does
not show significant peaks. Therefore, neither individual
parameter has a significant effect on the mass and radius of
the admixed neutron star, which our Bayesian analysis is
done in reference to. Within the uncertainties considered,
mχ and gχ=mϕ have indistinguishable effects on the mass-
radius and they primarily effect the distribution of ADM in
the neutron star. Although individually mχ and gχ=mϕ are
unconstrained, their ratio is constrained because it deter-
mines the density of the ADM particles in the ADM radius,
which affects the central energy density needed to reach a
given Fχ . This is demonstrated by the solid white trian-
gulated region in 2-D posteriors of log10(gχ=ðmϕ=MeVÞ)
vs log10ðmχ=MeVÞ in Fig. 7. The low mass and high
effective self-interaction strength regime has a low pos-
terior density evaluation because it produces ADM halos
for any ADM central energy density. This is different from
the high mass and low effective self-interaction strength
regime, which has a low posterior evaluation because it
allows for many heavy ADM particles to be contained
within a small ADM core radius, which causes the ADM
central energy density needed to achieve a fixed Fχ to be
Oð1022 g=cm3Þ. ADM central energy densities of this
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magnitude produce neutron stars below the 1M⊙ constraint.
Lastly, it is physically consistent that the bosonic ADM
mass-fraction is the most constrained parameter in this
analysis because it is directly related to the total mass of
ADM, which affects the mass and radius of the admixed
neutron star.
We have also shown the value of performing full

inference runs on the ADM parameter space, rather than
drawing conclusions only from the effects that each ADM
parameter has on the mass-radius relation. Degeneracies
between the parameters can confound the effects of the
ADM parameters, which would make it difficult to draw
meaningful conclusions on any of the parameters if an
inference was not done. Our inference method shows a
degeneracy, but also displays an ability to provide con-
straints on ADM parameters which may otherwise not be
found. Finally, we would like to point out, as we did in
Sec. V D, that this work is a best case scenario for future
STROBE-X observations and end of mission NICER
observations. Therefore, future STROBE-X and NICER
mass-radius measurements will likely have larger uncer-
tainties than we used in this work, and our constraints will
relax accordingly.
Future work will account for ADM halos by appropri-

ately modifying the ray-tracing models used by the
NICER collaboration and how PPM is conducted. As
Miao et al. [16] has shown, this can help us fully under-
stand the effects ADM halos have on neutron mass-radius
measurements and the potential halos have in providing
new insights on the constraints of the ADM parameter
space. Future work will also include a scatter of the data
sources around the ground truth model. Although we did
not include scatter in our sources due the added arbitrari-
ness, Greif et al. [70] shows that including scatter around
the ground truth models can help us study real mass-radius
data in the most general way. The combination of full
inferences with scatter and ADM halos will allow for
general and accurate statements about the constraints on the
ADM parameter space. More broadly, our work adds to the
growing literature which shows how to use these inference
methods to constrain dark matter models that interact with
neutron star interiors.
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APPENDIX: DERIVATION OF THE BOSONIC
ADM EQUATION OF STATE

The Lagrangian of the model described in Sec. II which
yields the EoS in Eq. (19) and Eq. (20) can be written down,
in units of ℏ ¼ c ¼ 1, as

Lχ ¼ −
ffiffiffiffiffiffi
−g

p �
D�

μχ
�Dμχ þm2

χχ
�χ þ 1

2
m2

ϕϕμϕ
μ

þ 1

4
ZμνZμν − gBϕμJ

μ
B

�
; ðA1Þ

Before we begin the derivation, we make a few approx-
imations to for ease of calculations. As discussed in Sec. II,
we approximate gB to be gB ≪ gχ . Therefore, we may
neglect the gB in the Lagrangian. Next, we approximate the
spacetime to be flat since the effects of gravity are
negligible on the inverse length scales of neutron stars.
To convince ourselves that this a good approximation, we
follow the reasoning in [9].
Consider the gradient of the gtt component of the metric.

Since we are working in a spherically symmetric spacetime,
then one can write the gradient as

dgtt
dr

¼ −2gtt
Pþ ϵ

dP
dr

; ðA2Þ

where P is the pressure and ϵ is the energy density.
Consider the stellar surface, then gtt ¼ −1þ 2GM

Rc2 and
p ¼ 0, where M is the total gravitational mass of the star
and R is its radius. The gtt component then allows Eq. (A2)
to be written as

dgtt
dr

¼ −
2GM
c2R2

: ðA3Þ

In the limit where gtt ¼ 0, which implies 2GM
Rc2 ¼ 1, we now

have that

���� dgttdr

���� < 1

R
: ðA4Þ

Therefore, for a star of radius 10 km, a typical radius of a
neutron star, and we consider a spherical layer of thickness
δr ¼ 10−3 km, which is large enough to treat dark matter
thermodynamically while also ensuring that we have

���� dgttdr

����δr < δr
R

¼ 10−4: ðA5Þ
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Therefore the derivatives of the metric are small compared
to the spatial scales of a neutron star, so we can approximate
our spacetime as being flat. The final form of the
Lagrangian is given as

Lχ ¼ −
ffiffiffiffiffiffi
−g

p �
D�

μχ
�Dμχ −m2

χχ
�χ

−
1

2
m2

ϕϕμϕ
μ −

1

4
ZμνZμν

�
: ðA6Þ

By variations of the action, we obtain the equations of
motions Eqs. (3), (4), and (5) in Sec. II. In the mean-field
approximation, we assume separability and make the
stationary scalar field ansatz of

χðr; tÞ ¼ ðAeikr þ Be−ikrÞe−iωt; ðA7Þ

where A and B are real constants, k is the wave number, and
ω is the eigenfrequency of the spherically symmetric bound
state of the scalar field. Since we are treating the vector field
as a classical field, then ϕμ ¼ ðϕ0; 0Þ, where ϕ0 is a
constant. Plugging in the expressions for the fields χ and
ϕμ into the equations of motion and letting k ¼ 0, we find

ω ¼ gχϕ0 �mχ : ðA8Þ

Since mχ could be larger than gχϕ0 and we demand that
ω > 0 then, we will take the “þ” solution. Since ϕμ ¼
ðϕ0; 0Þ the equation of motion of ϕμ gives us a relation
between ϕ0 and χ�χ to be

m2
ϕϕ0 ¼ 2gχmχχ

�χ: ðA9Þ

Next we calculate the conserved current, Jμ, since J0 ¼ nχ
where nχ is the ADM number density.

Jμ ¼ iffiffiffiffiffiffi−gp
�
χ�

∂Lχ

∂∇μχ
� −

∂Lχ

∂∇μχ
χ

�
ðA10Þ

¼ −iðχ�∇μχ − ð∇μχ�ÞχÞ þ 2gχϕμχ�χ: ðA11Þ

Writing out the J0 ¼ g0νJν element using equation for ω
yields that

nχ ¼ 2ωχ�χ − 2gχϕ0χ
�χ ¼ 2mχχ

�χ ðA12Þ

⇒ ϕ0 ¼
gχ
m2

ϕ

nχ : ðA13Þ

To write down the stress-energy tensor one needs to vary
the action with respect to the metric [64]. In the mean-field
approximation, we find the stress-energy tensor to be

Tμν ¼ 2D�
μχ

�Dνχ − gμνD�
ρχ

�Dρχ

þm2
ϕ

�
ϕμϕν −

1

2
gμνϕρϕ

ρ

�
− gμνm2

χχ
�χ ðA14Þ

The ADM energy density, ϵχ , is determined from T00

component, and the ADM pressure, pχ , is determined by
Tii. Writing out the respective components of the stress-
energy tensor, the ADM EoS, with ℏ and c restored, is

ϵχ ¼ mχc2nχ þ
1

2

g2χ
m2

ϕ

ℏ3

c
n2χ ðA15Þ

pχ ¼
1

2

g2χ
m2

ϕ

ℏ3

c
n2χ : ðA16Þ

This is Eq. (19) and Eq. (20).
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