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As some of the most compact stellar objects in the Universe, neutron stars are unique cosmic
laboratories. The study of neutron stars provides an ideal theoretical test bed for investigating both physics
at supranuclear densities as well as fundamental physics. Their global astrophysical properties however
depend strongly on the star’s internal structure, which is currently unknown due to uncertainties in the
equation of state. In recent years, a lot of work has revealed the existence of universal relations between
stellar quantities that are insensitive to the equation of state. At the same time, the field of multimessenger
astronomy has been uniquely expanded with the advent of gravitational wave astronomy, which has
recently been making strides towards incorporating machine learning techniques. In this paper, we develop
universal relations for rapidly rotating neutron stars, by using supervised machine learning methods, thus
proposing a new way of discovering and validating such relations. The analysis is performed for tabulated
hadronic, hyperonic, and hybrid equation of state ensembles that obey the multimessenger constraints and
cover a wide range of stiffnesses. The relations discussed could provide an accurate tool to constrain the
equation of state of nuclear matter when measurements of the relevant observables become available.
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I. INTRODUCTION

Neutron stars (NSs) are the densest and most exotic,
often rapidly rotating, compact astrophysical objects in the
Universe. Their study provides a meeting place of research
between relativistic astrophysics and nuclear physics. They
present an interesting astrophysical system described by the
general theory of relativity (GR) and constitute a laboratory
impossible to recreate in terrestrial environments.
One of the open problems in nuclear astrophysics is the

determination of fundamental interactions at extremely
high densities reached in NS cores. These regimes of
ultradense and cold nuclear matter are still poorly known.
In this context, the relation between the structure of a NS,
its global properties (mass, radius, etc.), and the micro-
physics, namely the equation of state (EoS), is crucial for
understanding and testing various astrophysical scenarios.
Assuming that a perfect fluid describes nuclear matter at
the star’s interior, the fundamental microphysics properties
are encapsulated by a barotropic EoS, which corresponds
to a relation between the pressure and the energy density of
matter [1–8]. Such an EoS remains an open question in
nuclear physics.
Over the years, a wide variety of different models for the

EoS have been proposed by the nuclear physics commu-
nity. Approaches and models differ by the assumed NS

interior composition, the nucleon interaction properties,
and the methodologies involved in solving the related
many-body problem. In each case, modeling NSs and
deriving their properties directly depends on the particular
EoS. Once the EoS is specified, one can compute stellar
models using the framework of GR. Each EoS has a
specific prediction for the relation between the mass and
the equatorial radius of a NS (M ¼ MðReqÞ), and this 1 − 1
correspondence could be used to identify the most prom-
ising EoS candidates by using astrophysical observations of
NSs. Electromagnetic sources, and the most prominent
gravitational-wave (GW) observations, will provide infor-
mation to constrain these models and eventually help us
understand the behavior of matter inside the neutron star’s
inner core [5–10].
Although NS properties are related to the EoS [5–8], it

could be possible to find ways to describe stellar objects and
their properties in manners that are not very sensitive to the
specific choice of the EoS. In recent years, there has been a
lot of work in that direction, i.e., looking for EoS-insensitive
relations between stellar parameters. The motivation behind
this is twofold. On the one hand, having observables that are
insensitive to the specific characteristics of the EoS can be
very useful in our efforts to measure astrophysically the
various properties of NSs, such as the NS radius, the
moment of inertia, the tidal deformability, or the multipole
moments, while at the same time reducing the errors and
model uncertainties significantly. Having then measured
some of the difficult-to-measure parameters, one could try
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to use some of them to solve the inverse problem of
constraining the EoS. On the other hand, appropriate
observable quantities and the relevant EoS independent
relations could help circumvent the unknowns of nuclear
physics at supranuclear densities, thus providing a frame-
work for NSs to be used for detecting possible effects due to
modifications in GR [2,4]. Such relations have been found
for stationary isolated NSs, as well as fully dynamical and
merging binary systems [2,4,11].
In what follows, we give a brief incomplete outline of the

development of these relations. One of the first instances that
such a relation was introduced, was when Ravenhall and
Pethick [12] accentuated an apparently EoS insensitive
relation that connects the normalized moment of inertia
I=MR2

eq with the stellar compactness expressed in geometric
units C ¼ M=Req. This relation was produced considering
EoSs without an extreme softening at supranuclear densities.
It was later modified by Lattimer and Prakash [13], and
Bejger and Haensel [14], and then employed by Lattimer
and Schutz [15] in order to estimate the NS’s radius using
combined data measurements from mass and moment of
inertia of a pulsar in a binary system. Similar relations were
also suggested by Breu and Rezzola [2] in both the case of
slowly as well as rapidly rotating equilibrium configurations.
In the field of asteroseismology, it was recognized by
Andersson and Kokkotas [16,17] (see also [18] for the state
of the art on this), and reexamined by Benhar et al. [19], that
a tight correlation between the f, w fundamental oscillation
modes and stellar average density manifests some EoS
independence. Furthermore, Bejger, in [20], derived a pair
of relations that connect the maximum and minimummasses
(Mmax;Mmin) of a rotating star to the maximum mass of a
nonrotating stellar configuration, Mtov. Additional EoS-
independent relations between the redshift (polar, forward,
and backward) [13,14] and the minimum and maximum
compactness of the star were also presented [20]. Laarakkers
and Poisson [21] showed that for a fixed mass and EoS, the
dependence between the quadrupole moment Q and the
star’s angular momentum J can be fitted by a quadratic
formula, while Pappas and Apostolatos [22,23] demon-
strated that in addition the spin octupole S3 exhibits a cubic
dependence in J, hinting to a Kerr-like behavior for the
moments. Urbanec et al. [24] using the Hartle-Thorne, slow-
rotation approximation found that there is a universal
relation between the reduced quadrupole moment Q̄ ¼
−MM2=J2 and the inverse compactness over two R=2M
for slowly rotating NSs. Considering slowly rotating NSs
as well as quark stars, Yagi and Yunes highlighted a new
universal relation between the normalized quadrupole
moment Q̄ and the stellar compactness C≡M=R [25].
In more recent years, Yagi and Yunes [26] discovered

some EoS insensitive relations involving the appropriately
reduced moment of inertia I, quadrupole moment Q, and
tidal love number λ, that had a better than 1% accuracy in the
slow-rotation limit and assuming small tidal deformations.

These expressions were called I − Love −Q relations.
Related work using Hartle-Thorne approximation has also
been done by Bauböck et al. [27]. These relations can be a
useful tool in order to remove degeneracies appearing in
modeling GW signals coming from inspiraling binaries
[28,29].
However, in the case of rapid rotation, Doneva et al. [30]

showed that the EoS insensitive behavior between I and Q
weakens, assuming sequences of models with constant spin
frequency. The universality of the I −Q relation for rapidly
rotating NSs was revisited by Pappas and Apostolatos [31]
who noted that universality is recovered when rotation is
parametrized by the normalized spin χ ¼ J=M2, where J
and M are the angular momentum and mass of the star
expressed in geometric units, instead of the spin frequency.
This result was immediately reproduced and extended by
Chakrabarti et al. [32] who also presented extensions of the
I −Q relations considering dimensionless quantities such as
M × f andReq × f. Theseworks highlighted the importance
of using appropriate dimensionless quantities for producing
universal relations, which hold for even extremely rapidly
rotating NSs. However, some confusion on this topic still
remains in the literature. For example, in [33], there is a
discussion on the loss of universality in a relation concerning
the equatorial radius of NSs, which however may be caused
by an unfortunate choice of parameters, as was the case
in [30].
Cipolletta et al. [34] derived useful relations for the

binding energy of nonrotating and rotating configurations as
a function of the gravitational mass and the spin parameter
χ. In addition, they presented an expression between the
maximum mass along the secular instability limit and χ.
Riahi et al. [11] also presented universal relations connect-
ing the mass and frequency along the mass-shedding
sequence to the mass and radius of the nonrotating NS
configuration with the same energy density. Luk et al. [35]
investigated the last stable circular orbit of a test particle
around rapidly rotating NSs. They highlighted a pair of
fitting formulas that relate the radius and orbital frequency
of this orbit to the rotation frequency andmass of the rapidly
rotating NS. Furthermore, Haskell et al. [36] have shown
that the EoS independent relation between I andQ is broken
for stars with long spin periods (P≳ 10 s) and strong
magnetic fields (B≳ 1012 Gauss).
On a slightly different direction, Pappas and Apostolatos

[31], and Stein et al. [37] investigated EoS insensitive three
hair relations (M; χ; Q̄) for NSs, that where later extended
to quark stars as well (Yagi et al. [38], Chatziioannou
et al. [39]), which involved higher order multipole
moments. Furthermore, Doneva et al. [40], Kleihaus
et al. [41], Pani and Berti [42], Pappas et al. [43], and
Yagi and Stepniczka [44], to name a few, have investigated
universality in modified theories of gravity as well.
Many efforts have also been made to provide some

justification for the observed universality. Yagi and Yunes
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initially suggested that I, λ, and,Q are mainly determined by
the properties of nuclear matter at low-mass densities. The
idea was that the effect is due to the fact that nuclear-physics
experiments better constrain realistic EoSs at these regimes,
and therefore, the various EoSs do not differ significantly
[28]. Subsequent investigations [37,45] demonstrated that
the universality is strongly connected to having a structure of
homologous isodensity profiles inside the stars, a property
that holds exactly for Newtonian constant density configu-
rations but is also approximately true for realistic NSs in GR.
Martinon et al. [46], and Sham et al. [47] proposed that the
ultradense EoSs are stiff enough, that can be considered as
an expansion around the incompressible limit. Therefore,
low-mass stellar objects, composed chiefly of soft matter at
low densities, would depend more sensitively on the EoS,
while the EoS-independence appears towards higher com-
pactnesses, where nuclear matter approaches the limit of an
incompressible fluid. The two pictures are compatible and
complementary to each other, since a homologous, almost
constant ellipticity, profile for the isodensity surfaces is what
one finds for stars in the incompressible limit.
Lastly, concerning the rotating star’s surface, Morsink

et al., [48] as well as AlGendy and Morsink [49] proposed
EoS-insensitive formulas related to the equatorial radius
Req, assuming that the fitting coefficients depend on both
the stellar compactness C and the dimensionless spin
σ ¼ Ω2R3

eq=GM. Silva et al. [50] reviewed these coeffi-
cients for a wider range of NS models and suggested a new
fitting formula based on an elliptical isodensity approxi-
mation [51].
In this work, we revisit some established universal

relations and produce some new ones. Along the way,
we develop a new approach to generating such relations
using machine-learning techniques. The complete analysis
is performed using statistical evaluation methods to find the
best universality patterns and supervised machine-learning
techniques, such as Cross-Validation and linear regression
using polynomial functions, to determine the best func-
tional form that verifies the correlated data. The primary
investigation is carried out for a wide range of astrophysi-
cally relevant slowly rotating as well as rapidly rotating
models with frequencies ranging from a few hundred Hz up
to kHz, close to the mass-shedding limit. More specifi-
cally, we present here universal relations related to the star’s
reduced quadrupole deformation Q̄, the normalized
moment of inertia Ī as well as the star’s reduced octupole
deformation S̄3 for a wide range of parameters including
stellar compactness and rotation. We also look into some
less standard relations, such as relations about the inverse
compactness K ¼ C−1, the fraction of kinetic to gravita-
tional energy, and the rotational frequency f of the star.
The plan of the paper is as follows. First, in Sec. II, we

briefly review the mathematical setup and EoSs used to
calculate our equilibrium stellar models ensemble. Then,
Sec. III is dedicated to presenting the statistical evaluation

test and the machine-learning framework used to extract
our results. Then in Sec. IV, we present our main EoS-
insensitive fitting formulas, while in Sec. V, we summarize
our results and present our concluding remarks. Finally, in
Appendix A, we present some additional universal relations
beyond those discussed in Sec. IV, while in Appendix B,
we present an indicative list of I −Q − S3 relations that can
be found in the literature that we compare to our corre-
sponding relations, and in Appendix C, we provide tables
with the EoS-ensemble that we have used. Unless stated
otherwise, we work in geometric units with G ¼ c ¼ 1.

II. MATHEMATICAL SETUP AND EQUATION
OF STATE MODELS

Most significant uncertainties about NS bulk properties
are related to the unknown interactions present at high-
density regions. As soon as the energy density signifi-
cantly exceeds the nuclear saturation density ρ0 ¼ 2.8 ×
1014 gr=cm3 of the ordinary standard symmetric nuclear
matter found in heavy atomic nuclei, the structure and
composition of a NS become more uncertain [5,6,10]. The
construction of sequences of static and rotating NSs
directly depends on the resulting EoS. Different proposed
EoSs have strikingly different bulk properties. When the
EoS is provided, it can be used as an input for integrating
Einstein’s field equations. Therefore, the EoS is essential
for describing the macroscopic properties of NS physics
[10,52,53]. In this work, we have constructed a large
number of equilibrium NS models for a variety of EoSs,
that are either nonrotating or uniformly rotating with
frequencies from a few hundred Hz up to the range of
∼kHz close to the mass-shedding limit. For nonrotating
configurations, solutions can be obtained after the inte-
gration of hydrostatic equilibrium equations in spherical
symmetry [10,54], while for rotating ones, we have used a
two-dimensional numerical code for integrating the non-
linear elliptic type field equations, together with the
hydrostationary equilibrium equation [52,55].
More precisely, we consider the stellar matter as perfect

fluid with local isotropy and energy-momentum tensor
[52,56],

Taβ ¼ ðϵþ PÞuauβ þ Pgaβ; ð1Þ

where ua is the fluid four-velocity, gaβ is the metric tensor,
while ϵ and P are scalar quantities that correspond to the
fluid’s total energy density and pressure, respectively.
Considering nonrotating NSs, we take a spherically sym-
metric metric [52],

ds2 ¼ −e2νðrÞdt2 þ e2λðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ

where νðrÞ and λðrÞ are time-independent metric functions
of the radial coordinate r as Birchoff’s theorem suggests.
Since the metric tensor is time independent, the matter
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inside the NS is in hydrostatic equilibrium [3,10,57].
Equilibrium models are then found as solutions of the
Tolman-Oppenheimer-Volkoff (TOV) equations [10,54],

dm
dr

¼ 4πr2ϵðrÞ; ð3aÞ

dν
dr

¼ mðrÞ þ 4πr3PðrÞ
rðr − 2mðrÞÞ ; ð3bÞ

dP
dr

¼ −ðϵðrÞ þ PðrÞÞ dν
dr

; ð3cÞ

where the function mðrÞ is identified as mðrÞ ¼
r
2
ð1 − e−2λðrÞÞ. The TOV equations are supplemented by

a cold, dense nuclear matter EoS that provides a relation
between the energy density and pressure, ϵ ¼ ϵðPÞ [10,57].
As we have mentioned, there is still uncertainty about

the EoS at high densities, and a large number of EoS
models are presented in the literature. EoS models are
based on different many-body nonrelativistic [58] and
relativistic [59] theories employed to describe nuclear
matter at ultrahigh densities in β equilibrium. More spe-
cifically, some nonrelativistic nuclear models that are taken
into account are those using nuclear effective interaction
forces (EI), cluster energy functionals (CEF), and unified
Scyrme-Hartree-Fock nuclear forces (SHF) [10]. The rela-
tivistic methods encountered are based on the relativistic
mean-field theory (RMF), the chiral perturbation theory
(chPT), the perturbative Brueckner-Bethe-Goldstone quan-
tum theory (BBG), the Brueckner-Hartree-Fock approxi-
mation with the continuous choice for the auxiliary single-
particle potential (BHF), the chiral mean-field theory
models (CMF), the nonperturbative functional renormaliza-
tion group approach (NP-FRG), the Nambu-Jona-Lasinio
(NJL) model [60] within the mean-field approximation
(NJL-MF), and, finally, the nonperturbative functional
renormalization group approach (NP-FRG) within a two
flavor quark-meson truncation in the local potential approxi-
mation (LPA) including vector interactions [10,61].
Considering these theoretical features, we have used EoS

models based on the comPOSE [62] database. In our EoS
ensemble, hadronic, hyperonic, and hybrid models were
used in tabulated form to describe the NS’s interior,
including the crust and the main core. The complete list
(38 in total) of cold EoSs used in this work for each possible
NS category examined is presented in the Tables XXIV–
XXVI given in Appendix C. For all of them, β equilibrium
and zero temperature were assumed. Therefore, the EoS
reduces to a relation between the pressure and the energy
density. In addition, many individual families are divided
even further based on the physical theory used to describe
the EoS data. Furthermore, for each EoS, we provide the
matter composition at the star’s core and also the NS

properties, such as the nonrotating maximum mass, the
corresponding radius, and the radius of 1.4M⊙ NS.
We have to note that each EoS selected in the above tables

satisfies the lower limit for the maximum nonrotating mass
for the PSR J0348þ 0432 (M ¼ 2.01þ0.04

−0.04M⊙) [63,64] and
the PSR J0740þ 6620 (M ¼ 2.14þ0.20

−0.18M⊙) (2σ credible
interval) [65] and produces a nonrotating maximum mass
NS with radius RMmax

≥ 9.60þ0.14
−0.03 km as suggested by the

GW170817 NS-NS merger analysis [66,67]. Furthermore,
none of them has a maximum mass greater than 2.32M⊙
according to the 2σ bound, assuming that the final
GW170817 remnant was a black hole [68,69]. For all
the EoS models considered, we verified that they satisfy the
acceptability conditions, which ensure equilibrium. The
imposed conditions are [10,53]

(i) first law of thermodynamics dϵ=dρ ¼ ðϵþ PÞ=ρ,
where ρ is the baryon mass density,

(ii) dominant energy condition ϵc2 > P,
(iii) microscopic stability c2s ¼ dP=dϵ ≥ 0 and causality

c2s ¼ dP=dϵ ≤ c2 which ensures that the speed of
sound cs in the dense matter should not exceed the
speed of light,

(iv) and, finally, the Harrison-Zeldovich-Novikov sta-
bility condition dM=dϵc ≥ 0, i.e., considering the
M − ϵc curve, stars with ϵc > ϵcðMmaxÞ have
dM=dϵc < 0 and are unstable, thus not astrophysi-
cally relevant. Therefore, a NS with the maximum
possible mass should have the maximum possible
central energy density ϵc.

In Fig. 1, we present the Mass-Radius diagram for the cold
EoS ensemble used in this work.
Most models assume npeμ composition in the stellar core

(Table XXIV). However, a significant number of EoSs also
include other components of exotic matter, such as hyperons
(Table XXV) or quarks (Table XXVI). It is worth mention-
ing that theM − Req relation for an EoS is displayed only up
to its maximum mass. As we see, the radius of nonrotating

FIG. 1. M ¼ MðReqÞ diagram for sequences of nonrotating
NSs. The different colors correspond to different EoSs according
to the legend given in Fig. 28. The same color-to-Eos map is used
for all subsequent figures.
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NSs mainly decreases with increasing mass, and there is a
significant scattering in the predicted maximum masses. The
horizontal lines indicate the 2σ lower and upper range for the
masses of the two most massive radio pulsars known to date,
PSR J0348þ 0432 (M ¼ 2.01þ0.04

−0.04M⊙) [64] (solid line,
lower limit) and PSR J0740þ 6620 (M ¼ 2.14þ0.20

−0.18M⊙)
[65] (dashed line, upper limit).
In general though, most astrophysical objects are often

rotating and sometimes they even rotate rapidly. A rotating
compact object is described by its mass M and its angular
momentum J [52]. In this case, the spacetime is assumed to
be stationary, axisymmetric, and asymptotically flat. These
assumptions can be mathematically formulated by intro-
ducing two Killing vectors ta and ϕa. In isotropic gauge, a
stationary metric that satisfies the assumptions mentioned
can be described by the line element [52,70],

ds2 ¼ −eðγþρÞdt2 þ eðγ−ρÞr2 sin2 θðdϕ − ωdtÞ2
þ e2aðdr2 þ r2dθ2Þ; ð4Þ

where the metric potentials γ, ρ, ω, α are functions of the
quasi-isotropic coordinates (r, θ). In the case of uniformly
rotating stellar models, the angular velocity Ω of the star is
constant. The equation of hydrostationary equilibrium for a
stationary, axisymmetric, and uniformly rotating perfect
fluid star is given by [52]

∇aP
ϵþ P

¼ ∇a ln ut; ð5Þ

where ua ¼ utðta þΩϕaÞ is the four-velocity of a fluid
element expressed in terms of the timelike and spacelike
Killing vectors ta and ϕa while

ut ¼ e−ðρþγÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΩ − ωÞ2r2 sin2ðθÞe−2ρ

p ð6Þ

follows from the normalization condition uaua ¼ −1 and
the line element in Eq. (4).
To integrate the nonlinear Einstein field equations with the

equation of the hydrostationary equilibrium [52,55,71],
many numerical methods have been developed since the
1970s [72–77]. These equations can be solved numerically
on a discrete grid using a combination of integral and finite
differences techniques [75]. Komatsu, Eriguchi, and Hachisu
(KEH) [75,76] and Cook, Shapiro, and Teukolsky (CST)
[55,78] developed an iterative numerical method using the
integral representation with Green’s functions. We use, for
the numerical integration of the equations of structure and
the field equations, the public RNS library [79] developed by
Stergioulas and Friedman [77], which is based on the
aforementioned methods.
More specifically, assuming a perfect fluid, the RNS code

solves for the NS’s interior (matter and spacetime) and

exterior (spacetime) configuration on a discrete grid with the
radial coordinate r compactified and equally spaced in the
interval s ∈ ½0; 1�, using the definition s≡ r=ðrþ reqÞ, and
the angular coordinate μ ¼ cosðθÞ also equally spaced in the
interval μ ∈ ½0; 1�. In the former definition for the compac-
tified radial coordinate s, req corresponds to the coordinate
radius of the star’s surface at the equator. The star’s center is
at s ¼ 0, the surface is at s ¼ 1=2, whereas infinity is at
s ¼ 1. The equatorial plane is located at μ ¼ 0 (θ ¼ π=2)
while the pole at μ ¼ 1 (θ ¼ 0) [52,55,70,75]. Therefore,
around half of the computational grid is assigned to the
star’s interior, while the other half is assigned to the vacuum
exterior. The usual choice for the angular grid is to be half of
the radial one. In our calculations, we use a grid size of
MDIV × SDIV ¼ 151 × 301, where MDIV is the number
of points in the μ direction (number of spokes in the angular
direction) and SDIV the number of points in the s direction.
For a given EoS, assuming uniform rotation, the RNS

code can obtain unique equilibrium solutions once a central
energy density ϵc and the axial ratio rpol=req between the
polar and the equatorial coordinate radii have been specified.
Therefore, stellar models can then be computed along
sequences in which the central energy density and the axial
ratio are varied [52,77]. Together with the star’s metric
functions that are calculated numerically in the interior and
exterior region, the RNS source code also computes the fluid
configuration as well as various equilibrium quantities, such
as the star’s gravitational mass M, the proper mass Mp, the
baryonic mass Mb, the angular momentum J, the equatorial
radius Req, the moment of inertia I, the fraction of rotational
to gravitational energy T=jWj, the spacetime’s Geroch-
Hansen multipole moments (M0 ≡M; S1 ≡ J;M2; S3;…)
[4,22,23,80–84], etc. For each EoS included in our ensem-
ble, we have calculated an extended sample of relatively
slowly and rapidly rotating NSs for a wide range of
astrophysically relevant models with central densities
[ϵc ∼ ð3 × 1014–3.1 × 1015Þ gr=cm3] and masses starting
from ∼0.9M⊙ and up to the star’s maximum mass Mmax.
In total, our entire sample includes 11983 models of rotating
NSs from a few hundred Hz (≃268 Hz) up to ∼2 kHz close
to the mass-shedding (keplerian) limit and 704 nonrotating
and Keplerian models in equilibrium.

III. CORRELATION MATRIX AND SUPERVISED
MACHINE LEARNING TECHNIQUES

In this section, we will present the tools and processes
that we have used in order to infer from the NS data the shot
for universal relations.
To thoroughly investigate and identify the possible

connections between the quantities that will be examined
in the present work, we first use a statistical evaluation test
method (correlation analysis) that brings to the surface the
underlying connections between the quantities. The method
is presented in Sec. III A.
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Then in Sec. III B, we describe the method that we use to
find the specific relations between the correlated quan-
tities. Here we implement a machine learning technique
that falls under the category of the so-called supervised
learning methods, which applies the Cross-Validation
evaluation test. Firstly, in order to indicate the best func-
tional form that describes the data, we split the dataset into
training and validation sets. Specifically, we appropriately
use the whole dataset (iteratively), comprised of n data
points, as a validation set through the Leave-One-Out
machine learning algorithm relevant for Cross-Validation.
In each iteration, we fit a polynomial model on the
corresponding training set of n − 1 data points using the
least-squares regression method, and evaluate its perfor-
mance, using statistical tools (statistical metric functions)
on the validation set (i.e., the data point that has been left
out for evaluation). In this way, for n-data points, we have
n-different training sets and n-different test sets. Therefore,
we appropriately use the whole dataset as a validation set.
We should point out here that the Leave-One-Out method
treats equally all the data points partitions and gives results
that are exactly reproducible (although it may be a little
computationally expensive). Then, the process is repeated
and evaluated for various polynomial functional forms that
could describe the data. Through this process, the best
functional form is selected that produces optimal statistical
scores.
Then this best functional form is refitted on the entire

dataset, comprised of all the n data points, in order to
determine the best-fit coefficients. This process is
described in Sec. III C, where the least-squares regression
method with polynomial models is presented in more
detail.

A. Correlation analysis-universality patterns

Motivated by the question of whether there may be
useful universal relations between NS parameters that are
yet undiscovered, we ventured to find a more systematic
way of identifying the universality patterns that may exist
between the various physical observable quantities. For
this purpose, we decided to use tools from statistical
analysis.
Correlation analysis is a method of statistical evaluation

used to study the strength of a connection between two
numerically measured, continuous variables x, y. The
analysis shows the kind of relation (in terms of direction)
and how strong the relationship between the two continuous
variables is. By direction, we mean whether the variables are
directly proportional or inversely proportional to each other,
i.e., increasing the value of one variable might positively or
negatively impact the value of the other variable. Pearson’s
correlation coefficient gives the main result of a correlation
[85,86]. Given the sample data fðxi; yiÞgNi¼1 consisting of N
pairs, the correlation coefficient is a dimensionless statistical
metric function given by

ρx;y ¼
Cov½x; y�
σxσy

; ð7Þ

where Cov½x; y� is the statistical covariance,

Cov½x;y� ¼ 1

N

XN
i¼1

ðxi− x̄Þðyi− ȳÞ¼E½x;y�− x̄ ȳ¼ σxy; ð8Þ

and σx, σy represent the standard deviations defined as

σx ¼
�
1

N

XN
i¼1

ðxi− x̄Þ2
�1=2

; σy ¼
�
1

N

XN
i¼1

ðyi− ȳÞ2
�1=2

:

ð9Þ

In the above definitions, xi, yi are the individual sample
points indexed with i while x̄; ȳ, and E½x; y� are the
corresponding expectation values. First, we must note that
Pearson’s coefficient ρx;y ranges from −1 to þ1. The closer
its value is to þ1 or −1, the more closely the two examined
variables (x, y) are related. When the correlation coefficient
is positive, an increase in one variable also increases the
other, while when the correlation coefficient is negative, the
changes in the two variables are in opposite directions. If
variables x and y are independent, then by definition, the
correlation coefficient must be zero. However, if it is zero
and we do not have specific information about the
variables, we can only say there is no linear dependence.
Other functional relations could exist between the varia-
bles [85,86].
For a random vector X ¼ ðX1;…; XpÞ the table con-

taining all possible correlations between the pairs of the
examined variables, considering CorðXi; XiÞ ¼ 1, is
defined as

CorðXÞ¼

2
6666664

1 CorðX1;X2Þ … CorðX1;XpÞ
CorðX2;X1Þ 1 CorðX2;XpÞ

..

. . .
. ..

.

CorðXp;X1Þ CorðXp;X2Þ … 1

3
7777775
:

ð10Þ

For the various NS parameters that we have investigated
for correlations, the resulting correlation matrix is given in
Fig. 2. The various observables presented in Fig. 2 corre-
spond to rapidly rotating stellar models and will be defined
in the Sec. IV, where we highlight our EoS-insensitive
relations.

B. Cross-validation

We now proceed to briefly describe the evaluation
process followed in order to find the best functional form
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that describes the data. In general, training a model to
“learn” its parameters (by optimizing the prediction model
function called the Loss function) and evaluating the
model’s statistical performance on the same dataset is a
methodological mistake. This is because, during training,
the model associates patterns or features with duplicate
labels in the training data, resulting in repeated labeling of
new data points. This situation is designated as overfitting.
Thus, it is possible to fail to predict anything useful on yet-
unseen data. Consequently, the model would not have the
appropriate generalization ability. Generalization is the
ability of the model to correctly categorize new examples
that differ from those used for training. More specifically,
the variability of the input vectors may be such that the
training data would comprise only a tiny fraction of all
possible input vectors. Therefore, generalization is the
central goal in machine learning [87] in order to be able
to have a wider application.
In order to compute the model that best describes the

data, it is common practice to hold out a part of the
available dataset, hidden from the training process, known
as test set (Xtest; Ztest). This is only possible when con-
ducting a supervised (predictive) machine-learning experi-
ment. By supervised machine learning task, we define the
predictive approach that its goal is to learn a mapping from
inputs x to outputs z given a labeled set of input-output
pairs D ¼ fðxi; ziÞgNi¼1.
We define D as the training set and N as the number of

training examples [88]. This evaluation process must be
performed to select the best-fitting function that universally
describes the data (generalization ability). The following
figure shows a flowchart of a typical Cross-Validation
workflow in model training. Grid search techniques can
determine the best parameters [89]. The procedure illus-
trated in the flowchart (3) is repeated for different trial
function models in order to find the functional form that

best describes the data (best fitting function). More spe-
cifically, when evaluating different estimator parameters,
i.e., different model functions in order to describe the data,
there is a risk of overfitting on the test set used. This is
because the fitting parameters can be tweaked until the
estimator operates optimally on the test set. This way,
information about the test set can leak into the model, and
evaluation metrics no longer report on generalization
performance. In order to solve this problem, an additional
part of the dataset sample can be held out as a validation set.
In the validation set, the training proceeds on the training
set, after which evaluation is done on the validation set.
When the experiment seems to be successful, a final
evaluation can be done on the test set. In the most popular
approach, defined as k-fold Cross-Validation, the training
dataset is split into k disjoint subsets (folds) [89,90]. Then,
the following procedure is used for each one of the k-folds:
(1) A model function is trained using k − 1 of the folds

as training data.
(2) The resulting model function is validated on the kth

fold of the data as a test set.
The performance estimation reported is then the average of
the values computed during the k-fold Cross-Validation.
This procedure can be computationally expensive but does
not waste too much data (as is the case when producing an
arbitrary validation dataset), which is a significant advan-
tage in problems such as inverse inference where the
number of samples is small. More clearly the process is
given in Fig. 4 [89,90].
There are a lot of different Cross-Validation iteration

strategies that can be used to generate dataset splits. In this
work, we use the “Leave-One-Out” cross-validation
(LOOCV) method. LOOCV is a simple cross-validation
method that provides train/test indices to split data into
train/test sets. Each sample is used once as a test set
(singleton), while the remaining samples form the training
set. Therefore, each learning set is created by taking all the
samples except one, the test set being the sample left out.

FIG. 3. Best fit parameters: Cross-Validation flowchart [89,91].

FIG. 2. Correlation matrix for the physical quantities consid-
ered in Sec. IV for rapidly rotating stellar models.
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Thus, for n samples, we have n different training sets and n
different test sets, i.e., the number of test sets is the same as
the number of samples. LOOCV is a more computationally
expensive but accurate validation method found in the
literature. In addition, models constructed from LOOCVare
virtually identical to each other, and the models are built
from the entire training set [89,90].
For estimating and evaluating the model’s performance

in the LOOCV test, we use the following statistical metric
functions [89,90].

(i) Max error: The max error function computes the
maximum residual error (difference between the
observed value and the estimated one), which
captures the worst-case error between the predicted
and actual values. Considering a perfectly fitted
regression model, the training set’s max error would
be zero. However, this would be highly unlikely in
the real world. This metric function shows the extent
of error the model had when fitted. If ẑi is the
predicted value of the ith sample and zi is the
corresponding actual value, then the max error is
defined as

Max Errorðz; ẑÞ ¼ maxðjzi − ẑijÞ; ð11Þ

while the maximum deviation is given as

dmaxðz; ẑÞ ¼ max

� jzi − ẑij
maxðϵ; jzijÞ

�
; ð12Þ

where ϵ is an arbitrarily small yet strictly positive
number to avoid undefined results when z ¼ 0. The
result for dmaxðz; ẑÞ lies in the range [0, 1]. In
addition, other common statistical evaluation func-
tions used are the mean absolute error (MAE),

MAEðz; ẑÞ ¼ 1

n

Xn−1
i¼0

jzi − ẑij; ð13Þ

and the mean squared error (MSE),

MSEðz; ẑÞ ¼ 1

n

Xn−1
i¼0

ðzi − ẑiÞ2; ð14Þ

computed as the average values over n different test
sets. At this point, we have to note that the max error,
the maximum deviation, the MAE, and the MSE are
slightly larger at the validation set compared to the
corresponding quantities in the training set.

(ii) Mean absolute percentage error metric: The mean
absolute percentage error (MAPE) is a metric
evaluation function for regression problems. The
idea of this metric function is to be sensitive to
relative errors. Therefore, it is not expected to be
changed by a global scaling of the target variable.
For example, if ẑi is the predicted value of the ith
sample and zi is the corresponding actual value, then
the mean absolute percentage error (MAPE) esti-
mated over the number of samples n is defined as

MAPEðz; ẑÞ ¼ 1

n

Xn−1
i¼0

jzi − ẑij
maxðϵ; jzijÞ

: ð15Þ

Again, ϵ is an arbitrarily small but positive number
used to avoid undetermined results when z ¼ 0.
Again, the result is in the range [0, 1].

(iii) Explained Variance: Explained Variance is a re-
gression score metric function. For example, if ẑ is
the estimated target output, z the corresponding
actual target output, and Var is variance, the square
of the standard deviation, then the Explained Vari-
ance is estimated as

Explained Varianceðz; ẑÞ ¼ 1 −
Var½z − ẑ�
Var½z� : ð16Þ

The best possible score at this metric function is 1.0,
while lower values are worse.

Based on the cross-validation evaluation process, the
reference criteria for selecting the fitting function are the
statistical evaluation functions with the optimum results. To
be precise, from all the possible functional forms tested to
verify the data, the one with the optimal statistical metric
evaluation functions is selected.

C. Least-squares regression

We now define the mathematical model used to adapt the
best-fit function that describes the data. In this work, we use
the linear least-squares regression approach to determine

FIG. 4. 5-fold Cross-Validation splitting procedure. In this
example, 20% of the data has been left out for each iteration
and is shown as a test set. The remaining four samples (folds)
form the training set [89,91].
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the best-approximating data fit. The Loss function that is
optimized by the training procedure is the sum of the
squares of differences between the given z values (observed
values) and the ẑ values provided by the regression model.
This procedure aims for the regression model to approxi-
mate the best-fitting function for the training data. For
example, given a dataset that consists of ðxi; yi; ziÞ, i ¼
1;…n data, where (xi, yi) are the independent variables and
zi are the dependent ones, the best-fit optimal parameters â,
also known as optimizers, can be found by optimizing the
Loss function [92,93],

L ¼
Xn
i¼1

���zi − F ðxi; yi; âÞ
���2 ¼ Xn

i¼1

r2i ; ð17Þ

with ri ¼ zi − F ðxi; yi; âÞ. Depending on the case,
the mathematical model function used has the form
F ðx; y; âÞ ¼ P

m
j¼0 âjHjðx; yÞ, where m adjustable and

uncorrelated optimizer parameters are held in the vector
â, i.e., â ¼ ½â0; â1; â2…::âm−1; âm�, while Hjðx; yÞ is a
function of polynomial combinations of x and y. The
regression coefficients â for the model that best fits the
data should be given from the minimum of the Loss
function by setting the corresponding partial derivative to
zero. Since the model contains m uncorrelated optimizer
parameters â, there are m equations given by

∂L
∂âj

¼ −2
Xn
i¼1

ri

�
∂ri
∂âj

�
¼ −2

Xn
i¼1

ri

�
∂F
∂âj

�
¼ 0; ð18Þ

where j ¼ 0; 1;…; m. Therefore, to compute the model
optimizers â, we need to set each partial derivative to zero
and simultaneously solve the resulting equations system
(normal equations) [92]. Thus, for each particular univer-
sal correlation, it is necessary to derive a specific expres-
sion for the best possible fit regression model function
F ðx; y; âÞ, as well as its partial derivatives in order to find
the best-fit optimizers â.

IV. RESULTS-EoS INSENSITIVE (UNIVERSAL)
RELATIONS

The correlation analysis described in the previous
section, gave some candidates that are well-known in the
literature, such as the I − Q̄ pair or the S̄3 − Q̄ pair, as well
as some new. It also gave some hints on possible improve-
ments of the fit by the inclusion of an additional parameter
in some cases. In this section, we will present our findings,
which are either improvements on known relations or new
relations altogether. The selection given in this section will
also serve to demonstrate the algorithm for producing such
relations.
The presentation of the results will be organized in the

following way, Sec. IVA is dedicated to proposing a
universal relation for the reduced quadrupole moment Q̄,

Sec. IV B proposes a relation for the inverse stellar
compactness K, Sec. IV C for the fraction of rotational
to gravitational energy E ¼ T=jWj, and Sec. IV D presents
a relation for the reduced stellar rotational frequency
M × f̃, where f̃ ¼ f=c. Then, in Sec. IV E, we suggest
several EoS-independent relations for the reduced moment
of inertia Ī ¼ I=M3. Finally, in Sec. IV F, we present some
EoS-insensitive relations for the reduced spin octupole
moment S̄3 ¼ −S3=ðχ3M4Þ.
We define a relation between some chosen parameters to

be “universal” when the relative errors in the validation set
are ≲Oð10%Þ. The validation method that we use, that
produces these relative errors, ensures that our universal
relations have the generalization ability beyond the training
data. This is a critical aspect that distinguishes our models
from other fits presented so far in the literature, that lack
this sort of validation evaluation and, therefore, carry a
heightened risk of overfitting on training data. In short, our
analysis can ensure that our models have a better chance of
performing within the quoted relative errors on new, yet-
unseen data.

A. A universal relation for the reduced quadrupole
moment Q̄

The relativistic multipole moments characterize a space-
time’s structure and physical properties (i.e., the geometry,
the geodesics, and so on and so forth). However, in the case
of the spacetime surrounding NSs, these moments depend
on the star’s internal structure, which is determined by the
unknown EoS [22,23,31,84,94–96].
Therefore, exploring EoS-insensitive relations concern-

ing the multipole moments is quite important. In this
section, we present a universal relation for the Geroch-
Hansen mass quadrupole moment M2 expressed in geo-
metric units (½M2� ¼ ½km2�). Specifically, the relations are
with respect to the dimensionless reduced quadrupole
moment Q̄ defined as Q̄≡ −M2M=J2 ¼ −M2=ðM3χ2Þ,
where χ is the dimensionless angular momentum, andM is
the mass of the NS given in geometric units (½M� ¼ ½km�).
To identify successful universal relations for the reduced

quadrupole moment Q̄, we have considered the following
parameters, the dimensionless stellar compactness C, and
either the dimensionless angular momentum χ or the
dimensionless spin σ ¼ Ω2R3

eq=GM, both taken as param-
eters referring to the star’s rotation.
For our sample of rapidly rotating models, these param-

eters are in the respective ranges, 0.085 ≤ C ≤ 0.313;
0.227 ≤ χ ≤ 0.799, and 0.067 ≤ σ ≤ 1.033. In Fig. 5, we
present, for completeness, the C − χ and C − σ distributions
in the phase space for each EoS selected from our sample.
It has become clear in the literature that the EoS-

independent behavior between observable quantities is
sensitive to the choice one makes in selecting parameters
[4]. Therefore, having our choice of parameters being
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informed by our correlation analysis, and the results shown
in Fig. 5, where we can see that the χ parametrization does
not give a 1-1 correspondence to C, we select to further
investigate only a relation between Q̄ and the parameters C,
and σ.
The surface Q̄ ¼ Q̄ðC; σÞ that best describes the data has

the functional form,

Q̄ðC; σÞ ¼
X5
n¼0

X5−n
m¼0

ânmCnσm: ð19Þ

Compared to other regression models examined, this is the
mathematical model with the best statistical evaluation
metric functions at LOOCV. The corresponding results for
an indicative list of models are presented in Table I.
More or less complicated polynomial combinations of C,

and σ do not improve the fit quality. From the surface-fit
evaluation, the polynomial function’s (19) (best fit) opti-
mizers ânm are presented in Table II.
The surface fit and the corresponding relative errors are

presented in Fig. 6.
As we can see in Fig. 6, with this Q̄ ¼ Q̄ðC; σÞ-

parametrization, the relative errors between the regression
formula (19) and the observed Q̄ are ≲6.866% for all EoSs
and NS models considered. The most significant relative
deviations (≥ 5%) are due to the less compact stars with
(0.104 ≤ C ≤ 0.162, 48 models) and the most compact

ones with (C ≥ 0.264, 13 models) regardless of the spin
parameter σ. Consequently, the Q̄ ¼ Q̄ðC; σÞ formula (19)
corresponds to a well-behaved universal relation for all the
rotating NS models considered.
In the histogram presented in Fig. 7, we show the

rotating models’ data distribution concerning the relative
errors 100% × ðΔQ̄=Q̄Þ derived. It is evident that the
formula (19) reproduces the vast majority of data values
with an error ≲5%. Finally, as an additional demonstration
of the success of equation (19), we present in Fig. 8
different curves derived from the relation (19), for different
values of the rotation spin parameter σ, plotted against the
data from all of our EoSs, for corresponding rotation rates.
As we can see in Fig. 8 (upper plot), the theoretical

prediction coming from (19) is in good agreement with the
data for different σ. In addition, formula (19) also reproduces
the universal behavior between the Q̄ and C for the slowly
rotating stellar configurations described by the Hartle-
Thorne approximation as presented in [25] (see the bottom
plot in Fig. 8 for σ ∈ ½0.01; 0.09�). However, we have to note

FIG. 5. C − χ and C − σ representations in the phase space that
covers a wide range of rotation rates and stiffness. The com-
parison between the two plots indicates that σ may be a better
parameter than χ.

TABLE I. Indicative list of LOOCV evaluation metrics for the
Q̄ðC; σÞ ¼ P

κ
n¼0

P
κ−n
m¼0 ânmC

nσm parametrization, where κ is the
highest order of the polynomial function. Exp var throughout
refers to the Explained Variance.

MAE Max error MSE dmax (%) MAPE (%) Exp var κ

0.2265 2.549 0.0900 81.853 7.321 1.0 2
0.092 1.093 0.0174 36.463 2.689 1.0 3
0.066 0.771 0.0104 13.011 1.585 1.0 4
0.063 0.744 0.0097 6.899 1.491 1.0 5
0.065 0.786 0.0099 9.538 1.575 1.0 6
0.062 0.758 0.0095 7.173 1.455 1.0 7

TABLE II. ânm regression optimizers for the Q̄ðC; σÞ para-
metrization (19).

â00 × 102 â01 × 101 â02 × 101 â03 × 101

0.6802751 −4.3993096 2.7137482 −1.0955132

â04 × 10−2 â05 â10 × 103 â11 × 102

−9.6154370 1.445554 −1.0699002 5.0094955

â12 × 102 â13 × 101 â14 × 101 â20 × 103

−2.2554846 7.6965321 −1.3503803 7.7681018

â21 × 102 â22 × 102 â23 × 101 â30 × 104

5.0094955 6.1857273 −9.3568604 −3.0342856

â31 × 103 â32 × 102 â40 × 104 â41 × 103

5.5645259 −6.0425422 6.1273085 −5.1861927

â50 × 104

−5.0058667

FIG. 6. Q̄ as a function of the dimensionless parameters C, and
σ and relative errors. The plotted surface corresponds to the
regression polynomial formula (19). The relative errors to the fit
are given as (100%ðjΔQ̄j=Q̄Þ ¼ 100%jQ̄fit − Q̄j=Q̄).
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that the two formulations fail to converge for the less
compact stellar models, which correspond to the higher
values of the reduced quadrupole.

B. A universal relation for the inverse stellar
compactness K=C− 1

In the literature, one can find analytic spacetimes that
describe the geometry exterior to NSs [96–98] as well as
models for the shape of the surface of NSs [50], that are all
based on the multipole moments of the central object.
Therefore, another universal relation that would be useful

to investigate is one that links the inverse stellar compact-
ness K ¼ Req=M (i.e., the normalized equatorial stellar
radius) to the multipole moments, and more specifically to
the reduced quadrupole moment Q̄ and the dimensionless
angular momentum χ.
Due to the large deviations introduced by rotating models

near the mass shedding limit f ∼ 2 kHz, we limit our
analysis to NS configurations that rotate with frequencies
in the range of 0.2278 kHz≲ f ≲ 1.7528 kHz and have
stellar parameters that range from 0.094≲ C ≲ 0.313, and
0.23≲ χ ≲ 0.65. This ensemble includes 7046 stellar mod-
els out of the total 11983 that were used in the previous
subsection. The surface-formulaKðχ; Q̄Þ that best describes
the data has the functional form,

Kðχ; Q̄Þ ¼ Req

M
¼

X5
n¼0

X5−n
m¼0

b̂nmχnQ̄m; ð20Þ

and gives the NS’s equatorial radius in terms of the mass,
dimensionless spin χ, and Q̄. Again, this is the regression
model with the optimal statistical evaluation metric func-
tions at LOOCV. Other regression functions of χ, and Q̄ do
not improve the fit quality. The corresponding results for an
indicative list of models are presented in Table III. From the
surface-fit evaluation, the best-fit optimizers b̂nm are pre-
sented in the Table IV. The surface fit (20) that best
reproduces the data and the corresponding relative errors
are presented in Fig. 9.
Using this K ¼ Kðχ; Q̄Þ parametrization, the relative

errors between the fit (20) and the observed K are
≲6.443% for all EoSs considered (universality). The
cases with relative deviations ≥ 5% correspond to 18 of
the less compact stellar models with C ∈ ½0.096; 0.124�,
Q̄ ∈ ½6.459; 10.564�, and χ ∈ ½0.248; 0.602�.
Therefore, the K ¼ Kðχ; Q̄Þ formula is, to a satisfactory

degree, a universal relation for all the rotating stellar
models considered. This is further demonstrated in
Fig. 10 where it is evident that (20) reproduces most data
values with an error ≲5%. To conclude, the formula (20)
represents a useful EoS-insensitive description of the star’s
equatorial radius Req in terms of the mass M, reduced
quadrupole Q̄, and spin χ.

FIG. 7. Histogram: Distribution of the number of rotating NS
models vs relative errors for the regression formula (19).

FIG. 8. Q̄ ¼ Q̄ðCÞ curves for different values of the reduced spin
parameter σ for rapidly rotating stellar models. Upper plot: The
black dots correspond to the quantities derived from RNS for the
total ensemble of EoSs considered, while the colored curves are the
prediction according to the formula (19). Bottom plot: Prediction
of (19) in the slowly rotating limit with σ ∈ ½0.01; 0.09�.

TABLE III. Indicative list of LOOCVevaluation metrics for the
Kðχ; Q̄Þ ¼ P

κ
n¼0

P
κ−n
m¼0 b̂nmχ

nQ̄m parametrization.

MAE Max error MSE dmax (%) MAPE (%) Exp var κ

0.088 0.708 0.015 11.919 1.5829 1.0 2
0.077 0.707 0.012 7.190 1.329 1.0 3
0.072 0.682 0.011 6.930 1.221 1.0 4
0.070 0.638 0.010 6.480 1.177 1.0 5
0.087 0.993 0.015 9.374 1.487 1.0 6
0.070 0.618 0.010 6.688 1.179 1.0 7
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C. A universal relation for the fraction of kinetic to
gravitational energy E =T=jWj

One could also look for universal relations that can give
us properties of NSs that are not directly observable, but
are nevertheless important for their structure, with respect
to stability considerations, for example. One such inter-
esting quantity would be the dimensionless fraction of
kinetic to gravitational energy T=jWj, which is related to
the change of the equilibrium shape of a rotating fluid
configuration. Here we explore a universal relations that
relates Q̄, and χ to T=jWj. We note that T=jWj is
essentially a different representation of the star’s rotation.
A star’s rotational kinetic energy is expressed as
T ¼ 1

2

R
ΩdJ, while the gravitational energy is given as

W ¼ Mpc2 þ T −Mc2 [1] (Mp is the star’s proper mass,
while M is the gravitational mass), and for the NS
ensemble of 7046 models that we have used is in the
range 0.012 ≤ T=jWj ≤ 0.1020.
For the universal relation, we have chosen to express

T=jWj as a function of the parameters χ; lnðQ̄Þ. The fitting
formula T=jWj ¼ Eðχ; lnðQ̄ÞÞ that optimally reproduces
the data has the functional form,

T
jWj ¼ Eðχ; lnðQ̄ÞÞ ¼

X5
n¼0

X5−n
m¼0

ĉnmχn ðln Q̄Þm: ð21Þ

This is the simplest (less complicated) regression function
of the functions that we tested that gave a satisfactory fit;
i.e., there were higher-order (κ > 5) polynomial functions
that gave better statistical evaluation metric functions at
LOOCV from those presented in the Table V for κ ¼ 5.
Nevertheless, selecting functions that were too complicated
was not worth the slight improvement of the fit quality.
Therefore, from the surface-fit evaluation, the model’s
optimizers ĉnm are presented in the Table VI.
The surface evaluation fit (21) and the corresponding

relative errors are presented in Fig. 11. The Eðχ; lnðQ̄ÞÞ-
parametrization gives relative deviations between the fit
(21) and the data that are ≲2.815%, with only 35 models
out of the 7046 having ≳1.5%. In Fig. 12, we present the
distribution histogram concerning the relative errors

FIG. 9. K ¼ Req=M as a function of the dimensionless param-
eters χ; Q̄ and relative error distribution. The analysis considers
rapidly rotating NS models with frequencies in the range of
0.2278 kHz≲ f ≲ 1.7528 kHz. The surface corresponds to the
formula (20). The relative errors given as (100%ðjΔKj=KÞ ¼
100%jKfit −Kj=K) are computed between the fit and the data.

FIG. 10. Histogram: The distribution of the 7046 models used
vs the relative errors for the formula (20).

TABLE IV. b̂nm regression optimizers for the Kðχ; Q̄Þ para-
metrization (20).

b̂00 × 101 b̂01 b̂02 × 10−1 b̂03 × 10−2

1.0096592 1.8238166 −2.0956902 2.7949308

b̂04 × 10−3 b̂05 × 10−5 b̂10 × 102 b̂11
−1.9398241 4.9502268 −1.2168276 −4.9461032

b̂12 × 10−1 b̂13 × 10−2 b̂14 × 10−4 b̂20
−1.1701846 1.9652010, −4.3842554 −4.9461032

b̂21 × 101 b̂22 × 10−1 b̂23 × 10−2 b̂30 × 103

2.1398537 −1.5834957 −1.2228542 −1.8417567

b̂31 × 101 b̂32 × 10−1 b̂40 × 103 b̂41 × 101

−3.2814514 2.6746975 2.4285095 1.8288763

b̂50 × 103

−1.2443348

TABLE V. Indicative list of LOOCV evaluation metrics for the
Eðχ; lnðQ̄ÞÞ ¼ P

κ
n¼0

P
κ−n
m¼0 ĉnmχ

nðln Q̄Þm parametrization.

MAE
ð×10−3Þ

Max error
ð×10−2Þ

MSE
ð×10−5Þ

dmax
(%)

MAPE
(%)

Exp
var κ

0.713 0.406 0.092 23.377 2.089 1.0 2
0.232 0.182 0.011 11.888 0.608 1.0 3
0.151 0.158 0.006 5.433 0.325 1.0 4
0.134 0.148 0.005 3.020 0.269 1.0 5
0.131 0.152 0.005 2.362 0.259 1.0 6
0.129 0.154 0.005 2.092 0.256 1.0 7
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100% × ðΔE=EÞ derived. From Fig. 12, it is evident that the
regression formula (21) corresponds to a very good
universal relation which gives accurate results for all the
stellar models considered, reproducing most data values
with an error ≲1.5%.

D. A universal relation for the normalized rotational
frequency M × f̃

An observationally important quantity for a NS is its
rotational frequency f̃. This is mainly due to the fact that, in
many cases, it is the simplest quantity to measure.
Therefore, it would be useful to have a relation that
connects the star’s rotation frequency with other parame-
ters. In order to do that, we use the quantity D ¼ M × f̃=χ
instead of f̃ itself and express it as a function of the
dimensionless spin χ and the reduced quadrupole defor-
mation Q̄.
In the definition mentioned above for D, the star’s mass

is given in geometric units, whereas f̃ ¼ Ω=2πc. A similar
relation had been proposed in [96], where it was pointed
out that D corresponds to the reciprocal of Ī. The surface
that best describes the data has the functional form,

D ¼
X4
n¼0

X4−n
m¼0

ĉnmχn ðln Q̄Þm: ð22Þ

This is the regression function with the optimal statistical
evaluation metrics at LOOCV. The corresponding results
for an indicative list of models examined are given in
the Table VII, while the regression optimizers ĉnm for the
fitting function (22) are presented in the Table VIII.
The fitting formula (22) that optimally reproduces the
data and the corresponding relative deviations are pre-
sented in Fig. 13. Using this D ¼ Dðχ; ln Q̄Þ parametri-
zation, the relative errors between the fit (22) and the data
are ≲5.220% (universality). Out of the full dataset, only
42 models have relative deviations ≥ 2%, corresponding
to models with stellar compactness C ≤ 0.212 and spin
χ ∈ ½0.233; 0.3013�. This behavior is shown in Fig. 14,
where it is evident that the fitting function (22) reproduces
most of the data values with accuracy ≤ 2%. This relation
provides a useful universal description of rotation frequen-
cies in terms of the NS (and spacetime) parameters
M, χ, and Q̄.

FIG. 12. Histogram: Distribution of the 7046 models used vs
relative errors from the regression formula (21).

TABLE VI. ĉnm regression optimizers for the Eðχ; ln Q̄Þ para-
metrization (21).

ĉ00 × 10−3 ĉ01 × 10−3 ĉ02 × 10−4 ĉ03 × 10−3

−6.9786155 −9.5138577 −5.6766317 3.8583851

ĉ04 × 10−3 ĉ05 × 10−4 ĉ10 × 10−1 ĉ11 × 10−1

−2.7620777 5.1787682 1.2959001 1.1731501

ĉ12 × 10−2 ĉ13 × 10−2 ĉ14 × 10−3 ĉ20 × 10−1

−4.9604453 2.8783020 −4.3501526 −7.0668356

ĉ21 × 10−1 ĉ22 × 10−1 ĉ23 × 10−3 ĉ30
−1.4800551 −1.1282566 5.3987682 2.8942703

ĉ31 × 10−1 ĉ32 × 10−2 ĉ40 ĉ41 × 10−1

4.2370939 8.3353042 −4.1338397 −4.4797049

â50
2.3560209

FIG. 11. E ¼ T=jWj as a function of the parameters χ; lnðQ̄Þ
and relative error distribution. The analysis considers rapidly
rotating NS models with frequencies in the range of
0.2278 kHz≲ f ≲ 1.7528 kHz. The surface corresponds to the
formula (21).

TABLE VII. Indicative list of LOOCV evaluation metrics for
the D ¼ P

κ
n¼0

P
κ−n
m¼0 ĉnmχ

nðln Q̄Þm parametrization.

MAE
ð×10−3Þ

Max error
ð×10−3Þ

MSE
ð×10−6Þ

dmax
(%)

MAPE
(%)

Exp
var κ

0.192 1.352 0.065 25.341 1.351 1.0 2
0.082 0.638 0.012 13.545 0.532 1.0 3
0.057 0.439 0.007 5.306 0.322 1.0 4
0.054 0.407 0.006 5.634 0.297 1.0 5
0.053 0.412 0.006 5.349 0.290 1.0 6
0.053 0.398 0.006 4.970 0.297 1.0 7
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E. Universal relations for the normalized
moment of inertia Ī

We now turn our attention to a quantity involved in one
of the better-known universal relations, the normalized
moment of inertia Ī. The moment of inertia for a rigidly
rotating configuration is defined as I ¼ J=Ω. The mass
mainly influences the star’s moment of inertia in the star’s
outer regions; therefore, the increases in mass and radius
lead generically to larger moments of inertia [2]. In
geometric units, the NS’s moment of inertia is expressed

as Igeom ¼ IG=c2 with ½Igeom� ¼ ½km3�. The normalized
(dimensionless) moment of inertia Ī is defined as
Ī ¼ Igeom=M3, whereM is the mass of the NS in geometric
units (½M� ¼ ½km�). In what follows, we investigate uni-
versal relations between the normalized moment of inertia
Ī and the dimensionless quantities C; χ; σ; E (i.e., T=jWj),
and Q̄. We remind that, for the total sample of the 11983
NS models considered, for all the rotation rates, these
parameters are in the ranges of, 0.085 ≤ C ≤ 0.313; 0.227
≤ χ ≤ 0.799; 0.067 ≤ σ ≤ 1.033, and 0.012 ≤ E ≤ 0.146.
The normalized moment of inertia Ī is related to the star’s

rotation and deformation. Therefore, it is expected to be
related to the parameters χ, σ, E, and the reduced quadru-
pole deformation Q̄. In what follows, we first investigate
the correlation between the quantities Ī, χ, and Q̄, as has
already been done in the literature [31]. The surface Ī ¼
Īðχ; Q̄Þ that best describes the data for these parameters has
the functional form,

Īðχ; Q̄Þ ¼
X4
n¼0

X4−n
m¼0

d̂nmχnQ̄m: ð23Þ

Again, this is the least complicated function compared to
other regression models tested (i.e., higher-order than κ ¼ 4
polynomial functions), but it is a good enough fit, while the
improvement from going to higher order is only marginal
and not worth the effort. The corresponding results for an
indicative list of regression models tested are shown in
Table IX. Therefore, from the surface-fit evaluation, the
fitting-optimizers d̂nm are presented in Table X.
The best fit (23) to the data and the corresponding

relative errors are presented in Fig. 15. The relative errors
between the fit (23) and the observed Ī are≲5.515%, while
only 88 stellar models out of the total have relative
deviation ≥ 2%. The histogram in Fig. 16 presents the
relative errors distribution. It is clear from Fig. 16 that the
regression formula (23) corresponds to a well-behaved
EoS-independent relation which gives good results for all
the rotating models considered. Moreover, it reproduces
most data values with an error ≲2%. Consequently, it is a
useful relation between Ī and the parameters χ and Q̄.
Additionally, in Fig. 17, we present curves that are derived

FIG. 13. D ¼ M × f=χ as a function of the parameters χ; lnðQ̄Þ
and corresponding relative error distribution. The models used
have frequencies in the range of 0.2278 kHz≲ f ≲ 1.7528 kHz.
The surface correspond to the formula (22), while the relative
errors are given as (100%ðjΔDj=DÞ ¼ 100%jDfit −Dj=D).

FIG. 14. Histogram: Distribution of the 7046 models used vs
relative errors from the formula (22).

TABLE IX. Indicative list of LOOCVevaluation metrics for the
Īðχ; Q̄Þ ¼ P

κ
n¼0

P
κ−n
m¼0 d̂nmχ

nQ̄m parametrization.

MAE Max error MSE dmax (%) MAPE (%) Exp var κ

0.110 1.808 0.022 11.320 1.205 1.0 2
0.048 1.605 0.005 5.919 0.524 1.0 3
0.035 1.522 0.004 5.613 0.360 1.0 4
0.031 1.482 0.003 5.466 0.311 1.0 5
0.030 1.588 0.003 5.858 0.294 1.0 6
0.029 1.549 0.003 5.716 0.290 1.0 7

TABLE VIII. ĉnm regression optimizers for the Dðχ; ln Q̄Þ
parametrization (22).

ĉ00 × 10−2 ĉ01 × 10−2 ĉ02 × 10−3 ĉ03 × 10−3

4.0303260 −2.19273872 5.0581320 −1.5218766

ĉ04 × 10−4 ĉ10 × 10−3 ĉ11 × 10−2 ĉ12 × 10−2

3.2231043 2.5119111 −1.2777319 1.1903211

ĉ13 × 10−3 ĉ20 × 10−3 ĉ21 × 10−2 ĉ22 × 10−3

−2.6225836 −2.7619227 −1.7579355 3.4932330

ĉ30 × 10−2 ĉ31 × 10−3 ĉ40 × 10−2

1.4039214 7.5211686 −1.4772850
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from the universal relation (23) for different values of the
dimensionless angular momentum χ.
As we can see from Fig. 17 (upper plot) as well, the

theoretical prediction given by (23) verifies the data for
different χ values quite accurately. Also, for relatively
“slow” rotating stellar models with χ values 0.23 and 0.30,
the corresponding curves from the Ī − Q̄ relation tend to
coincide, which leads to the well-known universal behavior
for slowly rotating NSs in the Hartle-Thorne approximation
(bottom plot in Fig. 17).

F. Universal relations for the reduced spin
octupole moment S̄3

Apart from the mass quadrupole moment, another multi-
pole moment that can be useful for NSs is the spin octupole
moment S3, which is the next order contribution in the spin
moments after the angular momentum. It has been shown
that NSs seem to observe a universal three-hair property,
where the moments higher than the quadrupole depend on
the first three, i.e., the mass, the dimensionless angular
momentum, and the quadrupole [31,37,38].
In this section, we revisit the universal relation for the

Geroch-Hansen octupole moment S3 in terms of the
quadrupole and look for improvements but also explore
other possibilities as well. The S3 is computed in geometric
units (½S3� ¼ ½km4�), while the reduced octupole moment
S̄3 is defined as S̄3 ¼ −S3=ðχ3M4Þ.
We first look for a relation similar to the one for the

quadrupole and therefore investigate some relation that
connects the reduced octupole moment S̄3 with the star’s
stellar compactness C and the rotation parameters χ, σ.
However, as we can see from Tables XI and XII, the S̄3 ¼
S̄3ðχ; CÞ and the S̄3 ¼ S̄3ðσ; CÞ parametrizations do not give
satisfactory results at the LOOCV evaluation test for the
indicative class of regression models examined.

FIG. 15. Ī as a function of the dimensionless parameters χ; Q̄
and relative error distribution for our sample. The surface
corresponds to the formula (23). The relative errors are given
as (100%ðjΔĪj=ĪÞ ¼ 100%jĪfit − Īj=Ī).

FIG. 16. Histogram: Rotating NS models used vs relative errors
distribution derived from regression formula (23).

FIG. 17. Ī ¼ ĪðQ̄Þ curves for different values of the dimension-
less angular momentum χ. Upper plot: The black dots correspond
to the observable quantities derived from RNS, while the colored
curves correspond to the theoretical prediction coming from the
regression formula (23). Bottom plot: Prediction of (23) in the
slowly rotating limit using different values of χ ∈ ½0.01; 0.10�
compared against results in the literature [25].

TABLE X. d̂nm regression optimizers for the Īðχ; Q̄Þ para-
metrization (23).

d̂00 d̂01 d̂02 × 10−1 d̂03 × 10−2

2.0783240 2.1236130 −1.1322365 1.4017422

d̂04 × 10−4 d̂10 d̂11 × 10−1 d̂12 × 10−2

−4.7146766 −1.0681569 3.6822470 −6.4286919

d̂13 × 10−3 d̂20 × 10−1 d̂21 d̂22 × 10−3

3.2317173 2.7069932 2.5042417 −9.8870123

d̂30 d̂31 × 10−1 d̂40
−5.9022158 −1.9102353 4.1281492
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Therefore, we don to pursue this avenue further.
We continue with an attempt to improve the already-

established relation between the reduced octupole moment
S̄3 and the star’s reduced quadrupole deformation Q̄. In
order to find a better parametrization, we first investigate
the correlation between S̄3 and ln Q̄, as an alternative to the
usual approach of S̄3 ¼ S̄3ðQ̄Þ considered so far in the
literature [25,31,38]. The representation that best describes
the data has a functional form,

S̄3ðQ̄Þ ¼
X4
n¼0

ˆ̃bnðln Q̄Þn: ð24Þ

This is the mathematical model with the best statistical
evaluation metric functions at LOOCV compared to other
regression models examined. An indicative list of regres-
sion models tested and the corresponding results are
presented in Table XIII. From the curve fit evaluation,

the fitting optimizers ˆ̃bn are given in the Table XIV.

The curve evaluation fit (24) that best reproduces the
data values and the corresponding relative errors are
presented in Fig. 18.
Using this S̄3 ¼ S̄3ðln Q̄Þ parametrization, the relative

errors between the fit (24) and the observed S̄3 are better than
4.845% for all EoSs and NS models considered. In addition,
this EoS-insensitive formula is slightly better than those
presented in [25,31,38]. Therefore, this very accurate uni-
versal relation can provide the spacetime’s octupole moment
when the star’s quadrupole deformation Q̄ is known. In
Fig. 19, we present the models’ histogram distribution of
relative errors 100% × ðΔS̄3=S̄3Þ. Therefore, as we can see
from the histogram presented in Fig. 19, the regression
formula (24) corresponds to an accurate EoS-insensitive
relation which gives good results for all the rotating models

TABLE XI. Indicative list of LOOCVevaluation metrics for the
S̄3ðχ; CÞ ¼

P
κ
n¼0

P
κ−n
m¼0

ˆ̃anmχnCm parametrization.

MAE Max error MSE dmax (%) MAPE (%) Exp var κ

0.602 5.383 0.703 134.168 10.788 1.0 2
0.363 3.925 0.326 65.493 5.193 1.0 3
0.321 4.169 0.281 25.362 4.031 1.0 4
0.310 4.059 0.268 24.472 3.774 1.0 5
0.310 3.937 0.267 24.087 3.810 1.0 6
0.305 3.631 0.262 23.269 3.692 1.0 7

TABLE XIII. Indicative list of LOOCV evaluation metrics for

the S̄3ðQ̄Þ ¼ P
κ
n¼0

ˆ̃bnðln Q̄Þn parametrization.

MAE Max error MSE dmax (%) MAPE (%) Exp var κ

0.2401 2.842 0.0983 45.553 4.806 1.0 2
0.0942 0.912 0.0176 6.454 1.438 1.0 3
0.090 0.893 0.0167 4.847 1.308 1.0 4
0.0904 0.889 0.0167 4.922 1.311 1.0 5
0.0904 0.886 0.0167 4.913 1.308 1.0 6
0.0904 0.886 0.0167 4.910 1.309 1.0 7

FIG. 18. Dimensionless octupole moment S̄3 as a function of
the dimensionless ln Q̄ parameter and relative errors for each EoS
included in our sample. The black curve corresponds to the
regression formula (24) used in order to reproduce the data. The
relative errors given as 100%ðjΔS̄3j=S̄3Þ ¼ 100%jS̄3;fit − S̄3j=S̄3
are computed between the S̄3 and its estimate coming from the
regression formula (24).

FIG. 19. Histogram: distribution of models vs relative errors
derived from the regression formula (24).

TABLE XII. Indicative list of LOOCV evaluation metrics for
the S̄3ðσ; CÞ ¼

P
κ
n¼0

P
κ−n
m¼0

ˆ̃anmσnCm parametrization.

MAE Max error MSE dmax (%) MAPE (%) Exp var κ

0.522 5.726 0.4736 143.273 10.061 1.0 2
0.212 2.480 0.0924 64.275 3.578 1.0 3
0.152 2.030 0.0544 23.279 1.986 1.0 4
0.147 1.975 0.0506 11.532 1.853 1.0 5
0.155 2.128 0.0531 23.334 2.129 1.0 6
0.143 2.017 0.0491 10.040 1.763 1.0 7

TABLE XIV. ˆ̃bn regression optimizers for the parametrization
(24).

ˆ̃b0
ˆ̃b1

ˆ̃b2
ˆ̃b3 × 10−2 ˆ̃b4 × 10−1

1.0201214 2.2481059 1.36247244 3.7110007 2.7018181
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considered. Moreover, it reproduces most of the correspond-
ing data with an error ≲4%.
It is worth attempting to improve the previous relation by

including some measure of the rotation of the star as an
additional parameter. We, therefore, explore a relation for
S̄3 as a function of one of the star’s possible spin para-
metrizations as well as Q̄. We first look into the correlation
between the quantities ðS̄3;M × f̃; Q̄Þ, and then we also
explore the combination ðS̄3; σ; Q̄Þ. We remind here that the
quantities, M × f̃, and σ, are both dimensionless spin
parametrizations.
The surfaces S̄3 ¼ S̄3ðM × f̃; Q̄Þ and S̄3 ¼ S̄3ðσ; Q̄Þ that

best reproduces the data have functional forms,

S̄3ðM × f̃; Q̄Þ ¼
X3
n¼0

X3−n
m¼0

ˆ̃cnmðM × f̃ÞnQ̄m; ð25Þ

S̄3ðσ; Q̄Þ ¼
X3
n¼0

X3−n
m¼0

ˆ̃dnmσnQ̄m: ð26Þ

Compared to other functional forms tested, these are the
regression models with the most satisfactory statistical
evaluation metric functions at the LOOCVevaluation test.
The corresponding results for an indicative list of models
are presented in Tables XV and XVI. From the surface-fit
evaluation in each case examined, the model-optimizers
ˆ̃cnm, and

ˆ̃dnm are presented in Tables XVII and XVIII. The
fits (25) and (26) that best describe the data and the
corresponding relative deviations are shown in Figs. 20

and 21, respectively. The formulas (25) and (26) describe
the data very well with relative errors ≲3.159% and
≲3.198%, respectively. Considering the S̄3ðM × f̃; Q̄Þ-
parametrization, we note that only 19 models have relative
deviations ∼3%. These are compact stellar configurations
with C ∈ ½0.230; 0.270�, quadrupole deformation Q̄ ∈
½1.547; 1.886� and high spin rates χ ∈ ½0.639; 0.719�,
and σ ∈ ½0.605; 0.962�. For the S̄3ðσ; Q̄Þ parametrization
on the other hand, all relative deviations are < 3%. In
Fig. 22, the left plot shows the distribution of errors for the
S̄3ðM × f̃; Q̄Þ universal formula, while the right shows the
distribution for the S̄3ðσ; Q̄Þ formula.
Consequently, the aforementioned universal relations

(25) and (26) can accurately reproduce the reduced

FIG. 20. S̄3 as a function of the dimensionless parameters M ×
f̃; Q̄ and relative errors. The surface corresponds to the regression
formula (25). The relative errors are given as (100%ðjΔS̄3j=S̄3Þ
¼ 100%jS̄3;fit − S̄3j=S̄3).

TABLE XV. Indicative list of LOOCV evaluation metrics for
the S̄3ðM × f=c; Q̄Þ ¼ P

κ
n¼0

P
κ−n
m¼0

ˆ̃cnmðM × f̃ÞnQ̄m parametri-
zation.

MAE Max error MSE dmax (%) MAPE (%) Exp var κ

0.0650 0.759 0.0091 4.223 1.009 1.0 2
0.0599 0.576 0.0080 3.161 0.857 1.0 3
0.0586 0.647 0.0076 3.286 0.848 1.0 4
0.0579 0.690 0.0076 3.508 0.824 1.0 5
0.0578 0.664 0.0075 3.374 0.822 1.0 6
0.0578 0.657 0.0075 3.336 0.822 1.0 7

TABLE XVI. Indicative list of LOOCV evaluation metrics for

the S̄3ðσ; Q̄Þ ¼ P
κ
n¼0

P
κ−n
m¼0

ˆ̃dnmσnQ̄m parametrization.

MAE Max error MSE dmax (%) MAPE (%) Exp var κ

0.0570 0.662 0.0071 3.362 0.850 1.0 2
0.0560 0.647 0.0070 3.208 0.812 1.0 3
0.0554 0.648 0.0069 3.290 0.791 1.0 4
0.0554 0.659 0.0069 3.349 0.794 1.0 5
0.0556 0.687 0.0070 3.489 0.802 1.0 6
0.0553 0.660 0.0069 3.354 0.788 1.0 7

TABLE XVII. ˆ̃cnm regression optimizers for the S̄3ðM × f̃; Q̄Þ
parametrization (25).

ˆ̃c00 × 10−1 ˆ̃c01 ˆ̃c02 × 10−2 ˆ̃c03 × 10−4

8.1596088 2.0515960 1.3765340 −4.1784318

ˆ̃c10 × 101 ˆ̃c11 ˆ̃c12 ˆ̃c20 × 103

−5.7729297 5.6987040 2.7351080 1.8588174

ˆ̃c21 × 102 ˆ̃c30 × 104

6.3150248 −4.5052727

TABLE XVIII. ˆ̃dnm regression optimizers for the S̄3ðσ; Q̄Þ
parametrization (26).

ˆ̃d00
ˆ̃d01

ˆ̃d02 × 10−4 ˆ̃d03 × 10−4

−1.2441831 2.2243054 −1.9394310 1.4626058

ˆ̃d10 × 10−2 ˆ̃d11 × 10−1 ˆ̃d12 × 10−3 ˆ̃d20 × 10−1

−9.2998663 1.6736800 −2.2462191 1.0977390

ˆ̃d21 × 10−2 ˆ̃d30 × 10−2

−6.3552382 −4.7295677
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octupole moment S̄3 when the parameters ðM; f̃; Q̄Þ or
ðσ; Q̄Þ are known. It is worth noting that such improve-
ments to the original three-hair relations have been
achieved before in the literature, following though a
different approach and parametrization [99]. It is then a
matter of specific application or convenience which relation
one would prefer to use. Similar results are obtained if
someone uses the dimensionless quantities χ and E to
parametrize rotation. The corresponding regression models
have functional forms S̄3ðχ; Q̄Þ ¼ P

3
n¼0

P
3−n
m¼0

ˆ̃enmχnQ̄m

and S̄3ðE; Q̄Þ ¼ P
2
n¼0

P
2−n
m¼0

ˆ̃fnmEnQ̄m, respectively. A
Jupyter notebook implementing these optimizers, as well
as the relative plots, can be found in a dedicated GitHub
repository. To conclude, it is worth noting that since the
quantities S̄3, Q̄ have a direct universal correlation between
them, the EoS-insensitive relations involving combinations
of Q̄ with the (M × f̃; σ; χ; E) parameters essentially
correspond to higher-order corrections to the S̄3 − Q̄ base
relations.

V. SUMMARY, DISCUSSION AND CONCLUSIONS

In this work, we conduct a systematic investigation of
EoS-insensitive relations for rapidly rotating NSs in β
equilibrium using an ensemble of 38 tabulated cold EoSs.
The analysis is performed by utilizing statistical evaluation

tests, in order to highlight possible relations between
various NS structure parameters (Sec. III A), as well as
supervised machine learning methods, such as Cross-
Validation (Sec. III B) and least-squares regression
(Sec. III C), in order to produce the best possible functions
that describe the aforementioned relations. It is clear from
the current work as well, that the universality is sensitive to
the choice of parameters one makes in describing the star’s
global properties. Furthermore, the presented analysis
constitutes a systematic algorithm for discovering and
tuning such universal relations.
A novel feature of our analysis is the application of

Cross-Validation. In order to assess the generalization
ability of our models beyond the training data, we subject
them to evaluation on validation sets. The aforementioned
approach sets our models apart from other models in the
literature that lack validation evaluation and therefore carry
a heightened risk of overfitting. Cross-Validation can
ensure that the constructed universal relations have the
generalization ability beyond the training data, and so our
models have a better chance of performing within the
quoted relative errors on new data.
Here, we briefly summarize the main findings, presented

in Sec. IV as well as in Appendix A.
First, we proposed a universal relation for the star’s

reduced quadrupole moment Q̄ in terms of the stellar
compactness C ¼ M=Req and reduced spin σ ¼ Ω2R3

eq=
GM. The resulting formula Q̄ðC; σÞ (19) describes the data
with accuracy ≲6.866% for all EoSs considered, while it
reproduces most data values with an error ≲5%.
We next explored the possibility of determining the star’s

equatorial radius universally. For this, we investigated the
inverse stellar compactness K ¼ Req=M as a function of Q̄
and the dimensionless angular momentum, χ ¼ J=M2. Due
to the large deviations introduced by rotating models near
the mass shedding limit f ∼ 2 kHz, we decided to limit our
analysis to stellar models that rotate with frequencies
f ≲ 1.7528 kHz, a rotation rate that is still quite high
and much higher than the most rapidly rotating NS detected
so far. This particular ensemble included 7046 rapidly
rotating NS models. The evaluated fitting formula Kðχ; Q̄Þ
(20) reproduces the data with accuracy ≲6.443% for all
EoSs considered, while most of the models are given with a
relative error that is better than 5%. Deviations greater than
5%were introduced only by the less compact stellar models
with C ∈ ½0.096; 0.124�.
We looked for a universal relation between the rotation

frequency of the star, in the form of the dimensionless
expression D ¼ M × f̃=χ, and the dimensionless angular
momentum, χ and ln Q̄. We found a relation of the form of
Eq. (22) that is accurate with an error ≲5.220% for all the
data and better than 2% for most of the data.
We also used the fraction of kinetic to gravitational

energy E ¼ T=jWj as an additional spin parameter and
looked for a relation between E and the quantities χ and

FIG. 22. Left plot: Relative errors distribution derived from the
regression formula (25). Right plot: Relative errors distribution
derived from the regression formula (26).

FIG. 21. S̄3 as a function of the dimensionless parameters
σ; Q̄ and relative error distribution. The surface corresponds to
the regression formula (26). The relative errors are given as
(100%ðjΔS̄3j=S̄3Þ ¼ 100%jS̄3;fit − S̄3j=S̄3).
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ln Q̄. The estimated regression formula Eðχ; ln Q̄Þ (21) had
very good accuracy ≲2.815% for all EoSs considered,
while most data values are reproduced with accuracy
≲1.5%.
We then turned our attention to universal relations for the

normalized moment of inertia Ī. We have considered Ī as a
function of Q̄ and the various rotation parameters χ, σ, and
E. We first examined the relation between Ī and the
parameters χ; Q̄, that has been previously explored in the
literature. The fitting formula Īðχ; Q̄Þ (23) extracted repro-
duces the data with a relative error ≲5.515%, while for
most of the data has an accuracy that is better than 2%.
Then, we considered a relation between Ī and the param-
eters σ and Q̄. In this case, the evaluated fitting formula
Īðσ; Q̄Þ (A1) has relative errors that are ≲6.627%.
Compared to the Īðχ; Q̄Þ parametrization, the Īðσ; Q̄Þ
formula performs slightly worse having a little higher
relative errors but always being ≲4% for most of the
models, while there are some models that have higher
relative errors than that. The third relation we considered is
between Ī and the parameters E and Q̄. The derived fitting
formula ĪðE; Q̄Þ (A2) has a relative error that is ≲5.634%.
Most significant deviations (> 2%) correspond to only 50
stellar models out of the full set. Lastly, we considered a
relation between Ī and the parameter Req × f̃ (another of
the spin parameters) and Q̄. The derived ĪðReq × f̃; Q̄Þ (A3)
formula does slightly worst than the previous ones with
some relative errors up to 7.301%, but with most relative
errors being (≤ 5%).
Finally, we investigated various universal relations for

the reduced octupole moment S̄3. We first looked for a
universal relation that would express S̄3 in terms of C and
one of the spin parameters, as we did for the quadrupole.
However, in this case, it was not possible to find an
acceptable relation of this sort. We then revisited another
of the universal relations that have already been established
in the literature, i.e., the one between S̄3 and Q̄, where in
this work, we use ln Q̄ as a parameter instead of Q̄ itself.
The resulting fit (24) reproduces the data with a relative
error ≲4.845% for all EoSs considered, with accuracy
better than 4% for the majority of the models. This is a
slightly more accurate EoS-insensitive formula compared
to those presented in the literature for the S̄3 ¼ S̄3ðQ̄Þ
parametrization. In our attempt to improve the accuracy
of the universal relation, we decided to explore EoS-
insensitive relations that also include one of the spin
parameters. The derived S̄3ðM × f̃; Q̄Þ (25) and S̄3ðσ; Q̄Þ
(26) fitting functions satisfactorily described the data with
relative deviations better than 3.159% and 3.198%, respec-
tively, improving on the previous result. Similar results
hold if one uses the dimensionless quantities χ and E as spin
parameters. Lastly, we make one more attempt to find a
new universal relation by replacing Q̄with Ī as a parameter,
having, therefore, a relation between S̄3 and the parameters

χ and Ī. The evaluated fitting surface S̄3ðχ; ĪÞ (A4)
reproduces the data with relative deviations ≲9.328%
for all EoSs considered. However, only 30 stellar models
have significant deviations (> 5%). Therefore the resulting
relation, while not one of the best possible universal
relations, is not quite that bad.
To facilitate easier comparison between our relations and

the corresponding universal relations that have been pre-
viously explored in the literature, Appendix B provides a
concise list in tabulated form.
This work presents several universal relations between

parameters that characterize NSs. Some of them are known
relations that have been revisited and verified or improved,
while others are being considered for the first time. But more
importantly, this work presents a systematic algorithm and a
framework for improving old or producing new relations of
this sort. Therefore, it is essentially a proof-of-concept
demonstration in addition to being an (incomplete) catalog
of relations. Nevertheless, these relations can be useful for
informing our analysis of both GW signals [100–110] from
NS mergers, as well as electromagnetic observations of
rotating NSs [27,49,96,111–117].
There are several possible directions one can take from

here. One could try, for example, to improve on the
description of the surface of NSs [27,48–50,118–121],
that would be useful for modeling the pulse profiles
observed by NICER. Or, in a different direction, one could
try to include parameters that are more directly related to
nuclear physics, thus looking for universal relations con-
necting actual observables to “hidden” nuclear physics
parameters that are not directly measurable. In this way, we
could try to tackle the inverse problem of constraining the
EoS in a more direct way with the help of universal
relations. These are left for future work.
To conclude, one could ask whether such universal

relations can be sufficient for estimating NS parameters
and eventually be used to tell apart the correct EoS. One can
see from the recent review by Kumar et al. [122], that
universal relations similar to the ones presented here (the
so-called binary-Love relations [123]) can be used to lift
degeneracies between parameters and help measure NS
parameters otherwise inaccessible, such as individual NS
deformabilities or radii; therefore, the answer to the former
question would be in the affirmative. Nevertheless, when
doing Bayesian inference of parameters, it is not straight-
forward to tell how tight the imposed constraints can be or
whether a specific EoS is excluded or not, just by looking at
the posteriors of different methods (see discussion in
[122]). Therefore, to properly answer the latter question,
one would need to do a full analysis on a case-by-case
basis. This is work that we leave for the future.
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APPENDIX A: ADDITIONAL
UNIVERSAL RELATIONS

In this Appendix, we provide some additional universal
relations regarding the reduced moment of inertia Ī and the
reduced spin octupole S̄3.

1. Additional universal relations for the normalized
moment of inertia Ī

We start with the relations for the moment of inertia. First,
we consider the dimensionless spin σ as the parameter that
characterizes rotation and investigate a relation that links Ī
with the quantities σ; Q̄. The Ī ¼ Īðσ; Q̄Þ representation that
best reproduces the data has the functional form,

Īðσ; Q̄Þ ¼
X4
n¼0

X4−n
m¼0

ênmσnQ̄m: ðA1Þ

This is the regression model with the best statistical evalu-
ation metric functions at LOOCV. From the surface-fit

evaluation, the fitting optimizers ênm are presented in the
Table XIX.
The surface (A1) and the corresponding relative errors

are presented in Fig. 23. The regression formula (A1)
corresponds to a well-behaved EoS-insensitive relation
which gives good results for all the rotating models in
equilibrium considered, reproducing most data with an
error ≲4%.
In addition to the relations presented so far, it would also

be interesting to explore a relation that connects the
normalized moment of inertia Ī with the reduced quadrupole
moment Q̄ and the dimensionless fraction of kinetic to
gravitational energy E ¼ T=jWj. The Ī ¼ ĪðE; Q̄Þ paramet-
rization that best describes the data has the functional form,

ĪðE; Q̄Þ ¼
X4
n¼0

X4−n
m¼0

f̂nmEnQ̄m: ðA2Þ

From the surface-fit evaluation, the fitting optimizers are
given in the Table XX. The surface (A2) and the corre-
sponding relative errors are presented in Fig. 24.
We should note that the relative errors between the fit

(A2) and the observed Ī are ≲5.634%. The largest relative
deviations ≥ 2% correspond to only 50 models. Therefore,

FIG. 23. Ī as a function of the dimensionless parameters
σ; Q̄, and relative error distribution. The surface corresponds
to the regression fitting formula (A1). The relative errors are
given as (100%ðjΔĪj=ĪÞ ¼ 100%jĪfit − Īj=Ī).

TABLE XIX. ênm regression optimizers for the Īðσ; Q̄Þ para-
metrization (A1).

ê00 ê01 ê02 × 10−2 ê03 × 10−3

2.1883709 1.9979686 −6.7253986 8.4152447

ê04 × 10−4 ê10 ê11 ê12 × 10−2

−2.5907891 −2.7558192 2.0937835 −9.1147011

ê13 × 10−3 ê20 × 10−1 ê21 × 10−1 ê22 × 10−2

8.1375930 8.6762800 3.1569363 −1.5332768

ê30 ê31 × 10−1 ê40
−1.0039675 −7.9469215 1.0162539

TABLE XX. f̂nm regression optimizers for the ĪðE; Q̄Þ para-
metrization (A2).

f̂00 f̂01 f̂02 × 10−1 f̂03 × 10−2

2.0428593 2.1177336 −1.0563791 1.2625985

f̂04 × 10−4 f̂10 × 101 f̂11 f̂12 × 10−2

−4.026470 −1.1344300 9.3474163 −5.0090406

f̂13 × 10−2 f̂20 × 101 f̂21 × 101 f̂22
1.771390401 4.2944226 −1.579430 3.0508174

f̂30 × 102 f̂31 × 101 f̂40 × 103

−5.312067774 7.305432 1.8509948

FIG. 24. Ī as a function of the parameters E; Q̄; and
relative errors. The surface corresponds to the regression
formula (A2). The relative errors are given as (100%ðjΔĪj=ĪÞ
¼ 100%jĪfit − Īj=Ī).
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the regression formula (A2) is an accurate EoS-insensitive
relation that gives good results for all the rotating models
considered, reproducing most data with an error ≲2%.
One last relation concerning Ī that we are investigating is

the one that connects it to the parameters Req × f̃ and Q̄.
We remind that the quantity Req × f̃ corresponds to one of
the possible rotation parametrizations for the star. The
ĪðReq × f̃; Q̄Þ surface that optimally describes the data has
the functional form,

ĪðReq × f̃; Q̄Þ ¼
X2
n¼0

X2−n
m¼0

ĝnmðReq × f̃ÞnQ̄m: ðA3Þ

From the surface-fit evaluation, the polynomial function’s
(A3) (best fit) optimizers ĝnm are presented in Table XXI.
The surface fit, and the corresponding relative errors are
presented in Fig. 25. It is evident that the EoS-insensitive
formula (A3) reproduces the vast majority of the data
values with an error ≲5%, which makes it a quite accurate
relation.

2. Additional universal relations for the reduced spin
octupole moment S̄3

Here, we explore another slightly different parametriza-
tion of the spin octupole moment, in terms of the moment
of inertia instead of the quadrupole moment.
Specifically, we look into a relation of the form

S̄3 ¼ S̄3ðχ; ĪÞ. The complete analysis is performed for
the whole sample of rapidly rotating stellar models
included in our EoS catalog. The surface that best describes
the data has a functional form,

S̄3ðχ; ĪÞ ¼
X4
n¼0

X4−n
m¼0

ˆ̃anmχnĪm: ðA4Þ

Again, we choose not to go too high in the polynomial
order of the fitting function and set the maximum to κ ¼ 4.
The fitting optimizers ˆ̃anm for the surface S̄3 ¼ S̄3ðχ; ĪÞ are
given in the Table XXII.
The surface (A4) that best reproduces the data values and

the corresponding relative errors are presented in Fig. 26.
The relative deviations between the fit (A4) and the

observed S̄3 are ≲9.328% for all EoSs and NS models
considered, with only 30 models out of the total 11983
having relative deviations ≥ 5%. These particular models

FIG. 25. Ī as a function of the parameters Req × f̃; Q̄ and
relative errors. The surface corresponds to the fit (A2). The
relative errors given as (100%ðjΔĪj=ĪÞ ¼ 100%jĪfit − Īj=Ī).

TABLE XXI. ĝnm regression optimizers for the ĪðReq × f̃; Q̄Þ
parametrization (A3).

ĝ00 ĝ01 × 10−1 ĝ02 × 10−2 ĝ10 × 102

5.3344693 4.7861124 7.6686702 −1.0442463

ĝ11 × 101 â20 × 102

3.9934412 4.3116877

TABLE XXII. ˆ̃anm regression optimizers for the S̄3ðχ; ĪÞ para-
metrization (A4).

ˆ̃a00 ˆ̃a01 ˆ̃a02 × 10−2 ˆ̃a03 × 10−3

−4.9383743 1.1325862 2.1599976 −1.1755146

ˆ̃a04 × 10−5 ˆ̃a10 × 101 ˆ̃a11 × 10−1 ˆ̃a12 × 10−2

1.4665557 1.1619748 −5.7118845 1.7394069

ˆ̃a13 × 10−5 ˆ̃a20 × 101 ˆ̃a21 ˆ̃a22 × 10−3

1.6073925 −2.8086884 −1.0381803 −6.2358287

ˆ̃a30 × 101 ˆ̃a31 × 10−1 ˆ̃a40 × 101

4.6577272 7.0553777 −2.6913268

FIG. 26. S̄3 as a function of χ; Ī and relative error distribution.
The surface corresponds to the formula (A4). The relative errors
are given given as (100%ðjΔS̄3j=S̄3Þ ¼ 100%jS̄3;fit − S̄3j=S̄3).

FIG. 27. Distribution of rotating NS models vs relative errors
for the regression formula (A4).
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have C ∈ ½0.108; 0.290� and χ ∈ ½0.230; 0.667�. In Fig. 27,
we present the rotating models’ distribution concerning the
relative errors 100% × ðΔS̄3=S̄3Þ derived. From Fig. 27, it
is evident that the regression formula (A4) corresponds to a
good EoS-insensitive relation that gives good results for the
vast majority of the models, reproducing most of the data
with an error ≲5%.

APPENDIX B: COMPARISON AGAINST
UNIVERSAL RELATIONS IN THE LITERATURE

In this Appendix, we provide some indicative universal
relations that can be found in the literature, the conditions
under which they have been obtained, and their correspond-
ing accuracies, alongside some of the results of this work.
This can serve as a quick reference for comparison between
what we present here and what has been previously done. In
the Table XXIII, we use the notation “SR” for slowly

rotating NSs and “RR” for rapidly rotating NSs. Since all
the models we have used are rapidly rotating, there are some
relations that do not correspond exactly to our relations,
while there are other relations that we have not explored. We
assume that whenever we have a relations for arbitrarily
rotating NSs this also covers slowly rotating ones.
However, there is a clarification to be made with respect

to the quoted relative errors for the models in the literature
compared to our models. We have to note that in our
analysis, by evaluating our constructed universal relations
on validation sets, we can ensure that our models have the
generalization ability beyond the training data. Therefore,
this critical aspect distinguishes our models from others
that are not tested in validation evaluation sets, since such
models may run the risk of overfitting to the training data.
To state this differently, our analysis can ensure that our
models have a better chance of performing within the
quoted relative errors on new, yet-unseen data.

APPENDIX C: EQUATION OF STATE TABLES

TABLE XXIII. Universal relations comparison.

Literature This paper

Relation Accuracy EoSs Reference Relation Accuracy EoSs

Ī ¼ ĪðCÞ ∼4% (SR NSs) with C ≥ 0.15 4 [27] � � � � � � � � �
Ī ¼ ĪðCÞ ∼9% (SR NSs) with C ≥ 0.07, ∼20% (RR NSs)

with χ ¼ 0.6
28 [2] � � � � � � � � �

Q̄ ¼ Q̄ðIÞ ∼2% (SR NSs) with C ≥ 0.15 4 [27] � � � � � � � � �
Q̄ ¼ Q̄ðCÞ ∼9% (SR NSs) 10 [24] Q̄ ¼ Q̄ðC; σÞ (19) ∼5%, arbitrary rotation 38
Ī ¼ ĪðQ̄Þ ∼1% (SR NSs) with 1M⊙ < M < Mmax 30 [25] � � � � � � � � �
Ī ¼ ĪðQ̄Þ ∼1% (SR NSs) with χ < 0.3 6 [38] � � � � � � � � �
Ī ¼ ĪðQ̄; χÞ ∼1%, arbitrary rotation 10 [31] � � � � � � � � �
Ī ¼ ĪðQ̄; χÞ ∼1%, NSs that rotating in range 0.1 < χ < 0.6 7 [32] Ī ¼ ĪðQ̄; χÞ (23) ∼2%, arbitrary rotation 38
S̄3 ¼ S̄3ðQ̄Þ ∼4–5% (SR NSs) with 1M⊙ < M < Mmax 30 [25] � � � � � � � � �
S̄3 ¼ S̄3ðQ̄Þ ∼10%, arbitrary rotation 10 [38] S̄3 ¼ S̄3ðln Q̄Þ (24) ∼5%, arbitrary rotation 38
S̄3 ¼ S̄3ðQ̄Þ ∼2%, arbitrary rotation 10 [31] S̄3 ¼ S̄3ðQ̄; σÞ (26) ∼3%, arbitrary rotation 38

FIG. 28. EoS-Color map used for the various figures.

GRIGORIOS PAPIGKIOTIS and GEORGE PAPPAS PHYS. REV. D 107, 103050 (2023)

103050-22



TABLE XXIV. Hadronic cold EoS models.

EoS Model Matter Mmax½M⊙� RMmax
½km� R1.4M⊙

½km� References

RG(SLY2) EI-CEF-Scyrme n, p, e, μ 2.06 10.06 11.79 [125–127]
RG(SKb) EI-CEF-scyrme n, p, e, μ 2.20 10.58 12.21 [126–128]
RG(SkMp) EI-CEF-scyrme n, p, e, μ 2.11 10.60 12.50 [126,127,129]
RG(SLY9) EI-CEF-scyrme n, p, e, μ 2.16 10.65 12.47 [125–127]
RG(SkI3) EI-CEF-scyrme n, p, e, μ 2.25 11.34 13.55 [126,127,130]
RG(KDE0v) EI-CEF-scyrme n, p, e, μ 1.97 9.62 11.42 [126,127,131]
RG(SK255) EI-CEF-scyrme n, p, e, μ 2.15 10.84 13.15 [126,127,131]
RG(Rs) EI-CEF-scyrme n, p, e, μ 2.12 10.76 12.93 [126,127,132]
RG(SkI5) EI-CEF-scyrme n, p, e, μ 2.25 11.47 14.08 [126,127,130]
RG(SKa) EI-CEF-scyrme n, p, e, μ 2.22 10.82 12.92 [126–128]
RG(SkOp) EI-CEF-scyrme n, p, e, μ 1.98 10.16 12.13 [126,127,130]
RG(SLY230a) EI-CEF-scyrme n, p, e, μ 2.11 10.18 11.83 [125–127]
RG(SKI2) EI-CEF-scyrme n, p, e, μ 2.17 11.25 13.48 [126,127,130]
RG(SkI4) EI-CEF-scyrme n, p, e, μ 2.18 10.66 12.38 [126,127,130]
RG(SkI6) EI-CEF-scyrme n, p, e, μ 2.20 10.71 12.49 [126,127,130]
RG(KDE0v1) EI-CEF-scyrme n, p, e, μ 1.98 9.71 11.63 [126,127,131]
RG(SK272) EI-CEF-scyrme n, p, e, μ 2.24 11.20 13.32 [126,127,133]
RG(SLY4) EI-CEF-scyrme n, p, e, μ 2.06 10.02 11.70 [125–127]
GDTB(DDHδ) RMF n, p, e 2.16 11.19 12.58 [134–136]
DS(CMF)-2 SU(3)-RMF n, p, e 2.13 11.96 13.70 [127,129,137–141]
DS(CMF)-4 SU(3)-RMF n, p, e 2.05 11.60 13.26 [127,129,137–141]
DS(CMF)-6 SU(3)-RMF n, p, e 2.11 11.58 13.30 [127,129,137–141]
DS(CMF)-8 SU(3)-RMF n; p; e;Δ− 2.09 11.59 13.30 [127,129,137–141]
BL(chiral)_2018 chPT-BBG-BHF n, p, e, μ 2.08 10.26 12.31 [134,142]

TABLE XXV. Hyperonic cold EoS models.

EoS Model Matter Mmax½M⊙� RMmax
½km� R1.4M⊙

½km� References

OPGR(DDHδ Y4) RMF n; p; e;H ¼ ½Λ;Ξ−� 2.05 11.26 12.58 [134–136,143]
OPGR(GM1Y5) RMF n; p; e;H ¼ ½Λ;Ξ−;Ξ0� 2.12 12.31 13.78 [134,143,144]
OPGR(GM1Y6) RMF n; p; e;H ¼ ½Λ;Ξ−;Ξ0� 2.29 12.13 13.78 [134,143,144]
DNS SU(3)-CMF n; p; e; μ; H ¼ ½Λ;Σ−� 2.10 12.00 13.58 [139–141,145]
DS(CMF)-1 SU(3)-CMF n; p; e; H ¼ ½Λ;Σ−� 2.07 11.88 13.57 [127,129,137–141]
DS(CMF)-3 SU(3)-CMF n; p; e; H ¼ ½Λ;Σ−� 2.00 11.56 13.15 [127,129,137–141]
DS(CMF)-5 SU(3)-CMF n; p; e; H ¼ ½Λ;Σ−� 2.07 11.43 13.20 [127,129,137–141]
DS(CMF)-7 SU(3)-CMF n; p; e; H ¼ ½Λ;Σ−;Δ−� 2.07 11.43 13.20 [127,129,137–141]

TABLE XXVI. Hybrid: Quark-hadron cold EoS models.

EoS Model Matter Mmax½M⊙� RMmax
[km] R1.4M⊙

[km] References

OOS(DD2-FRG) (2) flavors NP-FRG n, p, e, q 2.05 12.55 13.20 [146–148]
OOS(DD2-FRG) vec int-(2) flavors NP-FRG n, p, e, q 2.14 12.70 13.20 [146–149]
BHK(QHC18) NJL-MF n, p, e, q 2.05 10.41 11.49 [60,150–152]
BFH(QHC19-B) NJL-MF n, p, e, q 2.07 10.60 11.60 [60,151–153]
BFH(QHC19-C) NJL-MF n, p, e, q 2.18 10.80 11.60 [60,151–153]
BFH(QHC19-D) NJL-MF n, p, e, q 2.28 10.90 11.60 [60,151–153]
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