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We investigate nonradial oscillations of pure and hybrid neutron stars, employing equations of state of
nuclear matter from Brueckner-Hartree-Fock theory, and of quark matter from the Dyson-Schwinger quark
model, performing a Gibbs construction for the mixed phase in hybrid stars. Characteristic differences
between neutron-star and hybrid-star g1-mode oscillation frequencies, damping times, and gravitational
wave strains are pointed out. Prospects of observations are also discussed.
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I. INTRODUCTION

The interior of a neutron star (NS) can reach several
times the nuclear saturation density ρ0 ≃ 0.16 fm−3.
Therefore, there might exist a phase transition to decon-
fined quark matter (QM) in the NS core [1]. In general,
once the equation of state (EOS) of nuclear matter (NM)
is known, one can compute the structure and properties
of NSs. Unfortunately, so far, due to the lack of exact
computation dealing with the nonperturbative strong inter-
action, the EOS of high-density NM remains an open
theoretical problem. There are many theoretical models for
the NS EOS that can meet the observational and exper-
imental constraints; see, e.g., [2] for a recent review. For
NM in the hadron phase, popular EOSs are based on
relativistic mean field models [3], phenomenological mod-
els based on energy-density functional theory with gener-
alized Skyrme effective forces [4], Brueckner-Hartree-Fock
(BHF) theory [5–9], the variational method [10], the self-
consistent Green’s function approach [11], and chiral
effective field theory [12–15]. For QM, EOSs are mainly
obtained with the MIT bag model [16], the Nambu-Jona-
Lasinio model [17–19], the perturbative QCD [20–22], and
the Dyson-Schwinger equations (DSEs) [23–27].
To test the various theoretical models of NSs and hybrid

stars (HSs), we have to resort to observations. The mass-
radius relation is one of the most straightforward and
simple observables, which can be theoretically obtained by
solving the Tolman-Oppenheimer-Volkov (TOV) equations
combined with the EOS. Recently, several observed pulsars

with masses above two solar masses [28–31] put firm lower
limits on the maximum mass of NSs. Some theoretical
analyses of the NS merger event GW170817 even deduce
an upper limit on the maximum mass of about 2.2–2.3M⊙
[32–36], albeit with large theoretical uncertainty. In 2019,
new constraints on the radius were provided by the neutron
star interior composition explorer (NICER) mission, which
reported Bayesian parameter estimations of the mass and
equatorial radius of the millisecond pulsar PSR J0030þ
0451 [37,38], and recently on PSR J0740þ 6620 with
mass 2.08þ0.07

−0.07M⊙ [31,39–43].
However, it is hard to distinguish HSs and pure NSs from

the mass-radius relations, since theoretically the differences
between them are small, and even masked by the uncer-
tainties of pure NSs with various models [44]. Therefore,
one needs other observables to reveal the interior of NSs.
NSs are sources of electromagnetic waves in all wave-

lengths, and also emitters of both continuous and inspiral
gravitational waves (GWs). In particular, when NSs expe-
rience violent processes such as accretions, radial and
nonradial oscillations, glitches, and even NS mergers
[45,46], they are expected to emit strong enough signals
that can be observed. After the first direct observation of
GWs from a binary black hole (BH) merger [47], more and
more GW signals were detected, including NS mergers
[45,46,48,49], which has opened a new window on NS
observation by using GWs as probes of their internal
structure.
In our previous work [50] we investigated radial oscil-

lations, and found a clear difference of their frequencies
between pure NSs and HSs. The radial oscillation of NSs is
the simplest oscillation mode without direct GW radiation,*huanchen@cug.edu.cn
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but might couple with and amplify GWs [51,52] and
modulate the short gamma ray burst (SGRB) [53].
On the contrary, the nonradial oscillation (NRO) of a star

can directly produce GW signals [54], not only in NS
mergers or supernova explosions. Therefore, the study of
NROs of isolated NSs may provide us with direct and stable
observations to understand the structure and properties of
high-density NM, the strong interaction, and GWs. In this
work we further study the NROs of NSs, specifically the
quadrupole oscillations which are stable sources of GW
radiation.
The theoretical study of NROs in general relativity

was first proposed by Thorne [54,55]. After that, a series
of rigorous mathematical analyses were carried out by
Detweiler and Lindblom [56,57], whereas Chandrasekhar
and Ferrari proposed a simpler calculation and obtained
some properties of NROs of compact stars [58]. In recent
years, many investigations of NS NROs were carried out,
for example, Refs. [59–66]. They show that some
eigenfrequencies of the NROs of NSs are within the
sensitive range of some current detectors. Theoretically,
for a nonrotating NS, the eigenmodes of oscillation are
divided into g mode, f mode, and p mode, which
indicate the various dominant restoring forces for the
perturbations. The g-mode eigenfrequencies are relatively
small, ∼Oð1 kHzÞ, and provide us with an appropriate
observable. The buoyancy acts as the g-mode restoring
force to bring disturbed fluid elements back into equi-
librium, and generally its frequency depends on the
particle fraction gradient and temperature [67]. This
effect is more intense in HSs than in pure NSs
[61,68]. Therefore, we can expect different characteristics
of the g modes between NSs and HSs, and we will
mainly focus on this mode.
In this work, we adopt the BHF theory for NM, which is

based on realistic many-body forces that describe accu-
rately nucleon scattering data in free space and the proper-
ties of the deuteron. Moreover, the BHF approach enables
the derivation of the properties of NM at nuclear saturation
density consistent with experiments [2,6,7,69,70]. For QM,
we adopt the Dyson-Schwinger-equation quark model
[25,27], which can simultaneously address both confine-
ment and dynamical chiral symmetry breaking [23,24]. We
employ the Gibbs phase transition between the hadron and
deconfined quark phase [25,71], which determines a range
of baryon densities where the hadron and quark phase
coexist. In this framework, the maximum masses of the
pure NSs and HSs fulfill the two-solar-mass constraint
[28–31].
This work is organized as follows. In Sec. II we briefly

describe the formalism for the EOSs, i.e., the BHF theory
for the hadron phase and the DSEs for the quark phase. In
Sec. III we introduce the TOVand the eigenvalue equations
for the NROs of NSs. Numerical results are given in
Sec. IV, and we draw the conclusions in Sec. V. We use
natural units c ¼ ℏ ¼ 1 throughout the paper.

II. EQUATION OF STATE

A. Nuclear matter

The BHF many-body theory [72,73] is used to describe
the NM in the interior of NSs. It can reproduce NM
properties near the saturation density with a quite good
accuracy [2,70]. We only provide here a brief overview of
the formalism, and refer to the various indicated references
for full details. The essential ingredient of this approach is
the interaction matrix G, which satisfies the following
equations

Gðρ; xp;EÞ ¼ V

þV
X
1;2

j12ið1− n1Þð1− n2Þh12j
E− e1 − e2 þ i0

Gðρ; xp;EÞ

ð1Þ
and

U1ðρ; xpÞ ¼
X
2

n2h12jGðρ; xp; e1 þ e2Þj12ia; ð2Þ

where niðkÞ is a Fermi distribution, xp ≡ ρp=ρ is the proton
fraction, and ρp and ρ are the proton and the total nucleon
number densities, respectively. E is the starting energy and
eiðkÞ≡ k2=2mi þ ReUiðkÞ is the single-particle energy.
The multi-indices 1,2 denote in general momentum, iso-
spin, and spin. The energy density of NM can then be
expressed as

εN ¼
X
1

n1ðkÞ
�

k2

2m1

þ 1

2
U1ðkÞ

�
: ð3Þ

Thus, the nucleon-nucleon interaction potential V is the
only necessary input in the calculation process. In this
work, we adopt the Argonne V18 (V18) [74] and Bonn-B
(BOB) [75,76] potentials, supplemented with compatible
microscopic three-body forces [5,69,77,78]. This is a
common prescription adopted in the BHF approach, and
allows us to reproduce correctly the saturation point of
symmetric NM and related properties.
In order to obtain the EOS, we impose cold, neutrino-

free, charge neutral, and catalyzed matter consisting of
neutrons, protons, and leptons (e−; μ−) in beta equilibrium
due to weak interactions. Therefore, the energy density of
NM can be expressed as

εðρn; ρp; ρe; ρμÞ ¼ ðρnmn þ ρpmpÞ þ εNðρn; ρpÞ
þ εeðρeÞ þ εμðρμÞ; ð4Þ

where εe;μ are the energy densities of electrons and
muons, and mn;p are the masses of neutrons and protons,
respectively.
Furthermore, a quadratic dependence on the proton

fraction is well fulfilled [79–83],
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εNðρn; ρpÞ ¼ εSNMðρÞ þ ð1 − 2xpÞ2εsymðρÞ; ð5Þ

being εsymðρÞ the symmetry energy density,

εsymðρÞ ¼ εPNMðρÞ − εSNMðρÞ: ð6Þ

Therefore, for the treatment of beta-stable matter, it is only
necessary to calculate the energy densities for symmetric
nuclear matter (SNM) and pure neutron matter (PNM). For
practical use, we employ the convenient empirical para-
metrizations given in Refs. [8,70]. We have shown in [83]
that going beyond the parabolic approximation affects the
results for NS structure only in a very marginal way.
The various chemical potentials of the particle species

i ¼ n, p, e, μ can be computed from the energy density,
Eq. (4),

μi ¼
∂ε

∂ρi
; ð7Þ

and this allows us to solve the equations for beta
equilibrium,

μp þ μe ¼ μn ≡ μB; μe ¼ μμ; ð8Þ

together with charge neutrality,

ρp − ρe − ρμ ≡ ρC ¼ 0; ð9Þ

for the equilibrium composition ρi at fixed baryon density
ρB ¼ ρ ¼ ρp þ ρn. Finally, the EOS is given by

pðεÞ ¼ ρ2B
d

dρB

εðρiðρBÞÞ
ρB

¼ ρB
dε
dρB

− ε ¼ ρBμB − ε: ð10Þ

The BHF approach provides only the EOS for the bulk
matter region ρ≳ 0.1 fm−3 without cluster formation, and
therefore it has to be joined with a low-density crust EOS.
In this paper we adopt the Shen2020 EOS [84], which
belongs to the class of so-called unified EOSs, and is
frequently used for the simulations of core-collapse super-
nova and NS mergers. We notice that the high-mass domain
that we are mainly interested in, is in any case hardly
affected by the structure of this low-density transition
region [82]. The choice of the crust model can influence
the predictions of radius and related deformability to a
small extent, of the order of 1% for R1.4 [82,85,86], which
is negligible for our purpose. Even neglecting the crust
completely, NS radius and deformability do not change
dramatically [87].
Due to the absence of strict theoretical and observational

constraints on how to join the core and crust EOSs, we
use the simplest way, a continuous transition at the point
with the same pressure and energy density. The possible
influence of the core-crust transition construction on the
NROs will be discussed in following.

B. Quark matter

As in Ref. [88], we adopt the Dyson-Schwinger model
(DSM) [25] to describe the deconfined quark phase, which
provides a continuous approach to quantum chromody-
namics (QCD). The fundamental quantity of the DSM is
the quark propagator Sðp; μÞ at finite chemical potential μ,
which satisfies the Dyson-Schwinger equation

Sðp; μÞ−1 ¼ Z2½iγ · pþ iγ4ðp4 þ iμÞ þmq� þ Σðp; μÞ
ð11Þ

with the renormalized self-energy expressed as

Σðp; μÞ ¼ Z1g2ðμÞ

×
Z

d4q
ð2πÞ4 Dρσðk; μÞ

λa

2
γρSðq; μÞ

λa

2
Γσðq; p; μÞ;

ð12Þ
where Dρσðk≡ p − q; μÞ is the full gluon propagator,
Γσðq; p; μÞ is the full quark-gluon vertex, and Z1 and Z2

are the quark-gluon vertex and quark wave function
renormalization constants. Moreover, λa are the Gell-
Mann matrices, and mq is the current-quark bare mass.
Knowing the quark-gluon vertex and gluon propagator, one
can solve the equation and obtain the quark propagator. In
our work, the so-called rainbow approximation and a
chemical-potential-modified Gaussian-type effective inter-
action [25,88] are adopted; see Ref. [25] for details.
The EOS for cold QM is obtained following

Refs. [89,90]. The quark number density, pressure, and
energy density for each quark flavor at zero temperature
can be computed as

ρqðμqÞ ¼ 6

Z
d4p
ð2πÞ4 trD½−γ4Sqðp; μqÞ�; ð13Þ

pqðμqÞ ¼ pqðμq;0Þ þ
Z

μq

μq;0

dμρqðμÞ; ð14Þ

εqðμqÞ ¼ −pqðμqÞ þ μqρqðμqÞ: ð15Þ

The baryon chemical potential and total baryon number
density in the quark phase are

μB ¼ μu þ 2μd; ð16Þ

ρB ¼ ρu þ ρd þ ρs
3

; ð17Þ

and the total pressure and energy density are given by
summing contributions from all quark flavors and those
from electrons and muons. The pressure of QM at
zero density is determined by a phenomenological bag
constant [91],
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BDS ¼ −
X

q¼u;d;s

pqðμq;0Þ; ð18Þ

which is set to 90 MeV fm−3 [26,27,91].
The beta equilibrium and charge neutrality in the pure

quark phase are expressed as

μd ¼ μu þ μe ¼ μu þ μμ ¼ μs; ð19Þ

ρC ¼ 2ρu − ρd − ρs
3

− ρe − ρμ ¼ 0: ð20Þ

In this work we adopt the Gibbs construction [25,71] for
the phase transition between the hadron phase and quark
phase. In combination with the respective beta-equilibrium
conditions Eqs. (8) and (19), the chemical and mechanical
equilibrium in the mixed phase are expressed as

μB;N ¼ μB;Q; ð21Þ

μe;N ¼ μe;Q; ð22Þ

pNðμe; μBÞ ¼ pQðμe; μBÞ ¼ pMðμe; μBÞ; ð23Þ

where the subscripts “N,” “Q,” and “M” represent NM,
QM, and the mixed phase, respectively. In the mixed phase,
the local charge neutrality conditions Eqs. (9) and (20) are
replaced by the global condition

χρC;Q þ ð1 − χÞρC;N ¼ 0; ð24Þ

where χ is the volume fraction of QM in the mixed
phase. Consequently, the baryon number density ρB;M
and energy density εM of the mixed phase can be
determined as

ρB;M ¼ χρB;Q þ ð1 − χÞρB;N; ð25Þ

εM ¼ χεQ þ ð1 − χÞεN: ð26Þ

Specifically, with the Gibbs construction the baryon num-
ber density, energy density, and pressure are continuous
inside the HS. In contrast, with the Maxwell construction,
the pressure varies continuously, while baryon number
density and energy density are generally discontinuous at
the hadron-to-quark transition interface [92].

III. NEUTRON STARS

A. Hydrostatic equilibrium structure

The general static spherically-symmetric metric which
describes the geometry of a static NS can be written as

ds2 ¼ eνðrÞdt2 − eλðrÞdr2 − r2ðdθ2 þ sin2θ dφ2Þ; ð27Þ

where eνðrÞ and eλðrÞ are metric functions. The TOV
equations [93,94] obtained from the Einstein field equation
for the metric are

dp
dr

¼ G
ðεþ pÞðmþ 4πr3pÞ

r2ð2Gm=r − 1Þ ; ð28Þ

dm
dr

¼ 4πr2ε; ð29Þ

and the corresponding metric functions

eλðrÞ ¼ ð1 − 2Gm=rÞ−1; ð30Þ

νðrÞ ¼ −2G
Z

∞

r
dr0

eλðr0Þ

r02
ðmþ 4πr03pÞ: ð31Þ

The boundary conditions mðr ¼ 0Þ ¼ 0, pðr ¼ 0Þ ¼ pc,
and pðRÞ ¼ 0, where pc is the central pressure, lead to
equilibrium configurations in combination with the EOS of
the NS matter, thus obtaining radius R and massM ¼ mðRÞ
of a NS for a given central pressure or density.

B. Nonradial oscillations

Thorne developed a complete theory for NROs of NSs
from the Einstein field equations [54]. The perturbation
of the fluid in the star is described by the Lagrangian
displacement vector ξα in terms of the dimensionless
perturbation functions WðrÞ and VðrÞ,

ξr ¼ re−λ=2WYl
meiωt;

ξθ ¼ −V∂θYl
meiωt;

ξφ ¼ −ðsin θÞ−2V∂φYl
meiωt; ð32Þ

where Yl
mðθ;φÞ are the usual spherical harmonics, and

the eigenvalue ω ¼ 2πf is the frequency of the NRO. The
eigenfunctions WðrÞ and VðrÞ are determined by the
pulsation equations. The full NRO equations can be found
in the literature [54,57].
As we mainly focus on the g-mode oscillations, in this

work we employ the relativistic Cowling approximation,
which disregards the perturbations in the metric [95].
The validity of this approximation has been investigated
in Refs. [64,96]. The results show that compared to the
full solutions, the deviation of the g-mode frequency is
quite small for a NS with canonical mass and increases
with increasing mass, up to ∼10% at M ¼ 2.2M⊙. As
for the other two modes, the approximation yields about
10%–30% accuracy for the f-mode frequencies and about
20% for the p mode. We will explore the limits of the
Cowling approximation in future work.
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The oscillation equations in Cowling approximation are

r
dW
dr

¼
�
g
c2s

− 3

�
W þ eλ=2

�
ω2r2

c2seν
− lðlþ 1Þ

�
V; ð33Þ

r
dV
dr

¼ eλ=2
�
N2

ω2
− 1

�
W þ

�
2gþ N2r2

geν−λ
− 2

�
V; ð34Þ

with g≡ −rðdp=drÞ=ðpþ εÞ, and N being the Brunt-
Väisälä (BV) frequency defined as

N2 ≡ g2

r2

�
1

c2e
−

1

c2s

�
eν−λ: ð35Þ

In the Newtonian approximation N is the frequency of the
perturbed fluid elements forced by buoyancy to perform
harmonic oscillations.
The BV frequency depends on the difference of the

inverse squared equilibrium speed of sound ce and adia-
batic speed of sound cs, caused by the deviation from beta
equilibrium during fast enough oscillations. The former is
defined as the derivative of the EOS in beta equilibrium,

c2e ≡ dp=dρB
dε=dρB

¼ dp
dε

; ð36Þ

while, assuming that all weak reactions are slow compared
to the oscillation timescale, the squared adiabatic speed of
sound is

c2s ≡
�
∂p
∂ε

�
S;Yi

¼ Δp
Δε

; ð37Þ

where S and Yi denote entropy and the particle fractions
affected by weak reactions, respectively. It is related to the
adiabatic index of the fluid,

γ ¼
�
1þ ε

p

�
c2s ; ð38Þ

which drives the response of the stellar material to pulsa-
tional perturbations.
However, one should note that Eq. (37) is only adequate

in the pure hadron/quark phases. In the mixed phase, one
also needs to consider the transition between NM and QM,
as well as the independent expansion/contraction of NM/
QM during the oscillation. The related conversion rate/
timescale between hadron and quark phases is still an open
question, and current calculations are model dependent.
Following the argument of [97], the preferred conversion
timescale would be slow at the hadron-quark interface,
although a rapid timescale cannot be discarded [98,99].
Therefore, herein we neglect the phase transition

between NM and QM during the oscillation of the mixed
phase. At the timescale of oscillations, fluid elements

expand or compress while keeping all particle fractions
Yi constant in NM and QM separately. Note that this means
that the strong chemical equilibrium between NM and QM
is violated, i.e., the isospin chemical potentials in NM and
QM are different during oscillations. The volume fraction
of QM in the mixed phase changes during the oscillation, to
keep the pressure equilibrium between NM and QM.
Accordingly, the squared adiabatic speed of sound in the
mixed phase is modified as [61]

c−2s ¼ χ0ε0Q þ ð1 − χ0Þε0N − ε

p0 − p
; ð39Þ

where p and ε are the pressure and energy density in beta
equilibrium, p0 ¼ pþ Δp is the pressure during oscilla-
tions, ε0Q, ε

0
N are the energy densities of QM and NM during

oscillations, and χ0 is determined by p0
Q ¼ p0

N ¼ p0 during
oscillations.
In this work, we focus on the influence of the core on the

NROs, as in recent literature [61,63,64]. For simplification,
we will make the approximation that cs ¼ ce in the crust,
and, correspondingly, the BV frequency Ncrust ¼ 0. The
influence of the crustal N on the core modes of NROs is
small, which will be discussed in the following section.
In order to determine the eigenfrequencies of oscillation,

one also needs boundary conditions [100], which, in the NS
center, are given by

Wð0Þ þ lVð0Þ ¼ 0; ð40Þ

while at the outer surface of the star, the Lagrangian
perturbation of the pressure should vanish,

ΔpðRÞ ¼ γp

�
−e−λ=2

�
r
dW
dr

þ 3W

�
− lðlþ 1ÞV

�
ðRÞ ¼ 0:

ð41Þ

Due to the homogeneousnessof the oscillation equations (33)
and (34), one can impose arbitrarily Wðr ¼ 0Þ ¼ 1 and
Vðr ¼ 0Þ ¼ −1=2 at the center. Then integrating Eqs. (33)
and (34) from center to the surface with the boundary
conditions yields the discrete eigenfrequencies ωi and the
eigenfunctions Wi, Vi. For the quadrupole (l ¼ 2) oscilla-
tions of pure NSs and HSs, they can be ordered as
ωgn < … < ωg1 < ωf < ωp1

< … < ωpn
, where n is the

number of nodes.

C. GW damping time

The full solution of the NRO equations produces com-
plex oscillation frequencies of quasinormal modes, the
imaginary part being related to the damping time. In the
Cowling approximation the oscillation frequencies are
instead purely real, because the response of the metric to
fluid perturbations is neglected. In this work, similar to
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Refs. [62,67,100,101], we combine the Newtonian approxi-
mation for the oscillation energy with the lowest-order
post-Newtonian quadrupole formula for the gravitational
wave radiation in order to estimate the GW damping time.
Accordingly, the damping time of oscillations through GW
emission is

τGW ¼ 2E
PGW

; ð42Þ

where E is the total energy stored in the oscillation, and
PGW is the power of the GW radiation released by
the mode.
The energy per radial distance of an eigenmode in

Cowling approximation is given by [100]

dE
dr

¼ ω2

2
ðpþ εÞeðλ−νÞ=2r4½W2 þ lðlþ 1ÞV2�; ð43Þ

and its power, involving weak field approximation and slow
motion approximation, ωR ≪ 1, can be estimated as
[67,100]

PGW ¼ Gðlþ 1Þðlþ 2Þ
8πðl − 1Þl

�
4πωlþ1

ð2lþ 1Þ!!
Z

R

0

drrlþ2δϵ

�
2

; ð44Þ

where δϵ is the Eulerian perturbation of the energy density,

δϵ ¼ −ðpþ εÞ
�
e−λ=2

�
3W þ r

dW
dr

�
þ lðlþ 1ÞV

�

− r
dε
dr

e−λ=2W: ð45Þ

It has been pointed out [67] that the different terms in this
equation are of different signs and tend to cancel each other,
which renders a reliable numerical evaluation very delicate.
We will come back to this problem later.
The radiation power is related to the GW strain (metric

perturbation), which in quadrupole approximation and
transverse-traceless (TT) gauge is [102,103]

hTTij ðt; DÞ ¼ 2G
D

Q̈TT
ij ðt −D=cÞ; ð46Þ

where i, j ¼ 1, 2, 3 are the indices in Cartesian coordinates,
D is the distance to the source, G is the gravitational
constant, the two dots represent the second time derivative,
and the traceless quadrupole moment is

QTT
ij ðtÞ ¼

Z
d3xεðt; xÞ

�
xixj −

1

3
δijjxj2

�
: ð47Þ

The metric perturbation tensor can be decomposed as

hTT ¼ hþeþ þ h×e×; ð48Þ

where eþ and e× are the unit tensors of plus and cross
polarization.
In the case of a symmetric metric, the cross polari-

zation h× is zero, Qij has only diagonal components
Q11 ¼ Q22 ¼ − 1

2
Q33, and the GW strain can be calculated

by [104]

hþ ¼ 3G sin2 α
2D

Q̈33; ð49Þ

where α is the inclination angle. In this work, we choose
sin α ¼ 1. After some derivation, Q̈33 can be written as

Q̈33 ¼ jQ̈33je−iωt

¼
Z

drr2 sin θdθdφr2
�
sin2θ −

1

3

�
d2δϵ
dt2

; ð50Þ

and thus

jQ̈33j ¼
4

ffiffiffiffiffiffiffiffi
π=5

p
3

ω2

Z
drr4δϵðrÞ; ð51Þ

where δϵ is given by Eq. (45). So the amplitude of the GW
strain can be rewritten as

jhþj ¼
3GjQ̈33j

2D
; ð52Þ

and depends, as the radiation power, on δϵðrÞ.

IV. NUMERICAL RESULTS

A. EOS and equilibrium structure of neutron stars

As discussed above, we use the BHF EOS with BOB or
V18 potential for the pure NM. Regarding the QM EOS in
HSs, there is a free model parameter α, which represents the
strength of the in-medium modification of the Gaussian-
type effective interaction in the DSM. Here we choose
α ¼ 1, 2 and α ¼ 1, 1.5 in combination with the BHF BOB
and V18 EOSs, respectively, labeled as BOB=V18þ DSα,
to satisfy both the requirements of Mmax > 2M⊙ and
causality, as discussed in detail in [25,88].
The energy density, squared equilibrium speed of sound,

and squared adiabatic speed of sound as functions of the
pressure are shown in Fig. 1. The colors/types of curves
refer to the different combinations of BHF and DSM EOS.
The EOS of the mixed phase (broken curves) is generally
softer than that of the pure NM (solid curves), whereas pure
QM emerges at too high densities that cannot be reached in
HSs in our approach. However, the QM onset density is
strongly dependent on the theoretical model adopted for the
description of QM.
We notice that both sound speeds in pure NM become

superluminal at high densities (but quite close to the Mmax
configuration), due to the nonrelativistic character of the
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BHF theory. However, in our model, the phase transition to
QM occurs always at lower density, and consequently
causality is never violated. The equilibrium speed of sound
ce is particularly sensitive to the composition of the matter.
One can find a small discontinuity at p ≈ 5 MeV fm−3 due
to the onset of muons (hardly visible because of the scale),
and a sharp discontinuous drop at the phase transition point,
due to the appearance of QM. Unlike ce, the adiabatic
speed of sound cs is always continuous with increasing
pressure, regardless of the emergence of muons or quarks.
This is because it is defined with fixed particle composi-
tion, Eq. (37). Similar results were obtained in Ref. [64],
using different NM and QM EOSs.

In Fig. 2 we show the difference of squared inverse
sound speeds 1=c2e − 1=c2s as a function of the baryon
number density in NS matter. This difference determines
the profile of the local oscillation frequency, i.e., the BV
frequency, Eq. (35). As discussed above, we approximate
cs ¼ ce and N ¼ 0 in the crust, therefore the difference is
zero below the core-crust transition density. In the core with
the pure BHF EOS, cs and ce increase with density, and
therefore 1=c2e − 1=c2s decreases. There is a first spike
around ρB ≃ 0.15 fm−3 due to the muon onset, and at larger
densities a second much sharper spike due to the appear-
ance of QM. In the mixed phase the difference decreases
and then increases again when approaching the pure quark
phase. We stress that the (sharp) change of 1=c2e − 1=c2s is
mainly due to the (sharp) change of ce, which is very
sensitive to the change of particle species, see Fig. 1.
Furthermore we notice that, whereas the sound speed

differences in the purely hadronic phase become very small
and rapidly approach zero, those in the mixed phase are
larger and can rise very quickly. This behavior already hints
at larger values of the g-mode frequencies and a strong
dependence on the QM EOS in hybrid stars compared
to the purely hadronic stellar configurations. However,
the appearance of hyperons [105,106] or superfluidity
[105,107–109] can also lead to such sharp changes, and
cause an increase of the g-mode frequency, which would
thus not be a sufficient indication for the presence of QM.
The mass-radius relations of pure NSs and HSs with the

various considered EOSs are shown in Fig. 3. The broken
curve segments indicate the hybrid star branches. One notes
that the differences between HSs and pure NSs are even
smaller than the differences between pure NSs with differ-
ent BHF EOSs. Therefore, it is difficult to distinguish HSs

FIG. 2. Difference of squared inverse sound speeds 1=c2e −
1=c2s vs baryon number density. All curves end at the Mmax
configuration for the proper EOS.

FIG. 1. The energy density (upper panel), squared equilibrium
speed of sound (central panel), and squared adiabatic speed of
sound (lower panel) of NS matter as functions of pressure with
different EOSs. All curves end at the Mmax configuration for the
proper EOS. See the text for a detailed description of the notation.
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from pure NSs with only MðRÞ observations. Within our
model, pure QM matter does not appear in the core of HSs.
All plotted EOSs (in particular the V18 models) fulfill

the constraints from present observations on NS mass and
radius, in particular the recent mass-radius results of the
NICER mission for the pulsars J0030þ 0451 [37,38] and
J0740þ 6620 [40–43]. The combined (strongly model-
dependent) analysis of both pulsars together with the
GW170817 event observations [45,110] yields improved
limits on the radius R2.08 ¼ 12.35� 0.75 km [40], but,
in particular, on R1.4, namely, 12.45� 0.65 km [40],
11.94þ0.76

−0.87 km [42], and 12.33þ0.76
−0.81 km or 12.18þ0.56

−0.79 km
[43], which are shown as horizontal black bars in the figure.
The BHF V18 EOS is well compatible with these con-
straints [2,50,70], and also its maximum mass Mmax ≈
2.36M⊙ exceeds the currently known lower limits. The
BOB EOS is stiffer and allows a maximum mass of even
2.51M⊙. Some theoretical analyses of the GW170817
event indicate also an upper limit on the maximum mass
of ∼2.2–2.4M⊙ [32–35,111], with which the V18 EOS
would be compatible as well. However, those are very
model dependent, in particular the still to-be-determined
temperature dependence of the EOS [9,112–114].
In Fig. 4 we show the profiles of both the equilibrium

and adiabatic squared speed of sound, and the BV
frequency in NSs with masses M ¼ 1.4; 2.0M⊙ for differ-
ent EOSs. The speed of sound generally increases from the
crust to the center of the NS, apart from the density region

close to the pure quark phase or a sudden drop of ce due to
the onset of QM (e.g., upper right panel), which does not
take place in the 1.4M⊙ configurations shown in the left
panels. By definition, the BV frequency vanishes in the
center and increases towards the crust, exhibiting sharp
decreases at the phase transition point or when muons
disappear. We see that in the inner core of HSs, the BV
frequency is much larger than in pure NSs. The BV
frequency is a local property in NSs which cannot be
observed directly, but it is closely related to the global
g-mode frequency. Accordingly, one can consider the BV
frequency and the g-mode oscillations as useful probes of
the appearance of QM. We will discuss this in detail now.

B. Nonradial oscillations of neutron stars

In this work, we investigate the quadrupole oscillations
(l ¼ 2) of both pure NSs and HSs. For illustration, we show
some typical solutions for the radial and tangential dis-
placement perturbations WðrÞ and VðrÞ in Fig. 5. The left
panels contain the results of four representative f, g1, g2,
and p1 eigenmodes of a 1.4M⊙ NS with the V18 EOS,

FIG. 3. The mass-radius relations of NSs obtained with differ-
ent EOSs. Full dots indicate the bifurcation points of pure NSs
and HSs. The horizontal black bars indicate the limits on R2.08
and R1.4 obtained in the combined NICER+GW170817 data
analyses of [40,42,43]. The maximum-mass configurations are
indicated by star symbols.

FIG. 4. Squared equilibrium speed of sound (upper panels),
squared adiabatic speed of sound (central panels), and BV
frequency N (lower panels) in NSs with 1.4M⊙ (left panels)
and 2.0M⊙ (right panels), for various EOSs.
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exhibiting the expected number of nodes, whereas the right
panel displays the g1 mode of 2.0M⊙ NSs with various
EOSs. In this case, for purely hadronic NSs (solid curves),
one can see quite similar oscillation amplitudes nearly
independent of the nuclear EOS, whereas the amplitudes in
HSs (broken curves) decrease more quickly in the inner
core and remain smaller in the outer layers. Therefore, the
oscillation in HSs occurs mainly in the inner core, and
might reveal information about the QM/mixed phase. The
WðrÞ eigenfunction exhibits a smooth behavior over the
entire star’s profile, even at the radial distance correspond-
ing to the mixed phase onset; this is at variance with VðrÞ,
which shows sudden kinks when QM appears.
Now we turn to the discussion of the NRO frequencies in

NSs and HSs, for the g, f, and pmodes. As known, they are
classified according to the different restoring forces acting
in the fluid, and are characterized by different frequencies.
In Fig. 6, we show the NRO frequencies of NSs as
functions of NS mass. One can see that fg1 of pure NSs
lies in the range 0.2–0.4 kHz, and increases slowly with the
NS mass. The difference of the eigenfrequencies with BOB
and V18 EOSs is always about 0.1 kHz, which is related to
the corresponding difference of the BV frequencies, Fig. 4,
and, in particular, to the different NS radii, Fig. 3: the
smaller V18 star is oscillating faster. The same qualitative
correlations are observed for the HSs, which exhibit much
higher eigenfrequencies up to 0.9 kHz. Therefore fg1 might
be a good observable to distinguish HSs from pure NSs.

Again, our results are similar to those discussed in
Refs. [61,64,68].
Equivalent features are observed for the much higher

eigenfrequencies of f mode and p1 mode, above 2 and
6 kHz, respectively. But in this case, the differences
between HSs and pure NSs are not larger than the differ-
ence between pure NSs with different models. Therefore,
they cannot be used as good observables to distinguish HSs
from purely hadronic NSs.
The eigenfrequencies of several representative modes of

NSs withM ¼ 1.4; 2.0M⊙ and various EOSs are also listed
in Table I. One can see that the frequencies of higher-order
g modes decrease and those of higher-order p modes
increase with order. These results are qualitatively similar
to those recently published in Refs. [61,62].

C. GW emission and damping of g1 mode

In the previous section, we pointed out the significant
difference of the g-mode frequencies between massive NSs
and HSs. In the following, we investigate a closely related
observable, the damping time of oscillations through
GW emission, Eq. (42). Before illustrating the results,

FIG. 5. The radial displacement perturbation W (upper panels)
and the tangential displacement perturbation V (lower panels) of
the first four eigenmodes of NROs for a 1.4M⊙ NS with the V18
EOS (left panels) and of the g1 mode for a 2.0M⊙ NSwith various
EOSs (right panels).

FIG. 6. g1-, f-, and p1-mode frequencies vs massM for various
EOSs.
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we remind that three possible damping mechanisms can act
on g-mode oscillations, i.e., relaxation toward chemical
equilibrium, viscous damping, and damping due to emis-
sion of GWs. In Ref. [67] damping times of the core g
modes (as well as of crustal discontinuity gmodes) of order
108–1011 s were obtained (but are subject to delicate
numerical cancellations). Thus damping due to emission
of GWs is very inefficient, and the other mechanisms are
dominant.
Our results are shown in Fig. 7(a) for g1-mode oscil-

lations with various EOSs as a function of NS mass. In the
low-mass region (≲1.4M⊙), we obtain also very large
values of the damping time, and even a divergence at
certain masses. This large value of τGW is due to the

smallness of the integral for the GW power, Eq. (44),
caused by cancellations between the individual terms of
Eq. (45). The integral represents a superposition of GWs
emitted from perturbations of the energy quadruple
moment at different layers of the NS.
This is illustrated in Fig. 8, which shows the Eulerian

perturbation of the energy density, δϵðrÞ, Eq. (45), in
1.4M⊙ and 2.0M⊙ NSs. Similar to the perturbation
functions WðrÞ and VðrÞ, the perturbation of the energy
(quadruple moment) also has nodes at certain radii. The
sign flip of δϵ represents a half-period difference of the
oscillation phase of the energy quadruple moment.
Therefore the GWs emitted from domains with different
signs of δϵ will interfere with each other, which results in
cancellations of the power output. In our models, we obtain
contributions of positive δϵ in the inner core and negative
δϵ in the outer layers of the same order of magnitude. As a
result, we obtain large values of the damping time τGW, and
even a divergence at a certain mass. We stress that the
(small) values of the GW power are quite model dependent,
which could be greatly influenced by various approxima-
tions, and so do the values of the damping time τGW [67].

TABLE I. The NRO frequencies f (in units of kHz) of six
representative eigenmodes of NSs with M ¼ 1.4; 2.0M⊙ and
various EOSs.

1.4M⊙ 2.0M⊙

Mode V18 BOB V18 V18þ DS1.5 BOB BOBþ DS2

g3 0.15 0.13 0.19 0.33 0.16 0.44
g2 0.20 0.18 0.25 0.39 0.21 0.57
g1 0.31 0.27 0.38 0.65 0.31 0.85
f 2.25 2.14 2.43 2.49 2.29 2.49
p1 6.77 6.33 7.43 7.58 7.00 7.49
p2 8.74 8.21 10.59 10.78 9.88 10.48

(a)

(b)

FIG. 8. Eulerian perturbation of the energy density, Eq. (45), in
NSs with 1.4M⊙ (a) and 2.0M⊙ (b) for various EOSs. The
normalization is as in Fig. 7.

(a)

(b)

FIG. 7. Properties of g1-mode oscillations vs NS mass M for
various EOSs: (a) The damping time and (b) the amplitude of
the GW strain jhþj for a total GW energy E ¼ 1051 erg and
distance D ¼ 15 Mpc.
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Figure 8(b) shows that for massive pure NSs the positive
contribution in the inner core is dominant, and thus the
damping time in Fig. 7(a) is about 106–108 s (∼days), and
decreaseswith theNSmass. Thismeans that the g1 mode of a
pure NS is likely to be a stable and long-lasting source of
GWs, if no other very strong damping mechanisms domi-
nate. But for the hybrid stars, the positive contributions of δϵ
in the inner core are much larger, and the damping time
decreases very quickly by several orders of magnitude with
respect to pure NSs. Thus the behavior of the g1-mode GW
damping time shows again a significant difference between
HSs and pure NSs, just like the frequencies.
The much smaller damping time of HSs indicates a much

stronger GW strain jhþj, Eq. (52). This quantity depends on
the oscillation amplitudes W and V. Their normalization
can be determined from the total energy E of oscillation
through Eq. (43). Choosing a typical energy scale E ∼
1051 erg [97] and a typical distance D ∼ 15 Mpc (star in
the Virgo cluster), we show in Fig. 7(b) the GW strain
amplitude of NS and HS g1-mode oscillations. One can
see that jhþj for pure NSs with low masses is much lower,
with even a zero point, which corresponds to the high
damping time and its divergence in the upper panel. For
NSs with larger masses, jhþj increases with the NS mass,
while for HSs the equivalent irregular behavior as for τGW
is exhibited. Therefore, our results for both the damping
time and the strain amplitude suggest stronger GW g1-mode
radiation of HSs than pure NSs, which could thus be good
observables to distinguish those from each other.

D. Prospects of observation

Some of these features are likely to be detected by the
next generation of GW detectors [115], while the frequen-
cies of f and p modes are not in the range of sensitivity of
current ground-based detectors. Although the GW strain
emitted by NSs in the Virgo cluster is only of the order
10−25, a jhþj of the order 10−22 could be obtained for NSs
in our galaxy (D ∼ 10 kpc), which is within the detection
ability of present GW detectors. The minimum energy that
should be released to be detectable in present and planned
GW observatories can be estimated as [116,117]:

EGW

M⊙
¼ 3.5 × 1036

1þ 4Q2

4Q2

Sn
1 s

�
S
N

D
10 kpc

f
1 kHz

�
2

; ð53Þ

where Q ¼ πfτGW is the quality factor, Sn is the noise
power spectral density of the detector, and S=N is the
signal-to-noise ratio.
Table II lists some representative values, for typical

distancesD ¼ 10 kpc (star in our galaxy) andD ¼ 15 Mpc
(star in the Virgo cluster), taking S=N ¼ 8 and S1=2n ¼
2 × 10−23 s1=2 (representative of Advanced LIGO/Virgo at
∼kHz frequency [45]), and S1=2n ¼ 10−24 s1=2 (illustrative
of the planned third-generation ground-based Einstein
Observatory at the same frequencies [118]). Although
the minimum detectable energy of NSs in the Virgo cluster
is of the order 1052–1053 erg, higher than the typical energy
that can be released by a NRO g mode, the threshold for
stars in our galaxy is only 1046–1047 erg, much lower than
this typical energy. Therefore, those events could be
detected by present and planned GW observatories.

V. CONCLUSIONS

In this work we investigated non-radial quadrupole
oscillations of cold and isolated NSs, including pure NSs
and HSs. We adopted the BHF theory for NM, the DSM for
QM, and the Gibbs construction for their phase transition.
Based on the equilibrium structure, we solved the equations
for the non-radial l ¼ 2 oscillations within Cowling
approximation, and obtained the radial and tangential
displacement perturbations in NSs as well as the eigenfre-
quencies of g, f, and p modes for various EOSs.
The emergence of QM influences strongly the two kinds

of sound speed and the BV frequencies in HSs, and
consequently their g-mode oscillations. We find eigenfre-
quencies fg1 ∼ 300 Hz for pure NSs, which increase very
slowly with the NS mass, while those of HSs increase very
quickly, reaching above 700 Hz. All these frequencies are
in the sensitivity range of current ground-based GW
detectors. This shows a clear difference of the g-mode
frequency between pure NSs and HSs, which can thus be a
good observable to distinguish them. Such a difference is
not obvious for the f and p modes.
The concurrent shorter g1 damping times of HSs corre-

spond to larger GW strain and radiation power, and thus
easier detection than for pure NSs. Estimates of the GW
strain hþ and minimum detectable energy EGW suggest that
the GWs from the NRO g1 mode of NSs/HSs in our galaxy

TABLE II. The minimum detectable energy EGW, Eq. (53), (in units of erg) ofM ¼ 1.4; 2.0M⊙ NSs at two representative distances for
various EOSs.

1.4M⊙ 2.0M⊙

Detector Distance V18 BOB V18 V18þ DS1.5 BOB BOBþ DS2

LIGO=Virgo 10 kpc 1.5 × 1046 1.1 × 1046 2.3 × 1046 6.8 × 1046 1.6 × 1046 1.1 × 1047

LIGO=Virgo 15 Mpc 3.5 × 1052 2.5 × 1052 5.2 × 1052 1.5 × 1053 3.5 × 1052 2.6 × 1053

Einstein 10 kpc 6.2 × 1044 4.5 × 1044 9.3 × 1044 2.7 × 1045 6.3 × 1044 4.6 × 1045

Einstein 15 Mpc 1.4 × 1051 1.0 × 1051 2.1 × 1051 6.1 × 1051 1.4 × 1051 1.0 × 1052
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could be detected by present and planned detectors. To sum
up, the g1 mode is the most suitable mode to provide a
window on the internal composition of the compact object.
However, besides quark matter, appearance of other kinds
of matter such as hyperons and superfluidity in the cores of
NSs will cause similar effects on the g-mode frequencies
[105–109], and thus make the unique identification of QM
difficult. This is worth further investigation in the future.
In this work we disregarded the contribution of the crust

to the g-mode oscillations by using the approximation
Ncrust ¼ 0. In Ref. [67] the coupling between core and crust
NRO modes has been carefully analyzed and their mutual
interference was found sufficiently small, i.e., the fre-
quency and damping time of the core modes are only
weakly influenced by the crust contribution, especially for
high-mass stars. We have confirmed this conclusion by
calculations involving the Shen-EOS Ncrust, which will be
the subject of a separate paper.
The accurate computation of this feature requires in

particular a careful treatment of density discontinuities due

to changes of the chemical composition. This might occur
inside the crust [119], at the core-crust boundary, or at the
critical point from HM to QM with a Maxwell phase
transition [65,98,120,121]. The associated discontinuity g
modes might have similar eigenfrequencies as and thus mix
with the core modes [65,67].
Apart from cold isolated NSs, quadrupole oscillations

also occur in various newly born NSs, after NS mergers
or supernova explosions, which are expected to be more
energetic and easier observable. In such newly born
NSs, one needs to consider more realistic environment
effects, such as the EOS at finite temperature [100,119],
the temperature/entropy distribution in NSs, the neutrino
trapping effects, and also rotation. We leave these to
future work.
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