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The possibility of forming gravitational-wave sources with high center-of-mass (c.m.) velocities in the
vicinity of supermassive black holes requires us to develop a method of deriving the waveform in the
observer’s frame. Here we show that in the limit where the c.m. velocity is high but the relative velocities
of the components of the source are small, we can solve the problem by directly integrating the relaxed
Einstein field equation. In particular, we expand the result into multipole components which can be
conveniently calculated given the orbit of the source in the observer’s frame. Our numerical calculations
using arbitrary c.m. velocities show that the result is consistent with the Lorentz transformation of
gravitational waves (GWs) to the leading order of the radiation field. Moreover, we show an example of
using this method to calculate the waveform of a scattering event between the high-speed (∼0.1c) stellar
objects embedded in the accretion disk of an active galactic nucleus. Our multipole-expansion method not
only has advantages in analyzing the results from stellar-dynamical models but also provides new insight
into the multipole properties of the GWs emitted from a high-speed source.
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I. INTRODUCTION

Recent studies suggest that high-speed gravitational-
wave sources could form in the vicinity of supermassive
black holes (SMBHs). For example, it has been shown that
in the accretion disk of an active galactic nucleus (AGN),
stellar-mass binary black holes could form at a distance of
tens to hundreds of Schwarzschild radii from the central
SMBH [1–3]. The merger rate of these binaries could be
comparable to the LIGO/Virgo event rate [3–7]. In the most
extreme cases, hydrodynamic interaction with the sur-
rounding gas could deliver the binaries to the innermost
stable circular orbit (ISCO) [8,9]. Then the center-of-mass
(c.m.) velocities of the stellar-mass binaries would reach a
significant fraction of the speed of light, while the relative
velocities between the stellar-mass black holes are much
smaller (nonrelativistic).
Identifying such a high-speed source is not a trivial task.

First, a constant velocity normally induces a Doppler shift of
the gravitational-wave (GW) frequency, but the same effect
can be induced by a change of the model parameters, such as

the mass [8,10], or by including additional environmental
factors in the model, such as gas friction (e.g., [11] and
references therein). Second, if the source is accelerating, the
variation of the velocity may become detectable [10,12–19]
but detecting it requires a space-borne GW detector since it
can track the source for sufficiently long time [20]. Even in
this case there is still a parameter space where the effect is,
again, degenerate with mass [21]. For ground-based detec-
tors, the duration of the GW event is typically much shorter
than a second, inducing the acceleration undetectable.
Because of the difficulties in detecting a Doppler shift,

several recent works looked for other effects induced by
the constant velocity but with inconclusive results. A well-
known, standard method is to first derive the wave tensor
using the conventional quadrupole formula [22,23] in the
source frame where the c.m. velocity is small, and then
Lorentz transform it into the observer’s frame. While the
transformation induces higher modes in the radiation
pattern, whether or not the extra modes are detectable
by a single detector remains unclear [24]. An alternative
method given by Torres-Orjuela et al. is to stay in the
source frame and calculate the response of a moving
detector [25]. The result agrees with the Lorentz trans-
formation of a single ray, indicating no detectable effect of

*Corresponding author.
xian.chen@pku.edu.cn

PHYSICAL REVIEW D 107, 103044 (2023)

2470-0010=2023=107(10)=103044(8) 103044-1 © 2023 American Physical Society

https://orcid.org/0000-0003-1320-5243
https://orcid.org/0000-0003-3950-9317
https://orcid.org/0000-0002-5467-3505
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.103044&domain=pdf&date_stamp=2023-05-24
https://doi.org/10.1103/PhysRevD.107.103044
https://doi.org/10.1103/PhysRevD.107.103044
https://doi.org/10.1103/PhysRevD.107.103044
https://doi.org/10.1103/PhysRevD.107.103044


a constant velocity by a single detector. This result confirms
the earlier prediction based on the properties of the GWs in
the weak field approximation [26,27]. It also confirms the
semiquantitative analysis given by Maggiore [28], in which
he considered the GWs from an elastic two-body collision
system and analyzed the aberration effect.
These previous methods require the knowledge of the

GWs in the source frame. However, the properties of
the source are sometimes given not in the rest frame of
the source but in that of the observer. In particular, the
aforementioned astrophysical models for the formation of
high-speed GW sources are normally constructed in the
rest frame of the central SMBH, which has relatively small
velocity with respect to the observer. In this case, it would
be more convenient to use the physical quantities in the
observer’s frame to calculate the GWs.
Such an effort is analogous to the derivation of the

Liénard—Wiechert (L-W) potential in the electrodynamics.
It not only provides an alternative way of calculating the
electromagnetic fields, but also enables us to calculate the
electromagnetic radiation from a source with both high
c.m. velocity and high c.m. acceleration. We notice that a
derivation of the gravitational L-W potential can be found
in the literature [29]. However, the formula (more precisely
the energy-momentum tensor) was tailored to solve the
problems of the propagation of light, gravitational lensing,
or gravitomagnetism [29,30] in the weak field of one or
more moving bodies (e.g., [31]). Therefore, it is not
accurate for calculating the leading order of GW, a problem
not easily resolvable in the framework of their method.
Alternatively, Press showed that the gravitational radi-

ation of a source extending into its own wave zone can be
calculated by a method similar to multipole expansion [32].
Although his formula is not directly applicable to our
problem because it diverges for a high-speed source, it
points to the importance of synthesizing different methods
and including the “effective energy-momentum pseudoten-
sor” in the calculation to get a correct and analytical
formula of GWs.
These previous works motivate us to develop an new

approach of calculating the GWs emitted from a high-speed
source directly in the observer’s frame. Thepaper is organized
as follows. In Sec. II, we develop a multipole expansion to
integrate the relaxed Einstein equation which is applicable a
high-speed GW source and self-consistently includes the
contribution of the effective energy-momentum pseudo-
tensor. In Sec. III, we compare our result with the earlier
ones and show an astrophysical example of a scattering event
with a high c.m. velocity. Finally, we discuss the significance
and future extension of our work in Sec. IV.
Throughout this paper, unless otherwise indicated,

we will choose geometric units of G ¼ c ¼ 1, and the
Minkowski metric is set as diagð−1; 1; 1; 1Þ. Latin alpha-
bets represent three spatial indices, and Greek alphabets
represent all four indices.

II. THEORY

A. Multipole expansion formula

We first derive a general multipole-expansion formula
for a source with a constant c.m. velocity β⃗. The effect of a
varying β⃗ will be briefly discussed in Sec. IV.
As we mentioned in the Introduction, the quadrupole

formula is derived in the rest frame of the source and in
the limit of low velocity, and hence not suitable for our
problem. Therefore, we start from the “relaxed Einstein
field equations” which is a result of the Landau-Lifshitz
formulation [33] and valid for high velocities. We integrate
it to get

hμνðt; x⃗Þ ¼ 4

Z
τμνðt − jx⃗ − x⃗0j; x⃗0Þ

jx⃗ − x⃗0j d3x0 ð1aÞ

(see [34] for details). Note that hμν given by the above
equation is an exact solution to the relaxed Einstein field
equations, and its linear order corresponds to the GW in the
“weak field approximation.”
Here τμν is the “effective energy-momentum pseudoten-

sor” contributed by both mass and the gravitational
field [34]. To simplify the following derivation, we rewrite
Eq. (1) as:

ψðt; x⃗Þ ¼
Z

μðt − jx⃗ − x⃗0j; x⃗0Þ
jx⃗ − x⃗0j d3x0: ð1bÞ

This integral can be computed with a multipole expan-
sion. First, we modify the integrand in Eq. (1b) using the
Dirac δ- function,

μðt − jx⃗ − x⃗0j; x⃗0Þ
jx⃗ − x⃗0j ¼

Z
μðt − jx⃗ − x⃗0j; y⃗Þ

jx⃗ − x⃗0j δ3ðy⃗ − x⃗0Þd3y

≡
Z

gðt; x⃗; x⃗0; y⃗Þδ3ðy⃗ − x⃗0Þd3y: ð2Þ

Second, noticing that the c.m. velocity, β⃗, is much greater
than the relative velocity between the two components
of the binary, we introduce an important variable
Δ⃗≡ x⃗0 − β⃗ðt − jx⃗ − x⃗0jÞ to extract the small displacement
relative to the center of mass. The new set of variables
ðt; x⃗; Δ⃗; y⃗Þ replaces the old set ðt; x⃗; x⃗0; y⃗Þ. This replacement
allows us to do the Maclaurin series expansion of the
function gðt; x⃗; Δ⃗; y⃗Þ, in Eq. (2) with respect to Δ⃗. Third,
after the expansion we restore the variable x⃗0 using the
relationship

∂gðt; x⃗; Δ⃗; y⃗Þ
∂Δi ¼ −

∂gðt; x⃗; Δ⃗; y⃗Þ
∂xi

; ð3Þ

similar to the operation in Ref. [34].
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Finally, Eq. (1b) becomes a multipole-expansion formula

ψðt; x⃗Þ ¼
X∞
l¼0

ð−1Þl
l!

Z
d3x0Δ⃗L

∂L
μðt − jx⃗ − β⃗τj; x⃗0Þ

jx⃗ − β⃗τj
: ð4Þ

Here τ is the c.m. retarded time which satisfies τ ¼
t − jx⃗ − β⃗τj, and L always denotes l different space indices
(e.g.: L ¼ ijk for l ¼ 3, see Ref. [34] for details).
Now we will simplify Eq. (4) to get a more familiar form

containing the time derivatives of the multipole moments
of the source. More specifically, we replace the partial
derivatives ∂L in Eq. (4) by the terms proportional to
nLðd=dτÞl, where n̂≡ x⃗=R is the wave vector and R≡ jx⃗j.
Keeping the terms to the radiation order Oð1=RÞ, we have

ψðt; x⃗Þ ¼ 1

R

X∞
l¼0

1

l!

�
1

1− n̂ · β⃗

�
l
Z

d3x0ðn̂ · Δ⃗Þl
�
d
dτ

�
l
μðτ; x⃗0Þ:

ð5Þ
To move the time derivatives outside the integral, we

do the integration by parts. Notice that now the function
ðn̂ · Δ⃗Þl in the integrand depends on τ. Therefore, we
cannot directly take the time derivatives outside the integral
as we normally do in the c.m. frame. Nevertheless, after
some algebra we get

ψðt; x⃗Þ ¼ 1

R
1

1 − n̂ · β⃗

Z
d3x0μ

þ 1

R
1

ð1 − n̂ · β⃗Þ3
d
dτ

Z
d3x0n̂ · Δ⃗μ

þ 1

2R
1

ð1 − n̂ · β⃗Þ5
�
d
dτ

�
2
Z

d3x0ðn̂ · Δ⃗Þ2μ: ð6Þ

The details of the derivation can be found in Appendix A.
Notice that Eq. (6) contains only the leading (quadrupole)
order of GW. We will discuss the possibility of including
higher-order terms at the end of this paper.

B. Point-mass sources

In our problem the source is composed of compact
objects, which can be approximated by point masses. We
refer to the mass and position of the mth component as,
respectively,Mm and r⃗m. The corresponding Lorentz factor
is γm. In this case, Eq. (6) leads to

hijðt; x⃗Þ ¼ 1

1 − n̂ · β⃗

1

R
Q0ðt; x⃗; τðt; x⃗ÞÞ

þ 1

ð1 − n̂ · β⃗Þ2
1

R
d
dτ

ðnkQkðτÞÞ

þ 1

2

1

ð1 − n̂ · β⃗Þ3
1

R

�
d
dτ

�
2

ðnklQklðτÞÞ; ð7Þ

where we have defined three “mass multipole moments,”

Q0 ¼ 4

Z
τijd3x0

nkQk ¼ 4
X
m

γmMmvimv
j
mn̂ · δ⃗m

nklQkl ¼ 4
X
m

γmMmvimv
j
mðn̂ · δ⃗mÞ2; ð8Þ

and a new variable δ⃗mðτÞ≡ r⃗mðτÞ − β⃗τ. Note that in
Eq. (7), we have neglected the octupole and higher-
order terms.
The reason we kept τij in the calculation of Q0 is that

both mass and the gravitational “field energy” contribute to
this term. To expressQ0 only in terms of the mass, we recall
that normally in the c.m. frame we use the conservation law
of the energy-momentum tensor to get a second-order time-
differentiation form. We do a similar calculation here but
take into account the c.m. velocity β⃗ (see details in the
Appendix B), which results in

τijðτ; x⃗0Þ ¼ 1

2
∂00ðτ00ðx0i − βiτÞðx0j − βjτÞÞ þ ∂kð·Þ: ð9Þ

Here τ00 is predominantly contributed by the mass. The
term ∂kð·Þ represents the nonradiative total-differentiation
part, which can be discarded in the calculation of GWs.
When β⃗ ¼ 0, Eq. (9) recovers the standard result in the
c.m. frame.
Now the only part that has not been calculated in Eq. (7),

i.e., Q0, can be derived by integrating Eq. (9). The final
result for hij is

hijðt; x⃗Þ ¼ 2

1 − n̂ · β⃗

1

R

�
d
dτ

�
2
�X

m

γMδiδj
�

þ 4

ð1 − n̂ · β⃗Þ2
1

R
d
dτ

�X
m

γMvivjn̂ · δ⃗

�

þ 2

ð1 − n̂ · β⃗Þ3
1

R

�
d
dτ

�
2
�X

m

γMvivjðn̂ · δ⃗Þ2
�
;

ð10aÞ

where δ⃗mðτÞ≡ r⃗mðτÞ − β⃗τ, and the index m on the right ofP
m are omitted for simplicity. We will discuss the meaning

of the above equation in the next section.
To see more clearly the dependence on the c.m. velocity

β in the low-velocity limit, we expand Eq. (10) to different
orders of β. Keeping the zeroth and first order terms, we get

hijðt; x⃗Þ ¼ 2

1 − n̂ · β⃗

1

R

�
d
dτ

�
2
�X

m

Mδiδj
�

þ 4

1 − 2n̂ · β⃗

1

R
d
dτ

�X
m

Mvivjn̂ · δ⃗

�
: ð10bÞ
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We see that when β ¼ 0 (zeroth order), the first term in the
last equation recovers the standard quadrupole moment
formula in the c.m. frame. The second term contains only
part of the octupole moment because of the approximation
we did since Eq. (6).
As a reminder, we should mention here that the second

line of Eq. (10) or Eq. (10b) does seem to have a dipole
term at the leading order. We notice that vi contains a βi and
therefore the apparent leading order term is the time
differentiation of βiβjn̂ ·

P
m γMδ⃗. However, this kind of

terms will cancel out and leave a quadrupole term simply
because of the conservation of the total momentum, as our
numerical calculations in Sec. III will prove. People should
then not be misled and carefully handle those apparent
“dipole moment terms” induced by c.m. velocity when
calculating the wave templates of a high-speed source.

III. TEST AND APPLICATION

A. Compare with Lorentz transformation

As we have mentioned in the Introduction, it is com-
monly accepted that one can use Lorentz transformation to
derive the GWs from a moving source in the observer’s
frame. Therefore, we compare our result with the result
derived from Lorentz transformation.
We consider a simple but instructive example in which

the source is an one-dimensional harmonic oscillator with a
single frequency (in its c.m. frame). We assign an arbitrary
source velocity and calculate its trajectory in the observer’s
frame using a Lorentz transformation and numerical
interpolation. We then compute the GW in the observer’s
frame and compare it with the result given by Eq. (10). We
find that the results are the same at the leading (quadrupole-
moment) order [35]. The agreement suggests that our
method described in Sec. II is feasible.
It is worth mentioning that our formula not only

calculates the amplitude of the GW in the observer’s frame,
but also self-consistently produces the relativistic Doppler
shift of the frequency. More specifically, the Lorentz factor
comes from the time dilation effect and the geometrical
factor ð1 − n̂ · β⃗Þ comes from the retardation effect [e.g.,
see Eq. (5)]. The two factors combined give the correct
Doppler factor.

B. Compare with previous work

Torres-Orjuela et al. presented another way of calculat-
ing the GW signal [25]. They stayed in the rest frame of the
source and studied the response of a fast-moving detector.
Now we compare their result with ours and show that they
are also consistent.
We consider a more realistic source which is an equal-

mass binary moving at a relativistic c.m. velocity. In the
following, the initial conditions are all specified in the rest
frame of the source, to allow easier comparison with the
results of Torres-Orjuela et al. We assume that the binary

has a total mass ofM ¼ 2 with arbitrary unit and the orbital
velocity is v0 ¼ 0.01. The c.m. coincides with the origin of
the coordinates and the orbital plane is aligned with the x–y
plane. Initially, the observer is on the z axis at a distance of
z ¼ 1010 from the origin. The velocity of the observer is
ð−0.6; 0; 0Þ, i.e., it is antiparallel with the x axis. Having
defined the initial conditions, we calculate the orbit of the
binary in the observer’s frame using Lorentz transformation
and derive GW amplitude hij using our Eq. (10).
To calculate the response of a detector, we have to

specify the antenna patterns. Therefore, we follow Torres-
Orjuela et al. and consider a detector with two orthogonal
arms with equal length. In the source frame, the two
arms are pointing in the directions n̂a ¼ ð0; 1; 0Þ and
n̂b ¼ ðcos θ; 0; sin θÞ. Given such a detector, we first
Lorentz transform the directions of the arms and the wave
vector into the observer’s frame to get n̂0a, n̂0b, and n̂0, and
then compute the response with

Fðn̂0a; n̂0bÞ ¼ Λij;klðn̂0Þhklðn̂i0an̂j0a − n̂i0bn̂
j0
b Þ; ð11Þ

where Λij;klðn̂0Þ is the standard transverse-traceless (TT)
projection operator (see its definition in Ref. [28]).
Now we can compare the result from Eq. (11) with that

from Eq. (29) in the work of Torres-Orjuela et al. [25].
Figure 1 shows that over the entire range of θ ∈ ½0°; 180°�,
the two results agree well, with a small relative error of
about 4.3 × 10−6 when θ varies.

C. Scattering between stellar objects in AGN disk

Our work is partly motivated by the high-velocity
scatters between stellar objects which may happen in the
accretion disk surrounding a SMBH. Now we calculate the
GW emitted during such a scatter.

FIG. 1. Detector response to a moving binary source as a
function of the orientation of the arms. The two symbols refer to
the results calculated using two different methods. They agree
within a relative error of 4.3 × 10−6.
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We consider a toy model with two equal-mass stellar
objects (m1 ¼ m2 ¼ m), both on corotating Keplerian
circular orbits around a SMBH of mass M. To simplify
the problem, we start our analysis when the two objects are
already close, separated by a tangential distance of d and a
radial distance of r. As long as d and r are sufficiently
smaller than the distance to the central SMBH, D, we
can approximate the c.m. velocity of these two objects
with β ¼ ffiffiffiffiffiffiffiffiffiffiffi

M=D
p

, as well as neglect their earlier mutual
interaction. These initial conditions result in a difference in
the initial tangential velocities of the two objects, which can
be calculated with vc ≃ rβ=2D.
The scattering process can be further simplified if the

duration of the scattering (≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 þ r2Þ3=2=m

p
) is much

shorter than the orbital period (≃D=β) around the SMBH,
in which case we can adopt an impulsive approximation
and neglect the tidal force of the SMBH during the
interaction. The validity of this approximation requires that

�
d
r

�
2

þ 1 ≪
�

β

2vc

�
2
�
m
M

�2
3

: ð12Þ

The values of the parameters are chosen as follows. We
set m=M ¼ 10−4, β ¼ 0.1, and vc ¼ 10−3. Consequently,
we have r ¼ 2 × 104m, indicating that initially the two stellar
objects are far apart from merger. Given these parameters,
Eq. (12) becomes ðd=rÞ2þ1≪5.4. Therefore, we choose
d ¼ 0.5r to comply with this requirement. The trajectories
of the two objects are first obtained in their c.m. frame and
then Lorentz transformed into the observer’s frame, i.e. the
rest frame of the SMBH. The coordinates in the observer’s
frame are chosen mostly in the same way as in Sec. III B.
In particular, we choose the same orientation (relative to
the coordinate axes) for the orbit plane and the same direction

for the c.m. velocity. The wave vector is set to n̂ ¼
ð0.5; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.52

p
Þ as an example, and the distance to the

observer is denoted as R as before. Both n̂ and R are defined
in the observer’s frame.
Using Eq. (10) again, we calculate the (1, 2) component

of the GWs, h12, and show the evolution of h12R in Fig. 2.
Note that this component is different from the standard
cross polarization because we did not performed a TT
projection yet. The sharp spike at t ≃ 2.5 × 106m corre-
sponds to the GW radiated during the pericenter passage.
It is important to understand that the calculation of the
waveform only requires the knowledge of the trajectories in
the SMBH frame. Therefore, our method will have advan-
tages in analyzing the scattering events from numerical
N-body simulations, which are normally performed in the
SMBH frame [36–39].

IV. DISCUSSION AND CONCLUSION

In this paper, we have developed a new method of
calculating the GW radiation of a high-speed source. In
particular, we expanded the relaxed Einstein equation
with a special form of multipole expansion in the observer’s
frame. At the leading (quadrupole) order, our result
recovers the previous one derived from Lorentz trans-
formation, as we have shown in Sec. III.
One advantage of our method is that it directly calculates

the GWs radiated by a source with a high c.m. velocity
relative to the observer. The calculation, using Eq. (10), only
requires knowledge of the orbit of the source in the observer’s
frame. With an additional TT projection, one can conven-
iently get thewaveform in the observer’s frame. The conven-
tional Lorentz transformation, however, first requires a
transformation of the orbit into the source frame, then uses
the standard quadrupole formula to calculate thewaveform in
the source frame, and finally performs an inverse Lorentz
transformation toget the observedwaveform.For this reason,
our method is useful in analyzing the results of N-body
numerical simulations, where the orbits of the GW sources
are normally given in the observer’s frame.
Our work also generalizes the method of using multipole

expansion to calculate GWs. While the conventional multi-
pole-expansion formula is derived in the rest frame of the
source, our method relaxes the requirement on the c.m.
velocity so that it is applicable to a source with arbitrary
c.m. velocity. As far as we know, this is the first work
where the form of such a generalized expansion is explicitly
spelled out.
One can see our result as an analog to the L-W potential

in electrodynamics. It is used to calculate the electromag-
netic fields generated by an arbitrarily-moving source. In
particular, such a potential is more useful than the conven-
tional Lorentz transformation when the velocity of the
source is not constant. However, there is a key difference
between our method and the derivation of the L-W potential

FIG. 2. Evolution of the h12 component of the GWs emitted
from a scattering event happening close to a SMBH. Note that the
result is normalized by the distance factor 1=R.
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in electrodynamics. In our problem, there is a “pseudo field
energy-momentum tensor” in τμν, which is absent in the
standard electrodynamics. For this reason, we cannot use
the equation

hμν ∼
UμUνðt�; x⃗�Þ
R� − n̂ · R⃗� ; ð13Þ

like the one normally used in electrodynamics, to calculate
the GWs because it is missing the part contributed by the
field. Here “�” means retardation andUμ is the 4-velocity of
the source. Our multipole expansion has been carefully
derived to properly treat this issue. We note that our
treatment of the aforementioned difference is not new. In
fact, in the derivation of the conventional quadrupole
formula for GWs, one has to take a step similar to
Eq. (9) but with β⃗ ¼ 0 to correctly account for the
contribution from the field. Otherwise, a direct integration
of the weak-field equations will give a spurious result.
Finally, we point out two directions for future work which

could broaden the applications of our result. First, one can
consider a varying c.m. velocity, β⃗ðτÞ. The acceleration
could possibly give rise to a series of higher-order multipole
moments and hence induce discernible signature in the
waveform. To include the effects of acceleration, Eq. (3)
is still tenable but the analysis from Eq. (5) has to be revised,
because those derivatives ðd=dτÞl inside the integration will
also act on β⃗. Second, one can also consider the higher-order
modes of GW radiation, which will be particularly important
for binaries with high orbital eccentricities. In this case,
our derivation until Eq. (5) will be correct. However, the
following integration by parts needs to be revised to keep
more terms, which we have omitted in the current paper. In
addition, one has to re-assess the relative importance of the
terms coming from the “pseudo field energy-momentum
tensor,” since Eq. (9) can only get around this problem
(which means we do not need to actually calculate these field
energy-momentum tensors) in quadrupole order.
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APPENDIX A: DETAILED DERIVATIONS
OF EQ. (6)

The first step to get Eq. (6) is to investigate the result
of ð ddτÞl acting on ðn̂ · Δ⃗Þl, so that we can handle the

integration in Eq. (5) by parts. This step is performed
according to the definitions of τ at the proper order,

�
d
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k
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d
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�
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ðA1Þ

The result of the integration by parts contains several
coefficients, such as

Z
A × dlB ¼ cl × dl

Z
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Z
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þ c1 × d1
Z
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Z
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After some proper reordering and arrangement, we find that
the coefficients in Eq. (A2) are

cl ¼ 1

c0 ¼ ð−1Þl; l ≥ 1

c1 ¼ ð−1Þl−1 × l; l ≥ 2

c2 ¼ ð−1Þl−2 × lðl − 1Þ
2

; l ≥ 3: ðA3Þ

Based on the above properties, Eq. (5) can be trans-
formed into the following form,
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We then calculate several series summations about l in
Eq. (A4), except in the first term. Define the series as
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Sðx;mÞ≡P∞
l¼1 l

mxlðm ∈ N; jxj < 1Þ, and we simply
write down the results we need,

Sðx; 0Þ ¼ x
1 − x
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ð1 − xÞ2

Sðx; 2Þ ¼ xðxþ 1Þ
ð1 − xÞ3 : ðA5Þ

The results of the summations in Eq. (A4) are then
calculated as
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Eliminate l > 2 terms (i.e., higher modes of GWs) in the
first line and merger the similar terms, we will get Eq. (6).

APPENDIX B: DETAILED DERIVATIONS
OF EQ. (9)

The conventional result deduced from the conservation
law in the c.m. frame [the first line of Eq. (B1)] is still
workable, because this deduction only requires the con-
servation law, without any assumption about the reference
frame. Based on this result, we can transform it to deduct
the contributions of c.m. movement as
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The first order time derivatives in the last two terms can
be calculated as

∂0τ
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Then, the second order derivatives are

∂00τ
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We notice that the last two terms of Eq. (B1) actually
give a constant part after space integral, because their
equivalent form [i.e., Eq. (B3)] are simply proportional to
the total mass energy (

R
τ00) or momentum (

R
τ0i) of the

source. As a result, Eq. (9) is derived and we also calculate
Q0 in Eq. (8) here for completeness,
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