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We present the first numerical simulations of the symmetric-hyperbolic theory for conformal dissipative
relativistic fluids developed in Lehner et al. [Hyperbolic theory of relativistic conformal dissipative fluids,
Phys. Rev. D 97, 024013 (2018)]. In this theory, the information of the fluid dynamics is encoded in a scalar
generating function which depends on three free parameters. By adapting the WENO-Z high-resolution
shock-capturing central scheme, we present numerical solutions restricted to planar symmetry in
Minkowski spacetime, from two qualitatively different initial data: a smooth bump and a discontinuous
step. We perform a detailed exploration of the effect of the different parameters of the theory, and
numerically assess the constitutive relations associated with the shear viscosity by analyzing the entropy
production rate when shocks are produced.
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I. INTRODUCTION

The success of relativistic hydrodynamics as a frame-
work for modeling matter and energy transport, has
attracted the attention of the community since its origins.
One of the main reasons for such a fame is perhaps its
surprising versatility to be applied over a wide range of
physical phenomena, at very different scales. In astrophys-
ics, for instance, it is used for modeling relativistic jets from
the core of active galactic nuclei [1,2], microquasars [3],
rotating black holes [4], and gamma-ray burst central
engines [5,6]. It is also applied for describing the chemical
and thermodynamical composition of the interior of com-
pact stars [7], and even for exploring the dynamical
structure of accretion disks around rotating black holes
[8–11]. In particular, certain hydrodynamic models for the
equation of state of the interior of compact objects turned
out to be crucial in the new window that has been recently
opened from the first direct detection of gravitational
waves [12–15].
Relativistic hydrodynamics also models the microphysics

of strongly interacting matter produced in heavy-ion col-
liders [16–18] like the LHC and the RHIC, making reliable
predictions about their most intimate structure [19–22].

Among the different experiments pursued in these acceler-
ators is to probe newpossible phases of nuclearmatter at high
energies. Assuming a Bjorkenmodel for the collision, matter
is expected to be a very low-mass plasma composed mainly
of gluons and quarks. Both nuclei approach each other at
ultrarelativistic speeds, producing a wake of very hot plasma
which expands and cools down, eventually fragmenting into
different particles. The latter are subjected to high energy
scattering processes, which are subsequently detected in the
laboratory. Although the thermal properties of the plasma
may be described from perturbative QCD theory, in order to
obtain a more quantitative description it is useful to describe
it as a relativistic ideal fluid (applicable to matter in local
thermodynamic equilibrium), provided a suitable equation of
state. The reason for “neglecting” QCD theory at a first
approximation is that hydrodynamic models offer a natural
way to couple flow to pressure gradients in the transverse
plane of the collision, reproducing experimental data in a
surprising accurate way [23,24]. Nevertheless, ideal hydro-
dynamics usually overestimates the anisotropy in the trans-
verse flow. Including viscous effects, instead, yields a much
better agreement, if the ratio between the fluid entropy and
the shear viscosity keeps sufficiently small. One interesting
example of this situation is the so-called elliptic flow, which is
characterized by the pressure anisotropy in the plane
orthogonal to the flow velocity direction. Ideal hydrody-
namics predicts a larger amount of elliptic flow compared to
the one observed experimentally, suggesting that there
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should be some physical mechanism helping to “isotropize”
the system [25,26]. This is indeed the role played byviscosity
in this context, whichmotivates, among other arguments, the
importance of having a “well-behaved” dissipative hydro-
dynamic theory.
The fundamental equations describing relativistic fluids

are the local conservation of the energy-momentum tensor
and the particle number density current [27]. Such laws are
the covariant generalization of the well-known energy and
momentum conservation laws and the continuity equation
for the mass in Newtonian fluid mechanics [28]. In order to
close the system, an equation of state relating thermody-
namic quantities such as the pressure, internal energy, and
energy density needs to be fixed. Although the choice of the
equation of state could become sophisticated enough for
taking into account chemical processes (such as molecular
interactions, quantization, relativistic effects, and/or
nuclear processes), the most widely employed in astro-
physical simulations are the ideal gas, the polytropic, and
the radiation ones; the choice will always depend on the
physics one is interested in modeling [29].
In the context of general relativity, the gravitational

interaction of the fluid is obtained by coupling the hydro-
dynamic equations with the gravitational field (Einstein’s)
equations. However, in the majority of astrophysical
scenarios (like accretion processes or propagation of
relativistic jets) the “test-fluid” approximation is good
enough to provide an accurate description of the underlying
dynamics [30–33], being the self-gravity of the fluid
completely neglected in comparison to the background
gravitational field, and the mass of the accreting fluid
becomes usually much smaller than the rest mass of the
compact object [34,35].
The parabolic nature of the Navier-Stokes-Fourier sys-

tem of equations for nonrelativistic viscous fluids implies
that they cannot be naively extended to relativistic regimes.
Motivated by this, a great deal of effort has been devoted to
developing theories that allow an accurate description of
dissipative fluids; i.e., theories which are (i) causal, (ii) sta-
ble, and (iii) whose initial-value problem is well posed.
This is still an open problem in the community, and the
main reason is that there is a lot of freedom on how to
model nonequilibrium dynamics when considering energy
transport/dissipation effects [36]. The first attempts towards
this huge goal date back to the works by Eckart [37] and
Landau-Lifshitz [28], who proposed two particular ways to
include dissipative corrections in the dynamical variables of
the theory.However, these proposals did not come to fruition,
because years later it was shown that they are not only
unstable, but also ill posed.Thismeans that they admitmodes
which grow exponentially with the wave number and,
moreover, such instabilities turn out to be generic, in the
sense that they manifest with respect to any frame [38,39].
Some years later, alternative ways for modeling dissipa-

tive effects on fluid systems came up, as the well-known

Israel-Stewart [40] theory of extended thermodynamics.
Although this formulation provided a stable and well-posed
theory, other approaches were also developed. One of them
was the so-called divergence-type theories, originally intro-
duced byLiu et al. [41], including extra dynamical degrees of
freedom from which they could describe dissipative proc-
esses, as energy transport through heat fluxes, entropy
generation and viscosity effects. Later on, a deeper study
of the well-posedness and stability of divergence-type
theories was carried out by Geroch and Lindblom [27,42].
In this approach, the dissipative effects are encoded in a new
“constitutive” tensor field. The advantage of these theories is
that, as a consequence of the symmetry of the energy-
momentum tensor, all the information of the theory is
contained in a single generating scalar function, whose
different terms consider dissipative contributions to different
orders. It is not difficult to see that considering first-order
dissipative generating functions leads to theories that are only
weakly hyperbolic, and so have the pathologies shown by
Hiscock and Lindblom [43]. Nevertheless, there exist some
families of second-order generating functions leading to
well-posed theories [44]. By well posedness we mean that,
for any given initial dataset in certain Banach space there
exists a finite time T such that (i) during this time there exists
a solution belonging to some other Banach space; (ii) that
solution is unique; and (iii) the solution is a continuous
function of the initial data given (in the corresponding
topologies where the data and solutions are defined) [45].
Dynamical evolution is governed by the principal part of the
system of equations, which contains information about the
propagation speeds of the different modes [43,44]. The
modern way to elucidate this nontrivial mathematical con-
dition is through the concept of hyperbolicity [43,44,46,47],
that is, a set of algebraic conditions the principal part should
satisfy for the system to be well posed (or, as it is commonly
known, strongly hyperbolic).
An essential edge for the use of relativistic dissipative

theories for solving concrete problems is the possibility of
generating solutions through numerical simulations.
Indeed, a large variety of numerical schemes for simulating
hydrodynamic systems have been successfully built during
the last decades [48–53]; mostly based on explicit finite
difference upwind schemes; specifically designed to solve
nonlinear hyperbolic systems of conservation laws [54]
(and most of them originally developed from codes for
solving nonrelativistic hydrodynamics). These schemes
implement approximate or exact Riemann solvers [55],
starting from the characteristic decomposition of the
corresponding system of conservation equations and based
on algorithms that are able to robustly capture sharp
discontinuities along evolution (see [29,54,56,57] detailed
discussions, and references therein). Among the most
popular numerical algorithms for evolving this kind of
equations are the high-order and nonoscillatory central
schemes [58–60]. One of the nicest properties of central
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schemes is that they exploit the conservation form of the
Lax-Wendroff [61] and Lax-Friedrichs schemes (see the
book [62] for a recent discussion), yielding the correct
propagation speeds of all nonlinear waves appearing in the
solution. This was reached without using Riemann solvers,
resulting then in a high computational efficiency. After
Lax’s seminal work in the mid-1950s [63], there came up a
huge variety of extensions aiming to enhance certain
oscillatory behaviours near shocks or discontinuities,
which were no proper of the physical situation of interest.
Very recently, a theory for relativistic fluids with first-

order dissipative contributions was proposed by Bemfica,
Disconzi, Noronha, and Kovtun (BDNK) [36,64,65].
Unlike previous efforts, this theory does not present the
generic instabilities reported by Hiscock and Lindblom for
the Eckart and Landau-Lifshitz theories. After showing that
the corresponding initial value problem is well posed in
Gevrey spaces (which is commonly known as the Leráy
hyperbolicity [66,67]), results of stability, causality, and
strong hyperbolicity in Sobolev spaces [68] where also
reported. These results motivated a series of recent works
[69–71], in which the BDNK theory was explored numeri-
cally, finding initial smooth configurations that develop
shocks during evolution.
In this work, we present the first numerical solutions of the

system of equations governing the dynamics of dissipative
ultrarelativistic (or conformal) fluids, whose theory was
previously developed in [72]. This scheme constitutes, to
the best of our knowledge, the first proposal for evolving
second-order divergence-type dissipative fluid theories. To
do so, we consider two sets of variables (which we refer to as
conservative and fluid variables), we invert the relation
between them and reconstruct the corresponding fluxes in
terms of the conservative variables for the time evolution.
After introducing the most general dynamical equations for
second-order dissipative fluids, we consider the simplest
dynamical case as a first exploration; i.e., a fluid propagating
in only one spatial dimension and in flat space, by imposing
rotational invariance in the plane perpendicular to it (some-
times referred as “slab-symmetric” configurations). These
assumptions allow a considerable reduction of the degrees of
freedom of the theory, and consequently a rather natural and
intuitive first-step implementation towards the full 3D
general case, over an arbitrary background geometry.
This paper is organized as follows. Section II contains a

brief review of the conformal theory developed in [72],
introducing the fundamental concepts, identities, and equa-
tions that will be used further. In Sec. III, the general
(3þ 1) decomposition is presented, and a discussion about
the choice of suitable evolution variables is addressed.
After particularizing to the 1þ 1 reduced system, and
analyzing the corresponding characteristic structure, we
introduce the numerical method we will use, as well as
some details on the implementation. Section IV is dedicated
to the numerical results, code validation, convergence, and

physical analysis of the solutions, comparing them with the
ideal-fluid case. Finally, an overall discussion and final
remarks are presented in Sec. V.
Throughout this work, the signature convention for the

spacetime metric is ð−;þ;þ;þÞ. We use geometric units
with c ¼ G ¼ kB ¼ 1, where c is the speed of light in
vacuum, G is Newton’s constant in four spacetime dimen-
sions and kB is Boltzmann’s constant.

II. CONFORMAL HYDRODYNAMICS
IN FOUR DIMENSIONS

In this section, we review fundamental aspects of the
family of conformally invariant divergence-type fluid
theories developed in [72], in order to fix notation and
definitions which shall be further used.1 We also discuss the
conformal weights of the different quantities involved in
the theory, as well as the structure of the dynamical
equations at thermodynamic equilibrium and their further
implications.

A. Preliminaries

We consider fluid theories over a time-oriented four-
dimensional background spacetime ðM; gabÞ. The fluid
degrees of freedom are encoded in two tensor fields, Tab

and Aabc, which satisfy the conservation laws

∇aTab ¼ 0; ð1Þ

∇aAabc ¼ Ibc: ð2Þ

The source Ibc is a symmetric, trace-free, algebraic function
of Tab and Aabc, and ∇c is the covariant derivative compat-
ible with gab. Equation (1) states energy momentum con-
servation of the fluid, and (2) governs the evolution of the
dissipative degrees of freedom, providing also constitutive
relations. Since we aim to give a general conformally
invariant theory, no conservation of baryon density current
will be considered along this work. By construction, Tab is
symmetric, and Aabc is symmetric and trace-free in the last
two indices, namely, Aabcgbc ¼ 0 and Aa½bc� ¼ 0. We shall
refer to Tab and Aabc as the conservative variables.
It is also assumed the existence of an entropy density

current, Sa, which is an algebraic function of the
conservative variables, and as a consequence of (1) and
(2), it satisfies

∇aSa ¼ σ ≥ 0; ð3Þ

where σ is also algebraic in Tab and Aabc.
A remarkable consequence about the existence of an

entropy current within this framework was pointed out

1For details, we refer the reader to Refs. [27,42,73–75].
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earlier by Liu et al. [41,73], and formalized a few years later
by Geroch and Lindblom [27]. An inequality like (3) only
holds on shell, that is, when the conservative equations are
satisfied. This requirement, together with the symmetry of
Tab, implies the local existence of a scalar χ which is a
function of a covector ξa and a symmetric traceless tensor
ξab, such that the conservative variables can be locally
recovered as

Tab ¼ ∂
2χ

∂ξa∂ξb
; ð4Þ

Aabc ¼ ∂
2χ

∂ξa∂ξbc
−
1

4

∂
2χ

∂ξa∂ξde
gdegbc: ð5Þ

Within this framework, the entropy current reads

Sa ¼ ∂χ

∂ξa
− Tabξb − Aabcξbc; ð6Þ

sourced by

σ ¼ −ξabIab: ð7Þ

This new set of variables ðξa; ξabÞ comes out as
“Lagrange multipliers” for the equations of motion, and
we will refer to them as the abstract variables. The key
point is that all the information of the theory is now
encoded into a single (sufficiently smooth) scalar field,
χðξa; ξabÞ, which has been found to be crucial for probing
the symmetric-hyperbolicity of the evolution equations
near equilibrium solutions [72]. In fact, by introducing a
collective abstract variable ξA ¼ ðξa; ξabÞ, Eqs. (1) and (2)
can be set into the form

Ka
AB∇aξ

B ¼ JA; ð8Þ

where

Ka
AB ≔

∂
3χ

∂ξa∂ξ
A
∂ξB

ð9Þ

is the principal part of (8) (which by construction is
symmetric in the capital indices) and JA ≔ ð0; 0; IabÞ. The
system is symmetric hyperbolic at ξC provided there exists a
covector κa such that the form hABðξCÞ ≔ κaKa

ABjξC is
positive definite; i.e., if hABðξCÞξAξB > 0 for any nonzero
ξA. This algebraic condition guarantees that the theory
admits a locally well-posed initial-value formulation [44].

B. Conformal invariance requirements

From a phenomenological viewpoint, we aim to simulate
ultrarelativistic fluids at high temperatures, taking into
account dissipative effects and energy transport. In this
regime, both kinetic and thermal energies are several orders

of magnitude higher than the corresponding “rest” energy,
thus becoming irrelevant.2 Moreover, from dimensional
arguments one can infer that there cannot be any intrinsic
length scale for the theory, thus becoming it scale invariant.
This symmetry means that the evolution equations should
not change under any rescaling of the background metric,
for a proper rescaling of the dynamical fields. More
specifically, we say that the theory is conformally invariant
if there exist conformal weights α and β such that, under a
conformal transformation of the background metric,
namely,

gab ↦ Ω2gab; ð10Þ

system (1) and (2) covariantly transforms under the map

�
Tab

Aabc

�
↦

�
ΩαTab

ΩβAabc

�
: ð11Þ

In fact, a transformation like (11) leaves the equations
unaltered if α ¼ −6 and β ¼ −8 (in four spacetime
dimensions).
As a consequence of this symmetry, two nontrivial

conditions for the dynamical variables come out. First,
and as probably expected by the reader, the energy-
momentum tensor Tab must be trace-free,

Tabgab ¼ 0: ð12Þ

The above condition automatically fixes the equation of
state (getting ρ − 3p ¼ 0, where ρ is the energy density and
p the fluid pressure). Furthermore, the constitutive tensor
Aabc must satisfy two extra algebraic relations, namely,

n̂aAabc − n̂aAðbcÞa ¼ 0;

Aabcgab ¼ 0; ð13Þ

where n̂c ≡∇cΩ=Ω. Both of them imply that Aabc is
symmetric in all its indices.
Under the above requirements, any conformal theory

made up from a generating function which is quadratic in
ξab (i.e., second order theories for dissipative fluids) is
uniquely parametrized by three free constants. Different
choices of the parameters give rise to different conformally
invariant theories, as will be shown in the next subsection.
Furthermore, symmetric hyperbolicity of the theory, which
implies its well posedness [44], further restricts the param-
eters. For second order theories, symmetric hyperbolicity
follows simply by requiring the parameter associated with
the second-order contribution to be “large enough” as
shown in [72].

2We refer the reader to the book [76] for a complete micro-
scopic description of this aspect, following a purely kinetic
approach.
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C. Generating function and conservative variables

Conditions (3) and (7) imply that the entropy production
of the system depends purely on ξab and the source Iab.
Then, it becomes natural to associate ξab to the dissipative
degrees of freedom of the theory, and also to understand the
generating function as an expansion in powers of ξab
(aiming the different orders of dissipation).
As mentioned above for conformally invariant theories,

the most general scalar χðξa; ξabÞ up to second order in ξab
reads

χ ¼ χ0ðμÞ þ χ1ðμÞνþ
X3
i¼1

χ2i ðμÞψ i; ð14Þ

where

μ≡ ξaξa;

ν≡ ξabξaξb;

ψ1 ≡ ξabξab;

ψ2 ≡ lala;

ψ3 ≡ ν2; ð15Þ

and la ≡ ξabξb. The functions χ0ðμÞ, χ1ðμÞ, and χ2i ðμÞ are
fixed by the conformal invariance conditions (12) and (13),
getting

χ0ðμÞ ¼ χ0
μ
;

χ1ðμÞ ¼ χ1
μ3

;

χ2i ðμÞ ¼
χ2
μ2þi Θi;

where fχjg2j¼0 are three free parameters and

Θi ≡

8>><
>>:

1; if i ¼ 1

−12; if i ¼ 2

24; if i ¼ 3

:

The physical interpretation of the generating function (14)
is the following. At zeroth order, χ0ðμÞ leads to the ideal
conformal fluid, which satisfies the radiation equation of
state (ρ ¼ 3p, with ρ the energy density and p the pressure).
In local equilibrium, ξab ¼ 0, and ξa is a conformal Killing
vector field (CKVF); i.e., ∇ðaξbÞ ¼ ζgab, for some scalar ζ.
The set of CKVFs are called the equilibrium states of the
theory, and from them one can define the temperature of the
fluid asT ≡ 1=

ffiffiffiffiffiffijμjp
. The stability of the equilibrium states is

discussed in detail in [27]. At first order, one gets the
corresponding “relativistic” Navier-Stokes equations in the
radiation regime [37]. As it was shown in [38], the theory up

to this order presents generic instabilities when the high-
frequency limit is reached. Interestingly, it was recently
proposed an alternative first-order formulation for conformal
fluids [64], where the corresponding constitutive relations do
not follow from an equation of the form (2), but from a
suitable gradient expansion. A numerical exploration of
solutions of this theory was performed in 1þ 1 dimensions
[69], in 2þ 1 [71], and in 3þ 1 [70], andwe aim to compare
them with the simulations we will carry on throughout
this work.
We recall the orthogonal decomposition of ξab in terms

of the local equilibrium field ξa,

ξab ¼
4

3

ν

μ2

�
ξaξb −

μ

d
gab

�
þ 2

μ
ξðarbÞ þ τab; ð16Þ

where

ra ≡ ξabξ
b −

ν

μ
ξa ð17Þ

τab ≡ hachbdξcd þ
ν

3μ

�
gab −

ξaξb
μ

�
; ð18Þ

and hab is the projector onto the space orthogonal to ξa,
namely, hab ¼ δa

b − ξaξ
b=μ.

Using the definitions (4) and (5), the full energy-
momentum tensor Tab and constitutive tensor Aabc can
be written as the sum of the zeroth, first, and second order
contributions. For Tab, we get

Tab ¼ Tab
0 þ Tab

1 þ Tab
2 ; ð19Þ

where

Tab
0 ¼ −2χ0

μ3
ðμgab − 4ξaξbÞ;

Tab
1 ¼ χ1

�
48ν

μ5
ξaξb −

24

μ4
ξðalbÞ −

6ν

μ4
gab þ 2

μ3
ξab

�
;

and

Tab
2 ¼ χ2

μ5

�
48ξcdξcd −

960lclc

μ
þ 2880ν2

μ2

�
ξaξb

þ χ2
μ4

�
−6ξcdξcd þ

96lclc

μ
−
240ν2

μ2

�
gab

þ 384χ2ξ
ðaξbÞclc

μ5
−
1920χ2νξ

ðalbÞ

μ6
þ 192χ2lalb

μ5

þ 96χ2νξ
ab

μ5
−
24χ2ξ

acξbc
μ4

:

Similarly, for Aabc we get
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Aabc ¼ Aabc
1 þ Aabc

2 ; ð20Þ

where

Aabc
1 ¼ χ1

μ3

�
2gaðbξcÞ þ gbcξa−

6

μ
ξaξbξc

�

Aabc
2 ¼ χ2

μ3

�
ξa
�
−12
μ

ξbcþ 192

μ2

�
ξðblcÞ−

ν

4
gbc

�

−
480

μ3

�
ξbξc−

μ

4
gbc

�
ν

�

−
24

μ

�
gaðblcÞ þ ξðbξcÞa −

1

2
gbcla

�

þ 96

μ2

�
la

�
ξbξc−

μ

4
gbc

�
þ ν

�
gaðbξcÞ−

1

4
ξagbc

���
:

From now on, we assume that ξa is timelike (and so
μ < 0). Then, the normalized 4-vector ua ¼ ξa=

ffiffiffiffiffiffi−μp
is

interpreted as the 4-velocity of the fluid, which allows us to
recast the typical form for the energy-momentum tensor,
namely,

Tab ¼ 4ρ

3

�
uaub þ gab

4

�
þ 2uðaQbÞ þ Σab; ð21Þ

with ρ the energy density, Qa the heat flux, and Σab the
transverse traceless stress, up to second order in ξab. In
effect, they can be computed from (19) by

ρ ¼ Tabuaub;

Qa ¼ −habTbcuc;

Σab ¼ hachbdTcd:

Then, by taking ξa to be timelike and in order to ensure the
energy density to be positive definite at every order, we
require that χ0 < 0. Since the sign of χ1 is irrelevant as it is
a global factor in Aabc, we take χ1 > 0. Finally, in order for
the principal part to be positive definite (an to ensure the
symmetric hyperbolicity), we require χ2 < 0.

D. Fixing Iab with conformal weights

We now give the most general expression of the source
field Iab, linear in ξab, by requiring conformal invariance.
Since the different contributions to the source field could
covariantly transform in different ways under a metric
rescaling, we need to keep track of the conformal weights
the different terms have.
We say that a quantity X has conformal weight n if under

the a local rescaling for the metric

ĝab ¼ Ω2gab; ð22Þ

such a quantity transforms as

X̂ ¼ Ω−nX: ð23Þ

We then write CWðXÞ ¼ n. It directly follows that
CWðgabÞ ¼ −2 and CWðgabÞ ¼ 2. Conformal invariance
requirements implies straightforwardly that CWð∇aTabÞ ¼
6 andCWð∇aAabcÞ ¼ 8. Also,we get that CWðIabÞ ¼ 8 and
CWðIabÞ ¼ 4. Finally, one also has that CWðξaÞ ¼ −2
and CWðξabÞ ¼ −4, which implies that CWðξaÞ ¼
CWðξabÞ ¼ 0. With this information, we can get the corre-
sponding conformal weights for each of the terms that
constitute the source tensor. In fact, a decomposition of
Iab analog to the one given in (16) for ξab also follows,
leading to

Iab ¼ I0ν
�
ξaξb −

μ

d
gab

�
þ I1ξðarbÞ þ I2τab; ð24Þ

where the Ij are powers of μ to be fixed, up to a constant
factor, from conformal invariance requirements. First, we get
that

CWðIabÞ ¼ CWð∇aAabcÞ ¼ 8: ð25Þ

Then, since CWðξaÞ ¼ 0 and CWðνÞ ¼ −4, it must be
CWðI0ðμÞÞ ¼ 12. Using that CWðμÞ ¼ −2 and for
p ∈ R, CWðμpÞ ¼ −2p, we get that

I0 ¼ −
C0

μ6
; ð26Þ

for some real constant C0. Analogously, we get

I1 ¼
C1

μ5
; ð27Þ

I2 ¼ −
C2

μ4
; ð28Þ

for some real constants C1 and C2, where we have also used
that CWðraÞ ¼ −2 and CWðτabÞ ¼ 0. Finally, the source
field is fixed as

Iab ¼ −
C0ν

μ6

�
ξaξb −

μ

4
gab

�
þ C1

μ5
ξðarbÞ −

C2

μ4
τab: ð29Þ

With the above expression for the source, the entropy
production (7) reads

σ ¼ C0

ν2

μ6
−
C1

μ5
rara þ

C2

μ4
τabτab: ð30Þ

Therefore, since μ < 0, we get that σ > 0 if and only if
Ci ≥ 0, with at least one of them strictly positive.
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E. Equation structure at equilibrium
and free parameters

Since the dynamical fields are obtained as derivatives of
a generating function, they are defined up to an overall
constant, for which we can set χ0 ¼ −1. This choice only
changes the energy-momentum conservation equation, as
the corresponding term of the generating function depends
only on ξa. Also, we choose the negative sign so that T00 is
non-negative. The term proportional to χ1 is linear on the
dissipative variables, ξab, so we can rescale those variables
to set χ1 ¼ 1. The remaining constants are χ2 and Ci, the
three parameters in the source field (29). With all this, we
found it useful to make the following rescaling:

χ2 → −
χ2χ0
χ21

ð31Þ

and

Ci → −
Ciχ0
χ21

: ð32Þ

Finally, we recall that in order for the theory to be
hyperbolic near equilibrium states, the absolute value of
χ2 must be chosen to be large enough [72].
A physical interpretation of the free constants in the

theory can be obtained by analyzing the general structure of
the dynamical equations at equilibrium. In this regime, we
have ξab ¼ 0, and therefore there is no entropy production
[see Eq. (3)]. Equations (1) and (2) remain

∇aTab
0 ¼ 0; ð33Þ

∇aAabc
1 ¼ 0: ð34Þ

If χ1 ≠ 0, they imply that ξa is a conformal Killing vector
field (provided the metric admits one). If χ1 ¼ 0 only the
first equation survives, namely, the relativistic Euler’s
equations for radiation. Perturbations travel to the speed
of sound for this case, namely, vs� ¼ � ffiffiffiffiffiffiffiffi

1=3
p

.
Now, if we allow generic perturbations off equilibrium

(i.e., ξa ¼ ξ0a þ δξa, ξab ¼ δξab). Then in the case χ1 ¼ 0
we obtain the decoupled system

∇aTab
0 ¼ 0; ð35Þ

∇aAabc
2 ¼ Ibc: ð36Þ

The perturbation of the off-equilibrium quantities give
rise to other three propagation speeds: the second speed of
sound vss� ¼ � ffiffiffiffiffiffiffiffi

3=5
p

, and a standing (or zero) mode,
vs0 ¼ 0. The existence of a zero mode can be guessed
since, when Ibc ¼ 0, the system is time symmetric. Thus
there are as many positive roots as negative. So an even
number of modes means that at least one of them must have

zero speed. The negative definite character of Iab implies
that those modes will also have a decay rate. If we turn on
the interaction, i.e., if we set χ1 ≠ 0, then a general theorem
for these types of theories states that all modes will acquire
a nonzero decay rate (see [77] for details).
In the limit χ2 → 0 and at equilibrium,3 we can write the

system as

∇aTab
0 þ∇aTab

1 ¼ ∂Tab
0

∂ξc
∇aξc þ

∂Tab
1

∂ξcd
∇aξcd ¼ 0;

∇aAabc
2 ¼ ∂Aabc

1

∂ξd
∇aξd ¼ Ibc ¼ Mbcpqξpq; ð37Þ

whereMbcpq is a negative definite matrix that only depends
on the equilibrium variables. Thus, we can invert the
relation and get the so called constitutive relations,

ξpq ¼ M−1
pqbc

∂Aabc
1

∂ξd
∇aξd: ð38Þ

Plugging them into Eq. (37) we get a paraboliclike
equation with a diffusion timescale

τd ∼
χ21
Ciχ0

: ð39Þ

Finally, in the limit of very large values for χ2, but still
for very small initial values of ξab, (that is, χ2ξab finite) the
constitutive relations do not matter much and the system
behaves as having very little dissipation with its equilib-
rium sector behaving as Euler’s system. That is, the relevant
equations in this regime would be

∇aTab
0 ¼ 0; ð40Þ

∇aAabc
2 ¼ 0: ð41Þ

Thus, we would find the same propagation speeds as
before, but with no dissipation.

III. NUMERICAL IMPLEMENTATION

A. Evolution variables and (3 + 1) decomposition

Although the abstract variables ðξa; ξabÞ are the natural
ones for probing the symmetric hyperbolicity of the theory,
they are not suitable for a numerical implementation. The
reason is that the evolution equations in abstract variables
are not in conservative form, and thus not possible to
capture shock formation. For this, we get back to the
original formulation in terms of the conservative variables
ðTab; AabcÞ, and follow a fully conservative scheme. Given

3Notice that such a limit is only formal, since when χ2 → 0, the
system ceases to be well-posed, and generic instabilities are
present in an arbitrary frame (see [38] for details).
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the nonlinear relation between both sets of variables, this
procedure will require an iterative inversion of the map that
gives the conservative variables in terms of the abstract
ones, in order to reconstruct the corresponding fluxes.
To find an evolution system of equations, we proceed as

follows. Having fixed the spacetime background metric as
to be Minkowski, ηab, we first pick a spatial hypersurface Σ
and put global inertial coordinates ðx; y; zÞ on it.4 Then, we
consider a vector field ta which is transverse to Σ (we
actually choose it to be everywhere orthogonal), and extend
the coordinates ðx; y; zÞ in a way that they are constant
along the integral curves of ta. We take as “time coor-
dinate” the function t∶M → R which is zero on Σ and
satisfies ta∇at ¼ 1, where ∇ is the connection compatible
with ηab. Then, ta ¼ ð∂=∂tÞa, and the fluid 4-velocity reads

ua ¼ γð1; viÞ; ð42Þ

where vi is the spatial 3-velocity of the fluid and γ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vivi

p
is the Lorentz factor.

The conservation equations (1) and (2) become, then,

∂tT00 ¼ −∂iT0i; ð43Þ

∂tT0i ¼ −∂jTij; ð44Þ

∂tA000 ¼ −∂iA00i þ I00; ð45Þ

∂tA00i ¼ −∂jA0ij þ I0i; ð46Þ

∂tA0ij ¼ −∂kAijk þ Iij; ð47Þ

together with the trace-free condition

ηabAabc ¼ 0; ð48Þ

which must be checked at each time step.
The problem reduces then to obtain expressions for the

fluxes Tij and Aijk in terms of the evolution variables5

fT00; T0i; A000; A00i; A0ijg. Since these expressions are
defined in terms of the abstract variables [see expressions
(19) and (20)], we need to express the abstract variables in
term of the conserved quantities we are evolving, namely,
invert the relation among fT00; T0i; A000; A00i; A0ijg and
fξa; ξabg, from definitions (19) and (20). This is, in general,
not a simple task, since there is not a closed form for
expressing it.6 Thus, at each time step, and for each grid
point, we need to numerically invert this relation. We use a

Newton-Raphson method for this. Explicitly, the inversion
we are seeking is among

0
BBBBBB@

T00

T0i

A000

A00i

A0ij

1
CCCCCCA

→

0
BBBBBB@

μ

vi

ν

ri

τij

1
CCCCCCA
; ð49Þ

where ν ¼ ξabξaξb, and ra and τab have been introduced
in Eq. (17).
We now apply this formulation to an effective one-

dimensional case and find numerical solutions to the
corresponding system of equations.

B. Evolution equations with planar symmetry

In order to simplify the numerical implementation as a
first exploration of the dynamics of this family of theories,
we look for configurations that are plane symmetric (also
known as “slab” symmetric) in Minkowski spacetime,
gab ¼ diagð−1; 1; 1; 1Þ, and consider the effective 1þ 1
evolution system. For doing so, we take Cartesian coor-
dinates ðt; x; y; zÞ and consider the flow dynamics over the
x axis. The 4-velocity of the fluid reads ua ¼ γð1; v; 0; 0Þ,
where γ ¼ ð1 − v2Þ−1=2 and the evolution equations
reduce to

∂tT00 ¼ −∂xT01;

∂tT01 ¼ −∂xT11ðT00; T01; A000; A001; A011Þ;
∂tA000 ¼ −∂xA001 þ Io;

∂tA001 ¼ −∂xA011 þ I1;

∂tA011 ¼ −∂xA111ðT00; T01; A000; A001; A011Þ þ I2: ð50Þ

The evolution variables are the energy and momentum
densities, and three of the components of the constitutive
tensor Aabc, namely ðT00; T01; A000; A001; A011Þ. Instead, the
fluxes ðT11; A111Þ are expressed in terms of ðμ; v1; ν; r1; τ11Þ,
which are the relations we invert:

0
BBBBBB@

T00

T01

A000

A001

A011

1
CCCCCCA

→

0
BBBBBB@

μ

v

ν

r1

τ11

1
CCCCCCA
: ð51Þ

The explicit map between these variables can be found in
Appendix A.
The extra abstract variables are obtained, using that

raua ¼ 0, to get that r0 ¼ vr1, and

4The generalization to more general background metrics and
coordinate systems is straightforward.

5The rest of the components can be computed using the full
symmetry of Tab and Aabc.

6This is not surprising, as this is also the case in relativistic
MHD (see, for instance, [49]).

MONTES, RUBIO, and REULA PHYS. REV. D 107, 103041 (2023)

103041-8



τabub ¼ 0; τabgab ¼ 0; τ22 ¼ τ33; ð52Þ

to get,

τ00 ¼ v2τ11;

τ01 ¼ vτ11;

τ22 ¼ τ33 ¼ 1

2
ðv2 − 1Þτ11: ð53Þ

The Jacobian of the transformation between conservative
and abstract variables was obtained symbolically from the
expressions for the fluxes used in the code and then
automatically converted into efficient matrix functions
for using in the numerical part of the code.
The inversion from conservative to primitivevariableswas

only used to find the nontrivial fluxes and the source terms.
For the other equations, the conservative variables were
directly used, making the code simpler and with fewer
computations. The sources are I0 ≔ I00, I1 ≔ I01, and
I2 ≔ I11, whose components are taken directly from
Eq. (29).
Thus, the relevant components of the abstract variables

which are computed are fv; μ; ν; r1; τ11g, for which we will
refer to them as the fluid variables. In order to get them in
terms of the conservative ones, we numerically invert
expressions (19) and (20) and, after that, we compute
the nontrivial fluxes.
By sweeping on the values for χ2, we found that the

Jacobian of this transformation turns out to be singular for a
particular value of χ2, which is χ2 ¼ −5=48. This curious
fact can be understood from a simple procedure further
detailed in Appendix C. In the following subsection, we
show how to use the fluid variables in order to assess the
equations implemented in the code.

C. Characteristic structure

In order to check that the evolution equations (50) are
self-consistent and well-implemented throughout the code,
we transform them to symbolic equations. This means that
we work with the equations as mathematical expressions
and operate over them using computer algebra, which
allows us to calculate derivatives of the expressions with
respect to its arguments. This calculations where done
using the Julia package Symbolics.jl [78]. Using this we can
assess the symmetry of the principal part. System (50) has
the form

∂tcj ¼ ∂xFjðc; fÞ þ Ijðc; fÞ; ð54Þ

where cj ¼ fT00; T01; A000; A001; A011g are the
conservative variables and fj ¼ fμ; v; ν; r1; τ11g the fluid
ones. The Jacobian of the flux function with respect to the
conservative variables is given by

dFl

dcj
¼ ∂Fl

∂cj
þ ∂Fl

∂fk
∂fk

∂cj
; ð55Þ

whose eigenvalues give us the propagation speeds of the
system.
From Eqs. (4) and (5), it is easy to see that the matrix

Ml
A ≔

dFl

dcj
dcj

dξA
ð56Þ

is symmetric, with ξA ¼ fξ0; ξ1; ξ00; ξ01; ξ11g. Since ξab is
traceless, we need to subtract the trace whenever deriving
with respect to it. Besides, since ξ01 ¼ ξ10, in one must
divide the derivatives with respect to ξ01 by 2 in the scheme.
In order to guarantee these subtleties, we multiply Ml

A by
the matrix

S ¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 3
4

0 1
4

0 0 0 1
2

0

0 0 1
4

0 3
4

1
CCCCCCA
: ð57Þ

We computed all these matrices using the Julia package
Symbolics.jl [78], and checked that this symmetry is present
in the equations in our code.
Equation (55) also allows for the calculation for each

particular choice of the variables c and f. In particular, by
setting f ¼ ðμ; 0; 0; 0; 0Þ, we recover the well-known
propagation speeds of an ideal, pure-radiation fluid,
namely, vo ¼ 0 (the standing mode), v�1 ¼ v� ffiffiffiffiffiffiffiffi

1=3
p

(first
sound speed), and, furthermore, v�2 ¼ � ffiffiffiffiffiffiffiffi

3=5
p

(a second
sound speed characteristic of hyperbolic dissipative sys-
tems). If we nowmove to a frame where the fluid velocity is
nonzero, we would expect the propagation speeds to
decrease and go to −1 when v → 1. This is actually the
case shown in Fig. 1. Since r1 is a component of a vector
field, and the same for τ11 as a component of a tensor field,
they should properly transform under a Lorentz boost. We
assessed this behavior in the code, and fully validate the
consistency of the evolution equations implemented.

D. Numerical method

We consider the one-dimensional domain from x ¼ −L
to x ¼ L and uniformly discretize it with N grid points,
such that the spatial step is Δx ¼ 2L=ðN − 1Þ and the grid
points are xi ¼ −Lþ iΔx, i ¼ 0;…; N − 1. Then, for any
time t, we approximate the value of a given function uðt; xÞ
over the numerical domain as uiðtÞ ≔ uðt; xiÞ. We also set
periodic boundary conditions.
As stated before, the evolution equations have the

general form
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∂tuþ ∂xFðuÞ ¼ gðuÞ; ð58Þ

where F are the fluxes and g is the source term. Then, our
spatial discretization for the equations is given by a finite
difference scheme, which takes the form

duiðtÞ
dt

þ
F̂iþ1

2
− F̂i−1

2

Δx
¼ gðuiðtÞÞ; ð59Þ

where F̂iþ1
2
≔ F̂ðui−p;…; uiþqÞ is a consistent numerical

flux satisfying F̂ðu;…; uÞ ¼ FðuÞ, and p and q depend on
the chosen numerical method. In our code, these fluxes are
reconstructed using theWENO-Z scheme. Given a function
hðuÞ, the WENO schemes allow us to reconstruct the
approximate value of h at the half points xiþ1

2
by using

either a left-biased weighted combination of the cell
averages h̄j−2, h̄j−1, h̄j, h̄jþ1, and h̄jþ2 or a right-biased
combination of the cell averages h̄j−, h̄j, h̄jþ1, h̄jþ2, and
h̄jþ3. The weights for each coefficient depends on the
smoothness of the numerical solution, and are chosen so
that the approximation is fifth order accurate when no
discontinuity is present, and third order accurate in the
neighbourhood of a shock. The difference between differ-
ent WENO schemes lies on the way the weights are chosen.
In particular, we chose theWENO-Z from the set of WENO
schemes as it is the most accurate (having also tried with
other central schemes, as the MP5 and Kurganov-Tadmor
ones). Further details on the WENO-Z algorithm used in
our code are given in Appendix B. We refer the reader to the
article by Shu [79] for more information about WENO
schemes for the solution of conservation laws.

For the purpose of stability we must ensure correct
upwinding, We achieve this by using the Lax-Friedrichs
flux splitting, in which the flux is decomposed in two parts,

FðuÞ ¼ FþðuÞ þ F−ðuÞ; ð60Þ

F�ðuÞ ¼ 1

2
ðFðuÞ � αuÞ; ð61Þ

where α ≔ maxu jF0ðuÞj is the maximum propagation
speed of the system. This way the propagation speeds
are positive for Fþ and negative for F−. Once the flux is
split, we can calculate F̂þ

iþ1
2

using a left biased WENO-Z

reconstruction and F̂−
iþ1

2

using a right-biased WENO-Z

reconstruction, and calculate Fiþ1
2
¼ Fþ

iþ1
2

þ F−
iþ1

2

. For the

time evolution, we define a time step Δt so that
uni ≔ uiðnΔtÞ, and implement a third-order accurate strong
stability preserving (SSP) TVD (total variation diminish-
ing) Runge-Kutta scheme (also known as SSPRK33),
which is appropriate for essentially nonoscillatory shock
capturing schemes (see [80] and references therein). All the
algorithm was implemented in Julia 1.7.2. Once we have
evolved for the conservative variables for a time step
(internal to the RK) we invert the relations given in (19)
and (20) and compute the corresponding fluid variables.
From them, the fluxes F1 and F2 are obtained and so the
whole right-hand side of the evolution equations in order to
complete the cycle. For the variables inversion, we imple-
mented the Newton-Raphson method, using the results
from the previous time step as a seed. The Jacobian of the
transformation was obtained from the Symbolics.jl package
provided by Julia [78], which allowed us to obtain both an
analytic expression for it, and an efficient Julia numerical
function. After doing this inversion, we evaluated the flux
function and therefore evolved the evolution variables. This
was then repeated for each step until the desired final time
of integration was reached. A diagram of this scheme can
be seen in Fig. 2.

FIG. 1. Propagation speeds with respect to the fluid velocity.
The continuous line corresponds to ν ¼ r1 ¼ τ11 ¼ 0, while the
dashed line corresponds to ν ¼ r1 ¼ τ11 ¼ 0.1 at v ¼ 0.0. Notice
that the values of r1 and τ11 change according to a Lorentz
transformation when v ≠ 0.

FIG. 2. Description of the algorithm inside each Runge-Kutta
internal step.
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IV. RESULTS

In this section we present numerical results of the
conformal theory introduced in [72]. We focus the dis-
cussion in the evolution from two different initial data for
the energy density: (i) a smooth Gaussian profile and (ii) a
discontinuous profile. We also set initially the dissipative
variables to zero and see how they evolve due to the
conservation equations, and compare the resulting dynam-
ics with the one corresponding to the perfect fluid (Euler’s
equations).

A. Initial data

Keeping in mind the discussion about the free parameter
space of the theory, we take χ0 ¼ −1 and χ1 ¼ 1, and keep
free χ2 < 0, as well as the three parameters of the source
term, Ci, introduced in (29). In order to explore how the
dynamics is modified when changing the parameters, we
consider two different initial data. Since we are interested in
comparing the solutions with the case of the perfect fluid
(which follow the Euler equations with a pure radiation
equation of state),we set νð0; xÞ ¼ r1ð0; xÞ ¼ τ11ð0; xÞ ¼ 0.
We also set vð0; xÞ ¼ 0 for the fluid initial velocity and
consider a static initial data.
In order to compare the obtained results with a previous

work [69], for the smooth initial configuration we consider
the following profile for the energy density:

T00ð0; xÞ ¼ Ae−x
2=ω2 þ δ; ð62Þ

with x ∈ ð−100; 100Þ, and setting A ¼ 0.4, ω ¼ 5, and
δ ¼ 0.1. Notice that since both the initial velocity profile
and all the dissipative variables are initially set to zero, the
data (62) corresponds also to the initial internal energy of
the fluid. Also, for the discontinuous initial data we choose

T00ð0; xÞ ¼ ðϵR − ϵLÞ
erfðxÞ þ 1

2
þ ϵL; ð63Þ

where erfðxÞ is the standard error function

erfðxÞ ¼ 2ffiffiffi
π

p
Z

x

0

e−t
2

dt ð64Þ

and the left and right parameters are set to ϵL ¼ 0.4
and ϵR ¼ 0.1.
Finally, we set the initial data by giving first the fluid

variables. From the formula for the energy density of a
perfect fluid T00 ¼ 6χ0μ

−2, we solve for μ, and then we get
the corresponding values of the conservative variables.
Notice that even if the dissipative variables are equal to
zero, this does not mean that A000, A001, and A011 will also
be zero.

B. Parameter sweep

1. Effect of χ 2
We first analyze the effect of the variable χ2 on the

energy and the dissipative variables. We do this by
changing χ2 restricted in the range ð−1000;−1Þ, and by

FIG. 3. Energy density (Gaussian profile at the top panel; discontinuous profile at the bottom panel) and the three dissipative variable
profiles at t ¼ 47 GeV−1 for different values of χ2. We set C0 ¼ C1 ¼ C2 ¼ 10 for the parameters of the source.
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settingC0 ¼ C1 ¼ C2 ¼ 10. As a reference, we also evolve
the Euler equations, whose solutions can be achieved by
setting χ1 ¼ 0, which will always allow us to evolve a
perfect fluid as long as the dissipative variables are set
initially to zero. Results can be seen in Fig. 3. We notice a
greater amplitude of the dissipative variables for smaller
values of jχ2j, and a slight difference in the energy density.
For the Gaussian profile, a smaller second peak can be seen,
which is moving faster than the rest, while the shock in the
discontinuous initial data seems to be slightly smoother.
These effects are expected given that the system has now a
second sound speed, and therefore new modes propagating
faster than the ones expected from the Euler’s equations.
From what we learned in this parameter exploration, and

in order to observe a significant effect on the dissipative
variables of the system, we choose to fix χ2 ¼ −1 for all
subsequent simulations. Higher values of χ2 are then
ignored since the solution approximates the Euler system
in the limit χ2 → −∞.

2. Effect of C0, C1, and C2

Wenow focus our attention on the individual contributions
ofC0,C1, andC2, the three free parameters of the source term
(29). To analyze each one separately, we vary one of them
independently, and fix the remaining two parameters to a
high value, in order not to take into account their contribution
in the subsequent dynamics. Heuristically, one would expect
the system to work in this way, as for a given large value for
Ci, the dissipative variables that are multiplied byCi must be
“small,” in order to compensate the right-hand side of the

equation. Thus, since the dissipative variables are small, their
contribution toTab is small too, and so the evolution becomes
closer to the Euler system. By performing several runs with
different large values for Ci, we saw that a “large-enough”
value in order to turn off the contribution of the correspond-
ing terms in the source is Coff

i ¼ 103. We proceed then to
evolve the system by modifying only one of the Ci’s in a
range from 0 to 102, setting down the other two variables in
Coff
k≠i ¼ 103. We found that neither C0 nor C1 have a

significant effect on the energy density function, as well
as the dissipative variables remain almost unchanged. This
behaviour can be seen in Fig. 4. Even though a smaller C0

increases the magnitude of ν and a smaller C1 increases the
magnitude of r1, there is no discernible difference on neither
T00 nor τ11.
On the other hand, Fig. 5 shows that only modifying C2

results in a noticeable change in the energy density and
dissipative variables distribution. Several effects can be
noticed here. In both cases, the propagation speed of the
shock gets changed, as can be seen by the change in the
position of the shock. In the discontinuous initial data, a
second discontinuity seems to form in T00 for C2 ¼ 0,
which seems to coincide with a discontinuity in τ11. In all
cases, τ11 greatly increases for small values of C2, which
suggests that this is an important variable in the evolution
of the theory. This is not surprising at all, since τab is
proportional to the shear of the fluid, given that by
construction it is proportional to the part of T00 that is
trace-free and perpendicular to ua. The relevance of τ11 is
numerically verified in the next subsection.

FIG. 4. Energy density (Gaussian profile at the top panel; discontinuous profile at the bottom panel) and the three dissipative variable
profiles at t ¼ 47 GeV−1 for different values of C0 and C1. Unless specified, all other C0

is are fixed to 103.
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3. What happens when varying C0 and C1,
but keeping C2 small?

As a last exploration of the parameter space, let us
analyze how the system changes when keeping C2 small
enough, and varying the other two source parameters, given
that the largest difference with respect to the perfect fluid
evolution is found precisely in this regime. Figures 6 and 7

show the corresponding behavior of the solution. Although
we set C2 ¼ 1 for this analysis, we did not include here the
values of C0 and C1 which are smaller than 1, because of
the presence of numerical instabilities. We notice that
modifying C0 results in an important change in variable
ν, while modifying only C1 results in a very similar effect
but for r1. In terms of the energy density, the greatest

FIG. 5. Energy density (Gaussian profile at the top panel; discontinuous profile at the bottom panel) and the three dissipative variable
profiles at t ¼ 47 GeV−1 for different values of C2 and with χ2 ¼ −1, C0 ¼ C1 ¼ 103.

FIG. 6. Energy density (Gaussian profile at the top panel; discontinuous profile at the bottom panel) and the three dissipative variable
profiles at t ¼ 47 GeV−1 for different values of C0 and with χ2 ¼ −1, C1 ¼ 103, C2 ¼ 1.
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departure from Euler’s solution can be appreciated keeping
C1 small enough. Both for the discontinuous and gaussian
initial data we notice the formation of a second shock in
T00, which corresponds itself with a discontinuity in τ11.
Similar results can be observed when C2 ¼ 0, as shown

in Figs. 8 and 9. In this case, numerical instabilities become
present when C0 ¼ 1 and C1 ¼ 1.

Finally, an analysis of the behavior of the dissipative
evolutionvariables at long times can be found inAppendixD.

C. Entropy creation rate and shock formation

A very useful variable to study the formation and
location of shock waves is the entropy creation rate σ,

FIG. 7. Energy density (Gaussian profile at the top panel; discontinuous profile at the bottom panel) and the three dissipative variable
profiles at t ¼ 47 GeV−1 for different values of C1 and with χ2 ¼ −1, C0 ¼ 103, C2 ¼ 1.

FIG. 8. Energy density (Gaussian profile at the top panel; discontinuous profile at the bottom panel) and the three dissipative variable
profiles at t ¼ 47 GeV−1 for different values of C0 and with χ2 ¼ −1, C1 ¼ 103, C2 ¼ 0.

MONTES, RUBIO, and REULA PHYS. REV. D 107, 103041 (2023)

103041-14



introduced in Eq. (3), and explicitly computed from
Eq. (30). This remarkable fact is well understood from
the theory of shock formation (see [54,57] for details).
Physically, when a shock forms, the entropy of the system
is expected to grow. Thus, if starting from a zero entropy-
rate configuration, the formation of the shock should
coincide locally with the moment in which the entropy
rate changes. This quantity can be easily calculated from
the dissipative variables, and has a strong correlation with
the position of the peaks. As an example, Figs. 10 and 11
show a comparison between σ and T00 for small values of

C2 and for various values of C1. It can be seen that the σ
distribution presents peaks in the position of the shocks in
the energy distribution. This can be useful to track the
position and velocity of shocks, and could be exploited by
numerical schemes that need this information.

D. Convergence analysis

Finally, we study the convergence of the methods we
implemented in order to evolve our fluid equations. To do
so, we set χ2 ¼ −1 and C0 ¼ C1 ¼ C2 ¼ 10 for the two
initial data considered throughout this numerical

FIG. 9. Energy density (Gaussian profile at the top panel; discontinuous profile at the bottom panel) and the three dissipative variable
profiles at t ¼ 47 GeV−1 for different values of C1 and with χ2 ¼ −1, C0 ¼ 103, C2 ¼ 0.

FIG. 10. Entropy rate σ at t ¼ 47 GeV−1 for different values of
C1, and with C2 ¼ 0, C0 ¼ 103.

FIG. 11. Entropy rate σ at t ¼ 47 GeV−1 for different values of
C1 and with C2 ¼ 1, C0 ¼ 103.
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exploration, and perform runs for three different
resolutions, taking N ¼ 1600, N ¼ 3200, and N ¼ 6400.
Assuming that the numerical scheme is of order p, that is,

kðuNÞkj − uexaðkΔt; jΔxÞk ¼ OðΔxpÞ; ð65Þ

then it can be easily deduced that the convergence factor

QðtÞ ¼ kðu2NÞkj − ðuNÞkjk
kðu4NÞkj − ðu2NÞkjk

≈ 2p: ð66Þ

This allows us to calculate p without the need of having an
exact solution. To correctly study the convergence, we also
need to choose an adequate norm. We chose the norm L1,
which seems to be the most appropriate for the WENO
schemes, as the one we implemented here [79].
Results of the convergence study for T00 can be seen in

Fig. 12. Similar results can be seen for all five evolution
variables, and indicate that the convergence order of the
method is p ∼ 5. Thus, our code is retaining the conver-
gence of the WENO-Z scheme despite the need of the
implementation of a Newton-Raphson scheme to calculate
the fluid variables on each step.

V. CONCLUSIONS

In this work we numerically evolved the divergence-type
system of equations for a conformally invariant viscous
relativistic fluid with zero chemical potential. We consid-
ered generating functions up to quadratic terms in the
dissipative variables. This family of dissipative theories
was studied in [72], where it was found that its principal
part essentially depends on only one parameter. Among
these theories, there is a subset with admits a well-posed
initial value formulation, whose dynamical equations could
serve, for instance, as a simple model for transport
phenomena in microphysics.
The free parameters of the theory come from either the

different contributions on thegenerating function (χ0, χ1, χ2),
or from the source driving the dissipative variables (C0, C1,
C2). After setting χ0 ¼ −1 and χ1 ¼ 1, we explored the
parameter space of χ2 and Ci from two different initial
datasets for the energy density: (i) a smooth Gaussian
function and (ii) a discontinuous function at the center of
the spatial domain. We found that for large values of χ2 and

Ci the evolution of the system settles down to that of theEuler
equations for pure radiation. This is due to the fact that, under
these conditions, the magnitude of the dissipative variables
becomes negligible, having almost no effect on the dynamics
of the system. On the other hand, for small values of χ2 and
Ci, the propagation speeds get notoriously changed with
respect to theEuler’s structure,which causes the formation of
different shock waves and new peaks that are not present in
the perfect-fluid dynamics. This can be understood from the
fact that, unlike the ideal fluid case in which there is only one
speed for the propagation of perturbations, the dissipative
fluid system admits not one but two sound speeds, in addition
to a standing mode.
To study the effect of the source function parameters, we

fixed χ2 ¼ −1 (as to depart from the dynamics of a pure
perfect fluid), and found that the most relevant contribution
was the one driven by the parameter C2. In particular, when
C2 is large in magnitude, C0 and C1 have no appreciable
effect on the dynamics of the solution. Notoriously, the
dissipative variable whose behavior is most affected by C2

is in fact τ11, which within certain limit it corresponds to the
shear of fluid, being τab traceless and completely orthogo-
nal to ua. This behavior seems to be characteristic when
evolving a conformal theory, as it also played a relevant role
in the dynamics of other types of conformal theories [69–
71]. After that, by fixing C2 ¼ 0 and C2 ¼ 1 we reported
new effects when varying C0 and C1, particularly in the
later case, where we even observed the formation of new
shocks during the evolution, presumably corresponding to
the extra degrees of freedom of the theory.
Our system also allows for an easy calculation of the

entropy generation rate σ, which displays peaks in the
shock regions. This can be very useful for keeping track on
shock formation.
The experience gained in this work suggests the pos-

sibility of generalizing this scheme to full 3D simulations,
accounting also for curved spacetimes or even fully
relativistic (astrophysical/cosmological) scenarios. Since
the extension from the present work to a curved back-
ground should be straightforward, we plan to use this
theory as a matter source for solving the full case consid-
ering backreaction with the spacetime geometry, as well as
including baryon current density, i.e., studying dissipative
fluids in the context of strong gravity (as a source for
modeling neutron stars, black hole accretion disks, among
other applications).
Finally, it would be interesting to study the plausibility of

a “reduced” theory; i.e., where only shearlike degrees of
freedom are exited, but no heat-flux ones. Unlike the theory
simulated in this paper (in which more degrees of freedom
are always exited out of generic initial data), it might be that
for the particular value of the parameter χ2 at which the
transformation between conservative and abstract variables
breaks down, there is a smaller set of degrees of freedom
that could get exited in a generic way. This is part of
ongoing work.

FIG. 12. Convergence order p as a function of evolution time.
The blue dotted line corresponds to the Gaussian initial profile,
while the red one is for the discontinuous data.
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APPENDIX A: EXPLICIT FORM
OF THE EVOLUTION EQUATIONS

In this appendix we give the explicit expressions for the
relevant components of the tensors Tab and Aabc that were

used for both the inversion of the transformation between
the fluid variables fμ; v; ν; r1; τ11g and the conservative
ones fT00; T01; A000; A001; A011g, and the nontrivial flux
functions fT11; A111g in the evolution equations (50) simu-
lated in this work. As before, we generically write the
tensor fields Tab and Aabc as

Tab ¼ Tab
0 þ Tab

1 þ Tab
2 ;

Aabc ¼ Aabc
1 þ Aabc

2 ;

where the subindices stand, respectively, for the zeroth,
first, and second order contributions from the generating
function given in Eq. (14).

1. Transformation of variables

The explicit relation between the conservative and fluid
variables is given by the following formulas:

T00 ¼ −2χ0ð4γ2 − 1ÞT4 −
2

3
T6χ1ð30γr1Tvþ 10ð4γ2 − 1ÞνT2 þ 3τ11v2Þ

− 1

3
T8χ2ð336γr1Tvð10νT2 − 3τ11ðv2 − 1ÞÞ − 36r21T

2ð8γ4 − 51γ2 þ γ2ð8γ2 − 3Þv4

− 2ð8γ4 − 27γ2 þ 12Þv2 þ 8Þ þ 16ν2T4ð16γ6ðv2 − 1Þ2 þ γ2ð243 − 19v2Þ
− 2γ4ðv4 − 52v2 þ 51Þ − 52Þ þ 336ντ11T2v2 þ 9τ211ðv2 − 1Þð−24γ2 þ ð24γ2 − 11Þv2 þ 3ÞÞ;

T01 ¼ −8χ0γ2T4vþ χ1T6

�
−10γr1Tðv2 þ 1Þ − 80

3
γ2νT2v − 2τ11v

�
− χ2

8

3
T8ð3γr1Tðv2 þ 1Þð10νT2ð2γ2ðv2 − 1Þ þ 9Þ

− 21τ11ðv2 − 1ÞÞ − 36r21T
2vðγ4ðv2 − 1Þ2 þ 6γ2ðv2 − 1Þ − 2Þ þ vð8γ2ν2T4ð4γ4ðv2 − 1Þ2 þ 25γ2ðv2 − 1Þ þ 56Þ

þ 42ντ11T2 þ 9τ211ðv2 − 1Þð3γ2ðv2 − 1Þ − 1ÞÞÞ;

A000 ¼ 3χ1γð1 − 2γ2ÞT5 − 12T8χ2

�
3ð6γ2 − 1Þr1vþ 10γð2γ2 − 1ÞνT þ 3γτ11v2

T

�
;

A001 ¼ γð1 − 6γ2ÞT5vχ1 − 12T8χ2

�
r1ð6γ2ð2v2 þ 1Þ − 1Þ þ γτ11vðv2 þ 2Þ

T
þ 10

3
γð6γ2 − 1ÞνTv

�
;

A011 ¼ −χ1γT5ð6γ2v2 þ 1Þ − 12T8χ2

�
r1vð6γ2ðv2 þ 2Þ þ 1Þ þ 10

3
γνTð6γ2v2 þ 1Þ þ γτ11ð2v2 þ 1Þ

T

�
:

2. Explicit formulas for T11 and A111

At each time step, and after numerically inverting the relations shown in the previous subsection, we evaluated the non
trivial numerical fluxes by using the following expressions:
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T11 ¼ −2χ0T4ð4γ2v2 þ 1Þ − 2

3
T6χ1ð30γr1Tvþ 3τ11 þ 10νT2ð4γ2v2 þ 1ÞÞ − 1

3
T8χ2ð336γr1Tvð10νT2 − 3τ11ðv2 − 1ÞÞ

− 36r21T
2ð3ðγ2 − 8Þ þ 8γ4v6 þ ð51γ2 − 16γ4Þv4 þ ð8γ4 − 54γ2 þ 8Þv2Þ þ 16ν2T4ð16γ6v2ðv2 − 1Þ2

þ γ2ð243v2 − 19Þ þ 2γ4ð51v4 − 52v2 þ 1Þ þ 52Þ þ 336ντ11T2 þ 9τ211ðv2 − 1Þð24γ2v4 þ ð3 − 24γ2Þv2 − 11ÞÞ;

A111 ¼ −3γT5vχ1ð2γ2v2 þ 1Þ − 12T8χ2

�
3r1ð6γ2v2 þ 1Þ þ 10γνTvð2γ2v2 þ 1Þ þ 3γτ11v

T

�
:

APPENDIX B: WENO-Z METHOD

We give a brief review of weighted essentially non-
oscillatory (WENO) schemes, particularizing to the
WENO-Z scheme. A clear and detailed discussion on this
family of high-order schemes can be found in the review
[80], as well as some applications of WENO schemes for
the evolution of binary systems were performed in [81–83].
To evolve the system of equations studied throughout

this work, we implemented the WENO-Z method, intro-
duced by Borges et al. in [84]. This method keeps track to
more general WENO scheems for the numerical integration
of systems of conservation laws, which are of the form (in
one dimension, for simplicity)

∂tuþ ∂xFðuðxÞÞ ¼ gðuðxÞÞ: ðB1Þ

We discretize the above equation by using an evenly
spaced grid xj ≔ jΔx. As these systems generically
develop shocks, we cannot use straightforward finite
differences to directly calculate ∂xFðuÞ. This suggests to
consider the semidiscreet approximation given by

duj
dt

þ F̂jþ1=2 − F̂j−1=2

Δx
¼ gðuðxjÞÞ; ðB2Þ

where ujðtÞ ≔ uðxj; tÞ. The main issue here is how to
define (or reconstruct) the numerical discretization of the
flux function FðuÞ, i.e., how to find F̂jþ1=2. By implicitly
defining a function hðxÞ such that

1

Δx

Z
xþΔx=2

x−Δx=2
hðξÞdξ ¼ FðuðxÞÞ; ðB3Þ

we get then that

∂xF ¼ hðxjþ1=2Þ − hðxj−1=2Þ; ðB4Þ

which implies that

F̂jþ1=2 ¼ hðxjþ1=2Þ: ðB5Þ

Notice then that FðuðxjÞÞ corresponds to the cell average
of the function h. Thus, what one needs at the end is a way

to approximate the function h in terms of FðuðxjÞÞ. It is
exactly for this step that WENO schemes are useful for.
Indeed, it is possible to reconstruct a quantity vjþ1=2 from
the cell averages v̄jþk (k ¼ −2;−1, 0, 1, 2); i.e., by using a
stencil of five points. First, a third-order reconstruction of
vjþ1=2 using only three cell averages in three different
stencils is performed, namely,

vð1Þjþ1=2 ¼
1

3
v̄j−2 −

7

6
v̄j−1 þ

11

6
v̄j; ðB6Þ

vð2Þjþ1=2 ¼ −
1

6
v̄j−1 þ

5

6
v̄j þ

1

3
v̄jþ1; ðB7Þ

vð3Þjþ1=2 ¼
1

3
v̄j þ

5

6
v̄jþ1 −

1

6
v̄jþ2: ðB8Þ

Then, it can be shown that, if v is sufficiently smooth,

vðkÞjþ1=2 ¼ vðxjþ1=2Þ þOðΔx3Þ. Now, if there happens to be
a discontinuity in the physical solution, the scheme chooses
the stencil where the discontinuity is not present, and
normally continue with the integration. The way WENO
schemes achieve this is by weighting each approximation
and then adding all them up, getting

vjþ1=2 ¼
X3
k¼1

wkv
ðkÞ
jþ1=2; ðB9Þ

where
P

wk ¼ 1 and wk are smooth functions of vj−2, vj−1,
vj, vjþ1, and vjþ2, in such a way that, if v is smooth, the
linear combination (B9) isOðΔx5Þ; while if a discontinuity
is present in a particular cell, the stencil (or stencils) where
such discontinuity is present has wðkÞ ¼ 0, becoming
vjþ1=2 ¼ vðxjþ1=2Þ þOðΔx3Þ.
Different WENO reconstruction schemes differ among

them in the way these weights are actually computed. The
WENO-Z scheme, for instance, works as follows:
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(1) Compute the following three smoothness indicators:

βð1Þ ¼13

12
ðvi−2−2vi−1þviÞ2þ

1

4
ðvi−2−4vi−1þ3viÞ2;

βð2Þ ¼13

12
ðvi−1−2viþviþ1Þ2þ

1

4
ðvi−1−viþ1Þ2;

βð3Þ ¼13

12
ðvi−2viþ1þviþ2Þ2þ

1

4
ð3vi−4viþ1þviþ2Þ2:

(2) Calculate the weights from the following formula:

wk ¼
αkP
3
l¼1αl

; αk ¼ dk

�
1þ τ5

βkþ ϵ

�
; k¼ 1;2;3

ðB10Þ

where τ5 ¼ jβ1 − β3j, ϵ is a small number in order to
avoid divisions by zero, and dk the coefficients for

which
P

3
k¼1 dkv

ðkÞ
jþ1=2 ¼ vðxjþ1=2Þ þOðΔx5Þ,

d1 ¼
1

16
; d2 ¼

5

8
; d3 ¼

5

8
: ðB11Þ

For our simulations, we set ϵ ¼ 10−40, although it
can be easily checked that the results do not get
considerably affected.

(3) Compute F̂jþ1=2 ¼ hðxjþ1=2Þ.
Notice that since that there is one more point to the left of

jþ 1=2, the scheme is “biased” to the left. Of course one
can also create a “right-biased” scheme, just by switching
the order of the arguments, namely,

F̂jþ1=2ðuj−2; uj−1; uj; ujþ1; ujþ2Þ
→ F̂jþ1=2ðujþ2; ujþ1; uj; uj−1; uj−2Þ:

Finally, once the flux was computed at a time step, we
proceed with the time integration, using the optimal
3-stage, third order SSP Runge-Kutta method
(SSPRK33) [80]. By introducing the operator

LðuiðtÞÞ ≔ −
F̂iþ1

2
− F̂i−1

2

Δx
þ gðuiðtÞÞ; ðB12Þ

from equation (B6), the RK steps are

uð1Þi ¼ uni þ ΔtLðunÞ;

uð2Þi ¼ 3

4
uni þ

1

4
uð1Þi þ 1

4
ΔtLðuð1ÞÞ;

unþ1
i ¼ 1

3
uni þ

2

3
uð2Þi þ 2

3
ΔtLðuð2ÞÞ:

This particular method allowed us to evolve the
conservative variables while capturing shock propagation,

preserving the TVD property of high-order schemes for
system of conservation laws.

APPENDIX C: A CURIOSITY ON THE
TRANSFORMATION FROM FLUID TO

CONSERVATIVE VARIABLES

In this appendix we show, by means of a simple
construction, that the Jacobian of the transformation
between fluid and conservative variables used throughout
this work is not bijective as a function of the dissipative
parameter χ2. This surprising fact came out while exploring
the propagation speeds for different values of such param-
eter. Here we provide a procedure to find its value.
First, a direct inspection of the formulas for Aabc and Tab

allows US to notice the following relations (which hold off
shell; that is, without using the dynamical equations):

Aabc
1 ξc ¼ −

χ1
2χ0

Tab
0 ; ðC1Þ

Aabc
2 ξc ¼ −

6χ2
χ1

Tab
1 : ðC2Þ

Then, we focus on a simple model for the transformation
function between the conservative variables fT00; T01;
A000; A001; A011g, and the abstract variables, fξ0; ξ1; ξ00;
ξ01; ξ11g. In particular, we propose the simplest possible
relation, which takes the form

A1 ¼ fðxÞ; ðC3Þ

A2 ¼ gðxÞy; ðC4Þ

where x represents the quantity ξa and y represents the
dissipative variables ξab. This combined with (C2) indi-
cates that we can write T in terms of f and g, namely,

T0 ¼ −
2χ0
χ1

xfðxÞ; ðC5Þ

T1 ¼ −
χ1
6χ2

xgðxÞy: ðC6Þ

Therefore (and suppressing tensorial indices for shortness
of notation), at second order in y we get

A ¼ fðxÞ þ gðxÞy; ðC7Þ

T ¼ αxfðxÞ þ βxgðxÞyþOðy2Þ; ðC8Þ

where the scaling coefficients α and β are given by

α ¼ −
2χ0
χ1

; β ¼ −
χ1
6χ2

: ðC9Þ
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Since we want to derive with respect to x and y and then
evaluate at y ¼ 0 (that is, we are just looking for the critical
χ2 value when ξab ¼ 0), we can get rid of higher-order
contributions in y.
The Jacobian of this transformation at equilibrium (i.e.,

at y ¼ 0), reads

J ¼
�
αðfðxÞ þ xf0ðxÞÞ βxgðxÞ

f0ðxÞ gðxÞ

�
: ðC10Þ

One can easily see that the rows of this matrix become
linearly dependent if and only if

α
fðxÞ þ xf0ðxÞ

f0ðxÞ ¼ βx; ðC11Þ

and that will be the case when the transformation of
variables is not bijective. From Eqs. (C2) and (C3), we
find that fðxÞ must be of the form

fðxÞ ¼ Kx−5; ðC12Þ

for some real constant K, and therefore xf0ðxÞ ¼ −5fðxÞ.
Replacing this in Eq. (C11) gives the conditions

α
4

5
¼ β; ðC13Þ

χ2χ0
χ21

¼ 5

48
: ðC14Þ

In particular, choosing χ0 ¼ −1 and χ1 ¼ 1, we get
χ2 ¼ −5=48. This means that we cannot choose the
parameters where condition (C14) is satisfied. This fact
seems to suggest that, at least close to equilibrium, the
system can be described by less variables, and correspond-
ingly less equations. The study of this property is part of a
work in progress.

APPENDIX D: LONG-TIME EVOLUTION FOR
THE CONSERVED QUANTITIES

In this appendix we show how is the behavior of the
conserved variables defined from the dynamical fields
considered for the evolution. In particular, we stress out
that, even if the dissipative variables are initially set to zero,
they can settle into a (nonzero) constant value at long times,
showing that the dissipative effect is not a transient effect,
but it keeps during the evolution, as a consequence of the
dynamical equations.
Recall that if uðt; xÞ obeys an equation of the form

∂tuþ ∂xfðuÞ ¼ gðuÞ ðD1Þ

then the quantity

UðtÞ ¼
Z
D
uðt; xÞdx ðD2Þ

satisfies the following conservation law

dU
dt

−
Z
D
gðuðt; xÞÞdx ¼ 0; ðD3Þ

where D is the spacial domain on which u is defined. In
particular, if g ¼ 0, U is a constant of motion. We study the
long-time behavior of such conserved quantities (that is, the
integral of the conservative variables of the theory), and
verify that, in particular, the ones coming from the
dissipative variables do not decay to zero, and moreover,
they have an exponentially tendency, as expected.
During the evolution, the magnitude of the conservative

quantities A000 and A001 decreases in absolute value.
However, this does not mean that they go to zero. As an
example, let us study the evolution of the Gaussian peak for
long times, with parameters χ2 ¼ −1 and C0 ¼ 1000,
C1 ¼ 1000, and C2 ¼ 1. Since in the evolution equations
both T00 and T01 do not have a source, their integrals are
constant over time.Besides, both the integrals ofT01 andA001

are trivially zero since they are odd functions in space.
Figure 13 shows the integral (in space) of the difference
between T00ðt; xÞ and its initial value, namely T00ðt ¼ 0; xÞ,
with t ranging from 0 to 1000. We can see that it initially

FIG. 13. Integral in space of the difference T00ðt; xÞ−
T00ðt ¼ 0; xÞ, from t ¼ 0 to t ¼ 1000.

FIG. 14. Integral in space of the dissipative evolution fields
A000 and A011 over time (continuous lines) and exponential fits
(dashed lines) for long times.
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decreases slightly and later starts to grow, which we attribute
to numerical errors (in particular, the one coming from the
Newton-Raphson inversion scheme).
On the other hand, the integrals of A000 and A011 are not

constant but after some time, they settle exponentially to a
constant, as shown in Fig. 14.

Thus, the fact that the dissipative variables are initially
zero does not mean that Aabc ¼ 0, since Aabc does not go to
zero when ξab ¼ 0. That is also the reason why for long
times Aabc does not go to zero but to a constant sta-
tionary value.
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