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Within the relativistic mean-field model, we investigate the properties of dark matter (DM) admixed
neutron stars, considering nonrotating objects made of isotropic matter. We adopt the IOPB-I hadronic
equation of state (EOS) by assuming that the fermionic DM within supersymmetric models has already
been accreted inside the neutron star (NS). The impact of DM on the mass-radius relationships and the
radial oscillations of pulsating DM admixed neutron stars (with and without the crust) are explored. It is
observed that the presence of DM softens the EOS, which in turn lowers the maximum mass and its
corresponding radius. Moreover, adding DM results in higher frequencies of pulsating objects, and hence
we show the linearity of the fundamental mode frequency of canonical NS with DM Fermi momentum.
We also investigate the profile of eigenfunctions solving the Sturm-Liouville boundary value problem and
verify its validity. Further, we study the stability of NSs considering the fundamental mode frequency
variation with the mass of the star and verify the stability criterion ∂M=∂ρc > 0. Finally, the effect of the
crust on the large frequency separation for different DM Fermi momenta is shown as well.
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I. INTRODUCTION

The neutron star (NS) is one of the mysterious stellar
leftovers, having an enormously dense core and a robust
crust. The coalescence of binary NS (BNS) merger events
produce gravitational waves (GWs) that encode sufficient
knowledge to place substantial restrictions on the equation
of state (EOS) and the internal compositions of NSs [1–11].
In the future, terrestrial detectors, such as LIGO/Virgo/
KAGRA, could be able to observe more BNS merger
events, which could more precisely restrict the properties of
compact stars. In addition to that, oscillating NSs also emit
GWs with various mode frequencies can be used to explore
the internal compositions as well as the various properties
of the star [12,13].
Oscillating NSs emit different modes frequencies, such

as f, p, g, etc., depending on the restoring force, after their
formation in the supernovae. There are various processes,
such as dynamical instability, mass accretion, magnetic
configuration, and fractures in the crust, that may be the
different sources of oscillations [14–17]. Oscillations are
mainly categorized into two types, namely radial and
nonradial. In this study, we propose to explore various
properties of radial oscillations of NSs. Several works have
already been published on the exploration of different

properties of radially oscillating NS [18–20,20–25]. Within
the framework of general relativity, radial oscillations have
been investigated as the simplest mode of NSs [18–24].
Later, other numerical techniques incorporated zero tem-
perature EOS to correct their numerical results [20,25].
According to their findings, oscillations become unstable
once the NS reaches its maximum mass at the correspond-
ing central density. The detection of radial oscillations is
quite complex, as they cannot generate GWs on their own.
They are coupled with nonradial oscillations, making
GWs stronger and making it more likely that they can
be detected [26,27]. However, in Ref. [28], it has been
observed that in the postmerger event of BNS, a hyper-
massive NS is formed along with the emission of a short
gamma-ray burst (SGRB), which may be impacted by
radial oscillations. Therefore, in this study, we want to
explore more with the inclusion of dark matter (DM) inside
the oscillating NS since DM effects produce an extra peak
in the postmerger spectrum [29].
Evidence for DM in galaxies may be inferred from

a variety of data, including galaxies’ rotation curves,
velocity dispersions, galaxy clusters, gravitational lensing,
the cosmic microwave background, etc. According to the
findings of cosmological observations, the unseen matter
cannot be composed of baryons; instead, it needs to be a
new type of matter that only has a very weak interaction
with the other particles. However, substantial research on*kumarbh@nitrkl.ac.in
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DM models introduced and analyzed by particle physicists
has led to the establishment of stringent limits on the
coupling constant as well as the mass of the DM particle.
The weakly interacting massive particle (WIMP) scenario
has gained popularity among DM models since it is the
most abundant DM candidate and the thermal relic of the
Universe. Therefore, in our model, we choose nonannihi-
lating WIMPs (neutralino) as the DM candidate, which is
already accreted inside the NS [23,30–34]. From various
observational data, one can put constraints on the amount
of DM inside the NS [31,32]. Alternatively, asteroseismol-
ogy is a widely used technique to probe the inner structure
of stars. By studying oscillations of pulsating objects and
computing the frequencies of their modes, we could learn
more about the EOS of interacting matter and internal
composition since the numerical values of the frequency
modes are extremely sensitive to the underlying physics.
To study NS properties, one needs the EOS, which

dictates the relationship between energy density and
pressure. Here, we take the extended relativistic mean field
(E-RMF) model, as explained in detail in Refs. [35,36].
However, in this study, we consider the IOPB-I EOS [36] to
calculate various properties of NSs. In the case of DM, we
use the method as discussed in Sec. II A. The final EOS
is the addition of nucleons and DM. With that EOS, we
investigate the effects of DM on f and p-mode frequencies.
Assuming nonrotating NSs, we solve the Sturm-Liouville
eigenvalue problem [37–39]. Our model is predicated on
the assumption that oscillations are characterized by a
small magnitude, which allows for the application of linear
perturbation theory [40,41]. Our work is organized as
follows: we focus on the formalism to obtain the EOS
for DM admixed NS (DMANS) in Sec. II A. We calculate
the mass-radius relationships for a static, isotropic, and
nonrotating star, as discussed in Sec. II C. The methodol-
ogy for radial oscillation is enumerated in Sec. II D. We
discuss our numerical results in Sec. III, and finally, we
summarize our work in Sec. IV.

II. FORMALISM

A. Model for DM admixed NS

Compact objects, such as NS, capture a finite amount
of DM in their evolution stage. After accretion, the DM
particle loses energy when interacting with neutrons
because of the high baryon density. The NS’s immense
gravitational field traps the DM after losing some energy
[30,42,43]. Since WIMPs are the most prevalent DM
particle and the thermal remnant, we choose nonannihilat-
ing WIMPs (Neutralino) as DM candidates. Other phe-
nomena enhance the density of DM inside the NS,
including converting neutrons to scalar DM and generating
scalar DM via bremsstrahlung [29,30,44]. The history of
NS’s formation and its habitat’s surroundings affect how
much DM is present.

The DM particle interacts with baryons by exchanging
SM Higgs. The form of the interacting Lagrangian is given
by [23,30–34,45],

LDM ¼ χ̄½iγμ∂μ −Mχ þ yh�χ þ 1

2
∂μh∂μh

−
1

2
M2

hh
2 þ f

Mnucl

v
φ̄hφ; ð1Þ

where φ and χ are the nucleonic and DM wave functions,
respectively. h is the Higgs field. The masses Mχ and Mh

are the neutralino mass and Higgs mass taken as 200 GeV
and 125 GeV, respectively. The coupling constants
between the DM and SM Higgs is y, which can be
obtained in the large Higgs mixing angle limit. The various
gauge coupling constants are present in the electroweak
sector of the standard model [46] because the neutralino is
a supersymmetric particle. The values of y are given in the
range between 0.001 to 0.1, depending on the various
parameters [23,30,31]. Therefore, we use y ¼ 0.07 in our
computations. fMnucl=v is the effective Yukawa coupling
between the Higgs field and nucleons, where f is the
proton-Higgs form factor. Its value can be assumed to be
approximately 0.35 [47], and v is the vacuum expectation
of Higgs taken as 246 GeV [31,34].
The DMANS is taking into account as single fluid based

on the speculation that the DM is sufficiently coupled to the
baryonic matter to allow for single fluid approximation.
This approximation originates from the fact that the DM
considered as collisionless and weak interactions so that it
can be modeled as pressureless fluid. It has been shown that
the interaction between DM and baryonic matter can result
in a efficient thermalization process, whereby DM can
effectively transfer energy and momentum with the bar-
yonic fluid. It is important to demonstrate that dark matter
coupled to baryonic matter strong enough that they may be
considered a single fluid. In order to provide support for the
single-fluid approximation, the typical timescales for inter-
actions between the two fluids might be compared to
achieve this goal. Dark matter and baryonic matter may be
considered as a single fluid if the timescale for their
interactions is substantially shorter than that of the neutron
star’s oscillations. Order of magnitude estimation shows
the relaxation time is τ ≈ 1

σSInc
≈ 2 ms, where σSI is spin-

independent cross section, n is the density and c is the
velocity of light. Due to the high density 2 × 1014 g=cm3

and nonzero cross section 10−46 cm2, the relaxation time is
comparable to the millisecond period of NS oscillation.
This possibility is not completely ruled out because of the
finite cross section. However, it is crucial to keep in mind
that this assumption could not always be accurate, par-
ticularly for some certain DM models. Specifically, the
models where DM and baryonic matter exhibits weak
interaction among themselves and only interact gravita-
tionally where the relaxation time may exceed the period of
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millisecond oscillation to a major degree. A two-fluid
approximation could be regarded more suitable in such
an instance. We acknowledge that the justification of the
single-fluid assumption must be established for each
distinct model of dark matter. In addition, supplementary
references have been provided to validate the authenticity
of the single-fluid approximation for various dark matter
models. For more details, please see [23,43,48–51].

1. Experimental evidences

The DM-Higgs coupling factor (y) plays a significant
role in this model. One can constrain its magnitude from
different DM detection experiments. Although the direct
detection experiment has not reported any events to date,
however, they provided some upper limits on the WIMP-
nucleon scattering cross section. Since this model is based
on the assumption that, the DM particles interact with
nucleons by exchanging the standard model Higgs. Hence,
the Higgs exchange causes an elastic scattering between the
WIMPs and the nuclei, mainly at the quark level. In light of
this, the interaction Lagrangian that includes both the DM
wave function (χ) and the quark wave function (q) can be
expressed as follows [52],

Lint ¼ αqχ̄χq̄q; ð2Þ

where αq ¼ yfmq

vM2
h
. f is the nucleon-Higgs form factor,

and mq is the mass of the quark. The values of y and f
are taken as 0.07 and 0.35, respectively, in this study.
For the fermionic DM, one can write the spin-independent

cross section as follows [52],

σSI ¼
y2f2M2

n

4π

μ2r
v2M4

h

; ð3Þ

where Mn (¼ 939 MeV) is the nucleon mass and μr is the
reduced mass MnMχ

MnþMχ
, Mχ is the mass of the DM particle.

We took y ¼ 0.07 and DM mass as 200 GeVand computed
their corresponding cross section, which is found to be
9.70 × 10−46 cm2, which indicates that the σSI is agreed
with direct detection experiments such as XENON-1T [53],
PandaX-II [54], and LUX [55] with 90% confidence level.
The large hadron collider (LHC) also put a limit on the
WIMP-nucleon scattering cross section between 10−40 to
10−50 cm2 [56]. Hence, our model also satisfies the LHC
limit. Moreover, it is observed that the small change in the
magnitude of y has no impact on the frequency of the
radial oscillation.

B. Equation of state for DMANS

In this study, we use the extended relativistic mean
field (E-RMF) model EOS of the NS. Several works have
already used the E-RMF model and found that almost NS

properties, such as mass, radius, tidal deformability, the
moment of inertia, etc., are well reproduced and con-
sistent with different observational data [31,33,34,36].
The details calculations and the applications of E-RMF to
NS can be found in [36]. However, the energy density and
pressure for DM can be calculated by using the Eq. (1)
given as [23,31,33],

EDM ¼ 2

ð2πÞ3
Z

kDMf

0

d3k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χ Þ2
q

þ 1

2
M2

hh
2
0; ð4Þ

PDM ¼ 2

3ð2πÞ3
Z

kDMf

0

d3k k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χ Þ2
q −

1

2
M2

hh
2
0; ð5Þ

where kDMf is the DM Fermi momentum, and M�
χð¼

Mχ − yh0Þ is the DM effective mass. We assume that
the DM density is ∼1000 times less than the baryon
density inside NS [23,30]. From this assumption, one can
calculate the DM density. Hence, in our computations,
we vary the value of kDMf from 0–0.05 GeV.
Therefore, for DMANS, the total energy density and

pressure can be written as [31,34]

E ¼ ENS þ EDM;

and P ¼ PNS þ PDM; ð6Þ

where E ¼ ENS, and P ¼ PNS for NS with only nucleons
can be found in [31,33].
Figure 1 depicts the variation of pressure and energy

density by varying DM Fermi momenta. For the lower-
density region, we use the SLY4 crust to make the unified
EOSs [57], which can be used to study the frequencies
of the radially oscillating DM admixed NS. It is observed
that the EOS becomes softer with the addition of DM.
The softening of the EOSs depends on the amount of DM
inside the NS.

FIG. 1. Unified DM admixed EOSs for various Fermi momenta.
The kink at P ≈ 10−1 MeV=fm3 shows the crust-core transitions.
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Due to the fact that all systems strive to save energy, this
is the case. The Fermi momenta (kf), also known as the
Fermi energy, becomes larger as the density rises. Since
nucleons are fermions, they must be assigned a higher orbit
as the nuclear density rises. The density is known to
increase as the cube of the Fermi momenta. The nucleon’s

total energy, defined as E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þM2

q
grows as the

density of the nucleus rises. The nucleons decay into these
particles when their energy level is greater than that of the
DM. Therefore, even though DM is heavier than nucleons,
it is more energy efficient for the system to have the DM in
the lower-energy states instead of nucleons at greater Fermi
energy and at greater density. According to the density
of the system, DM may substitute in place of the nucleons.
So, some of the gravitational mass is turned into kinetic
energy, which makes the total mass smaller.

C. Hydrostatic equilibrium structure

In equilibrium, the metric tensor for a static and spheri-
cally symmetric star is given by [58]

ds2 ¼ −e2νc2dt2 þ e2λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð7Þ

where e2ν and e2λ are the metric functions.
To describe the hydrostatic equilibrium of NSs,

Einstein’s field equations in Schwarzschild-like coordi-
nates imply the Tolman-Oppenheimer-Volkoff (TOV)
equations, which are given by [59,60]

dP
dr

¼ −
Gm
c2r2

ðPþ EÞ
�
1þ 4πr3P

mc2

�
�
1 − 2Gm

c2r

� ;

dν
dr

¼ −
1

Pþ E
dP
dr

;

dm
dr

¼ 4πr2E
c2

; ð8Þ

and the corresponding metric functions at the surface,
i.e., at r ¼ R

e2νðRÞ ¼ e−2λðRÞ ¼
�
1 −

2GM
c2R

�
: ð9Þ

By using the initial conditions mðr ¼ 0Þ ¼ 0 and
Pðr ¼ 0Þ ¼ Pc, where Pc is the central pressure, here
TOV equations can be solved for DMANS EOSs, and the
integration will continue up to surface boundary where
mðr ¼ RÞ ¼ M and Pðr ¼ RÞ ¼ 0.
We plot the mass-radius relations for DM admixed NS

by solving the TOVequations for various Fermi momentum
of DM in Fig. 2. The magnitude of the maximum mass
and its corresponding radius decreases with increasing
DM momenta. For ∼kDMf ¼ 0.03 GeV, the M − R curves

reproduce the observational data well. The curves do not
satisfy any of the observational data with more percentages.
Therefore, from the observational data, one can fix the
amount of DM inside the NS.

D. Radial oscillations of NSs

To calculate the properties of the radially oscillating
NS, we follow the methodology given by Kokkotas and
Ruoff [25]. In order to analyze the equations driving radial
oscillations of NSs, we define δrðr; tÞ to be the time-
dependent radial displacement of a fluid element as

δrðr; tÞ ¼ XðrÞeiωt; ð10Þ

where XðrÞ is the amplitude and ω is the circular frequency
of the standing wave solution.The linearized perturbation
equations can be expressed as a second-order homogeneous
differential equation with the assumption of adiabatic
oscillations as

c2sX00 þ
�
ðc2sÞ0 − Z þ 4πG

c4
rγPe2λ − ν0c2

�
X0

þ
�
2ðν0Þ2c2 þ 2Gm

r3
e2λ − Z0 −

4πG
c4

ðPþ EÞZre2λ
�
X

þ ω2e2λ−2νX ¼ 0; ð11Þ

where c2s is the sound of speed squared and γ is the
adiabatic index, of the forms

c2s ¼
dP
dE

c2 and γ ¼
�
1þ E

P

�
c2s : ð12Þ

FIG. 2. Mass-radius relations for DM admixed NS for IOPB-I
EOS with varying DM Fermi momentum. Different horizontal
color bands for various pulsars’ observational data and the
simultaneous observations of mass-radius given by NICER are
also shown.
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Also,

ZðrÞ ¼
�
ν0 −

2

r

�
c2s : ð13Þ

The oscillation equations should be such that there is no
displacement at the center, i.e.,

δrðr ¼ 0Þ ¼ 0 ð14Þ

and the Lagrangian perturbation of pressure should vanish
at the surface,

ΔPðr ¼ RÞ ¼ 0: ð15Þ

Owing to these boundary conditions, the displacement
function can be redefined as,

ζ ¼ r2e−νX: ð16Þ

Using this new variable, Eq. (11) can be rewritten as a
Sturm-Liouville differential equation which has a self-
adjoint nature [25]

d
dr

�
H
dζ
dr

�
þ ðω2W þQÞζ ¼ 0; ð17Þ

where

r2H ¼ ðPþ EÞeλþ3νc2s ;

r2W ¼ ðPþ EÞe3λþν;

r2Q ¼ ðPþ EÞeλþ3ν

�
ðν0Þ2 þ 4

r
ν0 −

8πG
c4

e2λP

�
: ð18Þ

Equation (17) is the master equation for radial oscillations
such that ΔP takes a simple form

ΔP ¼ −r−2eνðPþ EÞc2sζ0: ð19Þ

Moreover, since Eq. (17) takes the Sturm-Liouville form,
where ζn has n nodes between the surface and the center
with discrete eigenvalues ω2

n. The eigenvalues follow

ω2
0 < ω2

1 < � � � < ω2
n < � � � :

The standing wave solution, Eq. (10) also suggests that
oscillations will be harmonic and stable for real ω but the
star will become unstable with an imaginary frequency
of the node. Additionally, because the eigenvalues are
arranged in the manner described above, it is crucial to
know the fundamental f-mode frequency (n ¼ 0) in order
to determine the stability of the star. ω0 becomes imaginary
for a central density greater than the critical density (ρcrit),
which corresponds to the density at which NS attains its

maximum mass. Above ρcrit, the amplitude of oscillations
becomes exponential, and the star cannot return to its
original configuration, finally collapsing into a black hole.
The Eq. (17) is split into two first-order coupled linear

differential equations for numerical integration. To do this,
we create a new variable called η, where

η ¼ Hζ0: ð20Þ

The coupled differential equation thus becomes [25]

dζ
dr

¼ η

H
; ð21Þ

dη
dr

¼ −ðω2W þQÞζ: ð22Þ

Using Taylor expansion on ζ near the origin and Eq. (21),
we find that η0 ¼ 3ζ0H0 with

H0 ¼ ðPð0Þ þ Eð0ÞÞeλð0Þþ3νð0Þc2sð0Þ ð23Þ

where η0 and ζ0 are their corresponding values at the center
of the star.
By choosing η0 ¼ 1, we get ζ0 ¼ 1=ð3H0Þ as the initial

value to start our numerical integration using the shooting
method. The values of ω that satisfy ηðr ¼ RÞ ¼ 0will give
us the required radial oscillation modes.

TABLE I. 20 lowest order radial oscillation frequencies (in
kHz) for three DM momenta each calculated at 1.4M⊙.

Nodes

kDMf
0.00 GeV 0.03 GeV 0.05 GeV

0 2.8450 3.1841 3.7404
1 5.8594 7.1023 9.3196
2 7.4079 10.2763 13.9863
3 8.6053 12.7038 18.4640
4 10.1398 13.4110 20.4151
5 11.6405 16.0817 22.8780
6 13.1050 18.1414 27.2547
7 14.6138 19.4984 30.8661
8 16.1008 21.4467 31.6181
9 17.6315 23.5088 35.8852
10 19.1166 25.4284 40.0455
11 20.6377 27.2522 41.3531
12 22.1461 29.1611 44.1685
13 23.6751 31.2952 48.1325
14 25.1789 33.1884 51.6100
15 26.7008 35.0946 52.5281
16 28.2244 37.0844 56.2657
17 29.7513 39.1556 60.3598
18 31.2706 41.0815 62.7705
19 32.7936 43.0182 64.7816
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III. RESULTS AND DISCUSSIONS

The radial profile for the η and ζ are plotted in Fig. 3 at
maximum corresponding masses [i.e., at different central
densities (ρc)] for three EOSs with kDMf ¼ 0.00, 0.03 and
0.05 GeV. Here we represent the behavior of f-mode
(n ¼ 0) and 9 excited p-modes (n ¼ 1–9), and the color bar
represents the order number n corresponding to different
modes. For both η and ζ in the region 0 < r < R, we
are getting exactly n nodes for nth mode following the
Sturm-Liouville system. The oscillation for η is directly
proportional to the Lagrangian pressure variation ΔP,
and therefore a decaying amplitude is observed when it
approaches the stellar surface, following Eq. (15).
Considering the case of η, the nodes for higher p-modes
shifts toward the center when we increase kDMf . The system
tends to oscillate consistently in a somewhat stable region
close to the equilibrium point [61] because η and ΔP are
both continuous. Considering the profile of ζ, all the modes

start from zero as it is associated with the radial displace-
ment function and satisfies the boundary condition at the
center, Eq. (14), and near the surface, the growing ampli-
tude is observed with rapid sign change [62]. For DMANS,
we observed that the impact is similar. However, the
amplitude of higher p-modes is significantly reduced
compared with no DM, and the positions of the nodes
are changed considerably closer to the surface.
Altering kDMf with IOPB-I EOS, we examine the

dependency of eigenfrequencies with central energy den-
sities (ρc) for the first 20 radial modes in Fig. 4 and also
enumerated their value in Table I. The stability limit is
reached when density rises, irrespective of EOS, as shown
in the same figure. The star is approaching its maximum
mass (Mmax) at the instability point, which is indicated by
the existence of a zero eigenvalue for the f-mode [25]. The
critical central energy density for the kDMf ¼ 0.00 GeV is
2.0022 × 1015 g=cm3. However, when we increase the
DM fraction, ρcrit increases as EOS becomes softer and

FIG. 3. Top: the variation of η=η0 as a function of dimensionless quantity r=R for f-mode and higher p-modes (n ¼ 1–9) in
DM admixed EOSs with varying Fermi momentum. The color bar represents the order number n corresponding to different modes.
Bottom: same as the top panel but for ζ=ζ0.
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oscillates with higher frequencies. For the kDMf ¼ 0.03GeV,
0.05 GeV, the ρcrit ¼ 2.2022 × 1015 g=cm3 and 2.9177 ×
1015 g=cm3 respectively.
At lower densities, γ being constant, NS acts as a

homogeneous, nonrelativistic body. The angular frequency
of oscillation follow ω2 ∝ ρð4γ − 3Þ [63–65]. This explains
the dip in frequency initially when the star’s central density
is low enough, as shown in Fig. 4.
Another distinguished observation in Fig. 4 is that when

we increase the DM Fermi momentum, the higher modes
oscillation shows various kinks. This depicts an important
observation that the frequencies of two successive modes
from distinct families rejecting one another as they approach
each other, resulting in a sequence of “avoided crossings”
between the respective modes [21,22,25]. The eigenvalue
problem’s solution changes from a standing wave localized
mainly in the crust to one primarily localized in the core at
the “avoided crossings” point [22]. We observed that the
phenomenon of avoided crossings is present in all three
cases but is much more prominent for larger kDMf . DMmakes
the NS much more compact leading to a thinner crust, see
Fig. 4. This allows avoided crossings to happen at lower
central density.
In Fig. 5, a comparison is made between the frequency

difference of two consecutive modes, i.e., Δfn¼fnþ1−fn
and frequency fn which is calculated at 1.4M⊙. Here we
take both EOSs with and without crust-varying DM Fermi
momentum for better analysis. In the left panel of the
figure, we take EOSs without the crust, showing the smooth
trend in Δfn and consistent with [24,66]. Another obser-
vation is that for the higher values of kDMf , the magnitude
of Δfn is higher. This is because DMANS oscillates with a
higher frequency and its magnitude increases with higher

percentage of DM inside the star, as seen in Fig. 4.
However, for unified EOSs (in the right side figure), there
is uneven fluctuation in Δfn. This is due to the nuclear
pasta, which is present inside the inner crust in which the
characteristics of the adiabatic index seem to be no more
monotonic. Since the crust typically makes up less than
10% of the stellar radius and the oscillation nodes are
located deep within the NS core, the radial oscillation
lowest order mode (n ¼ 0) does not get significantly
affected by the crust, as seen in Fig. 3. But a few oscillation
nodes for higher-order modes are located in the crust.
Therefore, the crust considerably modifies the eigenfre-
quencies, and a peak is displayed by Δfn whenever a node
passes through the pasta zone [62].
The variation of f-mode frequencies with masses for 6

DM EOSs is shown in Fig. 6 by varying kDMf . This work
directs our attention to a detailed and in-depth investigation
of the relationship between radial oscillation and the
stability of NS. When we raise the kDMf , as was previously

FIG. 4. Frequencies of the radially oscillating NS as a function of central energy densities. Three panels represent different
DM momenta with kDMf ¼ 0.00, 0.03, and 0.05 GeV respectively. The color bar represents the order number n corresponding to
different modes.

FIG. 5. Left: the frequency differences between consecutive
modes for three DM EOSs without crust operating at 1.4M⊙ is
made. Right: the same analysis is done for unified EOSs.
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covered in Fig. 4, the f-mode oscillates here at higher
frequencies, which can also be seen in this figure. It is clear
that the f-mode rapidly approaches zero precisely at the
point where maximum numerical NS mass is reached
following the M − R profile shown in Fig. 2 [67].
Therefore, the outcome is in line with the stability criteria
∂M=∂ρc > 0 [64,68]. Also, the radial oscillation equations
indirectly assist us in demonstrating that increasing the DM
Fermi momentum softens the EOS.
The variation of canonical f-mode frequencies with DM

Fermi momenta is shown in Fig. 7. With increasing kDMf
up to 0.025 GeV, there is a slight variation of f-mode
frequencies. This is because the effects of DM soften the
EOSs lesser in magnitude compared to a higher Fermi
momentum of DM (see Fig. 1), which slightly decreases the
magnitude of the mass. However, the magnitude of f-mode

frequencies increases more for kDMf > 0.025 GeV. Overall,
the f-mode frequency of canonical NS increases linearly
with kDMf . Different color contours show the variation of
central densities with kDMf . The careful inspections illus-
trated that the color bands shrink with increasing kDMf .
Also, the area of ρc at lower kDMf is found to be larger as
compared to the higher kDMf and the area slightly reduces
from the lower kDMf to the higher one. This is because the
slight increase in kDMf enhances the value ρc a little bit.
When we increase kDMf by more than 0.025 GeV, the effects
of DM on central densities are significant, which decreases
the mass very profoundly. For the canonical star, the
mass is fixed, but the central densities are different for
various kDMf . Moreover, one can also see the mass variation
with kDMf for other modes, such as p1 − p19 modes.
However, their variations follow the same trends, but the
magnitudes are higher for higher nodes than the
f-mode case.

IV. SUMMARY AND CONCLUSIONS

To summarize our work, in the present article, we have
studied the impact of dark matter on the radial oscillations
of nonrotating neutron stars. Assuming fermionic DM
matter within supersymmetric models, we have adopted
the IOPB-I hadronic EOS. For fixed DM mass and
couplings to the nucleons and to the SM Higgs boson,
the only free parameter is the DM Fermi momentum, which
determines the number density of the DM particles inside
the star. First, to describe hydrostatic equilibrium, we
solved the structure equations numerically to obtain the
mass-radius relationships. Next, to study radial oscillations
of pulsating stars, we solved the Sturm–Liouville equations
for the perturbations imposing the appropriate boundary
conditions, thanks to which we were able to compute
the frequencies of the modes as well as the corresponding
wave functions. The fundamental f-mode and 19 excited
p-modes have been calculated, with and without DM,
varying the DM Fermi momentum. Our numerical results
show that the presence of DM inside NSs softens the EOS,
and consequently, the maximum mass of the stars is
lowered. What is more, adding DM increases the frequen-
cies of pulsating objects, irrespective of the presence of
the crust. Finally, the higher the DM Fermi momentum
(or, equivalently, the DM mass fraction), the higher the
frequencies of the radial oscillation modes.
We also investigated the profile of the eigenfunctions, η,

and ζ, with and without DM, and we found that they
oscillate with exactly n nodes for the nth mode for both
cases. But the presence of DM somewhat affects the
position of the nodes. Regarding η, when the DM varies
with higher momenta, the nodes for higher p-modes are
shifted toward the center, while regarding ζ, the amplitude
of higher p-modes is significantly reduced when we

FIG. 7. Variation of the canonical f-mode frequencies with DM
Fermi momenta. The color bar represents the central densities
corresponding to kDMf .

FIG. 6. f-mode frequency as a function of mass for various DM
momentum.
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increase the DM Fermi momentum, and the nodes are
relocated considerably closer to the surface. Further, large
frequency separation between consecutive modes was
studied, varying DM Fermi wave numbers with and with-
out crust, and the effects of crust were noted. Finally, the
NS stability was studied varying f-mode with mass, and the
stability criterion ∂M=∂ρc > 0 was verified.
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