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We present a relativistic disk-corona model for a steady state advective accretion disk to explain the UV
to x-ray spectral index agy evolution of four tidal disruption event (TDE) sources XMMSL2J1446,
XMMSL1J1404, XMMSL1J0740, and AT2018fyk. The viscous stress in our model depends on gas (P,)

and total (P,) pressures as 7,; PﬁP,l_” , where u is a constant. We compare various steady and time-
dependent sub-Eddington TDE accretion models along with our disk-corona model to the observed agx of
TDE sources and find that the disk-corona model agrees with the observations better than the other models.
We find that g is much smaller than unity for TDE sources XMMSL2J1446, XMMSL1J1404, and
XMMSL1J0740. We also compare the relativistic model with a nonrelativistic disk-corona model. The
relativistic accretion dynamics reduce the spectral index relative to the nonrelativistic accretion by
increasing the energy transport to the corona. We estimate the mass accretion rate for all the sources and
find that the observed luminosity follows a nearly linear relation with the mass accretion rate. The ratio of
x-ray luminosity from the disk to the corona increases with the mass accretion rate. The observed agyx
shows positive and negative correlations with luminosity. The disk-corona model explains the negative
correlation seen in the TDE sources XMMSL1J0740, XMMSL2J1446, and XMMSL1J1404. However,
TDE AT2018fyk shows a positive correlation at higher luminosity and shows a better fit when a simple
spherical adiabatic outflow model is added to the relativistic disk-corona model. Even though the disk
luminosity dominates at a higher mass accretion rate, we show that the accretion models without a corona

are unable to explain the observations, and the presence of a corona is essential.
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I. INTRODUCTION

Black holes have been observed at various scales ranging
from stellar-mass black holes to supermassive black holes at
the galactic center. The black holes accrete the surrounding
gas through viscous accretion and emit radiation in various
spectral wavelengths [1]. Tidal disruption events (TDEs)
occur when a star is disrupted by the gravitational tidal
forces of supermassive black holes when the stellar orbital
pericenter r, < r,, where the tidal radius depends on black
hole mass M. and stellar mass M, and radius R, as r, >
(M./M,)'3R, [2]. The disrupted debris forms an accretion
disk through stream-stream interactions [3,4] and is vis-
cously accreted resulting in the emission at various wave-
lengths. The mass accretion rate shows extreme variations
ranging from super-Eddington to sub-Eddington and, thus,
constitutes an ideal lab to study the accretion state tran-
sitions. The detection of long-term optical and UV emissions
(~ few years) implies that the TDE disks are relatively stable.
The late-time x-ray observations for various TDEs by Jonker
et al. [5] exhibit diverse x-ray behavior at late times. They
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hypothesized that the marked spectral differences may be
due to a late-time state change, and the x-ray bright phase is
often delayed with respect to the UV-optical peak.

The steady and time-dependent accretion models have
been proposed for TDEs at various super- and sub-
Eddington phases [6]. The sub-Eddington disk with pres-
sure dominated by gas pressure has been modeled both
analytically using self-similar formulation [7] and numeri-
cally [8]. A relativistic thin disk model with a fallback at
the outer radius was constructed by Mageshwaran and
Bhattacharyya [9], and they showed that the late-time
luminosity decline is higher than the luminosity obtained
assuming L o« be, where Mﬂ, is the mass fallback rate of
the disrupted debris. The super-Eddington disk is more
complex to study due to the presence of strong radiation
pressure that results in an outflow. These super-Eddington
disk has been modeled using a steady slim disk accretion
model with an adiabatic and spherical outflow [10], whereas
a time-dependent and self-similar model for a nonradiative
disk was developed by Shen and Matzner [11]. A time-
dependent and self-similar model with mass infall to the disk

© 2023 American Physical Society
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was constructed by Mageshwaran and Mangalam [12] for
both sub- and super-Eddington disk with outflow. These
models are used to fit the optical-UV observations.

The x-ray spectrum often shows a power-law decline
with frequency instead of a blackbody decline at higher
frequencies. The excess x-ray emission in both stellar-mass
black holes and active galactic nuclei (AGN) is explained
by including a corona surrounding the accretion disk
[13,14]. The geometry of an accretion disk depends on
the mass accretion rate normalized to the Eddington rate
given by m and the pressure in the disk. The disks with high
m are thick disks with pressure dominated by radiation,
whereas the disks with low i are thin disks with pressure
dominated by gas pressure. The observations have revealed
that the AGN show some characteristics of x-ray binaries,
and these similarities often suggests that the AGN behave
like x-ray binaries that are scaled up in size [15]. The
thermal emission peaks in UV for AGN disks, whereas it
dominates in soft x-ray for x-ray binaries. The dynamics of
accretion flow around black holes of mass at various scales
are compared using the UV to x-ray spectral index (apx)
between 2500 A and 2 keV. Wevers [16] showed the
correlation between apx and luminosity for seven TDEs
and obtained a statistically significant empirical correlation
through fit. They found on average that the sources with a
higher Eddington luminosity ratio have disk-dominated
x-ray spectra, with high agx values and a small power-law
contribution to the total x-ray flux. Sources at a lower
Eddington ratio have power-law-dominated x-ray spectra
and lower agx values.

In this paper, we propose an advective disk-corona
emission model for a relativistic disk. We use the steady
accretion model with energy loss to the corona and include
the gravitational and Doppler redshift for a relativistic
case. We use a viscosity similar to an alpha viscosity,
and it is a combination of total pressure and gas pressure.
The ratio of tidal radius (r,) to black hole horizon (rg) is
given by r,/ry o< M. 2/ 3, and, thus, the relativistic disk-
coronal model is crucial for TDEs with higher black hole
mass. The relativistic dynamics are also crucial for accre-
tion near the inner radii. We present the importance of
corona in explaining the observed spectral index apx
and will compare the disk-corona emission model with
the other TDE accretion model to the observed spectral
index for four sources XMMSL2J1446, XMMSL1J1404,
XMMSL1J0740, and AT2018fyk. We estimate the physical
parameters of the models by comparing them to the
observations and evaluate the mass accretion rate for each
observation of the sources. We have also developed a
nonrelativistic advective disk-corona model shown in the
appendixes for comparison with the relativistic model.
Here, we propose the relativistic model as the primary
model for the observational fitting, and the nonrelativistic
model is for showing the impact of relativistic dynamics on
the estimation of the parameters. Even though both

nonrelativistic and relativistic models fit the observations,
the obtained parameters show significant variations.

In Sec. II, we present the relativistic formulation of the
disk-corona accretion and their emissions. We discuss the
viscous stress, coronal structure, and disk-corona emission.
The nonrelativistic model is presented in Appendix B. We
discuss the spectral index and its formulation in Sec. I1I. We
compare the various steady and time-dependent accretion
models without corona to the observations in Sec. IV and
show the importance of the disk-corona model in explain-
ing the observations. We discuss our results in Sec. V and
present the summary in Sec. VL.

II. RELATIVISTIC DISK-CORONA MODEL

The disk-corona model we present here is based on the
standard conservation equations of a vertically integrated
and optically thick accretion disk coupled with an x-ray
corona. A fraction of the energy is transported to the corona
most probably by the magnetic fields generated in the disk.
The corona above the disk is heated via magnetic recon-
nections, and the corona energy flux at any radius r is given
by Qcor = vpPpye- The magnetic pressure is given by
Pag = B?/(87) with magnetic field B, and vp, is the drift
velocity taken proportional to the Alfvén speed v, via an
order-unity constant b [17]. The drift velocity is given by
vp = by/2P,e/p, Where p is the density. The stress tensor
is assumed to be dominated by Maxwell stresses [18] and,
thus, given by 7, = koPy,. Where kj is of the order of
unity. For simplicity, we take k; and b to be unity in our
calculations. The numerical simulations have shown that
magnetorotational instability (MRI) growth rate depends
on the ratio of radiation to gas pressure [19], and, thus, the
magnetic pressure is approximated to [17]

1—
Pmag:a()ngt o (1)

with the total pressure P, = P, + P, radiation pressure
P, = aT*/3, where a is a radiation constant, and gas
pressure P, = kppT/(p,,m,), where kp is the Boltzmann
constant, p,, is the mean molecular weight taken to be
the ionized solar mean molecular weight of 0.65, m,, is the
mass of a proton, and T is the temperature in the disk.
The energy radiated by the disk is Compton scattered in the
corona, and some fraction of the scattered photons travels
downward to the disk, where it gets absorbed and some
fraction of it is reflected without being absorbed known
as disk albedo. We assume the downward component of the
x-ray emission to be  and a disk albedo to be a,.

The energy conservation equation of the disk is given by

Q\J/r - Qadv - Qcor + ’7(1 - ad) Qcor = Qrad’ (2)

where Q4 is the radiative energy loss and Q,q4, is the
advective energy loss, which is important if the viscous
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stress is dominated by total pressure. An anisotropic
Comptonization in plane-parallel geometry provides a
typical value of n = 0.55 and a; = 0.1 [20]. In general,
the quantities # and a, are functions of the photon index of
the x-ray spectrum from the corona and depend on a
detailed radiative transfer, but we here assume them to be
constant free parameters.

We use the relativistic accretion disk equations in the
Kerr metric given in Appendix A. The space-time metric is
in the geometrical units (¢ = G = 1) with the signature
(—++-+). The vertically integrated disk equations are
reduced to a steady solution by taking the time derivative
to be zero. The mass conservation equation given by
Eq. (A13) results in

M = 27riu’ = 273 A2, (3)

1%
V1-V?
Assuming a circular motion of the matter in the accretion
disk with azimuthal velocity given by

M2 (2 = 2aM'?r'/? 4 a?)

L= PR Z3MP 2 1 2aM'?)12

4)

and solving the angular momentum conservation equation
given by Eq. (A19), we have

.M
rS(/) :Z(E_Lin)v (5)

where L;, is the angular momentum at the inner radius and
we assume that the viscous stress is zero at the inner radius.
The S is given by

_ A1/2A3/2}/3 Q
S = —r L 6
¢ v pc or ( )
where Q = 2Mar/A + r3AY2L/(y, A3?). For L given by
Eq. (4), the Q reduces to Keplerian velocity Qx given by

M1/2

Qp =———7——.
K P2 1 aM'?

(7)

The tetrad component of shear stress S% is identical to
the viscous stress —7,, [21] and, thus, the vertically inte-

grated viscous stress 7,4 = r*/(y,A/2Al/2)S7. Following
viscous stress 7,, discussed in Appendix B and Eq. (5),
we have

PoPP M [f(x)) £-Li
N 22rn x  y AVZAV2

where x = r/r,with r, = GM./ c?. We considered the disk
height obtained by using Eq. (4) in Eq. (A25) and given by

H =\/r*/GM.c,/\/f(x, )), with f(x,j) given by [9]

koo

(8)

4j 352 321!
f(x,j>:{1—x3—fz+x—]2H “ﬂ#} ()

The viscous heating is given by

viA? (0Q\?2
0, = vz ( ) (10)

o \ar

In the steady state accretion, the advection energy flux is
given by (following Ref. [22])

Mc? (4 -3B,
OQuty = > -
2zr- \ I3 =1

roT radp
——— 4+ (3=-1)—— 11
Tar+( 3 )par}’ (11)

where 3, = P,/P, is the ratio of gas to total pressure,

(=301
Byt 1200~ P)(—1)°

;-1 (12)

and y is the ratio of specific heats for constant pressure
to constant volume [23]. The radiative flux is given by
Qra = 40T*/(37), where T is the disk midplane temper-
ature and the opacity 7 = 7., + 7, = (ks + k)2 is the sum
of Thomson opacity due to electron scattering and
Kramers’ opacity due to absorption. The Thomson opacity
is given by k., = 0.34 cm? g~!, and the Kramers’ opacity is
given by «, = kopT~ 7> cm*g~!, where x, =2 x 10**
assuming p and T are in centimeter-gram-second units
[24]. Thus, the energy conservation equation given by
Eq. (2) is
.

MCSZ4 34, —1£+(F3—1)£a—p

2rnr- I3 — 1 T or

= Qv - Qcor + ’7(1 - ad)Qcor - Qrad’ (13)

p or

where the energy flux transported to the corona is
Qcor = vpPpye. We obtain the solution of density and
temperature by solving Egs. (8) and (13) with density and
temperature zero at the inner radius taken to be the
innermost stable circular orbit (ISCO). The -effective
temperature of the disk T = (Qraa/0)"/* and, thus, the
luminosity in various spectral bands following a blackbody
emission. The flux density of the disk radiation, as seen by
a distant observer at rest, is given by

Fu(l/obs) = /II/(l/obs)d@v (14)

where dO is the differential element of solid angle sub-
tended at the observer’s sky by the disk element and
I,(vgps) is the intensity at the observer’s wavelength. We
approximate the differential element in the Newtonian limit
given by
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de = dDLZtcos O (15)
L

where D; is the luminosity distance of the source to the
observer, dA is the area element of the disk, and 6, is
the viewing angle of the observer to the disk. The area
of disk in the {r,¢} plane is given by dA=
A/Adrd¢ [9]. The gravitational redshift effect is
included by using the Lorentz invariant I,/v° [25],
such that 1,(Uoys) = ¢°1,(Vem ), Where vy, is the emitted
frequency and ¢ is the redshift factor. By taking in
account the gravitational and kinematic redshift effects,
the redshift factor ¢ is given by [8]

3 2]' 1/2 ] -1
=|l--+—=5 1+—=5| . 16
9 [ X xs/z} o2 (16)
Thus, observed flux from the disk is given by

0
F (vp) = S5 Jots / Pl (”‘;“)dA. (17)

Di

In the curved space-time, the optical depth for the
photons passing through the corona is calculated using
the ray-tracing method. We here relax the detailed ray
tracing of the photons and consider a simplified corona
emission by assuming the flux to be (1 — #)Q.,,, where 1 is
the downward component. The x-ray flux from the corona

is calculated as Fy ., = %9{“ J g*(1 =1)QcordA. We then

assume a power-law x-ray spectrum (similar to the non-
relativistic model) and calculate the flux in a given
frequency v as

14
Fy.cor = FX.cor(2 - F) 2-T _ 2T (18)
I/f 14

In the next section, we use the emission in UV and x-ray
bands from the disk and corona to calculate the spec-
tral index.

III. SPECTRAL INDEX «agx
The UV to x-ray spectral index is given by

IOgIO(ALZSOO A) —log(AL; ev)
10g10(’/2500 A) —logo(¥2 kev)

. (19)

aox =1 -

where AL,s,0 4 and AL,y are the luminosities at
2500 A and 2 keV, respectively. The correlation between
the spectral index and bolometric luminosity (L)
normalized to Eddington luminosity (Lz) (also called
the bolometric Eddington ratio) has been studied earlier
for x-ray binaries and AGN. In AGN, the thermal
emission from the disk peaks in the UV, while the

Comptonized emission dominates the x rays, whereas,
in x-ray binaries, the thermal emission peaks in soft
x rays, while the Comptonized coronal emission domi-
nates the hard x rays. Thus, in x-ray binaries, the
correlation study needs a wavelength higher than
2500 A and 2 keV for thermal and hard component
emissions. In a thin disk, the effective temperature
scales as T o<M._1/4n'z'/4(r/rg)‘3/4, and, with an
increase in black hole mass, the disk effective temper-
ature decreases and the thermal emission peaks in UV.
Sobolewska, Siemiginowska, and [26] modeled the
observed x-ray spectral evolution of the x-ray binary
during an outburst and then scaled the evolving x-ray
spectra up to AGN. The spectral index versus Eddington
luminosity ratio correlation changes its sign for m < 1%.
The correlations are either positive or negative depend-
ing on the state of the accretion flow. Ruan et al. [15]
studied the correlation for a large sample of luminous
broad-line AGN with different luminosities and found
that the spectral behavior of AGN and x-ray binaries
(scaled up to AGN) are similar with a positive corre-
lation for high bolometric Eddington ratio and negative
correlation for low bolometric Eddington ratio. The
transition in correlation occurs around Ly, /Ly~ 1072,

The spectral index for TDEs also shows similar
positive and negative correlations, and the transition
occurs around Ly, /Ly ~ 1072 [16]. They approximated
the bolometric luminosity as a sum of x-ray luminosity
(0.01-10 keV) and the UV Iuminosity. The x-ray
spectrum of the source with a high Eddington ratio
is dominated by thermal emission from the disk,
whereas the x-ray spectrum of the source with a low
Eddington ratio is dominated by nonthermal power-law
emission. Such similar results for AGN and x-ray
binaries have been shown by Ruan et al. [15]. The
timescale of TDE evolutions is very much smaller than
the timescale of AGN, and, thus, TDEs are ideal to
study the accretion state transitions around supermas-
sive black holes.

Here, we consider the three TDEs XMMSL1J0740
[27], XMMSL2J1446 [28], and XMMSL1J1404 [16],
which show negative correlations, implying the x-ray
spectrum is dominated by power-law and suggest the
Comptonization of the radiation from the disk by the
corona. These sources are ideal to test the disk-corona
model. Following Wevers [16], we assume the bolo-
metric luminosity as a sum of x-ray luminosity
(0.01-10 keV) and UV Iluminosity (1000—-4000 A).
We consider the x-ray luminosity from both the disk
and corona whereas the UV luminosity from the disk
only. We take the black hole mass and the spectral index
from the literature, and these are given in Table I.
We compare the disk-corona model to the observed agx
versus luminosity curve to estimate the parameters of
the disk and corona.
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TABLE 1. We summarize the parameters for the considered
TDE sources given in Wevers [16]. We take the mean value in our
calculations.

Sources Photon index (I") M. [log,o(My)] D; (Mpc)
XMMSL1J0740 1.95+0.29 7.05 +£0.43 75
XMMSL2J1446 2.58 7.79 £ 0.55 127
XMMSL1J1404 2.7 +£0.33 6.71 £0.40 190

IV. MODEL COMPARISON

In this section, we compare the various steady and
time-dependent sub-Eddington accretion models to the
observed spectral index for the three sources given in
Table I. We first utilize the accretion models without
a corona given in the literature and show their inad-
equacy to explain the observations. The models con-
sidered here are the standard steady accretion model
with alpha viscosity, steady slim disk model with
advection, time-dependent self-similar model without
fallback, and time-dependent self-similar model with
fallback.

We normalize the black hole mass as M.z =
M./[10°M ] and the stellar mass as m = M, /My with
the stellar radius given by R, = Rym®® [29]. We assume
that the tidal radius lies above the ISCO radius such that a
stable circular accretion disk can be formed, and this
requires a condition given by Z(j) < r,/r, and, thus, a
minimum spin value given by j,, = j,.(M.¢, m), which is
shown in Fig. 1. We consider the prograde spin only and,
thus, the minimum value of j,, = 0. The black hole mass is

0.8f i
M.
0.6l 1 01 .79 ]
1 00.71
g

=047 101.05 ]
0.2F i
0.0t : ) : ) .

2 4 6 8 10

m

FIG. 1. The critical black hole spin j,, required for the tidal

radius to be greater than the ISCO radius such that a stable
circular accretion disk can be formed. The j,, is calculated for the
source given in Table I as a function of stellar mass m = M, /M.
The disrupted debris forms a circular accretion disk with an inner
radius at ISCO for j > j,.. The red and green lines have j,, = 0.
We assume prograde spin only as the stellar orbit is corotating
with the black hole and the minimum value of j, = 0. See
Sec. IV for details.

taken from Table I, and the stellar mass and black hole spin
are taken in the range of m € {0.8, 10} and j € {j,,,0.9},
respectively.

We begin with the steady accretion model for TDEs.
The standard steady accretion model was constructed for
an alpha viscosity dominated by gas pressure with zero
torque at the inner boundary [30]. The inner radius of
the disk is taken to be the ISCO given by Eq. (A27),
and the outer radius is taken to be r,, = qr,. Generally,
the angular momentum conservation of the infalling
debris results in ¢ =2 [31], but here we consider it to
be an unknown free parameter. We calculate the x-ray
and UV luminosities following blackbody emissions.
The mass accretion rate, which is a constant para-
meter here, is taken in the range M e {107, 1}Mp,
where M g 1s the Eddington mass accretion rate calcu-
lated for a radiative efficiency of 0.1 and the parameter
q € {2,10}. The apx versus luminosity is shown in
Fig. 2. Over the significant range of stellar mass, black
hole spin, and ¢ considered, the apx is higher than the
observed values for all the sources.

Next, we consider the steady slim disk model of
Strubbe and Quataert [10] that includes the advection
and alpha viscosity with radiation pressure. They
obtained the temperature profile of the disk, and the
luminosities are calculated assuming blackbody emis-
sions. This model is important for the accretion close to
the Eddington limit where the pressure is dominated by
radiation pressure. Here also, we take the inner radius of
the disk to be ISCO and the outer radius to be
rout = q7;- The mass accretion rate which is a constant
parameter here is taken in the range M € {1070, 1} M,
and the parameter ¢ € {2,10}. The obtained values of
the spectral index as shown in Fig. 3 are higher than the
observed values for the wide ranges of the parameters.
This implies that the slim disk model is also inadequate
to explain the observations.

The sub-Eddington steady accretion models are
unable to explain the observed spectral index. We
now look for the time-dependent accretion models in
the sub-Eddington phase with and without a fallback.
The alpha viscous stress when the pressure is dominated
by gas pressure is given by II,, o Z3/3r71/2 [30]. With
power-law viscous stress, Cannizzo, Lee, and Goodman
[7] constructed a self-similar solution for a disk with a
total angular momentum constant and without fallback,
where the disk outer radius increases with time as
Fou & /8, where t is the time parameter. We use their
self-similar solution, assume that the total mass of the
initial disk is M, /2, and calculate the initial outer radius
by assuming that the total angular momentum of the
disk is equal to the total angular momentum of the
bound disrupted debris given by /2GM.r,M, /2. Thus,
the unknown parameters for this model are m and j. We
calculate the spectral index and the luminosities by
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500¢
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“,

Logyo[(Luv+Lx)/LE]
(a) XMMSL2J1446

100¢
50¢

Logyol(Luv+Lx)/LE]
(b) XMMSL1J1404

Logyol(Luv+Lx)/LE]
(¢) XMMSL1J0740

FIG. 2. The spectral index apyx and the luminosities are
calculated for the standard accretion model of Shakura and
Sunyaev [30]. In (a), the black hole mass is M,q = 107
and the blue solid line corresponds to m =1, j = j, = 0.78,
and ¢ = 2. In (b), the black hole mass is M, ¢ = 10%”! and the
blue solid line corresponds tom =1, j = j,, =0,and ¢ = 2. In
(c), the black hole mass is M. = 10'% and the blue solid line
corresponds to m =1, j = j,, =0, and g = 2. The blue solid,
dotted, and dashed lines correspond to m =1, 5, and 10,
respectively, calculated for their corresponding j,, = 0.78, 0,
and 0, whereas the red and orange lines correspond to j = 0.5 and
0.9, respectively. The green solid and dashed lines correspond to
q = 5 and 10, respectively, keeping other parameters the same as
for the blue dashed line. The black points are the observed data
taken from Wevers [16]. See Sec. IV for details.

100t
50¢
S
SEEET)]S
5,
.~ .
1k -,
0.5% : : : : :
-4 -3 -2 -1 0
Logiol(Luv+Lx)/LE]
(a) XMMSL2J1446
100k
50¢
x
3 10:
5,
1 L
0.5t ‘ ‘
-5 -4 -3 -2 -1 0
Logiol(Luv+Lx)/LE]
(b) XMMSL1J1404
100k
50¢
S
3 10:
5,
¥ o
1,
0.5t : : : ‘ s
-5 -4 -3 -2 -1 0
Logiol(Luv+Lx)/LE]
(¢) XMMSL1J0740
FIG. 3. The spectral index aox and the luminosities are

calculated for the steady slim accretion model of Strubbe and
Quataert [10]. In (a), the black hole mass is M, ¢ = 107 and the
blue solid line correspondstom =1, j = j,, = 0.78, and g = 2.
In (b), the black hole mass is M, s = 10°7! and the blue solid line
corresponds to m =1, j = j,, =0, and ¢ = 2. In (c), the black
hole mass is M, s = 109 and the blue solid line corresponds to
m=1, j=j, =0, and g =2. The blue solid, dotted, and
dashed lines correspond to m =1, 5, and 10, respectively,
calculated for their corresponding j,, = 0.78, 0, and 0, whereas
the red and orange lines correspond to j= 0.5 and 0.9,
respectively. The green solid and dashed lines correspond to
q = 5 and 10, respectively, keeping other parameters the same as
for the blue dashed line. The black points are the observed data
taken from Wevers [16]. See Sec. IV for details.
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FIG. 4. Left: The spectral index apyx and the luminosities are calculated for the time-dependent self-similar accretion model of
Cannizzo, Lee, and Goodman [7]. In (a), the black hole mass is M, = 107 and the blue solid line corresponds to m = 1 and
j = jm = 0.78. In (b), the black hole mass is M, = 107! and the blue solid line corresponds to m = 1 and j = j,, = 0. In (c), the
black hole mass is M, s = 109 and the blue solid line corresponds to m = 1 and j = j,, = 0. The blue solid, dotted, and dashed lines
correspond to m = 1, 5, and 10, respectively, calculated for their corresponding j,, = 0.78, 0, and 0, whereas the red and orange lines
correspond to j = 0.5 and 0.9, respectively. Some lines are missing in (a) because the 2 keV x-ray luminosity is too small that the
spectral index is very high. The black points are the observed data taken from Wevers [16]. Right: the maximum value of Eddington
luminosity ratio (Lyy + Ly)/Lg from the model as a function of black hole spin and stellar mass for all three sources. See Sec. IV for
details.
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FIG. 5. Left: The spectral index apx and the luminosities are calculated for the time-dependent self-similar accretion model with
fallback of Mageshwaran and Mangalam [12]. In (a), the black hole mass is M, s = 10" and the blue solid line that corresponds to
m=1,j=j, =0.78,and ¢ = 2 has very large values of agx due to highly small x-ray luminosity and, thus, not visible here. In (b), the
black hole mass is M, s = 10°7! and the blue solid line corresponds to m = 1, j = j,, = 0, and ¢ = 2. In (c), the black hole mass is
M., = 10"% and the blue solid line corresponds to m = 1, j = j,, = 0, and g = 2. The blue solid, dotted, and dashed lines correspond
tom = 1, 5, and 10, respectively, calculated for their corresponding j,, = 0.78, 0, and 0, whereas the red and orange lines correspond to
Jj = 0.5 and 0.9, respectively. The green solid and dashed lines correspond to ¢ = 5 and 10, respectively, keeping other parameters the
same as for the blue dashed line. Some lines are very close by like blue, red, and orange lines in (b). The black points are the observed
data taken from Wevers [16]. Right: the maximum value of Eddington luminosity ratio (Lyy + Ly)/Ly from the model as a function of
black hole spin and stellar mass for all three sources. See Sec. IV for details.
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varying the time ¢ over a long duration during which
both surface density and outer radius evolve. Figure 4
shows that the spectral index is higher and the lumi-
nosities are smaller than the observed values. The
maximum value of luminosity ratio (Lyy + Ly)/Lg
from the model is less than the observed value, and,
thus, the spectral index curve does not cover the entire
observed range for all the parameters.

We next consider the time-dependent accretion model
with fallback constructed for a sub-Eddington disk with
an alpha viscosity. Mageshwaran and Mangalam [12]
developed a power-law self-similar solution for the same
viscous stress used by Cannizzo, Lee, and Goodman [7].
They assumed that the infalling debris forms an initial
seed disk in an initial time (calculated self-consistently
in the formulation) whose mass is equal to the debris
mass that has infall by that time. The disk then evolves
in the effect of viscous accretion onto the black hole and
the later debris infalls. Then, by considering that the rate
of disk mass change (Md, where M, is disk mass) is
equal to the mass fallback rate (be) minus the mass
accretion rate (Ma), they estimated the evolution of the
outer radius. The initial outer radius of the disk is taken
to be ro, = qrin, Where ¢ is a free parameter and inner
radius r;, is taken to be an ISCO radius. To calculate the
mass fallback rate, we consider the stellar orbit before
disruption to be parabolic, and the specific energy of the
disrupted debris is governed by the variation of the
black hole potential across the star and the tidal spin up
of the star as a result of the tidal interaction (Ref. [9],
model MFR1). The disrupted debris is assumed to return

1x10%3}
5x10%f

T 1x10%2%
o)) 41
é 5x10
_>,>
1x10% ¢
5x1040}

1x10%

14.0 15.5 16.5

Log o[V (Hz)]

14.5 15.0

17.0

to the pericenter following a Keplerian orbit, and the
mass fallback rate is calculated following the semi-
analytic formulation given in Lodato, King, and Pringle
[32]. Then, the luminosities are calculated assuming a
blackbody emission. With the given black hole mass,
the unknown parameters here are m, j, and g, whose
ranges are the same as those considered for other
models. We calculate the spectral index and the lumi-
nosities by varying the time ¢ over a long duration
during which both surface density and outer radius
evolve. Figure 5 shows that there is a discrepancy
between the observed values and the model values
considered over a significant range of m, j, and gq.
The maximum value of luminosity ratio (Lyy + Lx)/Lg
from the model is less than the observed value, and,
thus, the spectral index curve does not cover the entire
observed luminosity range for all the parameters.

We have seen that the steady and time-dependent
accretion models are insufficient to match the observed
apx- In Sec. II, we have modeled a relativistic disk-
corona model, and a nonrelativistic formulation is
shown in Appendix B. Since the disk-corona models
are steady structured, we compare models with the
standard steady accretion model of Shakura and
Sunyaev [30] and the steady advective slim disk model
of Strubbe and Quataert [10] for two mass accretion
rates (see Fig. 6). The time-dependent accretion models
have varying mass accretion rates in time and radius and
are not compared with the steady accretion models.
However, we have shown that they are unable to explain
the observed spectral index. The relativistic disk-corona

104 L

1043,

erg s')

< 10%¢

vL

1041 L

Logolv (H2)]

FIG. 6. We compare the steady relativistic (purple lines) and nonrelativistic (orange lines) disk-corona models with the standard steady
accretion model (blue lines) of Ref. [30] and the steady advective slim disk model (red lines) of Strubbe and Quataert [10] for
XMMSL1J1404. The x-ray luminosity from the corona is taken in the range 0.01-10 keV and induces a sudden change in spectral
luminosity. The dashed lines represent the disk blackbody emissions for the disk-corona models. The black hole mass M, = 107" M,
Jj=0,M, = Mg, disk inner radius r;,, = rigco, and outer radius r,, = 2r,. For the disk-corona cases, oy = 0.5, = 0.5, and a;, = 0.5.
The blue and red lines overlap for M =0.01M £» as the slim disk model is equivalent to thin disk for low mass accretion rates due to
insignificant advection energy flux. See Sec. IV for details.
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FIG. 7. The figure shows the relativistic model fit to the

observations of the considered TDE sources. The obtained values
are shown in Table II for the relativistic model.

model shows a higher spectral luminosity compared to
the nonrelativistic models. The relativistic effects domi-
nate near ISCO where the effective temperature peaks
and shows a significant impact on the spectral lumi-
nosity. The energy transfer to the corona reduces the
radiative energy flux, causing a decrease in disk lumi-
nosity as can be seen from the blue, red, and orange
lines corresponding to the nonrelativistic models. The
x-ray luminosity from the corona is taken in the range
of 0.01-10 keV. The total luminosity shown by solid
lines shows an increment in the luminosity due to
emission from the corona. The luminosity from the
disk is lower than that from the corona in x-ray bands.
The emission from the corona increases the 2 keV x-ray
luminosity, resulting in a reduction in the spectral index.
The increment in the luminosity due to the corona is not
smooth, and that is because we have neglected the
details of the physical cooling mechanism in the corona
and approximated the coronal emission by a simple
power-law x-ray emission. The energy transferred to the
corona heats the medium, and the corona cools via
bremsstrahlung, synchrotron, and Compton processes.
The detailed modeling of the accretion disk corona with
these processes will be done in the future.

We now fit the relativistic disk model with a corona
discussed in Sec. II. With the given black hole mass and

photon index, we have seven unknown parameters given by
o, 1> 1, Ag, M, j, and g = ry,/r,. We fit the models to the
data using the y* minimization given by [33]

i=

(aé)X,M(M ) — aé)x,o)2
=) 2
i=1 OX.i
i M) — [i 2
n (Lovxml 6)2 UV+X,O) ’ (20)
Li

where N is the number of data points, lyy,x =
logo[(Lx + Lyy)/Lg], the subscripts M and O signify
the model and the observed values, respectively, and
oox,; and o ; are the observational errors. The observa-
tional errors for a single data point for each source
are given in Wevers [16], and we assume each data
point for a given source to have the same error. The
{o0x, 01 }1s{0.122,0.503} (XMMSL1J0740), {0.09,0.69}
(XMMSL2J1446), and {0.115,0.472} (XMMSL1J1404).
Since the agx and the luminosity /vy, x are functions of
M, we perform y? minimization for individual points by
varying the mass accretion rate in the range given by
M € {1075, 10*} My, where My is the mass Eddington
rate calculated for efficiency 0.1. Then we sum the y°
from individual points to get the total y2. This process is
followed until we get the minimum of total y>. We use the
numerical optimization package of Wolfram Mathematica
[34] to find the solutions.

Figure 7 shows the relativistic model fit to the obser-
vations for the three TDE sources and the obtained
parameters are given in Table II. The relative like-
lihood distributions (likelihood normalized to the like-
lihood for the y? given in Table II) for XMMSL2J1446,
XMMSL1J1404, and XMMSL1J0740 are shown in
Figs. 8-10, respectively. The obtained parameters are
within 90% of the relative likelihood and suggest that
they are good estimates. However, the relative likelihood
is not well constrained along the downward component
n and disk albedo ay, resulting in significant error
estimations. The obtained value of u is well constrained
and is small for all the cases, which implies that the
viscous stress is dominated by the total pressure. We use
the obtained mean solution to estimate the luminosity
and mass accretion rate.

TABLEII. The parameter values obtained by minimizing Eq. (20) using the relativistic disk-corona model (see Sec. II) along with the
reduced chi square for the considered TDE sources.

Sources log(ag) u log(n) log(ay) log[M, /M) j log(q) Ve
XMMSL1J0740 —0.365 £0.254 (7.96 +2.25) x 107® —0.0241+091 -0.568 +1.2  —0.0705 £ 0.72 0.47 £0.58 0.30+£0.04 0.78
XMMSL2J1446 —0.301 +0.079 1043614199 -0.485+0.571 —-0.05+0.358  0.52 +0.407 0.214 £ 0.406 0.301 £0.382 1.23
XMMSL1J1404 -0.317 +0.106 0.203 £ 0.06 -2 40.60 —0.031 £0.81 —0.041 £0.15 (2.74+0.418) x 107+ 0.361 £0.427 1.67
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Sec. IV for details.
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obtained parameter values which are shown by solid black lines. The bar legend above individual plots shows the relative likelihood. See
Sec. IV for details.
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V. DISCUSSION

The disruption of stars by black hole gravitational tidal
force and their accretion onto the black holes is a promising
phenomenon to study the accretion dynamics through the
sub- and super-Eddington phases around supermassive
black holes on a timescale of a few years. The circulari-
zation process of the disrupted debris to form an accretion
disk is complex and still unclear, as the numerical simu-
lation studies have been limited to a few parameter ranges
of black hole mass and spin and stellar mass [35,36]. A
global study on the circularization dynamics has yet to be
done. However, the performed simulations have shown that
the debris could form an accretion disk and the nature of the
formed disk depends on the stream-stream interactions
resulting in angular momentum exchange, viscous dynam-
ics within the debris, the thermal radiative efficiency of the
debris, and on the pericenter and the eccentricity of the
initial stellar orbit [4]. We assume that the debris forms an
accretion disk with an inner radius at ISCO.

When the tidal radius lies above the ISCO, the stream-
stream interactions result in an exchange of angular
momentum, and the matter moves inward to form a circular
disk with an inner radius of ISCO. However, when the tidal
radius lies within ISCO, the infalling debris may form an
accretion disk with ISCO inner radius but some fraction of
the infalling debris will be plunged to the black hole due to
angular momentum exchange via stream interactions. The
structure of such a disk and the dynamics of circularization
is uncertain and needs detailed relativistic stream modeling.
Because of uncertainty in the disk formation, here, we
consider only those cases where the tidal radius lies outside
ISCO. This results in a constraint on black hole spin j given
by j > j,., where j,, is shown in Fig. 1.

We have considered the various steady and time-
dependent sub-Eddington models in Sec. IV. The modeled
apx 1s significantly higher than the observed values and
implies that the x-ray luminosity is much smaller than the
UV luminosity. If we compare the steady standard accre-
tion model (Fig. 2) and the steady slim disk model (Fig. 3),
the apx obtained from the steady slim disk model is higher
than that of the standard accretion model. This is because
the slim disk model includes the advection which decreases
the effective temperature, and, thus, the x-ray luminosity
will be smaller than that of the standard accretion model.
The bolometric luminosity of a time-dependent disk
without fallback is L, « ~'2, whereas, for a disk with
fallback, it is L, o t~'4?>. However, the total luminosity
(x-ray + UV) is smaller for a time-dependent accretion
model without fallback (Fig. 4) than with fallback (Fig. 5).

We have developed a relativistic steady advective accre-
tion model with a corona for a viscous stress that is a
function of both gas (P,) and total pressure (P,) and given

by 7,4 PP} The small value of obtained u implies
that the viscous stress is dominated by the total pressure.

25 ]

2.0F 1

-4 -3 -2 1 0
Log ol (Luv + Lx) / Le]

FIG. 11. The evolution of spectral index agy with luminosity
for the relativistic model for the source XMMSL1J0740. The
blue, red, orange, purple, magenta, and black lines correspond to
1 =0,0.2,04,0.6,0.8, and 1, respectively. The other parameters
are obtained from Table II. See Sec. V for details.

When the viscous stress is dominated by total pressure
(small u), the spectral index decreases with an increase in
luminosity as can be seen from Fig. 11. The spectral index
apx increases with an increase in . The increase in agyx
implies that the x-ray luminosity from the corona decreases
compared to the UV luminosity from the disk. With a
decrease in the mass accretion rate, the disk temperature
decreases and, thus, the disk luminosity. For the lower mass
accretion rate, the disk and the total pressure are dominated
by the gas pressure, and, thus, the viscous stress is a
function of gas pressure and nearly independent of u. Thus,
the spectral index shows a weak variation with u at lower
luminosity. With an increase in the radiation pressure, the
total pressure deviates from gas pressure, and the effect of y
emerges.

In Fig. 12, we can see that, for an increase in y, the total
x-ray luminosity from the corona decreases compared to
the bolometric luminosity of the disk with mass accretion
rate. The MRI growth rate depends on the ratio of radiation
to gas pressure, and, with an increase in y, the contribution
of gas pressure increases compared to the radiation pressure
which reduces the MRI and, thus, the magnetic stress [19].
This signifies that the gas pressure acts as a counterpoise to
the MRI and assists the disk for stability.

We have constructed the disk-corona plots by considering
the mass accretion rate in the range M € {10~*, 10} M ;. We
estimated a set of parameters for which the models fit the
observations. However, the mass accretion rate correspond-
ing to individual observed points is unknown. With the
obtained set of parameters, we calculate the mass accretion
rate for individual points of the sources. Since the spectral
index and luminosity are a function of M, we perform a
minimization of the total variance which is the sum of
variance calculated for the spectral index and luminosity for
each point. The y? at each point is given by Eq. (20). We
minimize the y? for each point to calculate M by taking the
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FIG. 12. The ratio of total x-ray luminosity from the corona to
the bolometric disk luminosity for the relativistic model. The
blue, red, orange, purple, magenta, and black lines correspond to
u=0,0.2,04,0.6,0.8, and 1, respectively. The other parameters
in the models have values given in Table II. See Sec. V for details.

other parameter values given in Table II. The obtained
mass accretion rate for the observed luminosity for
three sources is shown in Fig. 13. The mass accretion rate
obtained from the relativistic model (Fig. 13) is higher
than the accretion rate obtained from the nonrelativistic
model (Fig. 18). The mass accretion rate for the source
XMMSL1J1404 is close to the Eddington rate. We then fit

[ — XMMSL1J0740

|
I
~

— XMMSL2J1446

I
o
©

°

1

L XMMSL1J1404 .

Log,o[ M / Mg ]
1
~

-1.9}F .
-2.4f ]
-35 -3.0 25 20 15 S0 -05
Log ol Luvax / LE]
FIG. 13. The estimated mass accretion rate corresponding to

the individual observed luminosity points for the relativistic
models by minimizing Eq. (20) at individual points for the para-
meters given in Table II. The solid lines are the linear model fit
given by log,o[M/Mg] = ¢ + ulog;o[(Ly + Lyy)/Lg]. The ob-
tained values are {c|, u} = {0.242,0.944} (blue), {1.478,1.23}
(red), and {0.102,0.948} (orange). See Sec. V for details.

the obtained mass accretion rate to the observed luminosity
by a power-law relation, and we found that (Ly + Lyy)/
Ly < M", where u; = 1/u = 0.813, 1.054, and 1.058 for
XMMSL2J1446, XMMSL1J1404, and XMMSL1J0740,
respectively. Thus, the luminosity Ly + Ly nearly follows
the mass accretion rate similar to the bolometric luminosity
from the disk where L, Mc2.

The ratio of x-ray luminosity from the disk to x-ray
luminosity from the corona given by Ly gis /Ly corona 35 @
function of obtained M is shown in Fig. 14. The ratio
increases with an increase in M , which implies that the disk
contribution increases, implying a soft x-ray spectrum for a
high mass accretion rate. The ratio exceeds unity for

10 T — XMMSL1J0740 |

5f — XMMSL2J1446 |
= — XMMSL1J1404 1
$o2f ]
~
\Ju‘) 1F /
05

021 /
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FIG. 14. The ratio of x-ray luminosity from the disk (Ly gisx) to
corona (Ly ) as a function of the obtained mass accretion rate
(see Fig. 13) for the relativistic model. With an increase in M , the
x-ray luminosity from the disk increases and even dominates at a
higher accretion rate. See Sec. V for details.
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XMMSL1J1404 and XMMSL1J0740 at higher M. The
ratio is higher for the relativistic model (Fig. 14) compared
to the nonrelativistic model (Fig. 18) because of the
relativistic effects that increase the spectral luminosity as
can be seen from Fig. 6. Even though Ly 4« dominates at a
higher mass accretion rate, we have shown that the
accretion models without a corona are unable to explain
the observations and the presence of a corona is essential.

The obtained u for the sources XMMSL2J1446,
XMMSL1J1404, and XMMSL1J0740 implies that the
viscous stress is dominated by total pressure. The gas
pressure dominates for highly sub-Eddington accretion,
and the radiation pressure dominates for accretion close to
the Eddington rate. For accretion close to Eddington, the
total pressure is dominated by radiation pressure, which
results in the viscous stress that is dominated by radiation
pressure. If there is no advection (Q,q, = 0) such that
viscous heating flux is equal to the radiative flux, the disks
with radiation pressure result in a Lightman-Eardley
instability [37], where viscous stress 7, o >~!. Thus,
the Lightman-Eardley instability is for a disk with radiation
pressure and no advection energy loss. However, we have
included the advection energy loss in the models to have a
consistent evolution through Eddington to sub-Eddington
phases. The TDE disk evolves with time, and, thus, the
mass accretion rate changes as can be seen from Fig. 13. As
the mass accretion rate decreases, the total pressure tends to
gas pressure, and the disk is thermally stable. A detailed
analysis of thermal instability in an advective disk will
require a time-dependent simulation.

In the relativistic model presented in Sec. II, we have
approximated the differential element of solid angle d®
subtended on the observer’s sky by the disk element in the
Newtonian limit [see Eq. (15)] and considered the disk to
be face on to the observer such that 6, = 0°. We have
included the relativistic area element of the disk and the
gravitational and Doppler redshift to calculate the emis-
sions. We have relaxed the details of scattering in the
corona which includes the synchrotron and bremsstrahlung
emissivities that depend on the electron distribution in the
corona and approximated the emission using a downward
component #. You, Cao, and Yuan [38] showed using
relativistic radiative transfer, a plane-parallel corona with
nonthermal emissivities, and ray tracing that the spectra of
the disk-corona systems vary with inclination angle 6,
but the x-ray to bolometric luminosity is insensitive to 6.
The ratio of x-ray luminosity to bolometric luminosity
declines with mass accretion rate by an order of 10-100
over a mass accretion rate range of {1072-1}My. Our
relativistic model applied to TDEs shows a similar result as
can be seen from Fig. 12.

The evolution of agx and its positive and negative
correlations with luminosity are useful to study the accre-
tion state change in the disk-corona system. We have
developed steady disk-corona models and applied them

to TDEs with an x-ray spectrum dominated by a power law.
TDE sources XMMSL2J1446, XMMSL1J1404, and
XMMSL1J0740 show a negative correlation between the
spectral index and the luminosity as can be seen from
Fig. 7. Now, we consider a TDE source AT2018fyk which
shows a positive correlation between the spectral index and
the luminosity.

A. AT2018fyk

The transient AT2018fyk was discovered on 2018
September 8 by the All-Sky Automated Survey for
Supernovae in the galaxy at a redshift of 0.059. Wevers
et al. [39] performed an analysis of both archival and new
optical, UV, and x-ray observations of the source taken up
to 2 yr after the initial discovery. The spectral index shows a
positive correlation with the bolometric luminosity. The
black hole mass estimated using the M. — ¢ relation results
in log;g[M.] =7.7+0.4M, and using the break fre-
quency-black hole mass scaling relation for AGN [40]
results in logo[M.] = (6.9-7.2) £ 0.55M 5. We use the
upper limit of mean value given by log,o[M.] = 7.2M,
which is close to the lower limit of black hole mass from the
M. — o relation. The power index at late time obtained by
Wevers et al. [39]is T"'=2.1 £0.1.

We apply the relativistic disk-corona model to the
observation, and it does not provide a good fit as can be
seen from the orange points in Fig. 15. To explain the
observed spectral index, we introduce an outflowing
wind to the relativistic disk-corona model presented in
Sec. II. The relativistic disk-corona model remains true
except the mass accretion rate M= (1- fom)ML., where
M . 1s the total mass loss rate such that the mass outflow
rate is Moul = fomMC. The disk and corona solution is
obtained using the equations given in Sec. II with
M = (1 = fou)M,. To estimate the outflow structure, we
assume the outflow to be spherical and adiabatic with
Thomson opacity. The outflow is launched from the radius
r; = rou, Where ry, is the disk outer radius. Strubbe and
Quataert [10] constructed an adiabatic spherical model and
obtained the radius and the temperature of the photosphere
of the wind given, respectively, by

rph_%, (21)
U,
L1\ 2ol (G4
Ty —<4”>ﬁ(5> KPR (22)
ME

where v, = f,1/GM./r; is the velocity of the outflowing
wind with f, taken to be unity and the fraction of mass
outflow fou = Moy/M. is given by [41]
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FIG. 15. (a) The spectral index agx obtained using the relativistic disk-corona model (Sec. IT) with spherical outflow wind (red points)

and without spherical outflowing wind (orange points). The blue points are the observational data taken from Wevers et al. [39]. We can
see that an outflow wind is required for the positive correlation between the spectral index and luminosity. (b) The total mass loss rate
was obtained using Eq. (20) for the relativistic disk-corona model with a spherical outflow. See Sec. VA for details.

(23)

2 1 (M,
fou = ;arctan {E (ME - 1)] .

The bolometric luminosity of the outflowing wind is
Ly 4ﬂr§haTgh. We assume that the blackbody UV

emission is from the wind when the accretion rate exceeds
the Eddington rate; else the UV emission is from the
disk, and the x-ray emission is from the disk and the corona.
The obtained parameters are shown in Table III, and the
obtained spectral index is shown in red points in Fig. 15. By
including the outflow, a positive correlation is obtained
between the spectral index and the luminosity. The total
mass accretion rate M, exceeds the Eddington rate for
higher luminosity and, thus, suggests the presence of an
outflowing wind.

The outflowing wind due to a strong radiation pressure
in the super-Eddington disk results in an emission that
dominates in the optical-UV bands [42]. This results in an

TABLE III.  The parameter values are obtained by minimizing
Eq. (20) using the relativistic disk-corona model along with the
reduced chi square (y2) for TDE source AT2018fyk. The model
fit to the observation is shown in Fig. 15.

Relativistic disk-corona  Relativistic disk-corona

Parameter without outflow with outflow
Ve 2.4 0.87

ap 0.179 0.437

u 0.12 0.595

n 0.829 0.0032
a, 0.262 0.902
M,(My) 1.094 1.0087

j 0.672 0.141

q 1.00 1.02

enhancement in the UV luminosity. The x-ray emission
from the wind is weak due to the photosphere tempera-
ture that is smaller than the disk single blackbody tem-
perature (~10° K) [6]. The disk-wind model is used to
explain the TDE observations where optical-UV emissions
dominate over x-ray emissions. Equation (19) results in
ALysgy A/ ALy kev = (V2 kev/Vasgp 4)™% " = (401.2)%x71
Thus, an increase in agx implies an increase in the UV
2500 A luminosity over the x-ray 2 keV luminosity. The
total luminosity is the sum of UV and x-ray luminosity and
increases with an increase in the luminosity of x ray and/or
UV. The positive correlation between agyx and bolometric
luminosity implies that the UV luminosity increases with
an increase in bolometric luminosity.

Figure 16 shows the photosphere radius, temperature,
and spectrum for the wind emission. The photosphere
radius increases, whereas the photosphere temperature
decreases with the mass accretion rate. The photosphere
temperature is lower than the radial averaged disk temper-
ature ((Terg) = [ Terd A/ [dA, where Ty and dA are
the disk effective temperature and disk area element,
respectively). The spectrum from the wind emission domi-
nates in the optical-UV bands with an insignificant x-ray
emission, and the UV luminosity increases with the mass
accretion rate. The enhancement in the UV luminosity
compared to the x-ray luminosity in the disk-wind model
increases the bolometric luminosity and the spectral index,
leading to a positive correlation.

The presence of a corona around a disk that has an
outflowing wind is uncertain, because the strong wind may
ruin the low-density corona. If the wind destroys the low-
density corona, then there will be no coronal emission, and
the spectrum will be dominated by the thermal blackbody
emission. With a decrease in the wind strength, the corona
will tend toward a stable structure and its nonthermal
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FIG. 16. The evolution of photosphere radius, temperature, and
spectrum from the disk-wind model with the mass accretion rate
for AT2018fyk is shown. The parameters are given in Table III.
(a) The photosphere radius of wind (rp;,) emission is higher than
the disk outer radius (7,,) and increases with the mass accretion
rate. (b) The photosphere temperature (Tpy) is lower than the
radial averaged disk temperature and decreases with the mass
accretion rate. (c) The spectrum from wind emission is shown by
dashed lines, whereas the disk spectrum is shown by solid lines.
The spectrum from the wind emission dominates in the optical-
UV bands and is higher than the disk luminosity. The x-ray
luminosity from the wind is negligible for a higher mass accretion
rate. The 2500 A line is shown by the vertical gray line. See
Sec. VA for details.

emission will increase. In the sub-Eddington phase, the
x-ray spectrum will be dominated by a nonthermal emis-
sion. A time-dependent accretion model with an outflow
and the dynamics of the corona around such a disk will
require detailed numerical calculations.

We have considered a highly simplified spherical out-
flow model which is a nonrelativistic model. The outflow
from an accretion disk and the emission from the wind is
complex in dynamics and requires a detailed numerical
analysis. We used this simple model to show that an
outflow is required to explain the positive correlation; else
the disk corona can explain the negative correlation only.
The caveat of steady accretion models to the TDEs is that
the TDE disk evolves with time and, thus, requires a time-
dependent disk-corona evolution. Such a model will be able
to explain the long-term evolution of the TDE disk and the
accretion state change inferred from the spectral index
evolution with luminosity.

VI. SUMMARY

We have developed a steady relativistic disk-corona
model with a stress tensor that is assumed to be dominated
by Maxwell stresses (7,4 & Pp,,) With magnetic pressure

given by Py, PP} In the flux calculation, we have
included the redshift factor (g) that considers the gravita-
tional and Doppler redshifts.

The accretion models without a corona are unable to
explain the observed spectral index for TDE sources (see
Figs. 2-5). However, the spectral index calculated from
the disk-corona models matches with the observations
and, thus, exhibits the importance of corona. We present
the relativistic disk-corona model in Sec. II. We have
also shown the nonrelativistic disk-corona model in
Appendix B. The presence of a corona reduces the disk
spectrum as can be seen from the nonrelativistic model
spectrum in Fig. 6. The relativistic dynamics increase the
disk spectrum and the luminosity.

We have included the advection energy loss in the energy
conservation equation in both the models, which is crucial
when the accretion is near Eddington where the pressure is
dominated by radiation pressure.

We fit the relativistic model to the three TDE sources,
and the parameter values are given in Table II. The para-
meter u plays a significant role in the luminosity ratio
Ly /L, with an increase in the mass accretion rate
as can be seen from Fig. 12. The estimated value of pu
for the sources XMMSL2J1446, XMMSL1J1404, and
XMMSL1J0740 are u = ~0, 0.203, and ~0 (relativistic),
respectively. Thus, the stress is dominated by total pressure.
With an increase in u, the spectral index increases, and the
luminosity ratio decreases with the mass accretion rate,
implying the dominance of the disk over the corona emission.

The x-ray luminosity of corona to disk bolometric
luminosity Ly /L is higher for the relativistic model,
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suggesting that the relativistic effects increase the energy
transport to the corona. The ratio of x-ray luminosity from
the disk to corona increases with an increase in the mass
accretion rate (see Fig. 14).

We have estimated the mass accretion rate for the
individual data points for all the sources by minimizing
Eq. (20), and the obtained values are shown in Fig. 13,
which follows a nearly linear relation with the observed
luminosity for both models. Thus, the luminosity Ly +
Lyy follows the mass accretion rate similar to the disk
bolometric luminosity where L, « Mc2.

The observed spectral index with luminosity for TDE
AT2018fyk shows a better fit with the relativistic disk-
corona model when a simple spherical outflow emission
model is included. This is due to the enhanced UV emission
from the outflowing wind due to a large photosphere
(Fig. 16). The disk-corona model with an outflow shows
a positive correlation when the total mass accretion rate
exceeds the Eddington rate.

The steady disk-corona models are capable to explain the
spectral index-luminosity observations for TDEs, and this

|

motivates us to develop a time-dependent disk-corona
emission. The time-dependent model will be useful to
explain the long-term evolution of spectral index, lumi-
nosity, and the accretion state transition.
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APPENDIX A: RELATIVISTIC DISK
MODEL EQUATIONS

Here, we present the relativistic disk equations
formulated by Mageshwaran and Bhattacharyya [9] in
the cylindrical coordinates. The space-time metric in
the geometrical units (¢ = G = 1) with the signature
(—+-++) is given by

ds? — — {1 B 2M(r? + 7%)3/? }dtz B 4Mar*Vrr + 22 drdp + (r* + 22)* + a*7? { 2
(r* + 22> + a?7? (r* + 22?2 + a*7? (r? + 22)? P24+ 22 -2MVPP 4+ 2+ d?

22 (r? + %) + a*2?

+ dr* +
2 +Z2:|

r (r2 + Z2)2

1 1
X - drdz +
L2+z2—2Mx/r2+z2+a2 r2+z2}

In the limit of thin disk z < r, the metric tensors are
given by

2M  M(2d® + r?)Z?

=]+ —— A2
Iut + . )5 , (A2)
9ir = Grt = 0, <A3)

2Ma MQa® + 3ar?)z>
Gip = Gt = — + ( 5 ) > (A4)

r r
9tz = Gz = 0, (AS)
9rr =2 2Mr + a?
N [2a* 4 3a*(r* = 2Mr) + M(4Mr* - 3r%)Z*
;’2(1"2—2Mr+012)2 ’

(A6)
9rp = Gpr = 0, (A7)
—g,=2(-1+ - S (A8)

Ire = Gar = rr=2Mr+d*)r’

2
Z
_|._
[r2+z2—2M\/r2+z2+a2 N

2

r2 I 2rz[(r* + 22)? + a*2?
P+ 27

IMar*ViZ + 22
B P e Lk Al 12 (A1)
+z (rr+2z)* +a’z
[
r* + a?r? + 2Ma*r
I = 2
2(,4 Mr(2 2 5 2 2
_a (r + r(6a + r))Z , (A9)
r
9p: = 9:p =0, (A10)
a2 — 2 2 2
=1 =, All
9z +{ r? +r2—2Mr+a2 r? (All)

which is the same as the metric tensor given in Zhuravlev
[43]. At the equatorial plane (z = 0), the space-time metric
reduces to

—oM aM 2
ds? = — <r )dﬂ M idp + Ta
r r A

A
+ = d¢? 4 dz%, (A12)
r

where A = r2 —2Mr + a? and A = r* + a®r* + 2Md>r.
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The mass conservation equation is given by

0

10
— (Zu") +—-—(rZu") =0,
at( M)+r0r(r u)

(A13)
where X is the surface density, r is the radial coordinate,
and the covariant four velocities near the equatorial plane
are then given by

y rAl/2
u, = ‘LAT - oL, (A14)
r %

Up = —5 ————, Al5
A2 TZV2 (A1)
uy =L, (A16)
u, = 0. (A17)

The V is the radial velocity in the corotating frame, and
L is the angular momentum per unit mass. The Lorentz
factor y; near the equatorial plane is given by

1 r2L?

— 4= AlS8
1—v2+ A (AI8)

2 _
L=
The angular momentum conservation is given by

A29L Vv A2 1o -
L = (r53) =0,

rAY2 ot Vi—VZ r or +;6r

(A19)

where S » 1s the vertically integrated viscous stress given by

B Al/2A3/2}/3 Q
§h=—r—F—t—, A20
¢ r5 or ( )

Assuming the vertical fluid velocity to be zero,
the conservation equation in the vertical z direction
results in

2 2
YL 2 2y Lz Lz 10P

AN tt— =M+ —S-A+—=0, (A2l
AA T’ 1—’—A1/2A3/2r4 2+A2r 3+p6z (a21)
where

Ay = MA*[4a* + r(r —4M)| — AM?a*rA[4a?
+ r(3r —4M)] + 4M?a*r*[4a*M + AMr*

— a*r(4M? — 5Mr + r?)], (A22)
Ay = —aMA[4a® + r(3r — 4M)] + 2Mar[4a*M
+4Mr* — a’r(4M? — 5Mr + r?))], (A23)

Az = 4a*M + 4Mr* — ?r(4M? — SMr + %), (A24)

Following the vertical integration of Eq. (A21), the
height of the disk is given by

H 2 - P 1 ]/% A] +

r a pr? |AA T

The inner radius is taken to be the innermost stable
circular orbit given by [44]

2J/L£ A2

L2A;]7!
AL2A3/2 /4 :

| - (A29)

(A26)

Fin = T1sco = F¢Xin»

where x;, = Z(j) is given by

Z(j) =3+ Z:(j) = V3 = Z1(j)) 3 + Z1(j) + 2Z,()))
(A27)

and

Zilj) =1+ (1= PR [+ ) + (=), (a28a)

Z,(j) = +\/37* + Z,(j)?.

(A28b)

APPENDIX B: NONRELATIVISTIC
DISK-CORONA MODEL

We construct a steady advection disk model with an
energy loss to the corona. The fraction of energy dissipated
from the disk to the corona at any radius r is given by
f = Ocor/OF, where the viscous heating flux generated at
any r is given by Q7 = (3/2)c,7,, with sound speed c;
and viscous stress 7, [17]. The fraction f using Eq. (1) and
OQcor = UDPmag is given by

2a0 Pr _%
= —1 R —
7=y k%[ *PJ ’

where k; = 3ky/(2b). For simplicity, we take k, and b to
be unity in our calculations. In a steady accretion disk, the
mass accretion rate M is a constant, and we take the
azimuthal velocity to be Keplerian such that the angular
momentum conservation results in v = Ms(r)/(37),
where s(r) =1 —+/ry,/r, v is the viscosity, and X is the
surface density. The surface density is given by X = 2Hp,
where the disk height H = ¢,/Qg with sound speed ¢, and
Keplerian angular velocity Qg = /GM./r? [10]. The
viscous heating is given by Qf = (9/8)vZQ%, and, by
comparing it with QF = (3/2)c,7,,, we obtain

(BI)
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FIG. 17. The figure shows the nonrelativistic model fit to the
observations of the considered TDE sources. The obtained values
are shown in Table IV.

P;1P3/2—;¢ 1 .
g \/’_ =i Q2 Ms(r).
P UL

(B2)

The advection accretion loss Q,q4, in a steady state is
given by [1]

Mc24-3p,

roT radp
27”"2 F3 -1

Quav = —?54‘( 3= )par ., (B3)

where f, = P,/ P, is the ratio of gas to total pressure,

_ (4-38)- 1)
Byt 1201 =p) 0~ 1)

and y is the ratio of specific heats for constant pressure
to constant volume [23]. The radiative flux is given by
Qra = 46T*/(37), where T is the disk midplane temperature
and the opacity 7 = 7. + 7, = (ks + k)X is the sum of
Thomson opacity due to electron scattering and Kramers’
opacity due to absorption given above Eq. (13). Thus, the
energy conservation equation given by Eq. (2) is

;-1 (B4)

1c24 -3
M, Py | _r9T | (ry—1)"%
27r- I3 — 1 T or por
3 . 46T
= (1= Il = (1 = a)) - Ms(Q% - "2~ (B)

By solving Eqgs. (B2) and (BS5) with density and temper-
ature zero at the inner radius taken to be the ISCO,
we obtain the density p and the temperature 7', which
are then used to calculate the effective temperature of the
disk Toir = (Qpaa/0)"/* and, thus, the luminosity in various
spectral bands following a blackbody emission.

We assume that the radiation of the corona is isotropic
and that the emissivity is homogeneous in the vertical
direction of the corona. The corona is assumed to be plane
parallel in geometry [45]. The energy dissipated to the
corona at each radius is given by Q" = fQ{, and a small
fraction of this will be seen as the luminosity given by

Ly o = /rom 2zr(1 —n)Qcdr. (B6)

We assume the x-ray emission from the corona to be a
power-law spectrum given by L, = Kv'~" with constant K
and photon index I' in the range v; = 0.01 keV and
vy = 10 keV such that the total x-ray flux integrated over

the spectrum is Ly = K [,/ v'""dv. Then, the spectrum
at any frequency is given by

L,= KLé_kl;V =Lyu(2-T) (B7)

ijc—r _ 2T
and the luminosity is given by vL,. Figure 17 shows the
model fit to the observations for the three TDE sources,
and the obtained parameters are given in Table IV for the
nonrelativistic model. The u is small for all the cases and
implies that the viscous stress is dominated by the total
pressure and the black hole has a low spin. The obtained
mass accretion rate for the observed luminosity for three
sources is shown in Fig. 18(a). The mass accretion rate for
the source XMMSL1J1404 is close to the Eddington rate.
We then fit the obtained mass accretion rate to the observed
luminosity by a power-law relation, and we found that
(Ly + Lyy)/Lg < M", where u; = 1/u =0.794, 1.07,
and 1.0069 for XMMSL2J1446, XMMSL1J1404, and
XMMSL1J0740, respectively. The ratio of x-ray luminos-
ity from the disk to x-ray luminosity from the corona given
by Ly gisk/Lx corona iNCreases with M that implies that the
x-ray spectrum is soft for a high mass accretion rate.

TABLE IV. The parameter values obtained by minimizing Eq. (20) using the nonrelativistic disk-corona model
along with the reduced chi square (see Appendix B) for the considered TDE sources.

Sources ao H n ag M, (M) J q X

XMMSL1J0740 0404  2.18x 107  0.779  0.01 0.91 39105 21 072
XMMSL2J1446  0.238 0.033 0324 0331 1 0.78 445 135
XMMSL1J1404  0.499 0.141 0424  0.018 0.82 0 23 176
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(a) The estimated mass accretion rate corresponding to the individual observed luminosity points for the nonrelativistic

models by minimizing Eq. (20) at individual points for the parameters given in Table I'V. The solid lines are a linear model fit given by

logo[M/Mg] = ¢, + ulogio[(Ly + Lyy)/Lg]. The obtained values are {c,,u} = {0.213,0.993} (blue), {1.89,1.26} (red), and
{—0.176,0.934} (orange). (b) The ratio of x-ray luminosity from the disk (Ly g;) to corona (Ly ) as a function of the obtained mass

accretion rate. With an increase in M, the x-ray luminosity from the disk increases and even dominates at a higher accretion rate.
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