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A likely source of a gravitational-wave background (GWB) in the frequency band of the Advanced
LIGO, Virgo, and KAGRA detectors is the superposition of signals from the population of unresolvable
stellar-mass binary-black-hole (BBH) mergers throughout the Universe. Since the duration of a BBH
merger in band (∼1 s) is much shorter than the expected separation between neighboring mergers (∼103 s),
the observed signal will be “popcornlike” or intermittent with duty cycles of order 10−3. However, the
standard cross-correlation search for stochastic GWBs currently performed by the LIGO-Virgo-KAGRA
Collaboration is based on a continuous-Gaussian signal model, which does not take into account the
intermittent nature of the background. The latter is better described by a Gaussian mixture model, which
includes a duty cycle parameter that quantifies the degree of intermittence. Building on an earlier paper by
Drasco and Flanagan [Detection methods for non-gaussian gravitational wave stochastic backgrounds,
Phys. Rev. D 67, 082003 (2003).], we propose a stochastic-signal-based search for intermittent GWBs. For
such signals, this search performs better than the standard continuous cross-correlation search. We present
results of our stochastic-signal-based approach for intermittent GWBs applied to simulated data for some
simple models, and we compare its performance to the other search methods, in terms of both detection and
signal characterization. Additional testing on more realistic simulated datasets, e.g., consisting of
astrophysically motivated BBH merger signals injected into colored detector noise containing noise
transients, will be needed before this method can be applied with confidence on real gravitational-wave
data.

DOI: 10.1103/PhysRevD.107.103026

I. INTRODUCTION

The Advanced LIGO [1], Virgo [2], and KAGRA [3]
(LVK) detectors have completed their third observing run
(O3), increasing the number of confident detections of
gravitational-wave (GW) signals to 90 overall [4]. The
detected signals are primarily associated with stellar-mass
binary-black-hole (BBH) mergers, although a handful of
binary-neutron-star (BNS) and neutron star-black hole
(NSBH) coalescences have also been observed [5,6]. All
of these signals are relatively large signal-to-noise ratio
(SNR) events, which stand out above the detector noise
when searched for using matched-filtering techniques [7,8].

In addition to these loud, individually resolvable events,
the LVK detectors are also being showered by GW signals
produced by much weaker (e.g., more distant and/or less
massive) sources, whose combined effect gives rise to a
low-level background of gravitational radiation—a so-
called gravitational-wave background (GWB) (see,
e.g., [9,10] and references cited within). This background
signal is expected to be stochastic (i.e., random) in the
sense that there is no single deterministic waveform that we
can use to perform a matched-filter search for this type of
GW signal. Nonetheless, because this signal is present in all
detectors, we can cross-correlate the data from multiple
detectors to observe the GWB, despite its weakness relative
to the noise [11,16]. Although to date there has not been a
direct detection of a GWB using a stochastic pipeline, we
know from Advanced LIGO’s and Virgo’s detections of
individual resolvable sources that a background arising
from compact binary mergers must exist. Assuming our
detectors are upgraded as planned in the coming years [12],
and given current projections for the signal [13], detecting
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the GWB may just be a matter of time. On the other hand,
we can improve our detection methods to measure this
signal sooner. We assume the latter strategy in this paper.

A. Motivation

A likely source of a GWB in the frequency band of the
LVK detectors is the population of stellar-mass BBH
mergers throughout the Universe. Rate estimates calcu-
lated from the BBH signals detected to date [13,14]
predict a BBH merger in the observable universe every
∼5–10 minutes on average. Since the duration of a BBH
merger in the LVK band is of order 1 s, the duty cycle ξ of
such events (defined as the time in band for one merger
signal divided by the average time between successive
mergers) is of order 10−3. Thus, the expected GWB signal
is “popcornlike” or intermittent, with the signal being “on”
a small fraction of the total observation time. A similar
calculation for the population of BNS mergers predicts (on
average) roughly one event every 15 s, while the duration of
a BNS signal in band is approximately 100 s. Thus, BNS
merger signals overlap in time leading to a continuous (and
possibly confusion-limited) background.
The total expected BBH signal is potentially detectable

with the Advanced LIGO and Virgo detectors when
observing at design sensitivity [13,15]. Although the
SNRs for the individual events are small, the combined
SNR of the correlated data summed over all events grows
like the square root of the observation time, reaching a
detectable level of 3σ (corresponding to a false alarm
probability of approximately 10−3) after ∼40 months of
observation [15]. This estimate of the time to detection is
based on the standard cross-correlation search [16], which
looks for evidence of excess cross-correlated signal power,
assuming that the amplitude of the GW signal component is
drawn from a continuous-Gaussian distribution. This
search assumes that the signal is on all the time, in conflict
with the intermittent nature of the stellar-mass BBH
background, which is expected to be the dominant signal.
Thus, although the standard cross-correlation search is able
to detect the time-averaged signal from an intermittent
GWB [17], this search is suboptimal in the sense that the
time to detection will be longer than that for a search that
properly takes into account the intermittent nature of the
background.

B. Purpose and outline

The purpose of this paper is to introduce a new
stochastic-signal-based search that specifically targets
intermittent GWBs, and hence can potentially reduce the
time to detection of the BBH background signal. This new
search is built on the seminal work of Drasco and
Flanagan [18], who proposed a Gaussian mixture-model
(GMM) likelihood function for analyzing intermittent
GWBs (Sec. II A). Our proposed search for intermittent

GWBs looks for excess cross-correlated power in short
stretches of data. Conversely, a deterministic-signal-based
search for the intermittent BBH background was proposed
by Smith and Thrane [19], which involves marginalizing
over the signal parameters for deterministic BBH chirp
waveforms in short (∼4 s) stretches of data (Sec. II B). By
construction, our proposed search is adaptable to a generic
intermittent GWB since it looks only for excess cross-
correlated power. We also expect our proposed search to be
computationally more efficient in detecting a signal than
the deterministic-signal-based approach of Smith and
Thrane, since our search ignores the deterministic form
of the GW signal waveforms and hence the need to
marginalize over all the associated signal parameters.
A brief outline of this paper is as follows: first, we give

an overview of the current searches for intermittent GWBs
in Sec. II. We then proceed by introducing our proposed
stochastic search for intermittent GWBs in Sec. III. To
compare the performance of the various search methods
mentioned above, we analyze a series of datasets that are
tailored to highlight the merits and shortcomings of each
style of search. We start in Sec. IVA by considering
stationary-Gaussian white noise in two colocated and
coaligned detectors, and we inject an intermittent GWB
made up of white GW bursts with Gaussian signal
amplitudes scaled by distances to the sources drawn from
a uniform-in-volume distribution. We then consider a
background made up of colored GW bursts1 in Sec. IV B,
which follow the expected spectral shape of BBH mergers.
Finally, we analyze a set of deterministic BBH chirp
waveforms in Sec. IV C, where the chirp parameters are
fixed except for the distance to the source, which is also
drawn from a uniform-in-volume distribution. We conclude
in Sec. V by discussing possible extensions of our method
and additional tests that are needed on more realistic
simulated data before it can be run on real LVK data.

II. PROPOSED SEARCHES FOR INTERMITTENT
GWBs—OVERVIEW

The standard continuous cross-correlation search [16]
aims to measure the fractional energy density of a GWB,
defined as

ΩgwðfÞ ¼
1

ρc

dρgw
d ln f

; ð1Þ

where the critical energy density of the Universe is
ρc ¼ 3H2

0c
2=ð8πGÞ, H0 is the Hubble constant, c is the

speed of light, and G is Newton’s constant. Alternatively, a

1The term “burst”will be used throughout this paper as it is the
most general, irrespective of the type of signal. In the context of
compact binary mergers, these bursts of GWs are often referred to
as “transients.”
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GWB can be characterized by its power spectral density
(PSD) PgwðfÞ, which is related to ΩgwðfÞ by [16]

ΩgwðfÞ ¼
10π2

3H2
0

f3PgwðfÞ: ð2Þ

For the target signal of a BBH GWB, it is well known
that the fractional energy density spectrum is ΩgwðfÞ ∝
f2=3 to good approximation [20], in the frequency ranges
probed by the LVK interferometers. This knowledge can be
incorporated into the search, reducing it to the measure-
ment of a single quantity ΩgwðfrefÞ, where fref is a
reference frequency chosen where the sensitivity of the
LVK detectors is best (typically 25 Hz) [21]. For the
remainder of the paper, we will refer to ΩgwðfrefÞ simply as
Ωgw for brevity. For a set of data containing enough events
to be statistically significant, Ωgw is the amplitude of the
time and population-averaged energy density. We will refer
to this stochastic search for continuous backgrounds
described above as SSC.
Since this search assumes a continuous-in-time signal in

the data, it does not properly model an important feature of
the BBH GWB signal—the intermittency. To remedy this
improper modeling, several searches targeting intermittent
GWBs specifically have been proposed. We start by giving
a high-level overview of these different analysis methods.
We refrain from giving details about the actual form of the
likelihoods and refer to Appendix for more information.

A. Gaussian mixture-model likelihood function
for intermittent GWBs

In 2003, Drasco and Flanagan [18] proposed a search for
an intermittent GWB that makes use of a GMM likelihood
function of the form

Ltot ¼
YNseg

I

½ξLs;I þ ð1 − ξÞLn;I�; ð3Þ

where ξ is the probability that a particular segment contains
a GW signal, and Ls;I and Ln;I are the likelihood functions
for segment I in the presence and absence of a GW signal,
i.e., the signal and noise likelihoods. For the simple toy
model considered in their paper (i.e., single-sample GW
“bursts,” occurring with probability ξ drawn from a fixed
Gaussian distribution with variance σ2b, and injected into
uncorrelated white noise in two colocated and coaligned
detectors), the signal and noise parameters that enter the
likelihood functions Ls;I and Ln;I are the variances
ðσ2b; σ2n1 ; σ2n2Þ and ðσ2n1 ; σ2n2Þ, respectively. Single-sample
bursts are bursts whose duration is less than the sample
period Δt. By maximizing Ltot with respect to all four
parameters ðξ; σ2b; σ2n1 ; σ2n2Þ, Drasco and Flanagan obtained
a detection statistic (the maximum-likelihood statistic),
which they could use to search for intermittent GWBs.
Note that in the case ξ ¼ 1, i.e., assuming the signal is
always present, one recovers the standard continuous-
Gaussian search introduced above.
Although Drasco and Flanagan tested their proposed

method with a test statistic within a frequentist framework,
we have decided to work within a Bayesian framework in
this paper. We define several concepts of importance within
this framework before moving on to the discussion of the
results of Drasco and Flanagan.
Given a likelihood function Ltot and priors π, the joint

posterior distribution for the duty cycle and the signalþ
noise parameters can be computed using Bayes’ theorem:

pðξ; σ2b; σ2n1 ; σ2n2 jdÞ

¼ Ltotðdjξ; σ2b; σ2n1 ; σ2n2ÞπðξÞπðσ2bÞπðσ2n1Þπðσ2n2Þ
ZðdÞ ; ð4Þ

where

ZðdÞ≡
Z

dξ
Z

dσ2b

Z
dσ2n1

Z
dσ2n2Ltotðdjξ; σ2b; σ2n1 ; σ2n2ÞπðξÞπðσ2bÞπðσ2n1Þπðσ2n2Þ ð5Þ

is the model evidence. Marginalized posterior distributions
(for each parameter separately) are obtained by integrating
the joint posterior distribution over all the other parameters,
e.g.,

pðξÞ ¼
Z

dσ2b

Z
dσ2n1

Z
dσ2n2pðξ; σ2b; σ2n1 ; σ2n2Þ: ð6Þ

Of course, likelihood functions, priors, etc., are all calcu-
lated in the context of a particular choice of analysis model

Mα (e.g., a GMM likelihood search for intermittent GWBs
or the standard continuous-Gaussian search), which we
have not indicated in the above expressions. If we explicitly
denote the dependence of the above distributions on the
choice of analysis model, we can define the Bayes factor
between models Mα and Mβ as

BαβðdÞ≡ ZðdjMαÞ
ZðdjMβÞ

: ð7Þ
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Assuming equal prior odds for the two models, the Bayes
factor tells us how much more the data favors model Mα

relative to Mβ. Throughout this paper, we will make plots
of the natural logarithm of the Bayes factor as a function of
the duty cycle to compare the various search methods.
With these concepts in mind, we now move to the

discussion of the results of the proposed GMM likelihood.
Drasco and Flanagan showed that their detection statistic
for intermittent GWBs performs better than the standard
cross-correlation statistic for continuous-Gaussian back-
grounds when the duty cycle ξ is sufficiently small. To
illustrate this, we implement their proposed GMM like-
lihood in a Bayesian framework. Instead of using their
proposed frequentist detection statistic, we use the Bayes
factor as a measure of efficiency. To be able to study its
behavior as a function of the duty cycle, we combine 100
data realizations for each ξ value. Each data realization
consists of 40,000 data points (i.e., 40,000 segments, each 1
sample long), where a fraction of them contains single-
sample bursts drawn from a Gaussian distribution with
variance σ2b ¼ 1.
We keep the total continuous-Gaussian signal-to-noise

ratio fixed to 3, computed using (8) and (10), by adjusting
the noise variances for each value of the duty cycle, rather
than adjusting the signal parameters. So, as ξ decreases, the
segment signal-to-noise ratios must increase, which means
that the noise variances must decrease. This is illustrated in
Fig. 1, where both the continuous-in-time, i.e., ξ ¼ 1 in (3),
and the intermittent GMM likelihood analysis methods are
used. Each plotted point corresponds to the mean of the ln
Bayes factor over 100 realizations of data, while the error

bars correspond to the standard deviation of the ln Bayes
factor.
While the continuous search performs equally well for

all duty cycles (since it assumes ξ ¼ 1), the Bayes factor for
the GMM likelihood increases as ξ decreases, exceeding
the continuous stochastic likelihood Bayes factor, illustrat-
ing that the GMM likelihood performs better than the
continuous likelihood for smaller values of ξ. Equivalently,
the relative performance of the Bayes factors shown in
Fig. 1 can be expressed in terms of

ρseg ≡ σ2b
σn1σn2

; ð8Þ

which is the expected signal-to-noise ratio in an individual
segment assuming the presence of a GW signal with
burst variance σ2b. In terms of ρseg, the condition for the
GMM likelihood to perform better than the continuous
likelihood is

ρseg ∼ 1: ð9Þ

In the limit where ρseg ≪ 1, the GW signals in an individual
segment are sufficiently weak that the GMM likelihood
does not perform any better than the standard stochastic
continuous likelihood. Conversely, when ρseg ≫ 1, the GW
signals in the individual segments are so strong that they are
individually resolvable, with segment signal-to-noise ratios
exceeding the threshold needed for detection with a single-
detector burst statistic. In other words, a search for an
intermittent GWB is the most sensitive search when the
GW signals in the individual segments are marginally
subthreshold (ρseg ∼ 1).
Furthermore, we can determine an approximate value of

ρseg for the LVK detectors, for the population of stellar-
mass BBH mergers throughout the Universe. As mentioned
in Sec. I, it should take ∼40 months of observation using
the standard continuous-Gaussian cross-correlation statistic
to observe the BBH background with a total signal-to-noise
ratio ρtot ¼ 3 [22]. Since the segment duration proposed by
Smith and Thrane [19] for an intermittent search is of order
Tseg ∼ 4 s (see Sec. II B for more details), 40 months of
observation corresponds to Nseg ∼ 2.5 × 107 segments. The
final input that we need to do the calculation is the expected
duty cycle of the signal, which for stellar-mass BBH
mergers throughout the Universe is ξ ∼ 10−3. These values
imply

ρseg ¼
ρtot

ξ
ffiffiffiffiffiffiffiffiffi
Nseg

p ∼ 0.6; ð10Þ

which is in the regime where a search for an intermittent
GWB should start to perform better than the standard
continuous-Gaussian cross-correlation search. The value of

FIG. 1. ln Bayes factors of the signalþ noise model to the
noise-only model as a function of the duty cycle ξ for the
intermittent search (blue) and the continuous search (orange)
where the signal consists of single sample bursts drawn from a
Gaussian distribution of variance σ2b.

JESSICA LAWRENCE et al. PHYS. REV. D 107, 103026 (2023)

103026-4



ρseg at which the intermittent search begins to outperform
the continuous search in Fig. 1 matches this result.

B. Deterministic-signal-based search
for intermittent GWBs

In 2018, Smith and Thrane [19] extended the work
of Drasco and Flanagan [18] by proposing an optimal
fully Bayesian deterministic-signal-based search for the
intermittent GWB produced by the population of stellar-
mass BBH mergers throughout the Universe. As in [18],
Smith and Thrane [19] assume a mixture model for the
intermittent GW signals. They chose a segment duration
∼4 s, which is long enough to include a typical BBH chirp
signal, yet short enough that the probability of two such
signals occurring in a single segment is negligibly small
(∼10−4). However, instead of considering single-sample
GW bursts drawn from a fixed Gaussian distribution, they
considered finite-duration deterministic BBH chirp wave-
forms h ¼ hchirpðt; θÞ, where θ are the chirp parameters
(e.g., the component masses and spins of the two BHs and
the inclination angle of the orbital plane relative to the line
of sight). Smith and Thrane then marginalized (instead of
maximized) over the signal parameters for each segment of
data, assuming prior probability distributions for these
parameters, while replacing the noise parameters by mea-
sured estimates of these quantities. If the signal priors are
conditioned on segment-independent population parame-
ters θpop, which parametrize the distributions from which
the individual masses, spins, etc., are drawn, then the final
(marginalized) likelihood function Ltot ≡ Ltotðdjξ; θpopÞ
depends only on the duty cycle ξ and the population
parameters θpop. Finally, doing Bayesian inference calcu-
lations given Ltot and a prior for ξ and θpop, Smith and
Thrane were able to construct joint posterior distributions
for ξ and θpop as well as Bayes factors comparing the
evidence for this intermittent signal model and, e.g., that for
the standard cross-correlation search for a continuous-
Gaussian GWB.
The deterministic-signal-based search of Smith and

Thrane is expected to decrease the time to detection of
the intermittent GWB produced by stellar-mass BBH
mergers by a factor of ∼1000 relative to the standard
continuous-Gaussian search [19], by taking into account
both the intermittent nature of the signal as well as the
knowledge of the form of the individual waveforms, whose
parameters are marginalized over. For this factor of ∼1000
determination, they did not consider any population
parameters, so the only parameter that they needed to infer
from the data was the duty cycle ξ. A posterior distribution
for ξ sufficiently bounded away from zero would be
evidence of a confident detection of an intermittent
GWB signal. The gain in time to detection comes at the
computational cost of having to perform Bayesian mar-
ginalization over all the BBH chirp signal parameters for

every 4 s segment of data. This search is currently in the
testing phase, in preparation for running on real LVK data
in the near future.
Within this paper, for comparative purposes, we will

implement a much simpler version of this deterministic-
signal-based search. We will use the acronym DSI through-
out this work to refer to the deterministic-signal-based
search for intermittent GWBs.

III. SSI: STOCHASTIC SEARCH
FOR INTERMITTENT GWBs

Building off the work of Drasco and Flanagan [18], we
propose a new search based on a stochastic-signal model
consisting of intermittent bursts of correlated stochastic
GWs with unknown duty cycle ξ, in otherwise uncorrelated
noise in two detectors.We call this search SSI, for stochastic
search for intermittent GWBs, referencing both the signal
model the analysis assumes and the type of background for
which it is designed. To make the connection with BBH
mergers, we assume that these bursts of GWs last on the
order of a few seconds so the data are split into short stretches
as in Smith and Thrane, and that the power spectrum in the
LVK detectors goes like f−7=3, appropriate for binary
inspiral. This corresponds to a fractional energy density
spectrum ΩgwðfÞ ∝ f2=3, as introduced in (1).
Rather than marginalize over the parameters of determin-

istic BBH chirp waveforms as in the deterministic-signal-
based approach, our search looks for excess cross-correlated
power when the signal is assumed to be present, using a
mixture-model likelihood function. Thus, we trade off
optimality for computational efficiency and flexibility rela-
tive to the deterministic-signal-based approach, while still
accounting for the intermittent nature of the BBH back-
ground, which is missing from the standard cross-correlation
search for continuous-Gaussian GWBs.
We begin by dividing up the data into short segments

such that the probability of a segment containing more than
one signal is small. The total likelihood is given by a
product over segments of the GMM likelihood function

Ltotðdjξ; θs;pop; θnÞ
¼
Y
I

½ξLsðdIjθs;pop; θnÞ þ ð1 − ξÞLnðdIjθnÞ�; ð11Þ

where θn represents the noise parameters, θs;pop represents
the signal population parameters, and dI represents the data
in segment I.
For our stochastic-signal-based search, the segment-

dependent signal likelihood takes the form

LsðdIjθs;pop;θnÞ≡
Z
dθs;ILnðdIjθs;I;θnÞπðθs;Ijθs;popÞ; ð12Þ

where the segment-dependent signal parameters θs;I are
marginalized over. Marginalizing over the correct segment
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prior is an important and necessary step in order to recover
correct and unbiased results.
We choose to write the likelihood for a specific set of

parameters, θs;pop ¼ hΩbi, θs;I ¼ Ωb;I , and θn ¼ fσ2n1 ; σ2n2g,
where hΩbi is the population-averaged energy density
amplitudes of bursts of GW power and Ωb;I is the energy
density amplitude in data segment I. The population para-
meter hΩbi is related to Ωgw, introduced at the beginning of
Sec. II, by

Ωgw ¼ ξhΩbi: ð13Þ

Recall that Ωgw is what the standard cross-correlation
search for a continuous-Gaussian GWB estimates. For the
analyses included in this paper, we simulate stationary,
white-Gaussian noise. This means that the power spectrum

of the noise is independent of frequency and has the
value

Pnμ ¼
σ2nμ

fhigh − flow
; ð14Þ

whereμ ¼ 1; 2 is the detector index andflow and fhigh are the
low- and high-frequency cutoffs for our search. We will take
fhigh to equal the Nyquist critical frequency fnyq ≡ 1=ð2ΔtÞ,
whereΔt is the sample period. Each segment of time-domain
data of duration T is Fourier transformed and coarse-grained
to frequencies fk having frequency resolutionM=T.We then
take our noise parameters to be the variance of the noise
in each detector. Under these assumptions, the segment-
dependent signal likelihood (12) becomes

LsðdIjhΩbi; σ2n1 ; σ2n2Þ ¼
Z

dΩb;IπðΩb;IjhΩbiÞ
Y
k

1

ðπT=2Þ2MðP1;IðfkÞP2;IðfkÞ − P2
b;IðfkÞÞM

× exp

�
−

M
ðP1;IðfkÞP2;IðfkÞ − P2

b;IðfkÞÞ
½P̂1;IkP2;IðfkÞ þ P̂2;IkP1;IðfkÞ − 2P̂b;IkPb;IðfkÞ�

�
; ð15Þ

where

P1;IðfÞ≡ σ2n1
fhigh − flow

þ Pb;IðfÞ;

P2;IðfÞ≡ σ2n2
fhigh − flow

þ Pb;IðfÞ;

Pb;IðfÞ≡Ωb;IHðfÞ ð16Þ

are the total autocorrelated power spectra in each detec-
tor and the power spectrum for a GW burst in segment I,
and k runs over the coarse-grained frequencies fk. The
derivation of the product within the integrand of (15) is
given in Sec. IVA. of [23]. The prior πðΩb;IjhΩbiÞ is not
specified at this point as its functional form depends on
the expected distribution of the energy density of the
signals injected in Sec. IV. The spectral shape HðfÞ is
of the form

HðfÞ≡ 3H2
0

10π2
1

f3ref

�
f
fref

�
−7=3

: ð17Þ

The Fourier transformed data enter the evidence via the
following quadratic combinations:

P̂1;Ik ≡ 2

T
1

M

XkþM=2−1

k0¼k−M=2

jd̃1;Ik0 j2;

P̂2;Ik ≡ 2

T
1

M

XkþM=2−1

k0¼k−M=2

jd̃2;Ik0 j2;

P̂b;Ik ≡ 2

T
1

M

XkþM=2−1

k0¼k−M=2

Reðd̃�1;Ik0 d̃2;Ik0 Þ; ð18Þ

which are coarse-grained estimators (i.e., averaged
over fine-grained frequencies labeled by k0) of the total
autocorrelated and cross-correlated power spectra in the
two detectors.
The segment-dependent noise likelihood can similarly be

written as

LnðdIjσ2n1 ; σ2n2Þ ¼
Y
k

1

ðπT=2Þ2MðPn1ðfkÞPn2ðfkÞÞM

× exp

�
−M

�
P̂1;Ik

Pn1

þ P̂2;Ik

Pn2

��
: ð19Þ

In principle, the noise parameters θn ¼ fσ2n1 ; σ2n2g in the
likelihood functions above should be inferred together with
the signal population parameters θs;pop ¼ hΩbi, as part of
the Bayesian inference procedure. Doing so defines the so-
called full version of the analyses. However, as LVK noise
is stationary to a good approximation, it is typically
sufficient to use measured estimates of the noise parameters
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[denoted by σ̄2n1 and σ̄2n2 and computed using (A16)] in the
likelihood function, thereby avoiding having to infer them
in this analysis. We refer to this approach as the reduced
form of the analyses, which is computationally cheaper
than the full form. The reduced version of the likelihood

requires that the cross-correlation estimators be approx-
imately Gaussian, which holds only if the number of
samples per segment N is sufficiently large.
The reduced segment-dependent signal likelihood is

given by [23]

LsðdIjhΩbi; σ̄2n1 ; σ̄2n2Þ ¼
Z

dΩb;IπðΩb;IjhΩbiÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πvarðΩ̄b;IÞ
q exp

�
−
ðΩ̂b;I −Ωb;IÞ2
2varðΩ̄b;IÞ

�
; ð20Þ

where

Ω̂b;I ≡
P

kQIðfkÞP̂b;IkP
k0QIðfk0 ÞHðfk0 Þ

;

varðΩ̄b;IÞ≡
�
2M
X
k

QIðfkÞHðfkÞ
�

−1
ð21Þ

are the optimally filtered cross-correlation estimators and
corresponding variances, which are constructed from
coarse-grained estimates of the cross-correlated power
P̂b;Ik [given by (18)] and the segment-dependent optimal
filter function

QIðfÞ≡ HðfÞ
P̄1;IðfÞP̄2;IðfÞ

; ð22Þ

where

P̄1;IðfÞ≡ σ̄2n1
fhigh − flow

þΩb;IHðfÞ;

P̄2;IðfÞ≡ σ̄2n2
fhigh − flow

þΩb;IHðfÞ: ð23Þ

Note that QIðfÞ is a generalization of the standard optimal
filter for an f−7=3 power spectrum (see, e.g., [16,24]),
extended to include the segment-dependent burst contri-
bution, i.e., dependent on the likelihood parameter Ωb;I, to
the total autocorrelated power estimates P̄1;IðfÞ, P̄2;IðfÞ.
The reduced segment-dependent noise likelihood

LnðdIjσ̄2n1 ; σ̄2n2Þ is given by

LnðdIjσ̄2n1 ; σ̄2n2Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πvarðΩ̄bÞ
p exp

�
−

ðΩ̂b;IÞ2
2varðΩ̄bÞ

�
; ð24Þ

where Ω̂b;I and varðΩ̄bÞ are the same as for the segment-
dependent signal likelihood, but with a segment- indepen-
dent, noise-only optimal filter function

QðfÞ≡ HðfÞ
P̄n1P̄n2

: ð25Þ

IV. ANALYSES

In this section, we describe in detail a set of analyses,
which we use to illustrate various aspects of the search
methods described above. The tests that these analyses
allow us to perform should be thought of as providing a
“proof-of-principle” demonstration of our proposed sto-
chastic-signal-based search for intermittent GWBs. A more
rigorous test of this search on actual LVK noise and realistic
injected BBH chirp signals is a topic for future inves-
tigation (see Sec. V for more details).
For all the analyses we consider, we assume white,

stationary-Gaussian noise in two colocated and coaligned
detectors with variances σ2n1 and σ2n2 , respectively. The
assumption of colocated and coaligned detectors means
that we can ignore the so-called overlap reduction func-
tion [25,26],which encodes the reduction in cross-correlated
power that comes from correlating two physically separated
and possibly misaligned detectors. To calculate the total
SNR for each set of data, we use the average SNR per
segment computed using formulas specified below for each
dataset and rearrange (10) to solve for ρtot. We note that this
ρtot is the total SNR of the continuous-in-time cross-
correlation search, which assumes the signal exists in every
segment of data. For our intermittent analyses, we use this
definition of total SNR to quantify the strength of the GW
signal.

A. Extension of previous work

In Sec. II A, the results of Drasco and Flanagan [18] are
reproduced within a Bayesian framework (see Fig. 1). We
remind the reader that the signals considered there are
single-sample GW bursts drawn from a fixed Gaussian
distribution with variance σ2b. We proceed with the gener-
alization of the proposed GMM likelihood to allow for
more realistic signals.
As a first step, we now allow multisample (N ≫ 1)

bursts of white stochastic GWs having duty cycle ξ, with
signal samples drawn from a probability distribution that
depends on the distance r to an individual source. We
require each burst to span the entire length of the segment it
lies in so that the number of time-series samples of each
burst is always equal to the number of samples per segment
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N. For a source at arbitrary reference distance rref , we draw
the signal samples from a Gaussian distribution with fixed
variance σ2ref . For a source at a general distance r, we first
draw the signal samples from a Gaussian distribution with
variance σ2ref as explained above, and then we rescale the
samples by a factor of rref=r, since GW signal amplitudes
fall off as 1=r [27]. Thus,

σ2bðrÞ≡ σ2ref
r2ref
r2

ð26Þ

is the burst variance for a source at distance r.
For the population model, we will assume that the source

distances are drawn from a uniform-in-volume probability
distribution

pðrjrmaxÞ≡ 3r2

r3max − r3min

; ð27Þ

where rmax is the maximum distance out to which the
sources are formed (i.e., an unknown population parameter
that will eventually be inferred from the data). The
parameter rmin is taken to be a fixed, known parameter,
for simplicity. Note that choosing rmin ≠ 0 in the simu-
lation process limits the number of GW bursts that are so
loud that they are individually detectable in a single
segment of data. We also note that this choice of population
model is a simplification as it does not take into account
cosmology.
It follows from (26) and (27) that

pðσ2bðrÞjrmaxÞ ¼
3r3ref

2ðr3max − r3minÞ
ðσ2refÞ3=2ðσ2bðrÞÞ−5=2 ð28Þ

is the probability distribution for the signal variance σ2bðrÞ
associated with a source at distance r. We also define the
population-averaged burst variance:

hσ2bi≡
Z

rmax

rmin

drpðrjrmaxÞσ2bðrÞ

¼ 3σ2ref
r2refðrmax − rminÞ

r3max − r3min

; ð29Þ

which is obtained by averaging σ2bðrÞ over the uniform-
in-volume-distributed source distances r. We define
σ2gw ≡ ξhσ2bi, which has the interpretation of being the
time and population-averaged variance of the signals. This
quantity is what the standard cross-correlation search for a
continuous-Gaussian GWB (SSC) estimates.
Since the probability distribution for σ2bðrÞ depends

on just one free parameter, i.e., rmax in (28), we can
equally well use the population-averaged variance hσ2bi as
the population parameter for the probability distribution.
Solving (29) for rmax in terms of hσ2bi, we find

rmax ¼ rmin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
3

4
þ 3

σ2b;max

hσ2bi

s
−
1

2

!
;

σ2b;max ≡ σ2bðrminÞ ¼ σ2ref
r2ref
r2min

; ð30Þ

leading to

TABLE I. Parameters used for the different analyses in Sec. IV. Parameters listed in “Extension of previous work”
and “Stochastic bursts” were used in the production of Figs. 3 and 5, respectively. Note the units of the distance
parameters in “Extension of previous work” are arbitrary since they have no effect on the variances of the bursts. The
first nine columns in “Deterministic chirps” were used in the production of Fig. 7, while the last five columns
specified the additional parameters used for Fig. 8.

Extension of previous work

Nseg N ξ rmin rmax rref σ2ref hσ2bi σ2n hρsegi ρtot

4 × 104 2048 2.98 × 10−3 2 5 1 1 0.0769 0.691 5.04 3

Stochastic bursts

Nseg N T ξ rmin rmax rref Ωref hΩbi flow fhigh hρseg;stochi ρtot;stoch

4 × 104 2048 4 s 2.98 × 10−3 2 Mpc 5 Mpc 2 Mpc 2.61 0.803 20 Hz 256 Hz 5.04 3

Deterministic chirps

Nseg N T rmin rmax flow fhigh m hΩbi ξ hρseg;stochi ρtot;stoch hρseg;deti ρtot;det

4 × 104 2048 4 s 2 Mpc 5 Mpc 20 Hz 256 Hz 30M⊙ 0.803 2.98 × 10−3 5.04 3 13.2 7.86

JESSICA LAWRENCE et al. PHYS. REV. D 107, 103026 (2023)

103026-8



pðσ2bðrÞjhσ2biÞ ¼
hσ2biðσ2b;maxÞ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3þ 12σ2b;max=hσ2bi
q

− 3
ðσ2bðrÞÞ−5=2:

ð31Þ

The above expression is somewhat messy, but it will
become the prior when we perform Bayesian inference
on hσ2bi [i.e., πðσ2b;Ijhσ2biÞ ¼ pðσ2bðrIÞjhσ2biÞ]. Building on
the above, we define the average segment SNR of the
distribution in a similar manner as (29)

hρsegi ¼
Z

rmax

rmin

drpðrjrmaxÞρsegðrÞ; ð32Þ

where ρsegðrÞ for these signals is given by (8) with σ2b
replaced by σ2bðrÞ.
We generate multisample (N ¼ 2048) bursts of white

stochastic GWs having duty cycle ξ ¼ 2.98 × 10−3, with
signal samples drawn from a probability distribution that
depends on the distance r to an individual source, as
described above. With the chosen parameters (listed explic-
itly in Table I) the population-averaged variance is hσ2bi ¼
0.0769 and the noise variances are σ2n1 ¼ σ2n2 ¼ 0.691. An
example of the simulated data is shown in Fig. 2, together
with the distribution of the burst variances σ2bðrÞ.
We analyze the data with SSC and SSI, using the full

version of the likelihoods, i.e. inferring the noise param-
eters as well as the population parameters. We will not
consider DSI for this particular data. The concrete expres-
sions for the likelihoods can be found in the Appendix
with the prior specified by (31). In Fig. 3, we display
the recovery of our SSI search, illustrating that the

generalizations made in this section still allow for a
successful recovery of the population and noise parameters.
We note that given the large number of samples per

segment (N ¼ 2048) used for this analysis, one could have
resorted to the reduced version of the likelihoods, where the
estimates of the noise parameters are used (as provided in the
Appendix). We refrain from entering into a detailed com-
parison between full and reduced implementations of the
likelihoods, as this was the topic of work by Matas and
Romano [23]. Throughout the remainder of the paper, wewill
work with a large number of samples per segment and will
employ the reduced version of the likelihoods.

B. Stochastic bursts

We extend the analysis described in the previous section
to include frequency dependence. We analyze data defined
by multisample (N ≫ 1) bursts of stochastic GWs having
duty cycle ξ and an f−7=3 power spectrum for a uniform-in-
volume distribution of source distances between rmin to
rmax, as in Sec. IVA. The choice of spectral index −7=3 is
appropriate for compact binary inspiral. We first simulate
data for a source at reference distance rref so that it has the
power spectrum2

PrefðfÞ ¼ Aref

�
f
fref

�
−7=3

; ð33Þ

where Aref is some fixed amplitude and fref is a reference
frequency, usually taken to be 25 Hz in line with LVK

FIG. 2. Left: Example of simulated data with amplitudes drawn from a uniform-in-volume distribution along with a subplot zooming
in on a single burst. The parameters used for this injection are given in the “Extension of previous work” section of Table I. Right:
Distribution of the burst variances drawn from a uniform-in-volume distribution, with theoretical minimum and maximum burst
variances evaluated at rmax and rmin, respectively, and average burst variance hσ2bi computed according to (29).

2In practice, we first simulate the data in the frequency domain
with an amplitude spectral density

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PrefðfÞ

p
and random phases,

and then inverse-Fourier transform the data back to the timedomain.
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searches. For a source at a general distance r, we do the
same as above, and then rescale the amplitude of the
simulated signal by a factor of rref=r, which is equivalent to
having

AbðrÞ≡ Aref
r2ref
r2

ð34Þ

as the amplitude of the power spectral density for a GW
burst at source distance r. The power spectrum of a burst is
therefore

Pbðr; fÞ ¼ Aref
r2ref
r2

�
f
fref

�
−7=3

: ð35Þ

Note that by using (2), we can also write the above
expression in terms of the fractional energy density
spectrum Ωbðr; fÞ. Then by taking f ¼ fref , we can define
the amplitude of the energy density at reference frequency
fref of a burst at distance r,

ΩbðrÞ≡ 10π2

3H2
0

f3refPbðr; frefÞ ¼ Ωref
r2ref
r2

; ð36Þ

where

Ωref ≡ 10π2

3H2
0

f3refAref . ð37Þ

By following the same derivation given in (29), the
population-averaged energy density amplitude for sources
distributed uniformly in volume between rmin and rmax is

hΩbi ¼ 3Ωref
r2refðrmax − rminÞ

r3max − r3min

: ð38Þ

The probability distribution of the amplitude of the energy
density of the bursts ΩbðrÞ has the same form as (31)

FIG. 3. Corner plot for the full version of the SSI analysis, combining the posteriors of 100 realizations of the data. The black lines
show the injected values of the parameters used for the simulated data, and the three shaded regions for the two-dimensional joint
posteriors correspond to 1σ, 2σ, and 3σ uncertainty levels. All parameters are recovered within a 1σ credible interval.
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pðΩbðrÞjhΩbiÞ ¼
hΩbiΩ1=2

b;maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 12Ωb;max=hΩbi

p
− 3

Ω−5=2
b ðrÞ;

ð39Þ

where Ωb;max ≡ΩbðrminÞ.
Thus, the signal segment likelihood used for SSI is given

by (15) (full) and (20) (reduced) with prior given by (39)
[i.e., πðΩb;IjhΩbiÞ ¼ pðΩbðrIÞjhΩbiÞ]. The integration
bounds are then Ωb;minðhΩbiÞ and Ωb;max where Ωb;min ¼
ΩbðrmaxÞ and rmax is written in terms of the population
parameter hΩbi, in the same manner as (30).
For reference, we note that the expected value of the

stochastic (optimally filtered) signal-to-noise ratio for a
segment that contains a GWB burst is

ρseg;stoch ¼
ffiffiffiffiffiffi
2T

p �Z
fhigh

flow

df
P2
bðfÞ

Pn1Pn2

�
1=2

; ð40Þ

where Pn1 and Pn2 are the power spectra of the noise in
each detector. Note that if the two detectors were not
colocated and coaligned, we would need to include a factor
of the overlap reduction squared in the numerator of the
integrand in (40). The above expression for ρseg;stoch is a
power signal-to-noise ratio, defined as the expected value
of the optimally filtered cross-correlation statistic divided
by its standard deviation (see, e.g., [24]).
As mentioned before, our stochastic-signal-based search

looks for a GWB consistent with a power spectrum of
spectral index −7=3, as expected for BBH mergers. In
contrast, the deterministic-signal-based search described in
Sec. II B (which we call DSI) looks for deterministic BBH
chirp waveforms, where the signal parameters of the
individual chirps must be marginalized over. We inject

intermittent, stochastic bursts with an f−7=3 power spec-
trum and duty cycle ξ ¼ 2.98 × 10−3. The parameters used
for the injection are displayed in Table I. We arbitrarily
choose the reference distance rref ¼ rmin. The value of Ωref
is chosen to be 2.61 (to be consistent with the parameters
chosen in Sec. IV C). With these parameters, the popula-
tion-averaged energy density amplitude of the bursts is
hΩbi ¼ 0.803. The noise is then set such that the average
SNR per segment, as computed with (40), is 5.04 to give a
total SNR of 3, as obtained by using (10). An example of
one stochastic burst is shown in Fig. 4 (left panel), along
with the corresponding average power spectral density of a
population of stochastic bursts (right panel).
We analyze our data with the reduced forms which

estimate the noise parameters of our stochastic-signal-
based search and the deterministic-signal-based search.
The exact form of the likelihood is given in Sec. III (with
coarse-graining factor M ¼ 16) and the Appendix, respec-
tively. The population parameter recovered by SSI is hΩbi
while the population parameter recovered by DSI is rmax.
Note, these are related by (38). In Fig. 5, we demonstrate
that DSI cannot recover the signal in the data, since no chirp
waveform exists. While this result is in a sense obvious, it
highlights the challenges that a deterministic-signal-based
search faces. Incorrectly modeling the waveforms of the
chirps could lead the search to overlook a signal which is
present. Conversely, SSI recovers both stochastic bursts of
GW power as well as deterministic waveforms, as we will
see in the next section.

C. Deterministic chirps

Finally, we consider multisample bursts of GWs pro-
duced by deterministic BBH chirp signals, for a uniform-
in-volume distribution of sources (27). The corresponding

FIG. 4. Left: Example of one stochastic burst in the time-domain. Right: Averaged power spectral density of a population of stochastic
burst signals as a function of frequency for the noise and signal separately, along with their theoretical predictions according to the
injected values.
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power spectrum will necessarily have an approximate f−7=3

frequency dependence. By using deterministic BBH chirp
signals, this analysis is more in line with the assumptions
made by the deterministic-signal-based search DSI.
We assume that all parameters defining the chirp wave-

forms except for the distances to the sources [e.g., the chirp
mass Mc ≡ ðm1m2Þ3=5=ðm1 þm2Þ1=5, the inclination
angle ι, the coalescence time tcol, and the phase of
coalescence within a segment] have fixed values and are
known a priori by the DSI search. For simplicity, we
choose the two component masses to be equal (i.e.,
m1 ¼ m2 ≡m); the inclination angle ι ¼ π=2 so that the
source is linearly polarized [i.e., hðtÞ ¼ hþðtÞ, h×ðtÞ ¼ 0];
the phase at coalescenceΦ0 to be zero; and the coalescence
time tcol to occur at the end of a segment, so tcol ¼ T, the
segment duration. For a source drawn from the population
with distance r, the explicit form for the simulated
deterministic chirp signal is given in the time domain
by [27]

hchirpðt; rÞ ¼
1

2r

�
GMc

c2

�
5=4
�
5

cτ

�
1=4

cos ½ΦðτÞ�; ð41Þ

where τ≡ tcol − t and

ΦðτÞ≡ −2
�
5GMc

c3

�
−5=8

τ5=8 þΦ0 ð42Þ

encodes the frequency evolution of the chirp,

fðtÞ≡ −
1

2π

d
dτ

ΦðτÞ ¼ 1

π

�
GMc

c3

�
−5=8

�
5

256

1

τ

�
3=8

: ð43Þ

The corresponding BBH chirp power spectrum is

Pchirpðr;fÞ¼
2

T
jh̃chirpðr;fÞj2≡AchirpðrÞ

�
f
fref

�
−7=3

; ð44Þ

where h̃chirp is the Fourier transform of the chirp waveform
and

AchirpðrÞ ¼ Aref
r2ref
r2

; ð45Þ

where

Aref ≡ 2

T
c2

4r2ref

�
5π

24

��
GMc

c3

�
5=3

ðπfrefÞ−7=3. ð46Þ

Note one can express the chirp PSD, Pchirp, in terms of
the fractional energy density of the chirps by using (2). For
reference, we note that the expected value of the deter-
ministic (matched-filter) signal-to-noise ratio for a segment
which contains a BBH chirp signal is [24]

FIG. 5. For intermittent, stochastic bursts with an f−7=3 power spectrum, we demonstrate recovery of our search (left) and compare it
to that of a deterministic-signal-based search (right). Our search recovers the injected signal parameters within a 1σ credible interval,
while DSI recovers the uniform prior on rmax and the lower boundary of the prior imposed on the duty cycle (ξ ¼ 10−4). Thus, the DSI
analysis finds no signal in the data.
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ρseg;det ¼
�
4
X2
μ¼1

Z
fhigh

flow

df
jh̃chirpðfÞj2

Pnμ

�1=2

¼
ffiffiffiffiffiffi
2T

p �X2
μ¼1

Z
fhigh

flow

df
PchirpðfÞ

Pnμ

�1=2
; ð47Þ

where Pnμ is the noise power spectral density in detector
μ ¼ 1, 2 [see (14)]. The above expression for ρseg;det is an
amplitude signal-to-noise ratio, defined as the expected
value of the matched-filter statistic divided by its standard
deviation. The quadrature sum takes into account the
contribution from using both detectors to do the analysis.
Figure 6 shows a plot of a representative BBH chirp

signal in the time -domain (left panel) and an average over
an ensemble of BBH chirp signals in the frequency domain
(right panel).
As mentioned in Sec. II A, the detection statistic in our

Bayesian framework is the Bayes factor where the models
in (7) are the signalþ noise model and the noise-only
model for a particular search. While SSC and SSI contain
the same noise model, the noise model in DSI does not take
the same form. Hence, the Bayes factors for the different
searches are not computed with respect to the same noise
model, and one cannot compare these methods with one
another in terms of the Bayes factor. Instead, we evaluate
how the intermittent nature of the signal impacts each
search method’s effectiveness in recovering the signal by
plotting the ln Bayes factor as a function of the duty cycle.
In other words, we wish to answer two questions: (i) How
well does SSI do in recovering the signal at different duty
cycles for a constant total stochastic signal-to-noise ratio?
and (ii) How well does DSI do in recovering the signal at
different duty cycles for a constant total deterministic

signal-to-noise ratio? The answers to the questions are
independent of one another and cannot be used as a way to
assess if one search is “better” than the other. However,
since SSC and SSI contain the same noise model, these
searches can be compared to one another using the Bayes
factor.
To assess the efficiency of the methods with respect to

their respective noise-only models, we simulate 40,000
segments of data with each segment being 4 s long. We
choose values of rmin ¼ 2 Mpc, rmax ¼ 5 Mpc, and the
black hole component masses to each be 30M⊙. These
parameters give a value of hΩbi ¼ 0.803. The parameters
used for this analysis are tabulated in the first nine columns
of the “Deterministic chirps” section in Table I. Thus, the
signal has the same strength as in Sec. IV B, but it is now
composed of deterministic chirps. The same coarse-grain-
ing factor and low- and high-frequency cutoffs that were
used in Sec. IV B are used for this case as well when
analyzing the data.
Figure 7 shows the ln Bayes factors for the stochastic-

signal-based searches (left panel) and for the deterministic-
signal-based search (right panel) as a function of the duty
cycle. Analogous to what was done in Sec. II A, the total
SNR is kept constant by adjusting the noise levels. For the
stochastic searches, we keep the total power SNR, com-
puted using (40), constant, while for the deterministic
search we keep the total amplitude SNR constant, obtained
using (47). We see that both intermittent searches (SSI and
DSI) perform well at low duty cycles, with values of the ln
Bayes factors reaching over 1000 for some of the smallest
values of the duty cycle considered.
To directly compare SSI with DSI, we run both analyses

on the same dataset. The data are generated such that
the duty cycle is 2.98 × 10−3, the signal is the same as

FIG. 6. Left: Example BBH chirp signal in the time domain as given by (41). Right: Averaged power spectral density of an ensemble
of BBH chirp signals as a function of frequency for the noise and signal separately, together with their theoretical predictions according
to the injected values.
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described above, and the noise variance is chosen such that
the average stochastic SNR per segment, computed using
(40), is equal to 5.04 and the total stochastic SNR is equal
to 3.0. Note for these values, the average deterministic SNR
per segment, computed using (47), is 13.20 with the total
deterministic SNR being 7.86, which is considerably larger
than the total stochastic SNR. Note these parameters are
displayed in the remaining columns of the “Deterministic
chirps” section of Table I. A comparison of the recovered
corner plots is shown in Fig. 8 (left panel). We see that for

these data, both searches recover the signal within a 1σ
credible interval, with the error bars for DSI much smaller
than SSI, due to the deterministic approach appropriately
modeling the chirp waveform of the signal. We also show a
comparison of one-dimensional (1D) posterior plots ofΩgw

in Fig. 8 (right panel). Similar to the corner plot, the
posterior width is smaller for DSI than SSI, although SSI
still performs better than SSC.
One notes a small bias in the recovery of Ωgw for SSI in

the right panel of Fig. 8. In Fig. 9 we show the relative

FIG. 8. Left: Posterior corner plot combined over 100 data realizations analyzed with SSI reduced (blue) and DSI reduced (green).
Both searches recover the injected signal parameters (ξ ¼ 2.98 × 10−3 and hΩbi ¼ 0.803) within a 1σ confidence interval. The
recovered values and error bars are those recovered by the SSI reduced search. Right: The 1D posterior plot of Ωgw samples from SSI
reduced (blue), SSC reduced (orange), and DSI reduced (green) constructed by combining posterior samples for ξ and hΩbi using (13).
Note, the inference done with the DSI likelihood gives posterior samples for the parameters ξ and rmax, and the values of rmax are then
converted to samples in hΩbi by (38), since the other variables in (38) are fixed and known.

FIG. 7. Plots of the ln Bayes factor averaged over 100 data realizations for SSC and SSI (left) and DSI (right) for deterministic chirp
signals occurring with various values of the duty cycle ξ. Both intermittent searches are well-suited for detecting signals with
a low duty cycle.
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difference of the injected value and the recovered value of
Ωgw as a function of ξ for the three searches, together with
the 1σ uncertainty band, after combining the posterior over
100 realizations of data. We note that the biased recovery is
not always toward higher values of Ωgw. We also note that
the width of the uncertainty for the DSI analysis improves
as ξ increases because the total deterministic SNR is not
held constant and increases.
To conclude, we give an estimate of the improvement in

time to detection of a GWB with our search. Note that this
estimate is computed under the assumptions adopted in this
paper and will therefore most likely differ for a realistic
detector configuration, with realistic detector noise. We
also note that the strength of the signal may affect these
values. Nevertheless, to obtain such an estimate, we
simulate a GWB consisting of deterministic chirps with
parameters hρseg;stochi¼2 (corresponding to hρseg;deti¼8.3)
and ξ ¼ 2.98 × 10−3. We then vary the number of data
segments and assess how many 4 s segments are needed to
reach a threshold value of the ln Bayes factor which is large
enough to claim a detection. We define this threshold to be
of value 12.5, corresponding to a detection of SNR equal to
5. This is shown in the right panel of Fig. 9 for SSI and
SSC. Due to the large difference in deterministic and
stochastic SNR, the ln Bayes factor for DSI already reaches
∼160 at the first value of Nseg considered. We therefore do
not include DSI on this plot to avoid scaling issues. We
estimate that the SSC search would cross this threshold
after 650, 000 segments of data. This corresponds to a
factor of ∼54 improvement in detection of SSI versus SSC
for these parameters and assumptions.

V. DISCUSSION

Developing data-analysis techniques to reduce the time
to detection of an astrophysical GWB with the LVK
detectors is one of the current challenges that the GW
community faces. Searches that include the intermittency of
the BBH background to improve detection statistics have
been proposed in the past [18,19,28,29]. In this work, we
propose a new, stochastic search for intermittent GWBs and
compare its efficiency with other searches. Our stochastic-
based search looks for excess cross-correlated power in
short stretches of data, ignoring the deterministic form of
the GW signal waveforms and, hence the need to margin-
alize over all the associated signal parameters, as is done in
the deterministic-signal-based approach of Smith and
Thrane [19]. Not only is it beneficial to develop multiple
searches in order to cross-check a potential detection, but
there is an added benefit to running a search which does not
look for a specific waveform in the data. The stochastic
signal model allows our search to be flexible with respect to
the type of signal it can detect. By changing the spectral
index α in the search (or by allowing α to be inferred as a
population parameter) we could detect other intermittent
signals which might exist in the data.
For a series of analyses on data of increasing complexity,

we show that for data with low duty cycles our search
performs better than the standard continuous cross-
correlation search,which does not take the intermittent nature
of the BBH background into account. Furthermore, we show
that a stochastic search for intermittentGWBs ismore flexible
to the source of the intermittent GWB than our implementa-
tion of the Smith and Thrane approach [19] and should be

FIG. 9. Left: Comparison of recovered values to the injected value of Ωgw for SSI reduced (blue), SSC reduced (orange), and DSI
reduced (green) for different values of the duty cycle. All injected parameters are equivalent to the parameters used in the left panel of
Fig. 7, and the recovered values are those after combining 100 realizations of data. The shaded regions represent the 1σ credible interval
of the combined 100 realizations of data. Right: ln Bayes factor vs Nseg for data with hρseg;stochi ¼ 2 and ξ ¼ 2.98 × 10−3. We define a
detection threshold of lnB ¼ 12.5. SSI crosses this threshold after ∼12; 000 segments of data, while SSC crosses this threshold after
∼650; 000 segments of data, corresponding to a factor of improvement in detecting the signal of roughly 54 for SSI relative to SSC.
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more computationally efficient in detecting a signal. The
detection of an intermittent background will allow us to test
existing theoretical models, as described in [30,31].
Before being able to apply this search method on real

GW data, further generalizations need to be made. We give
several examples of such generalizations, which will be
addressed in future work.
For all of our data in this paper, we only simulate signals

which lie completely within the segment boundaries. A
crucial next step is investigating how a signal which
extends past a segment boundary will impact our results.
In addition, the distribution of the injected signals was

used in the Bayesian inference as the segment-dependent
prior. Since a poorly chosen prior could bias results, more
investigations will need to be done in order to determine a
reasonable prior to use for inference on real data.
Further, the most realistic data we consider consists of

individual BBH chirps injected in white, Gaussian noise.
However, various assumptions were made about the source
distribution that generates these chirps. For example, the two
component masses were chosen to be equal, and the
resulting chirp mass chosen to be identical for all the chirps
(with only the distance to the source varying from one data
segment to another). In reality, the black hole masses will
most likely follow a power-lawþ peak distribution as shown
by the latest LVK results [4]. Generalizing our method to
allow for suchmass distributions, as well as the performance
of our search in that case, is left for future work.
Several simplifications regarding the detectors were

made as well. First, we worked under the assumption that
the detectors are colocated and coaligned. This needs to be
generalized by taking into account the effect of the overlap
reduction function. Second, it was assumed that the noise in
the detector is white and Gaussian. However, realistic
detector noise follows a colored, i.e., frequency-dependent,
power spectral density. An additional complication related
to noise estimation arises from the presence of a continuous
GWB of BNS mergers. At any time, several BNS mergers
are expected to be emitting GWs in the LVK frequency
band. Not only does this violate the assumption that a
segment contains either one signal or noise only, but it will

also affect the noise PSD estimation. Challenges related to
the correct noise estimation will be addressed in future
work. Furthermore, the Gaussian noise assumption will
likely be violated as well, due to the presence of noise
transients, so-called glitches. During the third observing
run of the LVK Collaboration, these glitches were omni-
present in the data [21,32]. Therefore, before analyzing real
detector data, the sensitivity of our search to the presence of
such glitches will have to be investigated. Analyzing real
detector data will introduce many challenges, which we
plan to address incrementally, considering more and more
realistic detectors and signals.
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APPENDIX: LIKELIHOODS

Throughout this work, various searches for GWBs are
compared. In this appendix, we provide the likelihoods
corresponding to those searches. We start by giving an
overview of the likelihoods used in Sec. IVA, i.e.,
applicable to white signals, and conclude with the like-
lihoods for colored signals used in Secs. IV B and IV C. We
also remind the reader that all likelihoods considered in this
work are for stationary, white-Gaussian noise [see (14)].

1. Likelihoods for white signals

a. SSC-full

For white signals, we define the likelihood functions for
a continuous stochastic search (SSC-full) as [23]

Lðdjσ2gw; σ2n1 ; σ2n2Þ ¼
YNseg

I¼1

1

ð2πÞNðσ21σ22 − ðσ2gwÞ2ÞN=2 exp

�
−
1

2

N
ðσ21σ22 − ðσ2gwÞ2Þ

½σ̂21;Iσ22 þ σ̂22;Iσ
2
1 − 2σ̂2gw;Iσ

2
gw�
�
; ðA1Þ

where

σ21 ≡ σ2n1 þ σ2gw; σ22 ≡ σ2n2 þ σ2gw; ðA2Þ

are parameters describing the total autocorrelated power in
detectors 1 and 2, and

σ̂21;I ≡ 1

N

X
i

d21;Ii; ðA3aÞ

σ̂22;I ≡ 1

N

X
i

d22;Ii; ðA3bÞ

σ̂2gw;I ≡ 1

N

X
i

d1;Iid2;Ii ðA3cÞ
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are the quadratic combinations of the data from segment I
that enter the likelihood function. (Here, i labels the time
sample in data segment I.) The noise variances in each
detector areσ2n1 andσ

2
n2 . It turns out that σ̂

2
1;I , σ̂

2
2;I , σ̂

2
gw;I are the

maximum-likelihood estimates of σ21, σ
2
2, σ

2
gw for segment I.

b. SSC-reduced

For a large number of samples per segment (N ≫ 1), one
can define a reduced version of the likelihood function,
which is given by [23]

Lðdjσ2gw; σ̄2n1 ; σ̄2n2Þ

¼
YNseg

I¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πvarðσ̄2gwÞ

q exp

�
−
ðσ̂2gw;I − σ2gwÞ2
2varðσ̄2gwÞ

�
; ðA4Þ

where

varðσ̄2gwÞ≡ 1

N
σ̄21σ̄

2
2; ðA5Þ

with

σ̄21 ≡ 1

Ntot

X
I;i

d21;Ii; σ̄22 ≡ 1

Ntot

X
I;i

d22;Ii ðA6Þ

being estimates of the total autocorrelated power in the two
detectors constructed from all the data. We expect SSC-
reduced and SSC-full to perform equally well, assuming
N ≫ 1, which is needed for the cross-correlation data to be
approximately Gaussian.

c. SSI-full

For our proposed stochastic search for intermittent
GWBs, we build upon the framework of Drasco and
Flanagan [18] and extend their proposed formalism to a
larger number of samples per segment (N ≫ 1) and allow
for the amplitudes to be drawn from a uniform-in-volume
distribution. The likelihood takes the same form as (3),
where the segment-dependent signal and noise likelihoods
are now, respectively, given by

LsðdIjhσ2bi; σ2n1 ; σ2n2Þ ¼
Z

σ2b;max

σ2b;minðhσ2biÞ
dσ2b;Iπðσ2b;Ijhσ2biÞ

1

ð2πÞNðσ21;Iσ22;I − ðσ2b;IÞ2ÞN=2

× exp

�
−
1

2

N
ðσ21;Iσ22;I − ðσ2b;IÞ2Þ

½σ̂21;Iσ22;I þ σ̂22;Iσ
2
1;I − 2σ̂2b;Iσ

2
b;I�
�
; ðA7Þ

LnðdIjσ2n1 ; σ2n2Þ ¼
1

ð2πÞNðσ2n1σ2n2ÞN=2 exp

�
−
N
2

�
σ̂21;I
σ2n1

þ σ̂22;I
σ2n2

��
; ðA8Þ

where

σ̂2b;I ≡ 1

N

X
i

d1;Iid2;Ii; ðA9aÞ

σ̂21;I ≡ 1

N

X
i

d21;Ii; ðA9bÞ

σ̂22;I ≡ 1

N

X
i

d22;Ii: ðA9cÞ

In the above expression for the signal likelihood, we used

σ21;I ≡ σ2n1 þ σ2b;I; σ22;I ≡ σ2n2 þ σ2b;I; ðA10Þ

which are parameters describing the segment-dependent
total autocorrelated power, with the segment dependence
coming from the burst variance σ2b;I .
Note that the segment-dependent signal likelihood

requires a marginalization over the segment-dependent

burst variances σ2b;I, which is taken into account by the
appropriate use of prior distribution, as introduced in (31),

πðσ2b;Ijhσ2biÞ¼
hσ2biðσ2b;maxÞ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3þ12σ2b;max=hσ2bi
q

−3
ðσ2b;IÞ−5=2; ðA11Þ

where

σ2b;minðhσ2biÞ ¼
2σ2b;max

6σ2b;max=hσ2bi − 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 12σ2b;max=hσ2bi

q ;

ðA12Þ

and

σ2b;max ¼ σ2ref
r2ref
r2min

ðA13Þ
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are the limits of integration, which depend on the fixed
(known) parameter rmin and the (unknown) population-
averaged variance hσ2bi.

d. SSI-reduced

Similar to the case of SSC, one can define a reduced
version of the SSI likelihood, provided the number of
samples per segment N is large. The segment-dependent
signal likelihood still requires a marginalization over the
segment-dependent burst variances σ2b;I:

LsðdIjhσ2bi; σ̄2n1 ; σ̄2n2Þ¼
Z

σ2b;max

σ2b;minðhσ2biÞ
dσ2b;Iπðσ2b;Ijhσ2biÞ

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πvarðσ̄2b;IÞ
q exp

�
−
ðσ̂2b;I−σ2b;IÞ2
2varðσ̄2b;IÞ

�
;

ðA14Þ

where the prior and limits of integration are the same as
those used for SSI-full. In addition,

varðσ̄2b;IÞ≡ 1

N
σ̄21;I σ̄

2
2;I ðA15Þ

with

σ̄21;I ≡ σ̄2n1 þ σ2b;I; σ̄21;I ≡ σ̄2n2 þ σ2b;I; ðA16Þ

where we estimate the white noise variances from the
autocorrelated and cross-correlated power in the two
detector outputs using the full set of data:

σ̄2gw ≡ σ̂2gwθðσ̂2gwÞ; ðA17aÞ

σ̄2n1 ≡ ðσ̂21 − σ̄2gwÞθðσ̂21 − σ̄2gwÞ; ðA17bÞ

σ̄2n2 ≡ ðσ̂22 − σ̄2gwÞθðσ̂22 − σ̄2gwÞ; ðA17cÞ

where

σ̂2gw ≡ 1

Ntot

X
I;i

d1;Iid2;Ii; ðA18aÞ

σ̂21 ≡ 1

Ntot

X
I;i

d21;Ii; ðA18bÞ

σ̂22 ≡ 1

Ntot

X
I;i

d22;Ii: ðA18cÞ

In the above expressions, θðxÞ is the usual Heaviside step
function, which is defined as θðxÞ ¼ 0 or 1 depending on
whether x < 0 or x > 0, and the hatted quantities σ̂2gw, σ̂21,
σ̂22 are the quadratic combinations of the data in the two
detectors. This simplification is possible since the simu-
lated noise is stationary.
The segment-dependent noise likelihood LnðdIjσ̄2n1 ; σ̄2n2Þ

is given as before by

LnðdIjσ̄2n1 ; σ̄2n2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2πσ̄2n1 σ̄

2
n2

s
exp

�
−
N
2

ðσ̂2b;IÞ2
σ̄2n1 σ̄

2
n2

�
: ðA19Þ

2. Likelihoods for colored signals

The signal and noise dependent likelihoods for SSI are
specified in Sec. III for both the full (infer noise parameters)
and reduced (use estimated noise parameters) analyses.
When analyzing stochastic bursts (Sec. IV B) and determin-
istic chirps (Sec. IV C), the segment prior and integration
bounds are specified in (39) and the subsequent paragraph.

a. SSC-full

For the continuous search, SSC, the full likelihood is
specified by

LðdjΩgw; σ2n1 ; σ
2
n2Þ ¼

YNseg

I¼1

Y
k

1

ðπT=2Þ2MðP1ðfkÞP2ðfkÞ − P2
gwðfkÞÞM

× exp

�
−

M
ðP1ðfkÞP2ðfkÞ − P2

gwðfkÞÞ
½P̂1;IkP2ðfkÞ þ P̂2;IkP1ðfkÞ − 2P̂gw;IkPgwðfkÞ�

�
; ðA20Þ

where

P1ðfÞ≡ Pn1ðfÞ þ PgwðfÞ;
P2ðfÞ≡ Pn2ðfÞ þ PgwðfÞ; ðA21Þ

with

Pn1ðfÞ≡
σ2n1

ðfhigh − flowÞ
; ðA22aÞ

Pn2ðfÞ≡
σ2n2

ðfhigh − flowÞ
; ðA22bÞ

PgwðfÞ≡ΩgwHðfÞ; ðA22cÞ
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and HðfÞ is given by (17). Note that the population
parameter for SSC isΩgw, the time and population-averaged
energy density amplitude. In addition, the data enter the
signal evidence via the same quadratic combinations as for
SSI-full [see (18)], but with the cross-correlation combina-
tion now defining P̂gw;Ik as opposed to P̂b;Ik.

b. SSC-reduced

For SSC-reduced, we have [23]

LðdjΩgw; σ̄2n1 ; σ̄
2
n2Þ ¼

YNseg

I¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πvarðΩ̄gwÞ

q

× exp

�
−
ðΩ̂gw;I − ΩgwÞ2
2varðΩ̄gwÞ

�
; ðA23Þ

where

Ω̂gw;I ≡
P

kQðfkÞP̂gw;IkP
k0Qðfk0 ÞHðfk0 Þ

;

varðΩ̄gwÞ≡
�
2M
X
k

QðfkÞHðfkÞ
�

−1
ðA24Þ

are the optimally filtered cross-correlation estimators and
corresponding variances, which are constructed from
coarse-grained estimates of the cross-correlated power
P̂gw;Ik, and the optimal filter function

QðfÞ≡ HðfÞ
P̄1ðfÞP̄2ðfÞ

: ðA25Þ

In the above expression,

P̄1ðfÞ≡ σ̄2n1
ðfhigh − flowÞ

þ Ω̄gwHðfÞ;

P̄2ðfÞ≡ σ̄2n2
ðfhigh − flowÞ

þ Ω̄gwHðfÞ; ðA26Þ

where σ̄2n1 and σ̄2n2 are measured estimates of the detector
noise power as defined in (A16) and Ω̄gw is related to σ̄2gw
[also defined in (A16)] via

Ω̄gw ¼ 4

3

σ̄2gw
fref

�
3H2

0

10π2
1

f3ref

�
−1
��

fref
flow

�
4=3

−
�
fref
fhigh

�
4=3
�
−1
:

ðA27Þ

This last equation follows from the general relation
between variance and power spectrum,

σ2gw ≡
Z

fhigh

flow

dfPgwðfÞ ¼ Ωgw

Z
fhigh

flow

dfHðfÞ

¼ Ωgw

�
3H2

0

10π2
1

f3ref

�Z
fhigh

flow

df

�
f
fref

�
−7=3

: ðA28Þ

c. DSI-full

We also analyze the colored data with DSI, our much simpler implementation of the deterministic-signal-based search.
Following [19] for two detectors, we define the DSI segment-dependent signal likelihood to be

LsðdIjrmax; σ2n1 ; σ
2
n2Þ ∝

Z
rmax

rmin

drIπðrIjrmaxÞ exp
�
−
1

2
ð4ΔfÞ

X
k

X
μ¼1;2

jðd̃μ;Ik − h̃chirpðrI;fkÞÞj2
Pnμ

�
; ðA29Þ

where d̃μ;Ik and h̃chirpðrI; fkÞ are the Fourier transforms of the data and chirpwaveform, respectively, with all of the other chirp
parameters assumed to be known a priori. In the above signal evidence, we are marginalizing over the segment-dependent
source distance rI , which is drawn from a uniform-in-volume distribution πðrIjrmaxÞ as given by (27).
By taking h̃chirpðrI; fkÞ ¼ 0 (corresponding to no signal in the data) the corresponding segment-dependent noise

likelihood is

LnðdIjσ2n1 ;σ2n2Þ∝exp

�
−
1

2
ð4ΔfÞ

X
k

X
μ¼1;2

jd̃μ;Ikj2
Pnμ

�
: ðA30Þ
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d. DSI-reduced

For the reduced implementation, we substitute the noise parameters with the autocorrelated power estimates which give

LsðdIjrmax; σ̄2n1 ; σ̄
2
n2Þ ∝

Z
rmax

rmin

drIπðrIjrmaxÞ exp
�
−
1

2
ð4ΔfÞ

X
k

X
μ¼1;2

jðd̃μ;Ik − h̃chirpðrI; fkÞÞj2
P̄nμ

�
ðA31Þ

and

LnðdIjσ̄2n1 ; σ̄2n2Þ∝ exp

�
−
1

2
ð4ΔfÞ

X
k

X
μ¼1;2

jd̃μ;Ikj2
P̄nμ

�
ðA32Þ

for the segment-dependent signal and noise likelihoods, respectively.
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