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Neutrino-neutrino forward scatterings potentially induce collective neutrino oscillation in dense neutrino
gases in astrophysical sites such as core-collapse supernovae (CCSNe) and binary neutron star mergers
(BNSMs). In this paper, we present a detailed study of fast neutrino-flavor conversion (FFC), paying
special attention to asymptotic states, by means of stability analysis and local simulations with a periodic
boundary condition. We find that asymptotic states can be characterized by two key properties of FFC:
(1) the conservation of lepton number for each flavor of neutrinos and (2) the disappearance of ELN
(electron neutrino-lepton number)-XLN (heavy-leptonic one) angular crossings in the spatial- or time-
averaged distributions. The system that initially has the positive (negative) ELN-XLN density reaches a
flavor equipartition in the negative (positive) ELN-XLN angular directions, and the other part compensates
it to preserve the conservation laws. These properties of FFCs offer an approximate scheme determining the
survival probability of neutrinos in asymptotic states without solving quantum kinetic equations. We also
demonstrate that the total amount of flavor conversion can vary with species-dependent neutrino
distributions for identical ELN-XLN ones. Our results suggest that even shallow or narrow ELN angular
crossings have the ability to shuffle large amount of neutrinos among flavors through FFC in the angular
directions where neutrinos are more abundant, indicating the need for including the effects of FFCs in the
modeling of CCSN and BNSM.
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I. INTRODUCTION

A copious amount of neutrinos are emitted from inner
regions of core-collapse supernovae (CCSNe) and binary
neutron star mergers (BNSMs). Their inner dynamics are
sensitive to neutrino physics, including neutrino-matter
interactions, energy/momentum/lepton transport, and fla-
vor conversion. Quantifying the impact of each element is
one of the major tasks in developing theoretical models of
CCSNe and BNSMs.
Neutrinos can change their flavors during the propaga-

tion, which may affect fluid dynamics and nucleosynthesis
in CCSNe and BNSMs through neutrino-matter inter-
actions. In environments with dense neutrino media,
refractive effects by neutrino self-interactions play non-
negligible roles in flavor conversions or even become
dominant in the neutrino oscillation Hamiltonian. This
potentially leads to collective neutrino oscillation [1–7].
The oscillation frequency increases with the neutrino
number density, and the wavelength can be much shorter
than the scale height of the stellar structure. In the last two
decades, slow instability (or slow flavor conversion), which

occurs by interacting between vacuum and self-interaction
potentials, has been studied and exhibited dramatic flavor
conversions [8–11]. The slow flavor conversion is, however,
suppressed by dense background matter due to the relatively
slow oscillation scale [12–14]. It suggests that the flavor
conversion does not occur in the vicinity of neutrino spheres,
and the impact on CCSNe and BNSMs seems subtle.
Although removing assumptions of symmetries, which have
been commonly imposed in the traditional approach, alle-
viates the suppression, recent numerical simulations suggest
that the matter suppression is still dominant in the inner
region of CCSNe and BNSMs [15–21].
Recently, fast neutrino-flavor conversion (FFC) has

received significant attention. It evolves independently
from vacuum potential, and the flavor conversion is purely
dictated by self-interaction potentials. The timescale of the
fast instability can be much shorter than the slow one, and
therefore the large flavor conversion may happen even
inside neutrino spheres [22–28]. The necessary and suffi-
cient condition for the occurrence of FFC is equivalent to
the presence of angular crossings with respect to ðfνα −
fν̄αÞ − ðfνβ − fν̄βÞ [29,30] (hereafter called ELN-XLN
angular crossings), where fνα and fν̄α denote the distribution
function of α-type flavor neutrinos and their antipartners,*zaizen@heap.phys.waseda.ac.jp
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respectively. In the context of CCSN and BNSM, the
three-species treatment (νe, ν̄e, and νX), corresponding to
the condition that heavy-leptonic flavors have identical
distributions, is a reasonable approximation (but see
Refs. [31,32]). As a result, the stability condition can be
essentially reduced to the presence of crossings in the
electron-neutrino lepton number (ELN) angular distribution
(see, e.g., Refs. [33–37]). This motivated ELN crossing
searches in neutrino data of recent simulations. These studies
indicate that FFC likely occurs in CCSN [38–48] and in
BNSM [49–53]. This exhibits the importance of studying the
nonlinear regime of FFC.
Studying flavor evolution in the nonlinear phase requires

directly solving a quantum kinetic equation (QKE). At the
moment, global simulations of QKEs are far from achieved
due to computational limitations, and therefore recent
efforts for FFC have focused on local simulations [54–
58], particularly under spatially inhomogeneous perturba-
tions [59–69]. References [60–62] have confirmed that the
system reaches a quasisteady state with a flavor equiparti-
tion, which was concluded to be induced by flavor
depolarization within the spatial domain. Reference [63]
has revealed that the interactions among flavor waves
develop the small-scale structures by employing several
initial asymmetric number density ratios of ν̄e to νe and
different initial perturbation. Reference [67] has presented
that nonlinear couplings among spatial Fourier modes
develop a cascade and the excited modes are transferred
from linear ones according to the dispersion relation into
the smaller-scale ones. Reference [65] has performed FFC
simulations with three-spatial dimensions and shown that
the saturation behaviors are less affected compared to the
linear growth. All of local simulations on inhomogeneous
FFC have similarly exhibited the common and attractive
phenomenon, a flavor equipartition in neutrino angular
distributions. Although there has been significant progress
in developing numerical simulations, our physical under-
standing of the nonlinear dynamics of FFC is still limited.
Some key questions remain unanswered: What ingredients
characterize the quasisteady state (see also Refs. [60–63])?
How do neutrino-matter interactions (collision term) alter
dynamics of flavor conversions (see also Refs. [70–78])? Is
there any qualitative difference in the quasisteady state
between local and global scales (see also Refs. [79,80])?
Answering these questions requires a complementary
analysis shining the spotlight on key quantities character-
izing the nonlinear dynamics of flavor conversion.
In this paper, we explore detailed features of asymptotic

states of FFC by means of stability analysis and local
simulations with a periodic boundary condition. This study
also provides the rationale for the results of our previous
works; flavor conversions reach a quasisteady state in
which ELN-XLN angular crossings disappear [79,80];
how the boundary condition of the simulation box has
an influence on the asymptotic state [81], which is
associated with a conservation law of ELN and heavy

leptonic number (XLN). Based on these arguments, we
provide an approximate scheme to determine the asymp-
totic states of FFC for a periodic boundary condition, which
is in reasonable agreement with numerical simulations.1

The paper is organized as follows. We describe two
requirements determining the final fates of local FFC in
terms of the stability analysis and the conservation laws in
Sec. II. We then present how FFC eliminates the angular
crossings and establishes a quasisteady state in Sec. III. In
Sec. IV, we compare our phenomenological model to
previous studies, which highlights the novelty of the present
study. Finally, we conclude and discuss our study in Sec. V.

II. CHARACTERIZATION
OF FLAVOR EVOLUTION

We can obtain the flavor evolution by directly calculating
the nonlinear QKE for the neutrino self-interactions. At
first, we will analyze what characterizes the behaviors of
FFC before performing the nonlinear simulation.

A. Stability analysis for asymptotic state

Neutrino flavor conversions can be described by a QKE
for density matrices of neutrinos:

ð∂t þ v ·∇Þρ ¼ −i½H; ρ� þ C: ð1Þ

Here we consider the plane-parallel geometry to drop the
advection term of neutrino angular directions in the
momentum space. The Hamiltonian H of neutrino oscil-
lations is

H ¼ U
M2

2E
U† þ vμΛμ þ

ffiffiffi
2

p
GF

Z
dΓ0vμv0μρ0; ð2Þ

where Γ specifies the neutrino energy E and the flight
direction v. Following the same convention as Ref. [82], the
phase-space integration is

R
dΓ ¼ Rþ∞

−∞ dEE2
R
dv=ð2πÞ3.

In the first term,M2 and U denote the mass-squared matrix
and the Pontecorvo-Maki-Nakagawa-Sakata matrix, res-
pectively. The second term represents matter-induced
oscillation, where vμ ¼ ð1; vÞ and Λμ ¼

ffiffiffi
2

p
GFdiag½fjlμg�.

In the study, we ignore the collision term for simplicity.
For an effective two-flavor scenario, we can decompose

the density matrix at a certain space-time position ðt; xÞ into
the trace- and traceless parts as

ρðt; xÞ ¼ Trρ
2

12 þ
fνe − fνx

2

�
s S

S� −s

�
; ð3Þ

where s is a real number, S is a complex one, and fνα is an
occupation number density for a flavor α. We note that time

1In our previous paper [80], we provide the same approximate
scheme but for the Dirichlet boundary condition.
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dependence of the traceless part [the second term in the
right-hand side of Eq. (3)] is handled by s and S in our
method, indicating that the prefactor [ðfνe − fνxÞ=2] can be
determined arbitrarily. In this study, we adopt spatial-
averaged distributions at the beginning of each simulation
(t ¼ 0). On the other hand, all time- and spatial dependence
in the trace part [the first term in the right-hand side of
Eq. (3)] is handled by Trρ (which does not affect flavor
conversion, though). We define a spatial-averaged spectral
difference between νe and νx at t ¼ 0 as

gE;v ¼
�
fνe − fνx for E > 0

fν̄x − fν̄e for E < 0
: ð4Þ

By using these variables, the governing equation for S
(the off-diagonal component of the traceless part) can be
written as

ivμ∂μSE;v ¼ −ωV cos 2θVSE;v − ωV sin 2θVsE;v

þ vμðΛ11
μ − Λ22

μ ÞSE;v
þ SE;vvμ

Z
dΓ0 v0μgE0;v0sE0;v0

− sE;vvμ
Z

dΓ0 v0μgE0;v0SE0;v0 ; ð5Þ

while

ivμ∂μsE;v ¼
ωV

2
sin 2θVðS�E;v − SE;vÞ

þ 1

2
S�E;vv

μ

Z
dΓ0 v0μgE0;v0SE0;v0

−
1

2
SE;vvμ

Z
dΓ0v0μgE0;v0S�E0;v0 ð6Þ

is the equation for s (the diagonal component). In the
expression, ωV and θV denote a vacuum frequency and a
mixing angle, respectively. It should be stressed that any
approximations are not imposed in deriving Eqs. (5) and (6)
from QKE.
Below, let us prepare the stability analysis in the non-

linear phase. In the linear regime (under the choice of fixed
points as flavor eigenstates), the diagonal term is given by
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jSj2

p
≃ 1, which can be directly inserted to

Eq. (5), and then we can obtain the dispersion relation
for S with the plane wave ansatz. In the nonlinear regime,
however, s would substantially deviate from unity, and
more importantly it depends on time and space, which
causes mode couplings [in other words, we need to
compute the convolutions of S with s, see Eq. (26)]. It
should also be mentioned that the stability needs to be
determined globally if the background component is not
uniform. These are the main obstacles to deriving
dispersion relation for S in the nonlinear regime.

In our prescription, we drop the mode coupling by
assuming that s is constant (but not unity). One may choose
s as that at ðt; xÞ, i.e., the space-time location where the
stability analysis is conducted. Another prescription is to
adopt the spacial- or time-averaged quantity. In fact, we are
interested in the overall trend of nonlinear saturation and
quasisteady state of flavor conversion, which can be
characterized by those averaged distributions. In the fol-
lowing, we leave the notation as s but need to keep in mind
this assumption.
We adopt the plane wave ansatz to S,

SE;vðt; xÞ ∝ QE;vðΩ;KÞe−iðΩt−K·xÞ; ð7Þ

and then the governing equation for SE;v can be recast into

vμkμQE;v ¼ −ωVQE;v − sE;vvμ
Z

dΓ0 v0μgE0;v0QE0;v0 ; ð8Þ

where kμ ≡ ðω; kÞ ¼ Kμ − Λex
μ −Φex

μ with Λex ≡ Λ11 −
Λ22 and Φex

μ ¼ R
dΓvμgE;vsE;v. In a corotating frame where

the vacuum term oscillates quickly and the off-diagonal
terms are averaged to zero by the matter term, the mixing
angle θV can be set to zero. As a result, the nontrivial
solutions for QE;v are given by, using the metric
η ¼ diagðþ;−;−;−Þ,

Dðω; kÞ≡ det ½ΠμνðkÞ� ¼ 0; ð9Þ

where

Πμν ¼ ημν þ
Z

dΓ gE;vsE;v
vμvν

vλkλ þ ωV
: ð10Þ

We note that ωV dependence accounts for the slow flavor
conversion. It may be useful to rewrite Eq. (10) as

Πμν ¼ ημν þ
Z

dΓ gexE;vðt; xÞ
vμvν

vλkλ þ ωV
; ð11Þ

where

gexE;vðt; xÞ ¼ ðPeegeE;v þ PxegxE;vÞ − ðPexgeE;v þ PxxgxE;vÞ;
¼ ðPee − PexÞgE;v;
¼ gE;vsE;vðt; xÞ: ð12Þ

In the expression, we use the relation of Pex ¼ ð1− sE;vÞ=2,
where Pαβ is defined as a transition probability from α-type
flavor at the initial state to β-type one at t. If there is a
nonzero imaginary part in kμ, then the flavor instability SE;v
can grow or dump in space and time.
FFC can be driven only by the neutrino self-interactions,

and we can ignore the vacuum term. In the fast limit,
ωV ¼ 0, the density matrix loses the explicit energy
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dependence in the QKE, and therefore Eq. (11) can be more
concisely rewritten. We define an α-flavor lepton number
(αLN) angular distribution

Gα
v ¼

ffiffiffi
2

p
GF

Z
∞

0

dEE2

2π2
½fναðE; vÞ − fν̄αðE; vÞ� ð13Þ

and the differenceGαβ
v ≡ Gα

v − Gβ
v between α and β flavors.

The dispersion relation only for fast instability is reduced to

Dðω; kÞ≡ det ½ΠμνðkÞ� ¼ 0; ð14Þ

where

Πμν ¼ ημν þ
Z

dv
4π

Gex
v ðt; xÞ v

μvν

vλkλ
: ð15Þ

For the stability with respect to the spatial- or time-
averaged distributions, we use the averaged quantity of
Gex

v ðt; xÞ in Eq. (15).
A few remarks should be made here. The dispersion

relation is essentially the same as that used in linear
stability analysis. In fact, the growth (or damp) of S is
determined solely by the diagonal components of the
density matrix. Based on the same argument made by
Ref. [29], the stability can be determined by the presence of
ELN-XLN crossings even in the nonlinear phase,2 sug-
gesting that ELN-XLN angular distributions are funda-
mental quantities to characterize the dynamics of flavor
conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN
angular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

ið∂t þ vz∂zÞρv ¼ ½Hνν; ρv�;
¼ ½HE; ρv� − ½vzHF; ρv�; ð16Þ

where

HE ¼
ffiffiffi
2

p
GF

Z
dΓ0 ρv0 ; ð17Þ

HF ¼
ffiffiffi
2

p
GF

Z
dΓ0 v0zρv0 : ð18Þ

Moreover, integrating the QKE over the phase space, we
can obtain

∂tHE þ ∂zHF ¼ 0; ð19Þ

which has a conservative form without source terms. Note
that the neutrino density is not locally conserved due to the
advection (flux) term. Both ELN and XLN are conserved in
terms of spatially integrated quantity because the neutrino
flux on the boundary surface is closed in the periodic case.
Therefore, flavor conversion proceeds with satisfying the
ELN and XLN conservation and eventually reaches a
nonlinear saturation. In other words, FFC transfers the
number density from the positive (negative) part to the
negative (positive) and saturates when the angular distri-
butions are wholly positive (negative) or zero. These
properties offer a simple analytic prescription to determine
an asymptotic state of FFC, which will be discussed in the
next subsection.
Here, let us make an important remark. The spatial-

integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a different asymptotic state; in
fact we observed that the system settled into a qualitatively
different quasisteady state for the Dirichlet boundary
condition, see Refs. [80,81].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipartition
in some angular regions, which is determined as follows.3

If the total number density,
R
dvðELN − XLNÞ, is positive,

flavor conversion proceeds until the achievement of flavor
equipartition on the angular parts with negative lepton
number. In the other angular part, the ELN and XLN are
adjusted so as to satisfy the number conservation of ELN
and XLN. If the total number density is negative, flavor
equipartition is achieved on the positive part, and then the
conservation of ELN and XLN is adjusted in the negative
one. Note that if the total number density of ELN-XLN is
zero, then complete flavor equipartition is established in the
entire angular distribution, which is consistent with the
result in [63].
Following the above consideration, we develop an

approximate scheme. The negative ELN-XLN part A and
positive one B are defined as

2However, a homogeneous mode can be stable even if there
exists ELN-XLN crossing. This is simply because unstable
solutions possibly appear only in inhomogeneous modes. Never-
theless, ELN-XLN angular distributions are key quantities to
characterize the stability of FFC.

3In this study, we assume that there is a single ELN-XLN
crossing in initial angular profiles. The study of multiple ELN
crossings is currently underway and will be reported in a
forthcoming paper.
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A≡
����
Z
Gex

v <0

dv
4π

Gex
v

����; ð20Þ

B≡
����
Z
Gex

v >0

dv
4π

Gex
v

����: ð21Þ

When the total number density of ELN-XLN is positive,
B − A > 0, the number density corresponding to A=2 is
transferred from the ELN to the XLN in the negative ELN-
XLN directions to establish a flavor equipartition. On the
other hand, the same amount of number density is con-
verted from the positive ELN-XLN parts to sustain the
conservation for ELN (and XLN). Consequently, in the
positive part, the number density A=2 is subtracted from the
positive number density B and distributed into the XLN.
Thereby, the survival probability of electron-type neutrinos
can be analytically estimated as the following simple
boxlike formulas:

Pee ¼
�
p for Gv < 0

1 − ð1 − pÞ AB for Gv > 0
; ð22Þ

where p is a survival probability in the negative ELN-XLN
part and becomes p ¼ peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1=2 for two-flavor
of neutrinos (see below for the case with a three-flavor
framework). For the negative case, B − A < 0, considering
the opposite, we obtain

Pee ¼
�
p for Gv > 0

1 − ð1 − pÞ BA for Gv < 0
: ð23Þ

In the symmetric flavor case A ¼ B, our analytical scheme
provides full flavor equipartition in the entire angular
directions. Note that within a three-flavor framework, we
need to consider flavor equipartitions on ELN-MuLN,
ELN-TauLN, and MuLN-TauLN simultaneously if they
possess crossings. In the case that MuLN is identical to
TauLN, which is a reasonable condition in CCSNe and
BNSMs, ELN-MuLN and ELN-TauLN should reach the
identical flavor equilibrium [37]. This exhibits that the
nonzero ELN at the initial state is equally distributed to mu
LN and tau LN, indicating that the survival probability for
the case of flavor equipartion should be peq ¼ 1=3 in the
three-flavor framework.
There is a caveat in the approximate scheme, however.

The boxlike structure in angular distributions of p would
not be realistic. In fact, we will show in Sec. III that p does
not change discontinuously at the crossing point but rather
has a smooth profile. Nevertheless, the overall trend in
asymptotic states of FFCs can be captured by the simple
structure, and we leave its improvement to future work.

III. NUMERICAL TESTS

We perform numerical simulations on a periodic boun-
dary condition, which validates our approach to determine
asymptotic states of FFC. We assume a one-dimensional
simulation box with axial symmetry around the z axis. As
an initial state, we use the following ELN angular dis-
tribution, employed as G4b in Ref. [59],

Ge
v ¼ μ½gνeðvÞ − αgν̄eðvÞ�; ð24Þ

where μ ¼ ffiffiffi
2

p
GFnνe , α ¼ 0.92 is an asymmetry parameter,

and normalized angular distribution gν is defined as

gν ∝ exp½−ðv − 1Þ2=2ξ2ν�; ð25Þ

with ξνe ¼ 0.6 and ξν̄e ¼ 0.53. We also assume that XLN is
initially zero. Then, the ELN(-XLN) angular crossing is
located at vc ¼ 0.68 and the ELN(-XLN) number density,
1 − α, is positive. Hence, we can predict that FFC proceeds
so as to fill in the negative lepton number on more forward-
directional side v≳ vc relative to the angular crossing from
the above requirements.
Figure 1 shows the dispersion relation ΩðKÞ satisfying

Eq. (14) for the initial ELN angular distribution G4b in the
linear regime. Spatial modes K with nonzero imaginary
parts ImΩ correspond to unstable branches and can induce
FFC in the nonlinear regime. In the bottom panel, we
present the normalized eigenvector jQvj with the maximum
growth rate in the top panel and the peak amplitude is
within the negative ELN directions, vz > vc. Consequently,
the initial perturbation on the flavor coherent S evolves
strongly within the crossing in the linear regime, and then
flavor conversion can occur mainly in the angular direc-
tions in a nonlinear phase. This picture agrees with the
above prediction for the nonlinear saturation. The behav-
iors of FFC in the nonlinear regime will be demonstrated in
Sec. III B.

A. Setups

In the fast limit, neutrino density matrices lose the
explicit energy dependence in the QKE. Hence, antineu-
trinos are identified to those for neutrinos, i.e., ρ̄v ¼ ρv.
And we adopt a pseudospectral method using fast Fourier
transformation implemented in the FFTW3 library4 to handle
the spatial advection operator in the QKE (see Refs. [66,67]
on the detail and recent applications). Then, QKE for the
spatial Fourier components in the polarization vector
configuration ρ ∝ P · σ is recast into

4Fastest Fourier Transform in the West, http://www.fftw.org.

SIMPLE METHOD FOR DETERMINING ASYMPTOTIC STATES … PHYS. REV. D 107, 103022 (2023)

103022-5

http://www.fftw.org
http://www.fftw.org
http://www.fftw.org


∂tP̃
K
v ¼ −ivKP̃K

v þ
X
K0

�Z
dv0ð1 − vv0ÞGe

v0 P̃
K−K0
v0 × P̃K0

v

�
:

ð26Þ

This equation includes the nonlinear coupling term among
all spatial modes K derived from the neutrino self-inter-
actions. We initially put artificial spatially inhomogeneous
perturbations on the off-diagonal components of the den-
sity matrix to trigger flavor conversion instead of nonzero
vacuum mixing. The spatial perturbation is

P1ðt ¼ 0; z; vzÞ ¼ ϵðzÞ; ð27Þ

P3ðt ¼ 0; z; vzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵðzÞ2

q
; ð28Þ

where ϵðzÞ is randomly arranged between 0 and 10−6. The
third component P3 corresponds to the diagonal part of the

density matrix and the decrease from unity implies the
occurrence of a flavor transformation. In performing the
flavor evolution in Eq. (26), once the initial conditions
are built on the configuration space, they are converted into
the Fourier space.
The self-interaction strength μ is a unique dimensional

quantity in the QKE on the fast limit. Hence, we can
measure the time and space with the unit of μ−1. Then, we
adopt a one-dimensional simulation box of Lz ¼ 1000
spanned by a uniform grid Nz ¼ 10000 with the periodic
boundary condition. And we set 256 angular bins on the
root of Legendre polynomials and use the Gauss-Legendre
quadrature for the angular integration. We evolve Eq. (26)
using the fourth-ordered Runge-Kutta scheme with a fixed
time step size of Δt ¼ CCFLΔz, where the Courant-
Friedrichs-Lewy number CCFL ¼ 0.4 as in Ref. [63].

B. ELN-XLN analysis

We perform the inhomogeneous modeling of local FFC
with periodic boundary. In the fast limit, flavor conversion
is determined only by the ELN-XLN angular distributions.
Here, we focus on the time evolution of FFC in terms of
ELN and XLN.
Figure 2 shows P3ðt; z; vzÞ on the space-velocity ðz-vzÞ

plane at five representative time snapshots t ¼ 750, 1000,
2000, 3000, and 5000. Flavor conversions emerge every-
where in space but mainly in vz ≳ 0.7 for the angular
direction. Once the flavor conversion enters into a non-
linear phase, flavor waves interfere with each other mainly
due to the spatial advection and then cultivate smaller-scale
structures. After t ¼ 2000, the entire system establishes a
quasisteady state with temporal and spatial variations.

FIG. 2. P3ðt; z; vzÞ on the space-velocity ðz-vzÞ plane at five
time snapshots t ¼ 750, 1000, 2000, 3000, and 5000.

FIG. 1. Top: dispersion relation of ΩðKÞ including unstable fast
modes for ELN angular distribution G4b. Solid (dotted) lines are
for imaginary (real) parts of Ω. Bottom: normalized amplitude
jQvjwith a maximum growth rate in the top panel. Vertical dotted
line is a crossing point, and we find that the peak is located within
the negative ELN directions.
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To capture the overall trend of the quasisteady state,
we adopt the spatial-averaged Gex

v ðt; xÞ in computing the
dispersion relation. As we have already mentioned, the
stability can be determined by the ELN-XLN angular
crossing; hence, we focus on ELN-XLN distributions
below. Figure 3 portrays spatial-averaged flavor coherent
hSi and ELN-XLN distributions as a function of time and
neutrino angle in the top and middle panels, meanwhile we
also display some relevant quantities of angular distribution
at t ¼ 5000 in the bottom one. As shown in the top panel,
the spatial-averaged flavor coherent hSi is clearly small
even for the late phases and is ≲0.1, and then the neutrino
density matrix is almost in the flavor state. As shown in the
middle panel, the ELN-XLN in vz ≳ 0.7 approaches to zero
with time (transiting from blue to white), meanwhile it has a
subtle change in other angular directions. In the early phase

when flavor conversion starts to occur, large-scale coherent
oscillation appears, but it cascades to small scale with
decreasing the amplitude. This exhibits that the system
evolves towards a quasisteady state with damping the ELN-
XLN angular crossings. Assuming that s is constant in the
quasisteady state based on the two panels, the stability of
FFC can be evaluated through the spatially averaged ELN-
XLN angular distributions. We can delve into the detailed
angular distributions in the quasisteady state, at t ¼ 5000,
in the bottom panel of Fig. 3. As shown in the panel, the
ELN angular distribution still has a crossing even after the
nonlinear saturation. However, XLN is no longer zero
due to flavor conversion, and we find that it compensates
the angular distribution so as to make ELN-XLN be zero in
vz ≳ 0.7. This is the reason why further flavor conversion
does not occur in the spatially averaged domain in our
simulation, which is consistent with our claim obtained by
the stability analysis. As a result, the spatial-averaged ELN-
XLN angular distribution is entirely positive or zero, and
does not have any crossings in all directions.
It may be interesting to compare nonaveraged- and time-

averaged angular distributions, which are displayed in
Fig. 4 as a function of z and vz. The top panel portrays
the ELN-XLN angular distributions at t ¼ 5000, and the
bottom one shows the time-averaged distributions during
the time interval of 2000 ≤ t ≤ 5000. As shown in the top
panel, local ELN-XLN angular crossings remain even after
the system settled into a quasisteady state. This is attributed
to large fluctuations in space with small-scale structures, in
particular, at the angular region of vz ≳ 0.7. On the other
hand, the time-averaged ELN-XLN angular distributions

FIG. 3. Top: spatial-averaged flavor coherent hSi on the t-vz
plane. Middle: spatial-averaged ELN-XLN angular distributions
on the t-vz plane. Bottom: spatial-averaged angular distributions
for some important quantities at t ¼ 5000. In the bottom panel,
the red dotted line is an initial ELN angular distribution. The blue
(green) dashed line is an ELN (XLN) one. Black solid line
corresponds to an ELN-XLN angular distribution, which shows
that the angular crossing almost disappears.

FIG. 4. Top panel: ELN-XLN distributions as a function of z
and vz at the end of the simulation (t ¼ 5000). Bottom panel:
same as the top panel but we take the average over time in the
range of 2000 ≤ t ≤ 5000. As shown in these panels, ELN-XLN
angular crossings remain at t ¼ 5000, whereas the crossings in
time-averaged distributions become much less prominent.
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smear out such local fluctuations and lead to a similar result
as spatial-averaged distributions. Indeed, the ELN-XLN
becomes almost zero in vz ≳ 0.7, illustrating the disappear-
ance of ELN-XLN angular crossing. This is consistent with
our previous study [79,80]. Our results suggest that FFC
evolves toward eliminating the angular crossings in the
ELN-XLN distribution, and the system establishes a
quasisteady state with saturating flavor conversion when
the crossings disappear.
Finally, we apply our approximate scheme Eq. (22) to

obtain spatial-averaged survival probability after a non-
linear saturation. Figure 5 compares the numerical results to
our analytical scheme. In the top panel, our model only
broadly captures its characteristics, particularly around the
crossing, because we disregard the detailed angular dis-
tributions for simplicity. Meanwhile, we find that despite
such a rough model, our approximate ELN angular dis-
tribution reproduces the numerical one well. This is
because the contribution from the compensation for the

flavor equipartition is relatively small in the positive ELN
parts. This is also because the ELN is close to zero near
the crossing where the deviation from numerical simula-
tions is the greatest. Consequently, our proposed scheme
is very concise and in reasonable agreement with numerical
simulations.

C. Species analysis

In the previous section, we have discussed the final fate
of FFC in terms of ELN and XLN. In the fast limit, the
asymptotic behaviors are determined only by the ELN-
XLN angular distribution. On the other hand, the descrip-
tions only give quantities about the difference between
neutrinos and antineutrinos, not the number density or the
mixing degree for each species. In the context of CCSNe
and BNSMs, the number densities for νe and ν̄e are crucial
to incorporate the feedback to neutrino transport, and the
species-dependent neutrino angular distributions must be
considered.
Here, we discuss angular-averaged flavor conversion on

each neutrino species by using the angular distributions gνα
in Eq. (25), not the ELN angular distributions Ge

v. Solid
lines in the bottom panel in Fig. 6 exhibit the time evolution
of survival probabilities of electron (anti)neutrinos aver-
aged over space and neutrino angle. This illustrates that the
system reaches a nonlinear saturation around t ¼ 2000 as
seen in Fig. 2. It should be mentioned that the actual steady
state is never achieved, exhibiting that FFC involves
stochastic fluctuations similar to turbulence. Also, we find
that the averaged survival probability for ν̄e is slightly
smaller than that for νe. The difference hinges on the
species dependence of angular distributions. Since ν̄e
exceeds νe in the angular regions where FFC establishes
flavor equipartition, ν̄e is more converted into the heavy-
leptonic flavors compared than νe consequently. It means
that while ELN-XLN angular distributions are sufficient to
determine the dynamics of FFC, investigating the mixing
degree requires species-dependent information.
Also, we plot averaged survival probabilities for our

analytical model in Eq. (22) by two dots on t ¼ 5000 in the
bottom panel in Fig. 6. Our approximate scheme exhibits
relatively close but slightly larger values compared than
numerical results. The deviation comes from a rough
estimation near the angular crossing as shown in Fig. 5.
For species-dependent angular distributions, the crossing is
near the forward peak, so our analytical model tends to
underestimate the conversion degree. Meanwhile, in terms
of the ELN, the deviations in the neutrino and antineutrino
sectors cancel each other and are reduced to negligible.
This comparison lends confidence to our approximate
scheme.
To delve further into the understanding of the asymptotic

state of FFC, we focus on the species dependence of flavor
conversion. FFC uniquely determines the time evolution
of ELN and XLN angular distributions in the fast limit.

FIG. 5. Top: spatial-averaged survival probability at t ¼ 5000.
Blue dashed line is for numerical simulation and red solid one is
for our analytical scheme in Eq. (22). Horizontal thin line
corresponds to a flavor equipartition Pee ¼ 0.5 and vertical
one to the directions of an angular crossing. Bottom: ELN
angular distributions averaged over space at t ¼ 5000. Black
dotted (blue dashed) lines are initial (final) ELN angular
distributions and red solid one is from our analytical scheme
in Eq. (22).
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It implies that as long as ELN-XLN angular distribution is
identical, neutrinos with different species-dependent ones
should experience the same flavor conversions. Hence, we
consider the extreme cases with the same ELN angular
distributions as G4b below.
For the original ELN angular distribution in Fig. 3, it is

possible to treat the positive ELN part (vz ≲ 0.7) as carried
only by νe and the negative ELN part (vz ≳ 0.7) as carried
only by ν̄e; we call it case 1. Also, we can create another
model that is bulked out only inside the angular crossing in
the species-dependent angular distributions gν of G4b; we
call it case 2. The top panel of Fig. 6 shows the angular
distributions of νe and ν̄e for three cases. G4b (solid), case 1
(dashed), and case 2 (dotted) all generate identical ELN
angular distributions and induce the same FFC. On the
other hand, since the fraction of number density distributed

inside the angular crossing is distinct in each case, angle-
averaged survival probability should exhibit different
asymptotic values. In the bottom panel of Fig. 6, for case
1, only ν̄e reaches the flavor equipartition within the
angular crossing, and the conversion probability largely
deviates that for νe. For case 2, since the angular distribu-
tions are more forward peaked, averaged survival proba-
bilities are closer to the flavor equipartition hPeei ¼ 0.5
than for G4b. We also plot averaged survival probabilities
computed by our analytical model for both case 1 (tri-
angles) and case 2 (stars) in the bottom panel. The errors to
the result of numerical simulations are within a few percent
for all cases (the greatest is ∼9% for hP̄eei in G4b). This
comparison clearly shows that our approximate scheme has
the ability to capture species-dependent features.
Note that the angular distributions for cases 1 and 2

are not normalized in Fig. 6. Thereby, even though the
transition probability of ν̄e for case 1 is the largest, the
converted number density of ν̄e for case 2 is the largest.
Such behaviors imply that the depth and the width of
ELN-XLN angular crossings are not directly involved in
the averaged survival probability and the converted number
density. Suppose the angular direction where the flavor
equipartition is achieved covers the peak of angular
distributions. In that case, electron-type neutrinos are well
converted into heavy-leptonic flavors even if the angular
crossing is shallow. Generically, angular crossings gener-
ated in realistic CCSNe are relatively shallow or narrow,
though FFC possibly essentially alters the neutrino number
density.

IV. COMPARISON WITH PREVIOUS WORKS

It is worthwhile comparing our results to other related
studies determining asymptotic states of FFC. In this
section, we describe thoroughly the similarity, difference,
and novelty of our findings from these pioneering works.
In our simulations, we find that FFC in the nonlinear phase

undergoes a nonlinear cascade into small-scale structures,
similar as pointed out by Ref. [56], and then the system
reaches a quasisteady state. Flavor equipartition is nearly
achieved but it does not occur across the entire angular
region. This trend has already been reported in the previous
works [60–65]. Parametric study in Ref. [63] suggested that
the flavor equilibrium is a common phenomenon in FFC and
neutrinos in the other side of ELNangular distributionwould
experience less flavor conversions constrained by the con-
servation laws. The authors in Refs. [60–62] further consid-
ered determining such a complex asymptotic state by
developing a phenomenological approach with flavor pen-
dulum model. They showed that the angular distributions
obtained by their phenomenological models are in reason-
able agreement with numerical simulations.
Although our phenomenological approach looks very

similar to those proposed in the previous studies at
first glance, there are some clear differences. The most

FIG. 6. Top: angular distributions of electron (anti)neutrinos for
three cases. Solid red- (blue-)colored lines are angular distribu-
tions for G4b. Dashed and dotted ones for cases 1 and 2,
respectively. Each case generates the identical ELN angular
distribution and induces the same FFC. Bottom: time evolution
of survival probabilities of electron (anti)neutrino averaged over
the spatial domain and the angular distributions gνα for three
cases. Quite different conversion probabilities are exhibited.
Circle, triangle, and star markers at t ¼ 5000 correspond to
those estimated by our analytical scheme in Eq. (22) for
each case.
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noticeable difference is that our approach does not use the
flavor pendulum model. As is well known, there is an
analogy between pendulum and FFC systems (see, e.g.,
Ref. [83]), but this similarity is only guaranteed in the
homogeneous FFC. In the previous studies, they alleviate
this limitation in inhomogeneous system by taking spatially
averaged neutrino distributions. This prescription makes
the inhomogeneous QKE to be similar (but not exactly the
same) as the homogeneous one.
It should be stressed that the pendulum model is not

always appropriate in inhomogeneous cases; more specifi-
cally, the applicability hinges on the boundary condition in
space. As can be seen from Eq. (19), the spatially integrated
QKE has, in general, the flux components at the boundaries,
exhibiting that theobtainedQKEdoes not become the similar
form as the homogeneous one. It is also worthy of note that
the lepton number of each flavor of neutrinos can change
through the neutrino flux at the boundary in general. This
exhibits another strong limitation in the pendulum model.
Since the previous studies employed a periodic boundary
condition in all numerical simulations, the flux term can be
dropped, and consequently their phenomenological models
are in reasonable agreement with numerical simulations.
The similarity to the other previous studies employing the
periodic boundary condition [62–65] is also yielded by the
conservation laws and the presence of the flux term induces a
different quasisteady state.
Our present study reveals this important limitation of

pendulum model to determine asymptotic states. The limi-
tation indicates that we need to update the phenomenological
model by different approaches for more general cases. In this
paper, we make a statement that the disappearance of ELN-
XLN angular crossing corresponds to a more fundamental
condition than pendulum model. Indeed, we have witnessed
in a series of our previous studies that ELN-XLN angular
crossings disappear or become very shallow after the system
reaches the nonlinear saturation even for nonperiodic boun-
dary conditions [79,80]. One thing we need to mention here
is that, although our simulations lend confidence to the
statement that ELN-XLN angular crossings are fundamental
quantities to characterize asymptotic states, we did not
provide a rationale behind the conclusion in the previous
studies. In this paper, we address this issue through stability
analysis in nonlinear regime.
Stability analysis has been conducted thus far mainly to

evaluate the growth rates in the linear phase. Different from
the linear phase, we leave the diagonal term sv in the
governing equation for the off-diagonal term Sv and try to
extend the stability analysis to the nonlinear regime. On the
other hand, it requires us to calculate the nonlinear mode
couplings between Sv and sv as a convolution similarly to
Eq. (26). Hence, we propose a prescription that we focus on
spatially or temporally averaged angular distributions to
characterize the overall trend. This helps us to capture the
nonlinear saturation in the entire system, and also guaran-
tees the strategy that we leave aside spatial structures in our

numerical simulation and focus only on the averaged
domain. It should be stressed that this stability analysis
can be applied even in the case with nonperiodic boundary
conditions.
Aside from the discussion of ELN-XLN angular crossing,

we provide another new insight regarding asymptotic states
of FFC in the present study: neutrino- and antineutrino-
dependent features. In general, we do not need to distinguish
neutrinos and antineutrinos in FFC; in another words, ELN
and XLN fully characterize the FFC dynamics. For this
reason, most previous studies considered the asymptotic
states through ELN and XLN distributions. Different from
these studies, we pay an attention to neutrinos and antineu-
trinos dependent features in the asymptotic state, and some
intriguing features emerge. One of themost striking results is
that shallow and narrow ELN angular crossings have the
ability to mix neutrinos substantially (see Sec. III C for more
details). This is attributed to the fact that ELN (or XLN) does
not represent how many neutrinos and antineutrinos reside,
since the number of neutrinos and antineutrinos cancel out in
the computation of those for ELN and XLN. We present in
our numerical simulations that electron neutrinos with
shallow ELN angular crossings can be significantly con-
verted into heavy-leptonic flavors in angular directions
where a flavor equipartition is established. Our present study
clearly exhibits that the total amount of flavor conversion
depends on the angular distribution for each species, not the
neutrino-flavor lepton number distribution. It should also be
emphasized that this conclusion is clearly different from
other previous works, in which shallow or narrow angular
crossings lead to only minimal flavor conversions [52,68].
These findings are important indications in the contexts of
astrophysics, since neutrino dynamics including feedback to
matter in CCSNe and BNSMs are not determined by ELN
(and XLN) but by species-dependent properties. In our
phenomenological model, we distinguish neutrinos and
antineutrinos, which is also another noticeable difference
from previous studies.

V. CONCLUSIONS

In this paper, we have presented asymptotic states of
FFC in local simulations with a periodic boundary con-
dition. Flavor instability exponentially grows by following
the dispersion relation in the linear phase, and FFC occurs,
gradually establishing a quasisteady state. We have inves-
tigated what determines the nonlinear saturation in terms of
the stability analysis and the conservation law for ELN
and XLN.
Our numerical simulations show that the system reaches

a quasisteady state when the averaged ELN-XLN angular
distribution has no crossings. It is consistent with our
stability analysis, suggesting that our proposed method is
beneficial for analyzing the spatial- and time-averaged
properties of flavor conversions. It is worth noting that
ELN-XLN angular crossings exist instantaneously, indicat-
ing that the flavor conversion would not be saturated
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locally. It is also consistent with the results of our
simulations, in which the exact steady state is not estab-
lished, and small-scale modulations still occur within the
crossing. Our stability analysis illustrates the importance of
ELN-XLN angular distributions to characterize the dynam-
ics of fast flavor conversion even in the nonlinear phase,
and we conclude that the system evolves toward eliminat-
ing the ELN-XLN angular crossings (not those of ELN).
Also, we have proposed an analytic scheme determining

the survival probability of each neutrino species. Our
approximate scheme is constructed to satisfy two require-
ments: the disappearance of ELN-XLN angular crossings
(a flavor equipartition) and the conservation laws for ELN
(XLN). We demonstrated that the overall trend of FFCs in
asymptotic states can be qualitatively determined by the
two conditions, and we provided the numerical recipe as an
approximate scheme [see Eqs. (22) and (23)].
We have exhibited the averaged survival probabilities for

angular distributions different in electron-type neutrinos
but with identical ELN ones. ELN-XLN angular distribu-
tions characterize the dynamics of FFC and uniquely
determine the quasisteady state. On the other hand, the
conversion degree for each species is mainly determined by
how many neutrinos are distributed in the directions where
a flavor conversion, particularly a flavor equipartition, is
induced. Our results emphasize the importance of species-
dependent information for the total amount of flavor
conversion. Even if the angular crossings are shallow or
narrow, they can significantly impact on the flavor contents
through the flavor equipartition in the angular directions
where neutrinos are more abundant.
Although our presented descriptions for the nonlinear

phase of FFC are very clear and it will be useful to develop
the subgrid model of FFC, there remain some crucial
issues. As discussed in the present study, the boundary
condition is a key ingredient to characterize the asymptotic

state, but it is a nontrivial issue which boundary condition
(periodic or Dirichlet) is appropriate. This would hinge on
both global and local properties of neutrino radiation fields
and needs to be investigated in detail. It is interesting to
note that the quasisteady state with a periodic boundary
condition temporarily appeared in the early phase of FFC
simulations in our previous study [80], in which we
employed the Dirichlet boundary condition. We witnessed
that such a quasisteady state is sustained up to the time
when the neutrinos emitted from the inner boundary reach
there, but it transits to another asymptotic state at the end of
the simulation. This suggests that we need to consider the
asymptotic state of FFC with arbitrary boundary condi-
tions. We leave its detailed study to future work. Another
crucial issue would be the impact of collisions; indeed, FFC
could be qualitatively different due to the multienergy
effects of neutrino-matter interactions [73]. The asymptotic
state of FFC with collisions would be considered by
correcting Eq. (19) (adding the source term and restoring
the energy-dependence in QKE); the detailed study is also
currently underway. As such, there are many works to be
needed, but the study of the asymptotic state, as done in the
present study, will shed light on key ingredients character-
izing flavor conversion even in such complex systems.
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