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Pulsars do not produce sharp features in the cosmic-ray electron
and positron spectra
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Pulsars are considered to be the leading explanation for the excess in cosmic-ray positrons. A notable
feature of standard pulsar models is the sharp spectral cutoff produced by the increasingly efficient cooling
of very-high-energy electrons by synchrotron and inverse-Compton processes. This spectral break has been
used to argue that many pulsars contribute to the positron flux and that spectral features cannot distinguish
between dark matter and pulsar models. We prove that this feature does not exist—it appears due to
approximations that treat inverse-Compton scattering as a continuous, instead of as a discrete and
catastrophic, energy-loss process. Astrophysical sources do not produce sharp spectral features via cooling,
reopening the possibility that such a feature would provide evidence for dark matter.
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I. INTRODUCTION

Observations by PAMELA [1] and AMS-02 [2-4] have
provided clear evidence for a rise in the positron fraction at
energies above ~10 GeV. This excess has most commonly
been interpreted as either evidence of dark matter (e.g., [5])
or the production of electron and positron pairs (e*,
hereafter, electrons) by energetic pulsars [6,7]. Over the
last five years, TeV halo observations have shown that
pulsars efficiently convert a large fraction of their spin-
down power into energetic electrons, providing credence to
the pulsar explanation [8—12]. TeV halo observations also
have intriguing effects for our understanding of diffusion
throughout the Milky Way [13].

In addition to energetic arguments, the positron spectrum
has long been discussed (even before PAMELA) as a
discriminant of the underlying mechanism. Dark matter
models generically include sharp spectral “lines” at an
energy corresponding to the dark matter mass [14].
However, pulsar models include their own sharp spectral
feature located at an energy determined by the pulsar age
and the energy-loss rate of very-high-energy electrons [15].
These features are similar, and models for the PAMELA
and AMS-02 data have discussed the difficulty in using
spectral features to constrain their dark matter or pulsar
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origin [16—19], a topic which was revived after DAMPE
observations [20] of a potential 1.4 TeV electron spectral
bump [21-25].

As y-ray data have begun to prefer the pulsar interpre-
tation [8,10,26], studies have focused on whether the
excess is dominated by a few nearby pulsars or a large
ensemble of systems [6-8,19,27,28]. Spectral considera-
tions again play an important role. Models predict that
every pulsar will produce a spectral cutoff at an energy
corresponding to the pulsar age. The detectability of this
feature depends on its fractional contribution to the positron
flux. Because AMS-02 does not find any sharp spectral
features, models tend to prefer scenarios where many
pulsars contribute to the excess [29-33].

The reason for this spectral feature is straightforward.
Young pulsars spin down quickly, injecting most of their
electrons in a few thousand years. These electrons cool
rapidly through synchrotron and inverse-Compton scatter-
ing (ICS). Critically, both processes cool electrons at a rate
that is proportional to the square of the electron energy.
Thus, the highest energy electrons all cool to almost the
same critical energy regardless of their initial energy.
Because the electrons are born at about the same time
and travel through the same magnetic and interstellar
radiation fields, they bunch up at a specific energy, above
which there is a sharp cutoff.

However, this explanation depends on an incorrect
simplification. It assumes that ICS is a continuous process
where numerous interactions remove infinitesimal energy
from the electron. Instead, the ICS of high-energy elec-
trons is a catastrophic process, where individual inter-
actions remove a large fraction (~10%-100%) of the
electron energy.

Published by the American Physical Society
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FIG. 1. Total electron spectrum integrated over all distances

from a 342-kyr-old pulsar (e.g., Geminga), obtained by the
standard analytic approximation (blue), compared to our exact
stochastic ICS model (orange). The sharp spectral feature at
~0.88 TeV is washed out, while the low- and high-energy
behavior remains the same. Error bars are statistical due to the
low number of high-energy counts.

In this paper, we prove that when the stochasticity of
ICS is correctly modeled, pulsars do not produce a sharp
feature in the local cosmic-ray spectrum. Using a detailed
Monte Carlo, we find that ICS energy losses typically
produce a distribution of electron energies that are dispersed
by ~50% around the standard “critical value,” washing out
the sharp spectral effect (see Fig. 1). Importantly, this result
does not apply to dark matter models, where the spectral
feature is instead directly produced in the annihilation event.
Thus, our results have significant implications for our ability
to differentiate dark matter and pulsar contributions to the
positron flux.

II. MODELING
A. Standard pulsar models

Most pulsar studies use similar approaches, which we
detail in Appendix A. Here, we review three points that are
relevant for our results. The first is that most electrons are
accelerated when the pulsar is young. The electron lumi-
nosity traces the pulsar spin-down power as

L(1) = nLo(l +£>_2 (1)

where L, is the initial luminosity, # is a conversion
efficiency, and 7 is a timescale, which theory and data
show to be O(10 kyr). This is short compared to the
electron diffusion and cooling timescales, meaning that
pulsars inject a significant fraction of their total electron
energy before the electrons cool considerably.

The second point is that the electron injection spectrum
is hard and continues to very high energies. Standard
models use an injection spectrum

d_N — —a p—E/Eqy
= 0(Ee @
where Q(7) is a normalization related to L(r). Best-fit
values for a span 1.5-2.2 [8,9,34], with E_, between 0.01
and 1 PeV, though see Refs. [35,36] for more detailed
models. This means that most of the electron power is
injected far above the GeV scales where the local electron
flux is best measured.

The third point is that the energy-loss rate for high-
energy electrons becomes faster at higher energies, with a
form

== (£) ou+ Spstea]

where o7 is the Thomson cross section, £ and m, are
the electron energy and mass, pp is the magnetic field
energy density, and p; are the energy densities of interstellar
radiation field (ISRF) components with energies vu;.
Si(E,v;) accounts for the Klein-Nishina suppression
of the ICS cross section [37]. For a magnetic field
B~3pG=0.22eV cm™ and ISRF of 1 eVem™, this
timescale is

ptotSeff<E)> (4)

E -1
fows & 320 k
foss yr(l TeV) <1 eVem™

where S is calculated by convolving the Klein-Nishina
effect from each ISRF component. From this, we see that
1 TeV (100 TeV) electrons require ~300 kyr (only ~3 kyr)
to cool. Finally, these terms are integrated into a diffusion
equation, which determines the time-dependent electron
flux that propagates from a pulsar to Earth.

Equations (1)—(4) show how pulsars produce a spectral
feature. The pulsar produces very-high-energy electrons in
a o-function-like burst. The most energetic electrons cool
more quickly than lower-energy electrons, producing a
spectrum that “bunches up” at a critical energy E.. This
critical energy decreases with pulsar age, but it is between
100 and 1000 GeV for the pulsars that are most critical to
the AMS-02 observations. This result is generic to any
pulsar model that uses Eq. (3) to calculate ICS cooling.

B. Stochasticity of inverse-Compton scattering

The problem with this approach stems from Eq. (3),
which calculates the average energy that an electron loses
over a period of time but does not account for the dispersion
in these losses. Equation (3) treats energy losses as
continuous, when they, in fact, stem from a finite number
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of interactions between an electron and ambient magnetic
and radiation fields.

For synchrotron radiation, the difference is negligible.
The critical energy for synchrotron radiation is given by

3y%eB B E \2
= =006 —% || —== V. 5
ve dzm,c <1 pG) (1 TeV) © )

Thus, the energy loss from each interaction is small, as is
the relative variance in the number of interactions (1/+/7).

For ICS, however, individual interactions are important.
The ICS differential cross section was originally computed
in Refs. [37,38] and is reported here from Ref. [39]:

d*6(E,.0)
dQdE,
2 2 2 2 2
_ 7 ig ¢ = i z |
2V,E 2(1=2z2) bo(l—z) by(l-2)

where E, is the final y-ray energy, v; and E are the initial
energies of the photon and electron and @ is the angle
between them, and r, is the classical electron radius. The
parameters z = E,/E and by =2 (1 —cos §)y,E. At low
energies (Thomson regime), only the first term is nonzero,
the cross section is 67 = 6.6 x 1073 ¢cm?, and the relevant
energy scales for this process are approximately

4
Ey,c = gyzyi. (7)

At high energies (Klein-Nishina regime) the critical
energy, i.e., the average energy lost, exceeds the electron
energy (which is kinematically forbidden), suppressing the
cross section and producing y rays with energies just below
the electron energy.

Thus, even for scatterings with typical CMB photons
(v; ~ 1073 eV), an electron with an initial energy of 1 TeV
loses 5 GeV, a 10 TeV electron loses 500 GeV, and a
100 TeV electron loses 50 TeV. Energy losses for infrared
(v; ~107% eV), optical (v; ~ 1 eV), and UV (v; ~ 10 eV)
are even higher and can fall well into the Klein-
Nishina range.

C. Interstellar radiation field model

We model the ISRF based on four components: the cosmic-
microwave background (energy density u = 0.26 eV /cm?,
temperature 7 = 2.7 K), infrared (u = 0.60 eV/ cm’,
T = 20 K), optical (z = 0.60 eV/cm?, T = 5000 K), and
ultraviolet (u = 0.10 eV/ cm?, T = 20000 K) [8]. From this,
we compute the photon number density in 560 logarithmic
bins spanning from 107> to 200 eV following a blackbody
spectrum, and we use Monte Carlo techniques to select target
photons from this distribution.

D. Geminga as a template

In our default analysis, we choose model parameters
consistent with values for Geminga, a nearby (~250 pc),
middle-aged (~342 kyr) pulsar [40]. We set the electron
injection index @ = 1.9 and energy cutoff £, = 100 TeV
[8], normalized to the total energy output of Geminga,
E 7~ 9.8 x 10°° GeV, and an efficiency of converting
spin-down power into e® pairs of n = 0.1. We adopt a
time-dependent luminosity following Eq. (1), with a spin-
down timescale of 9.1 kyr [8]. This last parameter may vary
significantly between pulsars [24,32]. We note that our
analysis and results apply to any young and middle-aged
pulsar, and only choose Geminga as an example here.

E. Numerical setup

We use a Monte Carlo approach to account for the
variance of ICS energy losses. The electron energy is
calculated explicitly in time as follows: (1) we begin with
an electron formed at a time ¢ after pulsar formation and
initial energy Ey; (2) we evolve the system in time,
choosing a time step small enough that synchrotron losses
(assuming a magnetic field strength of 3 pG) and the
probability of having two ICS events are negligible;
(3) based on the electron energy and photon density, we
randomly pick whether an ICS event happens or not, and if
so, we calculate the initial and final photon energy; (4) we
recompute the electron energy and repeat this process up to
the current pulsar age.

To produce an accurate model, we inject ~30,000
electrons with an initial energy distribution following
Eq. (2) and time evolution from Eq. (1). We include
electrons from 100 GeV to 1000 TeV in 5000 logarithmic
bins. We bin the final electron energies into 30 logarithmic
bins between 100 GeV and 10 TeV. We generate several
alternative data sets for parameter space tests described in
Appendixes B and C.

We compare our stochastic method to an analytic
calculation that produces a sharp spectral cutoff. We use
Eq. (A4), which gives the differential flux for electrons
injected a time ¢ = 342 kyr — 7 ago for a pulsar at distance
d from Earth with an injection spectrum following Eq. (2)
with 320 logarithmic bins between 100 GeV and 1000 TeV.
To model electron injection continuously over time,
we sum the results for single o-function injections for
¥ = 0-342 kyr and normalize the flux in each time step
following Eq. (1).

Only a small fraction of electrons produced by the pulsar
reach Earth. Our stochastic model does not include dif-
fusion, and it provides the total electron power from the
pulsar. To compare this with the analytic calculation, which
gives the electron flux at radius r, we integrate the analytic
flux over all space. In order to compare our results to an
observed electron spectrum, one would need to take
diffusion into account to obtain the spectrum at Earth.
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We stress that this approach does not affect our qualitative
results, as the spectral feature depends on cooling, not
diffusion. We discuss diffusion further in Appendix D.

III. RESULTS

Figure 2 shows the fundamental process that disperses
the final electron energy. Starting with electrons at an
initial energy of 10 TeV, we show the average energy lost
per ICS event and the final energy at 342 kyr. On average,
each ICS event removes ~55 GeV from an electron,
indicating that stochastic variations in the number and
strength of ICS events lead to detectable dispersion in the
electron energy. For these initial conditions, the dispersion
is 872 £+ 145 GeV, where we note that 872 GeV represents
the average energy of the electron population, and 145 GeV
represents the dispersion in the energies of single electrons
around this average.

Figure 3 shows the time evolution of the electron
energy from Fig. 2. The initial dispersion is small because
most electrons have not yet had an ICS event. However, the
dispersion increases quickly. At 5 Myr, the electron
energies are spread between 42-62 GeV at lo and
32-72 GeV at 20. We note that the average final energy
in our stochastic model is 52 GeV, which is essentially
equivalent to the 53 GeV final energy in the analytic case.

Combining these features, we show our main result in
Fig. 1. The standard analytic approximation has three
features: (1) a sharply rising electron spectrum at low
energies, where the electrons are not cooled and maintain
their injection spectrum; (2) a steep drop at a critical energy
that corresponds to the efficient cooling of higher-energy
electrons produced near ¢ = 0; and (3) a softer high-energy
spectrum produced by cooled electrons emitted at
later times.
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FIG. 2. Electron energy after 342 kyr compared to the average
energy loss per ICS interaction. The data set consists of 4000
electrons with an initial energy of 10 TeV. The significant energy
loss per ICS interaction leads to a large dispersion in the final
electron energy, preventing the formation of a spectral peak.
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FIG. 3. Energy of an electron with an initial energy of 10 TeV

over the 5 Myr duration of our simulation. The average (black
solid line), and 1o (dark gray) and 2¢ (light gray) deviations are
shown and compared with the electron energy from the analytic
approximation. We show colored curves depicting a few typical
events.

Our exact solution includes the first and third features
because the average ICS cooling is correct in the analytic
approximation. However, the sharp spectral feature is
smoothed out by the different energy losses experienced
by individual electrons. Notably, this effect is much larger
than the energy resolution of current cosmic-ray experi-
ments such as AMS-02, CALET, and DAMPE [2,20,41].

A. Discussion

We have shown that the standard analytic approximation
for ICS cooling [Eq. (3)] induces an erroneous spectral
feature in the local electron and positron fluxes. A proper
treatment accounting for the stochasticity of ICS does not
produce this feature. Physically, this stems from the fact
that electrons only interact with a small random sample of
the photon field, cooling to an energy that is described by a
probability distribution function rather than an exact value.

We stress that while this stochastic effect is most
pronounced at high energies, it is not physically related
to the kinematic effects of Klein-Nishina suppression but is
purely due to the statistics of ICS interactions. This fact
is clearest in Fig. 3, where we see that the significant
dispersion in the final electron energies continues to nearly
~50 GeV at 5 Myr, far lower than the standard Klein-
Nishina range.

Our results are applicable to more diverse phenomena
than the positron excess. ICS cooling cannot produce
spectral features, owing to its inherent stochasticity. Our
results hold for any system where particles are stochasti-
cally cooled, including, e.g., supernova models of the
electron and positron fluxes [23]. Similar effects stemming
from catastrophic energy-loss processes have been

103021-4



PULSARS DO NOT PRODUCE SHARP FEATURES IN THE ...

PHYS. REV. D 107, 103021 (2023)

discussed in the case of p-y interactions [42] and secondary
antiproton production [43].

Interestingly, a peaked local electron spectrum is pos-
sible if cooling were dominated by synchrotron rather than
ICS—making a spectral peak a diagnostic for the energy-
loss process. However, for local studies, this is an academic
concern. Any source close enough to contribute to the
electron flux that had sufficient synchrotron cooling to
dominate ICS losses would have already been detected in
radio data.

B. Effect on pulsar models

Our results have significant implications for pulsar
models of the positron excess. Early studies realized that
the number of pulsars that contribute to the excess is energy
dependent [6], due to the fact that the energy dependence of
diffusion (D « E°® with § ~ 0.4 [44]) is weaker than the E~!
energy-loss timescale for the synchrotron and ICS. This
means that low-energy electrons can travel farther from
pulsars before cooling. This was examined quantitatively in
Refs. [33,45] and is not affected by our result.

Several recent studies have produced detailed models
of Milky Way pulsars to determine the characteristics of
systems that contribute to the positron flux [29,31-33,46].
Because these models produce y? fits to AMS-02 (and also
DAMPE and CALET) data over a large energy range, they
quantitatively constrain spectral features from individual
pulsars. Because the observed electron and positron spectra
are smooth, these studies tend to rule out models where a few
young pulsars would produce large spectral features.

We note that each of these models has many free
parameters, and each treats systematic errors differently.
Thus, it is difficult to determine how the ICS approximation
affects them. However, any study that uses an analytic ICS
model will produce artificially strong constraints on the
contribution from nearby pulsars with ages between ~100
and 1000 kyr because such systems would produce spectral
features between 100 and 1000 GeV that have not been
observed. This constraint is weaker at lower energies
because a larger number of pulsars contributes to the
excess, and it is weaker at higher energies because of
the larger uncertainties in cosmic-ray data.

These constraints are in modest tension with TeV halo
data, which show that Geminga and Monogem (among
others) are powerful electron accelerators. Studies have
discussed several effects that could be invoked in standard
ICS models to decrease their spectral bumps, including
(1) inhomogeneities in energy losses [16] or diffusion [47]
that may affect the uniformity of the electron flux reaching
Earth, (2) the effective trapping and cooling of young
electrons within the pulsar wind nebulae [46,48],
(3) changes to the pulsar spin-down timescale which
increase the fraction of electrons that are accelerated at
late times [33], or (4) the energetic dominance by an
extremely young pulsar with a spectral bump above the

energy of current data [32]. Our models do not necessarily
reject such ideas, but they do diminish the need for such
models. However, it is possible that the spectral feature
would be even more smoothed out by these possible effects.

To be clear, our results show that pulsars do not produce
sharp spectral features—a result which is based only on
known particle physics. Our results reopen the possibility
that only a small number of pulsars produce the positron
excess at high energies. Additionally, our analysis indicates
that current (or even future [49]) studies of the electron and
positron fluxes will not find sharp spectral features that can
be used to constrain the age or proximity of nearby sources.

C. Effect on dark matter searches

Dark matter particles that annihilate into e*e™ pairs or
other leptonic states are predicted to produce features in the
cosmic-ray positron spectrum. This dark matter contribu-
tion is subdominant, rather than accounting for the majority
of the positron excess, and includes a sharp cutoff corre-
sponding to the mass of the dark matter particle [14]. This
spectral cutoff is intrinsic to the electron production process
(and not caused by cooling). Our results do not affect this
conclusion.

Excitingly, our analysis indicates that there is no stan-
dard astrophysical mechanism capable of producing a
sharp feature in the local electron spectrum. The detection
of such a feature, in this case, would serve as incontro-
vertible evidence of dark matter annihilation or another
novel physics process.

D. Diffusion

For clarity, this paper focuses on cooling and ignores
diffusion. Of course, to compare our results with an
observed positron flux taken at the specific solar position,
one would need to directly model the diffusion of cosmic
rays from Geminga to Earth. However, we note that
diffusion cannot “recreate” a spectral peak for two reasons:
(1) the energy dependence of diffusion is monotonic, and to
create a feature, the diffusion coefficient would need a
sharp “spike” at a specific energy; (2) any such spike would
affect all cosmic rays at a given rigidity, producing a sharp
feature in all cosmic-ray data that is ruled out. We provide
more details in Appendix D.
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APPENDIX A: COSMIC-RAY ELECTRON
ACCELERATION AND PROPAGATION

The most common treatment of electron acceleration,
propagation, and cooling in pulsars is as follows. The
pulsar is born at time = 0 (matching the supernova) and
immediately begins to inject e"e™ pairs with a flux that is
proportional to its spin-down power. The spin-down power
is calculated using a simple model where the pulsar is
treated as a misaligned rotating dipole, with a luminosity

t —(n+1)/(n-1)

where L is the power at time ¢ = 0 normalized to the
pulsar kinetic energy; n is the breaking index, which is
usually set to 3; # is an efficiency parameter, which is
typically assumed to be constant with a typical range
of 0.01-1 (though see Refs. [46,48]); and 7 sets the
energy-loss timescale, which can be calculated in the
dipole model as

3¢ 1P}

F T4 BRS (A2)
The specific value for 7 can change significantly depending
on the initial period and magnetic field strength of individual
pulsars [24,32,50]. Here, we adopt 7 = 9.1 kyr, as calcu-
lated by Ref. [8] for the Geminga pulsar. Because this
timescale is short compared to the ~100 kyr age of pulsars
that contribute to the positron excess, some studies (e.g.,
Refs. [7,33]) further simplify the modeling by assuming that
pulsars instantaneously inject all their energy at time ¢ = 0.
The pulsar spectrum is typically modeled as a power law
with an exponential cutoff. However, the actual mechanism
producing this acceleration is unclear, as there are two
possibilities. The first is direct e* pair production and
acceleration at the pulsar magnetosphere, a process which
may be either efficient or inefficient depending on the
pulsar magnetosphere model and which can continue to
energies well above 1 TeV [51,52]. The second option is
that the electrons are originally produced in the pulsar
magnetosphere but are then reaccelerated (and their spec-
trum reset) as they transit through the termination shock of
the surrounding pulsar wind nebula [53-55]. Future obser-
vations of systems that do not include pulsar wind nebulae
(e.g., millisecond pulsars) could potentially distinguish

these possibilities [56,57].

In either case, the electron pairs diffuse away from the
pulsar and/or pulsar wind nebula, following a process that
is typically treated using the diffusion-convection equation
of the form

odv T [,
S E(Er) =V {D(E)V - dE}
d [dE dy
d_E [Ed—E] +5(}’)Q0(}’, 1, E) (A3)

where D(E) is the diffusion coefficient, which is typically
normalized to fit cosmic-ray secondary-to-primary ratios,
with a typical energy dependence D(E) o« E* with a in the
range 0.33-0.5 [44]; v. is a convection term which we
will set to O in this study, the energy derivative accounts
for energy losses due to synchrotron and ICS, and finally
Qg is the source term, which is a spectrum-dependent
normalization constant that is set such that the integral of
the pulsar emission matches the pulsar luminosity
from Eq. (Al).

While this transport equation must typically be solved
numerically, there is a commonly employed analytic
formula in the case where the cosmic-ray injection rate
is a delta function in time, which is given by

dN  Q(E) < d ) 3 2
= (| = pE)e2) [ —(d/Dair) A4
dE & ( ) diff ¢ (A4

where d is the distance from the pulsar to Earth, ¢
is the time since electron injection (e.g., 342 kyr-1),
and Ddiff is

/ 1 - (1 B Ee/Emax)l_(s
(1 - 5)Ee/Emax

Dy (E,. ') = 2\/D(Ee>t (AS)

Here, E,,, is the maximum energy that can be lost due to
conversation of energy, given by E,. ~1/(bt'), and
D(E,) is the diffusion coefficient for a specific electron
energy given by

D(E,) = Dy x (1 élv)é’ (A6)

where we take Dy =2 x 10%® cm?/s at an electron
energy of 1 GeV and a diffusion spectral index of
0=04[8].

Following Eq. (3), the energy-loss rate is typically
written as a continuous process, which is given by

dE E \2
“ _ _h(E ,
o~ ThE)x <1 GeV>

(A7)

103021-6



PULSARS DO NOT PRODUCE SHARP FEATURES IN THE ...

PHYS. REV. D 107, 103021 (2023)

where b is typically calculated as

b(E) =1.02 x 1071°

Si(E) + Prog <%>2> GeV/s.
(A8)

« Pi
< — eV /cm?

However, note that there are more accurate analytic pre-
scriptions in the literature which take into account the energy
dependence of b [58]. In particular, this cross section is
inhibited at high energies due to Klein-Nishina suppression,
which decreases the incidence angles over which a photon
and electron have a high-interaction probability. Studies have
either used an exact calculation of the Klein-Nishina
suppression [37] or utilized the simplified suppression factor
S(E) first calculated in [59]. Throughout this paper, we
utilize the exact solution for the Klein-Nishina suppression
calculated at each y ray and initial photon energy, following
Ref. [37] and given by

dE 12copE?

et Sl A
dt m,c? (A9)

Aw J(D)vn(v)dy,

where o7 is the Thomson cross section, v is the energy of the
ISRF photons, and n(v) represents their energy spectrum (in
1/(eVem®)],T=4vy/(m,c*) and g = v,/ (T(ym,c* —vy))
take into account the final y-ray energy vy, and J(I') is an
integral given by

_ [14G(q.T)
0= [

(A10)

While we utilize the exact solution for the Klein-Nishina
cross section, we stress that the difference between the
approximate and exact solutions for Klein-Nishina sup-
pression is not relevant for our study because both are
calculated within the continuous energy-loss formalism.
Any method utilizing Eq. (3) will incorrectly induce an
electron spectral peak regardless of whether an exact or
approximate model for the Klein-Nishina effect is
employed.

The effect of ICS cooling depends sensitively on the
model for the ISRF. There are many possibilities, includ-
ing full spectral models based on multiwavelength obser-
vations as well as approximate models that bin the ISRF
into a few major components with specified energies. In
this study, we take the temperatures Ty = 20 x 103 K,
Toptical =5 x10° K, Tir =20 K, and Teyp =27 K,
and the energy densities pyy = 0.1 eV/cm?, Poptical =
0.6 eV/cm?, pr = 0.6 eV/cm?, peyp = 0.26 eV/cm?,
and pp,, = 0.224 eV/cm? (corresponding to a magnetic
field strength of B =3 pG). [8]. We again stress that

3 ]
107 5 — Ey=1TeV
] —— Ey=10TeV

— 1024 —— Ep =100 TeV
E E —— Eo = 1000 TeV
: ]
© 10!
Q E
C .
Ll i

100

0.0 0.2 0.4 0.6 0.8 1.0
Time [Myr]

FIG. 4. Evolution of the electron energy over 1 Myr in the
standard analytic approximation for electrons with different
initial energies [1 TeV (blue), 10 TeV (orange), 100 TeV (green),
and 1000 TeV (red)]. Electrons with higher initial energies cool
more rapidly than lower energy electrons, causing the electrons to
cool down to similar energies over time, producing a spectral
feature.

differences between these approaches are not responsible
for the feature we identify in the main text.

Figure 4 shows the energy losses for the analytic
approximation over 1 Myr for electrons with different
initial energies. Electrons with high energies cool faster
than electrons with low energies, and over time, they cool
down to similar energies. After 1 Myr, the electrons with
initial energies between 10 and 1000 TeV have roughly
cooled to the same energy, 0.42 TeV. The fact that a larger
fraction of initial lines converge at later times drives the fact
that models of pulsar contributions provide increasingly
peaky spectral features for older pulsars.

APPENDIX B: FURTHER ANALYSIS OF
STOCHASTIC INVERSE-COMPTON
SCATTERING

Figures 5-7 show several additional plots depicting the
distribution of interactions that our electron population
undergoes while interacting with the ISRF. These results
correspond to the simulations produced in Figs. 2 and 3 of
the main text, meaning that they simulate 1000 electrons
with an initial energy of 10 TeV and produce results for a
simulation that lasts 342 kyr, corresponding to the age of
Geminga.

In Fig. 5, the final electron energy is shown compared
to the maximum energy loss an electron has experienced
in an ICS interaction. The maximum energy loss for
each individual electron lies between approximately 600
and 1700 GeV, which is a significant fraction of the total
electron energy. Over 342 kyr, these electrons undergo
relatively few ICS interactions, typically 90-130
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FIG. 5. Final electron energy compared to the maximum energy
loss for an electron with an initial energy of 10 TeV, cooled over
342 kyr. The vast majority of electrons have at least one ICS
interaction which removes over 1 TeV from the electron.

interactions, as shown in Fig. 6 for the final electron
energy against the number of ICS interactions per elec-
tron. The large spread in the energy loss per ICS
interaction and the large variation in the number of
interactions result in the large spread of final electron
energies. Finally, Fig. 7 shows the average energy loss per
ICS interaction compared to the number of ICS inter-
actions it undergoes.

Figure 8 shows the evolution of the electron energy over
1000 kyr, similar to Fig. 3, but with an initial electron
energy of 3 TeV for 1000 electrons. The final average
energy of the exact stochastic ICS calculation is 267 GeV
(black solid) with an energy spread of 230-304 GeV at 1o
and 194-340 GeV at 2¢. The final energy in the standard
analytic approximation is 271 GeV (black-dotted line). The
colored lines represent the energy losses of a few individual
electrons.

In Fig. 9, we also show the electron energy evolution
over 5 Myr, for an initial energy of 100 GeV, showing that
the effects on stochastic inverse-Compton scattering are
also relevant at GeV-scale energies, where Klein-Nishina

S
1200
$ 80 i
P €
£ 1000 60 3
c o
o kS
= —_
£ 800 I i 40 g
3 €
g 202
T 600
i Eo = 10 TeV, t = 342 kyr

0

80 100 120 140
Number of ICS interactions

FIG. 6. Final electron energy compared to the number of ICS
interactions an electron with initial energy 10 TeV experiences
over 342 kyr.
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0

80 100 120 140
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FIG. 7. Average energy loss per ICS interaction for an electron
compared to the number of ICS interactions an electron with
initial energy 10 TeV experiences over 342 kyr.

suppression is weak. The average final stochastic energy is
32 GeV for an initial energy of 100 GeV with +/ — 5 GeV
at 1o, and the final energy in the analytic calculation is
32 GeV. The average number of ICS interactions is 1692 in
the 100 GeV case, which is very close to the 1961
interactions in the 10 TeV case (Fig. 3). The data sets
contain 1000 particles.

We note that this last result is quite important—electrons
with an initial energy of 100 GeV are well within the
Thomson regime for interactions with the dominant ISRF
contributions from the CMB, IR emission, and optical
emission. They only barely lie in the Klein-Nishina regime
for interactions with UV photons. Still, we find a significant
(>15%) dispersion in the final energy of the electron
population after 5 Myr, which is slightly larger than the
dispersion for our 10 TeV electrons. This strongly dem-
onstrates that the this phenomenon is not limited to the
Klein-Nishina regime. It is instead an important effect
whenever the individual photon energy loss per ICS

10 == Analytic Approximation

] —— Auverage of Stochastic ICS
] Stochastic ICS +10

s ] Stochastic ICS +20
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o 1
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w ]
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I I I I I I
0 200 400 600 800 1000
Time [kyr]

FIG. 8. Electron energy as a function of time for initial electron
energy of 3 TeV. A similar dispersion is seen despite the lower
starting energy, which demonstrates that our effect is not
dependent on interactions in the strong Klein-Nishina limit.
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FIG. 9. Energy evolution over 5 Myr for electrons with an
initial energy of 100 GeV. We note that there is a significant
energy dispersion in the final energy, which exceeds 15% at lo.
Because the ICS interactions of 100 GeV electrons fall primarily
within the Thomson regime, this analysis illustrates that Klein-
Nishina effects are not responsible for the stochastic energy-loss
effect that we demonstrate.

interaction is relatively large and the number of individual
ICS interactions is relatively small—an effect that is still
true at energies near 100 GeV.

APPENDIX C: ISOTROPIC INVERSE-COMPTON
SCATTERING

In many scenarios, the ISRF is isotropic, based on
contributions from many optical and infrared sources.
Thus, many studies use an isotropic version of the ICS
cross section, which is equivalent to Eq. (6) integrated over
a solid angle:

dN(E,) 2nar}
dEy N l/l'E‘2

2 Lt 272
2(1-z) b(l-z) b*(1-2z)?
o 2z

TW(i-2 bi-o)" <b(lz_ Z)ﬂ . (c)

where v; is the initial photon energy, E, the outgoing
gamma energy, E the electron energy before the interaction,
and z=E,/E and b = 4y,E.

Figure 10 shows the electron energy as a function of
pulsar age for electrons produced at pulsar birth, 1 Myr ago,
with an initial energy of 10 TeV for 1000 electrons. This is
identical to Fig. 3 but for an isotropic ICS calculation. The
analytic ICS calculation is shown as a black dashed line,
and the average of the stochastic ICS as the black solid line
with the 1o and 2¢ bands in dark gray and light gray,
respectively. The colored lines represent a few examples of
individual electrons. The final energy in the exact stochas-
tic ICS calculation is 287 GeV with an energy spread

x{l—l—

10 = == Analytic Approximation

1 —— Average of Stochastic ICS
] Stochastic ICS 10

g ] Stochastic ICS +20

e

>
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(0] 1 ]

c ]

L ]
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I I I I I I
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FIG. 10. Electron energy against time for initial electron energy
of 10 TeV for the isotropic ICS calculation. Using an isotropic
ICS model has almost no effect on the cooling rates or energy
dispersion of our electron population, which is expected because
both the ISRF and electron flux are isotropic.

between 241 and 333 GeV at 1o and 195 and 379 GeV
at 20, which is similar to the results of the nonisotropic
case, as expected.

APPENDIX D: TREATMENT OF DIFFUSION

Throughout the bulk of this paper, we have focused
on the effect of electron cooling on the total electron
spectrum generated by a nearby, middle-aged pulsar.
However, the electrons produced by this source must also
diffuse through the interstellar medium, and the treatment
of particle diffusion may affect the electron spectrum
observed at Earth.

We note several methods for proving that diffusion does
not affect the production (in the analytic approximation) or
smearing (in the correct stochastic model) of the spectral
feature that we discuss.

First, we note that diffusion does not affect the produc-
tion of the sharp spectral feature in the analytic approxi-
mation. In Fig. 11 we show the local electron flux produced
by Geminga using multiple different choices for the
diffusion coefficient (at 1 TeV) and the diffusion spectral
index. Because this changes the energy-dependent fraction
of cosmic rays that are near the Earth’s position after
370 kyr, it changes both the normalization and the overall
spectrum of the electron flux both below and above the
peak. However, the location and sharpness of the spectral
feature are mostly unaffected because they stem purely
from the effective cooling of very-high-energy electrons.

To show this, we directly create a version of our
stochastic model that includes diffusion. This is computa-
tionally difficult because the diffusion of each individual
electron must be simulated via Monte Carlo techniques
along with its energy losses. After the simulation is
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FIG. 11. Local electron flux observed at Earth calculated using

the analytic approximation when diffusion is included. Results
are shown for a number of diffusion indices and normalizations at
a standard energy of 1 TeV. We note that neither the location nor
the sharpness of the spectral peak is affected by the diffusion
conditions, implying that they are generated by the cooling term
and are insensitive to particle diffusion.

complete, electrons will be discarded unless they have
diffused to the correct distance between the source and
observer. This process cannot be separated because the
individual interactions of each electron influence their
energy and thus the efficiency through which they diffuse
through the interstellar medium.

To produce this simulation, at each time step, we calculate
the diffusion coefficient for an individual electron by

p=p, (L ’
T 701 Gev)

where D, is the normalization of the diffusion coefficient at
1 GeV and 6 the diffusion spectral index. We adopt typical
values of Dy = 2 x 10*® cm?/s and 6 = 0.4 [8]. Using the

(D1)
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o i
" i
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" ] .
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T T T T T T T T
102 103
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diffusion coefficient, the mean free path of the electrons can
be calculated by 6r = 6D/c, where c is the speed of light.
Since diffusion can be modeled as a 3-dimensional random
walk, we choose a random direction in which the electron
travels the calculated distance.

The spectrum for Geminga (at age 370 kyr) can be seen
in Fig. 12. The left panel shows the diffused spectrum at
250 pc for the analytic approximation and the stochastic
model. For better statistics, we include all electrons whose
final positions are within the range of 200 to 300 pc in the
plot (some amount of binning is necessary because the
probability that an individual electron lands exactly at Earth
is minuscule even though this introduces a slight additional
smearing form the binning). The average expected dis-
placement of an electron with an initial energy of 1 TeV is
given by Ly = vV6Dt, which gives Ly =~ 1500 pc in
370 kyr. This means that most electrons end up at a distance
much further away from Geminga than Earth. In the right
panel, we show the diffused spectrum at 1250 pc, near the
location where the total electron flux (integrated over the
concentric ring) is maximized. Because the electron count
is much larger at this distance than closer to the pulsar, we
can obtain good statistics with a more limited radial range
of 1225-1275 pc, which reduces any effect of smearing
from our binning.

In both cases, we clearly see a spectral effect identical
to what we produced in the main text (where diffusion is
not considered). In each case there is a significant
spectral cutoff in the analytic approximation, which
stems from the fact that higher energy electrons are
cooled to a common energy. In the stochastic modeling,
this effect is smeared out due to the different energy-loss
histories of each individual electron. We note that the
statistical uncertainties in each bin are slightly larger
(especially in our model at 250 pc) purely due to
the computational difficulties in simulating enough
particles to produce a robust determination of the
spectral feature.

- —&— Exact Stochastic ICS
'; 10 E —— Standard Analytic Approximation
— ]
I 4
()] i
f? p
I i
P
(%) 14
O 3
w ]
5 i
~
> i
© i
« .
w Distance = 1250 pc
0.1 . —r :
102 103
E [GeV]

FIG. 12. Comparison of the analytic and stochastic inverse-Compton scattering models for a diffused spectrum. The left panel shows
the spectrum at 250 pc (the distance from Geminga to Earth), while the right panel shows the spectrum at 1250 pc.
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FIG. 13. Similar to Fig. 1, but with an alternative ISRF model
that has ~30% lower energy densities in the IR and optical
component.

APPENDIX E: ALTERNATIVE INTERSTELLAR
RADIATION FIELD

Throughout our analysis, we adopt the interstellar radi-
ation field model with energy densities and photon temper-
atures as described in the main text: with temperatures
Tyy =20 x 10° K, Topica = 5 % 10° K, Tg =20 K, and
Tems = 2.7 K, and energy densities pyy = 0.1 eV /cm?,
Poptica = 0.6 eV/em®, pr = 0.6 eV/em®, and peyp =
0.26 eV/cm® [8].

However, the precise values for the ISRF are not well
known. To study the effect of the underlying ISRF model
on our results, we employ an ISRF model with lower
energy densities and recreate Fig. 1 in the main text. We
lower the energy densities of IR and optical radiation from
0.6 eV/cm? to 0.2 eV/cm? while keeping everything else
the same.

In Fig. 13, we show the total flux at 342 kyr, for a data set
of ~10, 000 particles. We find that the energy of the spectral
peak has increased in both the analytic approximation and
the stochastic model, which is expected because we have
decreased the ISRF and thus the electron cooling rate.
However, the effect of this model on the spectral peak
does not change—the analytic model still produces a sharp
spectral feature (even though we have decreased the
importance of ICS cooling compared to synchrotron cool-
ing) while the feature is still eliminated in our stochastic
modeling.

APPENDIX F: ALTERNATIVE MAGNETIC
FIELD MODEL

Throughout our analysis, we assume a Galactic magnetic
field strength of B = 3 pG, which determines the energy
losses due to synchrotron radiation. This means that energy
losses are dominated by ICS interactions up to electron
energies of about 40 TeV (see the main text for the ISRF
model), which includes most of the total electron power
injected in our pulsar model.

10 i == Analytic Approximation
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FIG. 14. Similar to Fig. 3 in the main paper but with an
increased magnetic field strength of 10 pG instead of 3 pG,
which means that synchrotron losses are at least 1.7 times
stronger than the total ISRF losses. The average final stochastic
energy is 267 GeV with an energy spread of +/ — 23 GeV at lo
and the final energy of the analytic model of 269 GeV.

Here, we investigate the case where energy losses due to
synchrotron radiation exceed ICS energy losses, and we
show that the stochasticity stemming from the limited
number of ICS signals does not go away. As long as ICS
losses are non-negligible, particles will continue to be
dispersed in energy due to the Poisson nature of these
interactions. While keeping everything else in our model
the same, we change the magnetic field strength to an
extremely large value of 10 pG (which significantly
exceeds current best-fit measurements). For this model,
synchrotron losses dominate over ISRF losses for every
electron energy in our simulation. We simulate energy
losses for electrons with an initial energy of 10 TeV, similar
to Fig. 3 for 342 kyr.

The result is shown in Fig. 14. We find that the average
dispersion only decreases from 16% (for B = 3 pG) to 8§%.
Moreover, we note that—due to the fact that the final
electron energy has decreased due to the enhanced syn-
chrotron losses—the feature would actually be more
detectable in current AMS-02 data because the statistical
precision of AMS-02 data is much better at lower energy.
Thus, we argue that our results remain robust for all
reasonable choices of the local magnetic field strength.

APPENDIX G: STOCHASTIC VS CONTINUOUS
LOSS RATES

Throughout this work (e.g., Figs. 3 and 8-10), we note
an interesting feature. The continuous loss rate obtained
from the analytic calculation is slightly larger (~2%) than
the average energy obtained from the stochastic model.
While this effect is small, it is intuitively unexpected
because the analytic model (which essentially calculates
the average effect from a scenario where every electron
continuously interacts with every photon in the model)
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appears to provide a reasonable calculation for the average
energy of an electron after a given time.

In fact, we find that the small difference between the
stochastic and continuous energy-loss rates stems from the
energy dependence of the inverse-Compton scattering cross
section. In the stochastic scenario, the probability of having
significant energy losses makes certain electron energies
(and thus, certain inverse-Compton scattering cross sec-
tions) more likely than other values. For example, a single
interaction of a 10 TeV electron may remove many TeV of
its energy, bringing it to a lower energy where the Klein-
Nishina suppression with regards to the infrared portions of
the ISRF are no longer as large. This slightly changes the
expected energy of the electron after a time ¢ compared to a
continuous energy-loss model, where every electron moves
through every energy value between the initial and final
values. Since the ICS cross section changes with energy,
this leads to slightly different effective cooling rates.

To verify that this is the case (and that there are not any
underlying issues with either our analytic approximation or
our stochastic model) we make a simple adjustment in our
stochastic model. In each propagation time step, instead of
using Monte Carlo techniques to select a single, random,
input photon energy and final y-ray energy, we wrap the
Monte Carlo process in a for-loop and repeat the energy-
loss calculation several times. We then calculate the
average energy loss for the Monte Carlo draws in our
for-loop and apply the average energy loss to our electron
before moving on to the next time step.

Through the addition of a single for-loop, this allows our
Monte Carlo code to continuously vary between the
stochastic energy loss model (when the for-loop is run a
single time) and the continuous energy-loss model (as the
for-loop is run infinite times). Specifically, in the limit of an
infinite loop, every electron has interactions with every

Continuous ICS
- Average of Stochastic ICS, standard
== Average of Stochastic ICS, 2 averages
—+ Average of Stochastic ICS, 10 averages
-+ Average of Stochastic ICS, 100 averages
Stochastic ICS +10, standard
Stochastic ICS +10, 2 averages
Stochastic ICS +10, 10 averages
Stochastic ICS +10, 100 averages

10!

Energy [TeV]

100

Eo = 10 TeV
| | | |
0 100 200 300

Time [kyr]

FIG. 15.

photon in the ISRF and loses a small, but nonzero amount
of energy in every time step, even if the time steps become
very small.

In Fig. 15 we show the energy losses against time for
342 kyr for different numbers of repetitions of our loop at
each time step. In the standard case, the energy loss is
calculated once per time step, which is exactly our
stochastic model. In the other cases, the energy losses
are repeatedly drawn and averaged 2, 10, and 100 times at
each time step, beginning to approach a continuous limit.
The left panel shows the energy losses of the full 342 kyr of
electron cooling, while the right panel shows the same but
zoomed in to the last few 10 kyr. It can be seen that, for an
increasing loop length, the final electron energy after
342 kyr continuously changes from the average value
calculated by the stochastic energy-loss model to the value
calculated by the continuous energy-loss model.
Specifically, at an age of 342 kyr, the final average
stochastic energies are 872 GeV in the standard case,
889 GeV for 2 averages, 896 GeV for 10 averages, and
897 GeV for 100 averages. The continuous loss rate, which
purely relies on the standard analytical calculation as
described in the main text, produces a final energy of
897 GeV, exactly matching our averaged (over 100 draws)
stochastic code.

We note that while this effect is extremely interesting, it
is practically undetectable because it is degenerate with the
exact values of the magnetic field strength, the amplitude
of the ISRF, and the pulsar age. If all of these parameters
were known to within 2%, then, conceivably, the error in
the calculation of the average electron energy could be
observed. This differs from the dispersion in the electron
energies, which we show is robust for many different pulsar
inputs and is already potentially detectable with existing
AMS-02 data.

Energy [TeV]

0.8

I I I I
310 320 330 340

Time [kyr]

Comparison of the standard stochastic average and an average of 2, 10, and 100 at each time step, compared to the result

of the analytic approximation. It can be seen that averaging the stochastic results reproduces the analytic result, which is already
achieved after about 10 averages. The left panel shows the energy losses over 342 kyr, while the right panel shows a zoomed-in version

for 300 to 342 kyr.
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APPENDIX H: NONDIPOLE PULSAR MODELS

In Eq. (1), we assume the braking index of the pulsar
to be n =3, which corresponds to a dipole model.
However, observations suggest that pulsars are not an
exact dipole and the braking index is lower, n ~ 1.4-2.9
(e.g., [60-62]). Here, we study the effect of a smaller
braking index on the pulsar feature. In Fig. 16, we
show the total flux from the analytic calculation after
342 kyr, in the dipole model with n =3, which we
assume throughout this work, and in the nondipole model
with n =2. In the nondipole case, the sharp spectral
feature becomes even more pronounced because more
electrons are injected at earlier times compared to the
dipole model.

We note that even a sharper spectral feature will be
washed out in our correct stochastic modeling. This is
apparent because we have shown in the main text that not
even a delta-function injection signal (at 10 TeV) produces
a spectral bump once stochastic energy losses are taken into
account.

—— n=3 (dipole)
— n=2

E3 dN/dE [GeV?]

10! 102 103 104 10° 106
E [GeV]

FIG. 16. Comparison of the total flux after 342 kyr for Geminga,
assuming a dipole model (n = 3), which we have adopted through-
out this work, and a nondipole model with a braking index of n = 2.
Since a smaller braking index increases the electron injection at
early times, the sharp cutoff feature is enhanced when the braking
index is lowered compared to the dipole model.
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