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The high-density behavior of nuclear matter is analyzed within a relativistic mean field description with
nonlinear meson interactions. To assess the model parameters and their output, a Bayesian inference
technique is used. The Bayesian setup is limited only by a few nuclear saturation properties, the neutron star
maximum mass larger than 2M⊙, and the low-density pure neutron matter equation of state (EOS)
produced by an accurate N3LO calculation in chiral effective field theory. Depending on the strength of the
nonlinear scalar vector field contribution, we have found three distinct classes of EOSs, each one correlated
to different star properties distributions. If the nonlinear vector field contribution is absent, the gravitational
maximum mass and the sound velocity at high densities are the greatest. However, it also gives the smallest
speed of sound at densities below three times saturation density. On the other hand, models with the
strongest nonlinear vector field contribution predict the largest radii and tidal deformabilities for 1.4M⊙
stars, together with the smallest mass for the onset of the nucleonic direct Urca processes and the smallest
central baryonic densities for the maximum mass configuration. These models have the largest speed of
sound below three times saturation density, but the smallest at high densities, in particular, above four times

saturation density the speed of sound decreases approaching approximately
ffiffiffiffiffiffi
0.4

p
c at the center of the

maximum mass star. On the contrary, a weak nonlinear vector contribution gives a monotonically
increasing speed of sound. A 2.75M⊙ neutron star (NS) maximum mass was obtained in the tail of the
posterior with a weak nonlinear vector field interaction. This indicates that the secondary object in
GW190814 could also be an NS. The possible onset of hyperons and the compatibility of the different sets
of models with perturbative QCD (pQCD) are discussed. It is shown that pQCD favors models with a large
contribution from the nonlinear vector field term or which include hyperons.

DOI: 10.1103/PhysRevD.107.103018

I. INTRODUCTION

It has been shown that the very large neutron-proton
asymmetry and baryonic density that exist in the Universe
inside compact objects such as neutron stars (NSs), can be
studied using multimessenger astronomy, which provides
us with comprehensive information far beyond what is
available in terrestrial laboratories [1–3]. NSs are believed
to contain extremely rare phases of matter within the cores
[4,5]. Using astrophysical observations together with theo-
retical models of the equation of state (EOS), the astro-
physics community is trying to understand not only the
permissible domain of the EOS but also the possible
scenarios of particle species pertaining to NS matter. In
the case of high-density matter, there is the possibility that a
wide variety of phases or compositions occur, including

hyperons, quarks, superconducting matter, or colored
superconducting matter [4]. However, up to this point in
time, we know very little about NS’s composition. The
particle composition derived from NS matter is largely
model-dependent in nature. With the present different types
of available EOS models, the constraints from the Neutron
star Interior Composition ExploreR (NICER) observatory
and gravitational waves (GW) are still compatible with the
sole inclusion of nucleonic degrees of freedom [6]. It is
imperative to note that the calculation of the nuclear EOS is
a problem of theoretical modeling of the nuclear inter-
action. There are different models that can be used to
describe the nuclear EOS of NS matter. In spite of this,
relativistic mean field (RMF) models are preferred because
they are capable of describing matter with relativistic
effects, important for dense matter such as matter in NS,
as well as finite nuclei [7–15].
To account for the many-body effects associated with

nuclear interactions, it has been established that RMF
models provide a suitable description of finite nuclei and
infinite nuclear matter as a result of meson exchange.
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A relativistic mean field model is built from an effective
Lorentz scalar Lagrangian that incorporates baryon, scalar,
and vector meson fields [4,16,17]. The mesonic fields are
introduced to describe the nuclear interaction; the σ mesons
generate an attractive force, while the ω mesons generate a
repulsive short-range force. Within the RMF formalism,
two approaches are available to adequately describe the
density dependence of the EOS and the symmetry energy.
In one of the approaches, nonlinear meson terms have been
incorporated into the Lagrangian density [9,11,13,17,18]
while in the other approach, density-dependent coupling
parameters are used to describe the nonlinearities [6,19–
21], avoiding the introduction of various nonlinear meson
interaction terms. In the Lagrangian density, the coupling
parameters are not completely free but are adjusted to
reproduce a few well-known experimental and empirical
nuclear saturation properties. To date, it is only loosely
known which properties of nuclear matter govern the high-
density behavior (ρ ≫ ρ0) [22], but hopefully, astrophysi-
cal observations will constrain them.
The Bayesian approach is commonly used to optimize a

set of model parameters given a set of observational/
theoretical constraints [23–31]. In nuclear physics and
astrophysics, this method becomes a valuable tool, because
it is able to determine joint posterior distributions and
correlations between model parameters for a given set of fit
data. Generally, Bayesian analysis of a model provides a
whole snapshot of the model under the given fit data. As
previously discussed, the RMF model describes dense
matter EOS related to NS successfully, with density-
dependent couplings or including a few different nonlinear
self or cross-mesonic intersections. In light of the current
observations of NS as well as pure neutron matter con-
straints obtained from chiral effective field theory calcu-
lations at low densities, it is imperative to study the effects
of those interactions statistically. Our previous study
explored the RMFmodel with density-dependent couplings
within a Bayesian framework [6]. This study systematically
examines the RMF model with constant couplings and
nonlinear mesonic interactions within a Bayesian frame-
work. In [32], the nonlinear meson interactions in a RMF
model were investigated using a Bayesian framework based
solely on astrophysical data. Pure neutron matter con-
straints from chiral effective field theory calculations at low
densities were ignored. Indeed, low-density bounds on pure
neutron matter (PNM) EOS from χEFT are a very strict
constraint for this family of RMF models as it will be
shown in the present study. Besides, higher-order inter-
actions of ω meson (e.g., ω4) and cross interactions
between the two mesons ϱ and ω were not included in
that study, which was restricted to the nonlinear σ-meson
terms introduced in [17]. Recently, the model we will
discuss in the present study has been applied to analyze the
correlations existing among nuclear matter parameters at
saturation and neutron star properties [33]. In particular, the

role the ω4 term plays in these correlations and in
controlling the maximum star mass was discussed. It
was shown that the correlations are dependent on the
strength of the ω4 term. The same model is also considered
in [30], where the authors take a different approach to the
one of the present study and explore the constraining power
of the astrophysical observations coming from all the
current observation (x-ray, radio, and gravitational detec-
tion) and from simulated future x-ray missions.
The present study aims at analyzing a large set of

parameters of RMF models with several nonlinear meson
interactions, by employing a Bayesian approach based on a
given minimal set of fit data, in order to perform a detailed
statistical analysis. The fit data include a few nuclear
saturation properties, the observation of two solar mass
NS, and an estimation of the EOS of PNM from a χEFT
calculation. Furthermore, the consistency of the obtained
EOSs from marginalized posterior distributions of the
model parameters with recent measurements of the NS
mass-radius by NICER and the dimensionless tidal deform-
ability from GW170817 by LIGO-Virgo Collaboration will
be analyzed. In particular, we will focus our study on the
high-density behavior of the speed of sound. It has been
shown that conditioning the EOS built within a physics-
agnostic approach to perturbative QCD calculations at high
densities has a direct influence on the behavior of the speed
of sound, which shows a maximum around three times
saturation density or an energy density ≈500 MeV fm−3

[34–36]. On the contrary, imposing just astrophysical
constraints this behavior does not occur [34,36].
The article’s structure is as follows. Section II introduces

a brief overview of the field theoretical RMF model for the
EOS at zero temperature, while Sec. III discusses the
Bayesian parameter estimation. The results of our analysis
are discussed in Sec. IV. The effect of hyperon and
perturbative QCD (pQCD) constraints on the present model
are discussed in Sec. V. In Sec. VI, the summary and
conclusions are presented.

II. EQUATION OF STATE

In the present study, we consider several sets of EOSs
calculated within a RMF description of nuclear matter
based on a field theoretical approach that includes non-
linear meson terms, both self-interactions and mixed terms.
These nonlinear terms are important to define the density
dependence of the EOS. Different regions of the parameter
space that give an equally good description of the nuclear
properties will be considered. The nuclear interaction
between nucleons is introduced through the exchange of
the scalar-isoscalar meson σ, the vector-isoscalar meson ω
and the vector-isovector meson ϱ. The Lagrangian describ-
ing the baryonic degrees of freedom is given by

L ¼ LN þ LM þ LNL ð1Þ
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with

LN ¼ Ψ̄½γμði∂μ − gωωμ − gϱt · ϱμÞ − ðm − gσϕÞ�Ψ;

LM ¼ 1

2
½∂μϕ∂μϕ −m2

σϕ
2� − 1

4
FðωÞ
μν FðωÞμν þ 1

2
m2

ωωμω
μ

−
1

4
FðϱÞ
μν · FðϱÞμν þ 1

2
m2

ϱϱμ · ϱμ;

LNL ¼ −
1

3
bg3σðσÞ3 −

1

4
cg4σðσÞ4 þ

ξ

4!
g4ωðωμω

μÞ2

þ Λωg2ϱϱμ · ϱμg2ωωμω
μ:

The field Ψ is a Dirac spinor that describes the nucleon
doublet (neutron and proton) with a bare massm; γμ are the
Dirac matrices and t is the isospin operator. The vector
meson tensors are defined as Fðω;ϱÞμν ¼ ∂

μAðω;ϱÞν−
∂
νAðω;ϱÞμ. gσ, gω and gϱ are the couplings of the nucleons
to the meson fields σ, ω and ϱ, having masses, respectively,
mσ , mω and mϱ.
The parameters b, c, ξ and Λω, which define the strength

of the nonlinear terms, are determined together with the
couplings gi i ¼ σ, ω, ϱ, imposing a set of constraints. The
terms with b, c, have been introduced in [17] to control
the nuclear matter incompressibility at saturation. The ξ
term controls the stiffness of the high-density EOS, the
larger it is the softer the EOS. The Λω parameter affects the
density dependence of the symmetry energy, the larger
the smaller the symmetry energy slope at saturation. The
effect of the nonlinear terms on the magnitude of the meson
fields is clearly seen from the equations of motion for the
mesons

σ ¼ gσ
m2

σ;eff

X
i

ρsi ð2Þ

ω ¼ gω
m2

ω;eff

X
i

ρi ð3Þ

ϱ ¼ gϱ
m2

ϱ;eff

X
i

t3ρi; ð4Þ

where ρsi and ρi are, respectively, the scalar density and the
number density of nucleon i, and

m2
σ;eff ¼ m2

σ þ bg3σσ þ cg4σσ2 ð5Þ

m2
ω;eff ¼ m2

ω þ ξ

3!
g4ωω2 þ 2Λωg2ϱg2ωϱ2 ð6Þ

m2
ϱ;eff ¼ m2

ϱ þ 2Λωg2ωg2ϱω2; ð7Þ

where the meson fields should be interpreted as their
expectation values. Some conclusions can be drawn from
these equations with respect to the density behavior of the
EOS: a) the effective mass of the ω-meson mω;eff increases

as the ω-field increases and as a result at high densities
ω ∝ ρα with α < 1, giving rise to a softening of the EOS at
high densities with respect to models with a zero or small ξ.
This will also affect the behavior of the speed of sound as
we will discuss later; b) the effective mass of the ϱ-meson,
mϱ;eff , increases with the increase of the density and, as a
result, the ϱ field becomes weaker, which implies a softer
symmetry energy. Notice, however, that if ξ ≠ 0 this
softening is smaller since the ω field does not grow so
fast with the baryonic density.
Based on a reasonable approximation, the EOS of

nuclear matter can be divided into two parts: (i) the
EOS of symmetric nuclear matter (SNM) ϵðρ; 0Þ (ii) a
term involving the symmetry energy coefficient SðρÞ and
the asymmetry δ,

ϵðρ; δÞ ≃ ϵðρ; 0Þ þ SðρÞδ2; ð8Þ

where ϵ is the energy per nucleon at a given density ρ and
isospin asymmetry δ ¼ ðρn − ρpÞ=ρ. The EOS can be
recast in terms of various properties of bulk nuclear matter
of order n at saturation density: (i) for the symmetric
nuclear matter, the energy per nucleon ϵ0 ¼ ϵðρ0; 0Þ
(n ¼ 0), the incompressibility coefficient K0 (n ¼ 2), the
skewness Q0 (n ¼ 3), and the kurtosis Z0 (n ¼ 4), respec-
tively, given by

XðnÞ
0 ¼ 3nρn0

�
∂
nϵðρ; 0Þ
∂ρn

�
ρ0

; n ¼ 2; 3; 4; ð9Þ

(ii) for the symmetry energy, the symmetry energy at
saturation Jsym;0 (n ¼ 0),

Jsym;0 ¼ Sðρ0Þ ¼
1

2

�
∂
2ϵðρ; δÞ
∂δ2

�
δ¼0

; ð10Þ

the slope Lsym;0 (n ¼ 1), the curvature Ksym;0 (n ¼ 2), the
skewness Qsym;0 (n ¼ 3), and the kurtosis Zsym;0 (n ¼ 4),
respectively, defined as

XðnÞ
sym;0 ¼ 3nρn0

�
∂
nSðρÞ
∂ρn

�
ρ0

; n ¼ 1; 2; 3; 4: ð11Þ

III. THE BAYESIAN SETUP

By updating a prior belief (i.e., a prior distribution) with
given information (i.e., observed or fit data) and optimizing a
likelihood function, a posterior distribution can be obtained
according to Bayes’ theorem [37]. Hence, in order to set up a
Bayesian parameter optimization system, four thingsmust be
defined; the prior, the likelihood function, the fit data, and the
sampler.
The prior— First, we examine the prior domain of the

adopted RMF model, which provides relatively wide
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nuclear matter saturation properties through Latin hyper-
cube sampling, in order to define the prior distribution of
our Bayesian setup. Finally, we determine the uniform
priors for each parameter listed in Table I.
The fit data— In Table II, the fit data include the nuclear

saturation density ρ0, the binding energy per nucleon ϵ0, the
incompressibility coefficient K0, and the symmetry energy
Jsym;0, all assessed at the nuclear saturation density ρ0.
Additionally, we take into account the pressure of PNM for
densities of 0.08, 0.12, and 0.16 fm−3 from N3LO calcu-
lation in χEFT [38], accounting for 2 × N3LO data uncer-
tainty as well as the NS maximum mass above 2.0M⊙ with
uniform probability in the likelihood.
The log-likelihood— With our setup, we have optimized

a log-likelihood as a cost function. For all the data
presented in Table II, with the appropriate σ uncertainty,
Eq. (12) shows the log-likelihood function, except for the

low-density PNM data and the maximum mass of NS. Our
approach has been to use the box function probability as
given in Eq. (13) for the PNM data from χEFT. We also use
the step function probability for the NS mass,

LogðLÞ ¼ −0.5 ×
X
j

��
dj −mjðθÞ

σj

�
2

þ Logð2πσ2jÞ
�

ð12Þ

LogðLÞ ¼ Log

�Y
j

1

2σj

1

expðjdj−mjðθÞj−σj
0.015 Þ þ 1

�
: ð13Þ

Specifically, j runs over the entire dataset and dj and mj

represent the data and derived model values, respectively.
σj represents the uncertainty associated with each data
point in the dataset and the θ is the vector representation of
the model parameter. It is important to understand that
when sampling the posterior, the normalization of the log-
likelihood, which is done in Eqs. (12) and (13) is irrelevant.
However, to calculate the Bayes evidence it is mandatory
and in some cases, it also reduces the computation time.
To populate the six-dimensional posterior, we use the

nested sampling algorithm, first proposed in Ref. [43] and
suitable for low-dimensional problems. The PyMultinest
sampler is invoked to generate samples for the four
thousand starting “n-live” points [44,45]. There are approx-
imately eighteen thousand samples we have obtained in
each posterior with ≈0.04 acceptance rate.

IV. RESULTS

In the following, we examine the posterior probability
distributions of the RMFmodel parameters we have adapted
for the purpose of this work, namely gσ; gω; gϱ; b; c; ξ, and
Λω as briefly outlined in Sec. III. Our Bayesian setup for the
RMF model parameters includes the uniform (“uninforma-
tive”) prior as discussed in the earlier section. We first
perform a Bayesian inference with prior Set 0, as given in
Table I, imposing the constraints given in Table II. Besides
the conditions used in [6], the PNM condition was imple-
mented with hard cuts, and an extra constraint was intro-
duced; it was imposed that the PNMpressure is an increasing
function of the density. This last condition is necessary
because this behavior is physically justified but the inference
process may originate models that satisfy all the other
constraints except this one. In Fig. 1 the corner plot for
the posteriors of the parameters gσ , gω, gρ, B, C, Λω and ξ is
shown. The parameters B and C are b × 103 and c × 103,
respectively.
Some comments are in order: a) some models appear at

large gσ , gω and ξ and small Λω. It is the value of ξ that
defines this subset, and, therefore, in order to better
understand the properties of these models, an independent
Bayesian inference calculation is performed taking a prior

TABLE I. The uniform prior is considered for the parameters of
the RMF models. Specifically, B and C are b × 103 and c × 103,
respectively. The entrances ‘min’ and ‘max’ denote the minimum
and maximum values of the distribution.

Set 0

No. Parameters Min. Max.

1 gσ 6.5 15.5
2 gω 6.5 15.5
3 gϱ 6.5 16.5
4 B 0.5 9.0
5 C −5.0 5.0
6 ξ 0.0 0.04a

7 Λω 0 0.12
aNote: We have also performed another three identical studies

but for three different ranges of a uniform prior for parameter ξ:
(i) ξ ∈ ½0; 0.004� (Set 1); (ii) ξ ∈ ½0.004; 0.015� (Set 2);
(iii) ξ ∈ ½0.015; 0.04� (Set 3).

TABLE II. The constraints imposed in the Bayesian inference
to generate all sets of models: binding energy per nucleon ϵ0,
incompressibility K0, symmetry energy Jsym;0 at the nuclear
saturation density ρ0, including an 1σ uncertainty; the pressure of
PNM determined at the densities 0.08 fm−3, 0.12 fm−3 and
0.16 fm−3 from a χEFT calculation [38], with 2 × N3LO un-
certainty in the likelihood, the pressure of PNM is an increasing
function of density and the maximum NS mass above 2M⊙.

Constraints

Quantity Value/Band Refs.

NMP [MeV] ρ0 0.153� 0.005 [19]
ϵ0 −16.1� 0.2 [39]
K0 230� 40 [18,40]

Jsym;0 32.5� 1.8 [41]
PNM [MeV fm−3] PðρÞ 2 × N3LO [38]

dP=dρ > 0
NS mass [M⊙] Mmax > 2.0 [42]
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restriction on the parameter ξ ∈ ½0.015; 0.04� (Set 3); b) in
order to completely understand the effect of the ω4 term,
that has a strong effect on the density dependence of the
SNM EOS, in particular, determines the high-density
dependence of the EOS, two other calculations will be
performed, one with ξ ∈ ½0; 0.004� (Set 1) and a second
with ξ ∈ ½0.004; 0.015� (Set 2).
The corner plots that compare the three sets of ≈20000

models each defined by a different constraint on ξ are
shown in Figs. 2, 4 and 5, respectively, for the model
parameters, the nuclear matter properties and NS proper-
ties (Set 1 represented by solid black lines, Set 2 by red
and Set 3 by green). The median values and associated
90% credible intervals (CI) have been compiled in
Table III. In the table, we have listed the NMPs defined
in Eqs. (9) and (11), and the following NS properties: the
gravitational mass of the maximum mass configuration
Mmax, and corresponding baryonic mass MB;max, radius
Rmax, central energy density εc, central baryonic number
density ρc, and square of central speed-of-sound c2s of the
maximum mass NS, the radius RMi

and the dimensionless
tidal deformability ΛMi

(ΛMi
of stars with gravitational

mass Mi ∈ ½1.4; 1.6; 1.8; 2.08�M⊙), and the effective tidal
deformability Λ̃ for the GW170817 merger with q ¼ 1 (q
is the mass ratio of NSs engaged in the binary merger)
computed for the three sets.

First, let us discuss the model parameters for the three
sets based on the constraints on ξ. The main finding is that
the parameters of Sets 1 and 2 do not differ much; gσ and gω
extend to slightly larger values, while B and Λω take
slightly smaller values. In order to compensate for the ω4

term, that softens the EOS, the gω must increase, a change
that reflects itself on the other parameters. Finally, Set 3
differs a lot from the other two; it spreads to larger values of
gσ and gω, smaller values of B and Λω and C takes mainly
negative values. Only gρ is similar for the three sets. These
differences will reflect on the NMP and NS properties.
It is also interesting to discuss how efficiently do the

posterior distributions of the nuclear matter properties
specified in Table II span the target distributions. In
Fig. 3, the distributions of the posteriors of the physical
properties that define the constraints imposed in the
Bayesian inference given in Table II are compared with
the target distributions. We conclude that: a) Sets 1 and 2
have very similar behaviors; b) Set 3 covers all the target
distribution for K0 while the other sets are restricted to
values K0 ≳ 230 MeV; c) all sets show a similar result for
the symmetry energy at saturation Jsym;0 and are pushed to
the lower limit of the target; d) concerning the PNM
pressure Sets 1 and 2 are pushed to the upper (lower)
values of P1 (P3) while the opposite is true for Set 3.

FIG. 1. Corner plot for the posteriors of the parameters gσ , gω,
gρ, B ¼ b × 103, C ¼ c × 103, Λω, and ξ of the RMF model used
in the present study obtained using the uniform priors defined in
Table I. The vertical lines represent the 90% credible intervals
(CIs), and the light and dark intensities represent the 1σ, 2σ, and
3σ CIs, respectively.

FIG. 2. Corner plot for the three sets of models, Set 1 with
ξ ∈ ½0; 0.004� (solid black lines), Set 2 with ξ ∈ ½0.004; 0.015�
(red) and Set 3 with ξ ∈ ½0.015; 0.04� (green), comparing
the posteriors of the parameters gσ , gω, gρ, B ¼ b × 103,
C ¼ c × 103, and Λω of the RMF model used in the present
study. The vertical lines represent the 68% CIs, and the different
intensities, from dark to light, represent the 1σ, 2σ, and 3σ CIs,
respectively.
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The corner plot for the nuclear matter properties, Fig. 4,
confirms the above discussion, i.e., while Sets 1 and 2 have
very similar properties, Set 3 differs a lot from the other
two: a) concerning the symmetric nuclear matter properties,
Set 3 presents larger values ofQ0 and Z0, while K0 shows a
Gaussian distribution centered just above 200 MeV and
spreading between ∼100 MeV and ∼300 MeV. For the
other two, the distribution of K0 is squeezed above
220 MeV. It should also be noted an anticorrelation
between Z0 and K0—the lower values of K0 are compen-
sated by larger Z0; b) considering the symmetry energy
properties, all sets have the same Jsym distribution, but all
the other properties show differences. Set 3 takes larger
values of Lsym;0 and Ksym;0, and smaller of Qsym;0 and
Zsym;0. Set 3 also shows a slight positive correlation
between Lsym;0 and Ksym;0. Similar behavior has been

TABLE III. The median values and associated 90% CI of the NMPs defined in Eqs. (9) and (11), and NS properties, the gravitational
mass Mmax, baryonic mass MB;max, radius Rmax, central energy density εc, central number density for baryon ρc, and square of central
speed-of-sound c2s of the maximum mass NS, the radius RMi

and the dimensionless tidal deformability ΛMi
for NS mass Mi ∈

½1.4; 1.6; 1.8; 2.08�M⊙, and the effective tidal deformability Λ̃ for the GW170817 merger with q ¼ 1 (q is the mass ratio of NSs engaged
in the binary merger) computed for the three situations Set 1 (ξ ∈ ½0; 0.004�), Set 2 (ξ ∈ ½0.004; 0.015�), and Set 3 (ξ ∈ ½0.015; 0.04�) are
displayed.

Set 1 Set 2 Set 3

90% CI 90% CI 90% CI

Quantity Units Median Min. Max. Median Min. Max. Median. Min. Max.

NMP ρ0 fm−3 0.152 0.145 0.160 0.152 0.145 0.160 0.153 0.145 0.161
m⋆ � � � 0.76 0.69 0.78 0.72 0.64 0.76 0.63 0.55 0.69
ε0 −16.10 −16.43 −15.76 −16.10 −16.43 −15.76 −16.10 −16.43 −15.77
K0 257 234 293 252 205 300 232 169 295
Q0 −444 −497 −301 −438 −548 −256 −319 −562 483
Z0 1766 435 3054 2161 65 5521 4698 739 9623

Jsym;0 MeV 31.87 29.10 34.22 31.90 29.05 34.44 32.05 29.19 34.75
Lsym;0 35 21 57 39 25 58 50 35 64
Ksym;0 −126 −177 −57 −96 −160 4 −6 −89 71
Qsym;0 1438 640 1736 1328 722 1661 866 −88 1303
Zsym;0 −12118 −19290 236 −13057 −19030 −1147 −13422 −17643 −6877

NS Mmax M⊙ 2.073 2.013 2.306 2.064 2.011 2.244 2.048 2.010 2.162
MB;max M⊙ 2.457 2.378 2.772 2.437 2.367 2.677 2.400 2.348 2.546
c2s c2 0.63 0.58 0.70 0.52 0.46 0.58 0.43 0.39 0.45
ρc fm−3 1.079 0.914 1.138 1.036 0.899 1.099 0.972 0.883 1.035
εc MeV fm−3 1377 1169 1462 1302 1127 1394 1198 1084 1288

Rmax 10.75 10.46 11.52 11.03 10.69 11.74 11.47 11.07 11.97
R1.4 12.34 12.03 12.89 12.50 12.17 13.05 12.87 12.42 13.30
R1.6 km 12.21 11.89 12.86 12.39 12.04 13.02 12.77 12.31 13.26
R1.8 11.98 11.62 12.79 12.18 11.79 12.93 12.57 12.09 13.14
R2.075 11.67 10.96 12.86 11.88 11.21 12.92 12.25 11.65 12.96
Λ1.4 399 338 545 439 366 587 535 420 672
Λ1.6 156 129 233 174 141 250 215 166 284
Λ1.8 � � � 62 49 107 71 55 114 89 67 127
Λ2.075 17 9 42 20 12 43 26 16 43
Λ̃q¼1.0 474 402 639 519 434 688 631 497 787

FIG. 3. The comparison of the marginalized posteriors and the
corresponding constraints imposed in the Bayesian inference
analysis.
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shown in [46] for a set of quite different nuclear models.
Notice, however, that this correlation is not present in Sets 1
and 2. Besides also a quite strong correlation is obtained
between Lsym;0 and Qsym;0 for all three sets. Finally, it is
also interesting to point out the quite broad and flat
distribution of Zsym;0 for Sets 1 and 2 while for Set 3 it
presents a quite peaked distribution at a low value. Lower
values of Lsym;0 and Ksym;0 for Sets 1 and 2 are compen-
sated with larger values for the two higher orders, Qsym;0

and Zsym;0.
Let us now discuss the NS properties of the three sets

plotted in Fig. 5. The largest gravitational masses are
obtained with Set 1. In particular, within Set 1 there is a
small subset for which the mass is above 2.5M⊙ and as high

as 2.75M⊙. One property that distinguishes clearly the
three sets is the speed of sound in the center of the
maximum mass star; for Set 1 the square of this quantity
takes values above 0.6c2, for Set 3 values below 0.45c2 and
Set 2 fill the gap between the other two distributions.
Set 3 presents the largest radius and tidal deformability

for 1.4M⊙ stars and the smaller central baryonic densities
indicating a stiffer EOS. Notice, however, that the small
subset of models of Set 1 with a mass above 2.5M⊙ also
have R1.4 ≳ 13 km and Λ1.4 ≳ 700. Besides, they present a
large central speed of sound, c2s ∼ 0.7c2, and the smallest
central baryonic densities, < 0.8 fm−3.
The baryonic and gravitational masses of the maximum

mass configurations are strongly correlated. Besides, the

FIG. 4. Corner plot for the three sets of models with ξ ∈ ½0; 0.004� (solid black lines), ξ ∈ ½0.004; 0.015� (red) and ξ ∈ ½0.015; 0.04�
(green) comparing the respective nuclear matter properties, in particular, the binding energy e0, incompressibility K0, skewness Q0 and
curtosis Z0 at saturation that characterizes symmetric nuclear matter and symmetry energy Jsym;0, its slope Lsym;0, curvature Ksym;0,
skewness Qsym;0 and curtosis Zsym;0 at saturation that characterizes the symmetry energy. The vertical lines represent the 68% CIs, and
the light and dark intensities represent the 1σ, 2σ, and 3σ CIs, respectively.
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maximum gravitational mass also shows a strong correla-
tion with the radius and the tidal deformability of a 1.4M⊙
NS, the larger the maximum mass the larger these two
properties, and an anticorrelation with the central baryonic
density of the maximum mass configuration, with larger
densities associated with smaller radii and tidal deform-
abilities. Similar correlations have been obtained in [6,47],
with models with density-dependent couplings.
A comparison of the NS properties predicted by the three

sets becomes more evident through Fig. 6 where the full
posteriors for the three sets are plotted together with some
astrophysical observations, the mass-radius prediction from
the GW170817 detection [48] and the NICER observations
of the pulsar PSR J0030þ 0451 [49,50] and of the pulsar
PSR J0740þ 6620 [51,52]. None of the sets is rejected by
the observations. The ω4 term softens the high-density
behavior of the EOS, and, therefore, Set 3 does not describe
stars above 2.3M⊙. It is interesting to discuss the properties
of Set 3; a strong ξ softens the EOS at high densities,
therefore, in order to satisfy the 2M⊙ constraint this set of
models has a larger gω coupling, see Fig. 1, that gives rise to
a stiffer EOS at low and intermediate densities. At high
densities, the ω4 term softens the EOS and it is not possible
to attain very high masses. In addition, we compare the
mass-radius relationships obtained from a few RMFmodels

with our results, in particular, BigApple [53], IUFSU,
FSU2 [14], FSU2R [54], NL3ωρ [15], TM1-2, TM1ωρ,
and TM1-2ωρ [55]. It should be emphasized that the
posterior we have obtained for the three sets does not
completely encapsulate all models, particularly FSU2, and
TM1-2. This is because those models do not satisfy all the
restrictions put forth in the Bayesian setup. These two are
disregarded due to the Jsym;0 requirement. All the others fall
inside the full posterior for the NS mass-radius domain.
The NS mass-radius constraint obtained from HESS

J17311-347 is shown in dashed dark red (solid dark red)
[56]. The existence of only nucleonic composition in this
star may be questionable since all sets lie outside the 1σ 2D
posterior distribution in mass-radius. However, there are
some EOS that falls within the 2σ limit. The EOS that,
considering all sets, best matches the HESS J1731-34 1σ
(68% CI) data, BMPF_most_HESS, is also plotted in
Fig. 6. Its model parameters together with its NMP and
NS properties are given in the Supplemental Material,
respectively, in Tables II and III. In the Supplemental
material, we also present a few selected models for NSs
with maximum mass 2.2, 2.4, 2.6, and 2.75M⊙ (the
extreme one), namely BMPF220, BMPF240, BMPF260,
and BMPF275, respectively.

FIG. 5. Corner plot for the three sets of models with ξ ∈
½0; 0.004� (solid black lines), ξ ∈ ½0.004; 0.015� (red) and ξ ∈
½0.015; 0.04� (green) comparing the respective NS properties, in
particular, the gravitational and baryonic maximum massesMmax
andMB;max, the square of the speed of sound, the central baryonic
density of the maximum mass configuration, and the radius and
dimensionless tidal deformability of a 1.4M⊙ star. The vertical
lines represent the 68% CIs, and the light and dark intensities
represent the 1σ, 2σ, and 3σ CIs, respectively.

FIG. 6. NS mass-radius domains (full posterior) produced in the
following three scenarios: Set 1 with ξ ∈ ½0; 0.004� (black dot),
Set 2 with ξ ∈ ½0.004; 0.015� (salmon), and Set 3 with ξ ∈
½0.015; 0.04� (green). The gray lines depict the constraints from
the binary components of GW170817, along with their 90% and
50% credible intervals (CI). The 1σ (68%) CI for the 2D posterior
distribution in the mass-radii domain for millisecond pulsar PSR
J0030þ 0451 (cyan and yellow) [49,50] as well as PSR J0740þ
6620 (violet) [51,52] from the NICER x-ray data are also shown.
Additionally, we show the constraint obtained from HESS J1731-
347 for 68.3% (95.4%) CIs in dashed dark red (solid dark red)
[56]. MR curves from a few well-known RMF models are also
plotted (see text for details). Also, shown is BMPF_most_HESS,
the EOS from our complete set that best describes HESS
J1731-347.
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In Fig. 7, we plot the 90% CI region of the conditional
probabilities PðRjMÞ (left) and PðΛjMÞ (right) for the three
sets. The gray zones in the left panel indicate the 90%
(solid) and 50% (dashed) CI for the binary components of
the GW170817 event [57]. The NICER x-ray data pre-
dictions for the pulsars PSR J0030þ 0451 and PSR
J0740þ 6620 are also included, in particular, the 1σ
(68%) confidence zone of the 2D posterior distribution
in mass-radii domain frommillisecond pulsar PSR J0030þ
0451 (cyan and yellow) [49,50] as well as PSR J0740þ
6620 (violet) [49,50]. The horizontal (radius) and vertical
(mass) error bars reflect the 1σ credible interval derived for
the same NICER data’s 1D marginalized posterior distri-
bution. Finally, the blue bars depict the radius of PSR
J0740þ 6620 at 2.08M⊙ (left panel) and its tidal deform-
ability at 1.36M⊙ (right panel) [48]. As already indicated
by the full posteriors, masses above 2.3M⊙ are only
obtained within Set 1 and Set 2. Sets 1 and 2 predict
∼0.5 km smaller radii, as we can also confirm from
Table III. Only Set 3 predicts radii above 13 km at a
90%CI. Notice that according to Sets 1 and 2 the low-mass
object associated with the gravitational waves GW190814
predicted to have a mass in the range 2.5–2.67M⊙ [58]
could be a neutron star. The detection of masses above
2.3M⊙ puts strong constraints on ξ. Concerning the tidal
deformability (right panel), Sets 1 and 2 prediction for
Λ1.36, corresponding to the q ¼ 1 mass ratio of the

GW170817 detection, lies well inside observations, while
for Set 3 some models lie outside this range.
In order to better understand how the three sets compare

regarding the tidal deformability, we plot in Fig. 8 the
effective tidal deformability Λ̃ probability distribution

FIG. 7. The 90% CI region for the sets: ξ ∈ ½0; 0.004� (black dot), ξ ∈ ½0.004; 0.015� (salmon), and ξ ∈ ½0.015; 0.04� (green) derived
using the conditional probabilities PðRjMÞ (left) and PðΛjMÞ (right). The gray zones in the left panel indicate the 90% (solid) and 50%
(dashed) CI for the binary components of the GW170817 event [57], for the 1σ (68%) credible zone of the 2D posterior distribution in
mass-radii domain from millisecond pulsar PSR J0030þ 0451 (cyan and yellow) [49,50] as well as PSR J0740þ 6620 (violet) [51,52]
are shown for the NICER x-ray data. The horizontal (radius) and vertical (mass) error bars reflect the 1σ credible interval derived for the
same NICER data’s 1-D marginalized posterior distribution. The blue bars depict the radius of PSR J0740þ 6620 at 2.08M⊙ (left panel)
and the tidal deformability from GW170817 at 1.36M⊙ (right panel) [48].

FIG. 8. The probability distribution of combined tidal deform-
ability Λ̃ in a binary is plotted for a given chirp mass Mchirp ¼
1.186M⊙ and marginalized over NS mass ratio q ¼ m1=m2

obtained in Sets 1, 2 and 3. The median and 90% CI for Λ̃
are 471þ163

−71 , 516þ166
−84 , and 626þ154

−132 for Sets 1, 2 and 3,
respectively.
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calculated for the three sets for the chirp mass associated
with the GW170817, Mchirp ¼ 1.186M⊙. For each and
every mass-radius curve, and fixing the chirp mass at
1.186M⊙, we select all possible combinations of the mass
m1 and m2 and calculate the combined tidal deformability.
For each EOS we have 44 combinations of m1 and m2.
None of the distributions goes below 300, consistent with
the findings of several studies that show that electromag-
netic counterparts of GW170817, the gamma-ray burst
GRB170817A [59], and the electromagnetic transient
AT2017gfo [60] set a lower limit on the Λ̃ of the order
of 210 [61], 300 [62], 279 [63], and 309 [64]. The median
along with its 90% CI of the three distributions corre-
sponding to Sets 1, 2, and 3 are respectively, 471þ163

−71 ,

516þ166
−84 , and 626þ154

−132 . Set 3 has a quite symmetric and wide
distribution while the other two are narrower asymmetric
distributions that spread above the 720 limits obtained
from [48].
In Fig. 9, we plot the β-equilibrium pressure as a function

of the baryonic density for the three sets (ξ < 0.004,
0.004 < ξ < 0.015 and ξ > 0.015), together with the
prevision obtained from GW170817 [59]. All models fall
inside the GW170817 band. However, their behavior can

FIG. 10. The symmetry energy versus the baryonic number
density for the three sets with ξ ∈ ½0; 0.004� (dark gray), ξ ∈
½0.004; 0.015� (salmon), and ξ ∈ ½0.015; 0.04� are plotted (green).
The constraint depicted from the IAS analysis is also illustrated
by the light sky region.

FIG. 9. Pressure versus the baryonic number density for the
three scenarios ξ ∈ ½0; 0.004� (dark gray), ξ ∈ ½0.004; 0.015�
(salmon) and ξ ∈ ½0.015; 0.04� (green). Also shown is the band
predicted from the GW170817 event (hatched gray).

FIG. 11. A comparison of the proton, electron, and muon
fractions versus the baryonic density in the three different
scenarios: ξ ∈ ½0; 0.004� (dark gray), ξ ∈ ½0.004; 0.015� (salmon),
and ξ ∈ ½0.015; 0.04� (green).

FIG. 12. The median and 90% credible interval of the square of
sound velocity (c2s ) as a function of baryon density are shown for
ξ ∈ ½0; 0.004� (black dot), ξ ∈ ½0.004; 0.015� (salmon), and ξ ∈
½0.015; 0.04� (green). The blue region represents the 90% credible
interval of the square of sound velocity allowing for the onset of
hyperons in Set 0.
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be distinguished; a smaller ξ implies a softer EOS at lower
densities, harder at high densities, and the other way
around.
In Fig. 10, the symmetry energy is represented for the

three scenarios considered in our study. We conclude that
the larger ξ the stiffer is the symmetry energy, favoring
larger proton fractions as seen in Fig. 11. As referred in
Sec. II, a nonzero ξ gives rise to a larger ϱ effective mass,
Eq. (7), therefore, having a direct influence on the strength
of the ϱ field. The ω-field is proportional to the baryonic
number density ρ if ξ ¼ 0, while for a nonzero ξ, ω
increases with a smaller power of ρ. So the larger the
value of ξ the smaller the ϱ effective mass and the larger the
ϱ field. A large ϱ-field gives rise to a smaller isospin
asymmetry, i.e., larger proton fractions will occur.

However, since larger proton fractions favor the direct
Urca (DUrca) process inside NSs with smaller masses, the
different scenarios represented by the three sets may be
distinguished by their cooling properties.
Also very interesting is the analysis of the speed of sound

behavior for the three sets. While for the ξ < 0.004 set, the
speed of sound increases monotonically with the baryonic
density, this is not so for the ξ > 0.015 set, see Fig. 12; in
this case, the speed of sound square attains a maximum
below 0.45c2 at ρ ∼ 4ρ0 and then decreases smoothly. The
average behavior of the set with 0.004 < ξ < 0.015 shows
an intermediate behavior as expected. In this last case for
the densities plotted in Fig. 12, the speed of sound has
stabilized just above 0.5c2. The blue region in the figure
represents the 90% credible interval of the square of sound

FIG. 13. The Kendall rank correlation coefficients between RMF model parameters, nuclear saturation properties (NMP), and neutron
star properties (NS) were obtained from the posterior with prior Set 0. In such figures, Pearson’s correlation coefficient is typically
employed. Pearson’s correlation coefficient measures a linear relationship between two variables, whereas Kendall’s correlation
coefficient measures a monotonic relationship.
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velocity that allows for the onset of hyperons in Set 0, as
discussed below under Sec. V.
Finally, we study the correlations between the different

quantities considered, in particular, model parameters,
nuclear matter properties, and neutron stars properties,
see Fig. 13 where the Kendall rank correlation coefficients
are shown for Set 0. The strongest correlations obtained
with coefficients of the order of 85% or above are between:
a) gσ and gω for which 85% was determined. The correct
description of the binding energy strongly constrain these
two parameters; b) the central baryonic density and energy
density of the maximum mass star with the corresponding
star radius, respectively, −87% and −92%. This correlation
was referred in [65] and will be discussed below; c) the
speed of sound in the center of the maximummass star with
the parameter ξ, −90%. This correlation reflects the fact
that the parameter ξ determines the stiffness of the EOS at
high densities; d) the gravitational mass of the maximum
mass star with the corresponding baryonic mass, 92%, and
the central baryonic density with the energy density of the
maximum mass star, also 92%.
As discussed above, the correlation coefficient between

the central density of the maximum mass star ρc and its
radius Rmax is of the order of 0.9, see Fig. 13. A similar
result was obtained in [65] with a set of EOS determined
using the sound-speed parametrization method and con-
strained to satisfy x-ray and gravitational-wave observa-
tions, and ab-initio calculations, in particular, low-density
neutron matter chiral effective theory and high density
perturbative QCD results. These authors found that the
normalized central density of the maximum mass star was
related to the corresponding radius through the quadratic
relation

ρc
0.16 fm−3 ¼ d0

�
1 −

�
Rmax

10 km

��
þ d1

�
Rmax

10 km

�
2

;

with d0 ¼ 27.6 and d1 ¼ 7.5 and a 3.7% standard deviation
of relative residual over the central value zero. Performing a
similar analysis with Set 0, we have obtained d0 ¼ 28.89�
0.02 and d1 ¼ 7.73� 0.01. The parameters d0 and d1
obtained with our approach and in [65] differ less than 5%
although very different EOS descriptions have been used.
Notice, however, that the linear relation shows a chi-square
fit similar to the quadratic relation. We have obtained for
Set 0

ρc
0.16 fm−3 ¼ m0

�
Rmax

10 km

�
þ c0;

with m0 ¼ −11.618� 0.018 and c0 ¼ 19.255� 0.019.
The relative residual for ρc with Set 0 data, obtained with
both nonlinear and linear relations shows a symmetric
Gaussian distribution centered over zero with 1.4% stan-
dard deviation.

V. THE HYPERONS AND PERTURBATIVE QCD

In this section we complete the discussion of the
previous section by addressing two issues frequently
considered: a) how will non-nucleonic degrees of freedom
affect the conclusions; b) are the constraints obtained from
pQCD for densities as the ones found inside neutron stars
affecting the present neutron star description? The two
topics will be discussed in the following subsections.

A. Effect of hyperons

The appearance of hyperons in neutron stars, or other
nucleonic degrees of freedom, is an open question in
astrophysics and is still the subject of ongoing research.
For instance, in [66] the authors conclude within an
auxiliary field diffusion Monte Carlo description of
nuclear matter with Λ-hyperons the onset of hyperons
is very sensitive to the three-body force, and may disfavor
the onset of hyperons. However, if hyperons are consid-
ered in a RMF description of neutron star matter, the onset
of hyperons generally occurs for densities of the order
2 − 3ρ0.
We will introduce hyperons following the approach

described in [6]. The interaction between nucleons and
hyperons is defined by the σ, ω, ρ, and ϕ mesons, and we
allow for the possible onset of the neutral Λ-hyperon and
the negatively charged Ξ−-hyperon. The Λ-hyperon gen-
erally sets in first and the Ξ−-hyperon secondly [67–69].
The Σ-hyperon potential in the nuclear matter is possibly
repulsive disfavoring the onset of this hyperon before the
Ξ−-hyperon, see [70]. We consider that the coupling of the
hyperons to the vector-isoscalar mesons (ω and ϕ-mesons)
is determined by the SU(6) symmetry

gωΛ ¼ 2

3
gωN; gωΞ− ¼ 1

3
gωN ð14Þ

gϕΛ ¼ −
ffiffiffi
2

p

3
gωN; gϕΞ− −

2
ffiffiffi
2

p

3
gωN ð15Þ

and for the ρ-meson we assume

gρB ¼ gρN ð16Þ

In the Lagrangian density, the interaction term between the
ρ-meson and baryons takes into account the isospin
explicitly. The coupling of the σ-meson to the baryons is
written in terms of the coupling to the nucleon as
gσY ¼ xσYgσN , with xσY fitted to hypernuclei properties.
Considering several models, the factor xσΛ takes values
between 0.609 and 0.622, and values between 0.309 and
0.321 were calculated for xσΞ−. These two intervals have
been used in the calculation with hyperons. The same prior
used to define Set 0 (see Table I) together with the above
intervals for the baryon-σ meson were considered, as well
as the constraints defined in Table II.
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The effect of the inclusion of hyperons on the total mass-
radius domain span by the hyperon EOS set is plotted in
Fig. 14. The maximum mass that is attained has reduced
from 2.7M⊙ for nucleonic stars to ∼2.2M⊙ for hyperonic
stars. A strong effect is also observed on the radius; the
smaller radius region was eliminated, and, simultaneously
the mass-radius region extends to slightly larger radii. The
EOS has to be stiffer in order to be able to describe 2M⊙
stars. The EOS obtained are characterized by a very small
value of ξ (the median is 0.00137, and the 68% CI is
[0.0004,0.00326]) as expected because a large ξ softens the
EOS at high density, disfavoring the possible description of
stars with a mass equal or above 2M⊙.
The behavior of the speed of sound in the presence of

hyperons is shown in Fig. 12 where it can be compared with
the no-hyperon calculation. The hyperon onset has a strong
effect on the speed of sound as discussed in other works [6].
The speed of sound presents a maximum at the onset of
hyperons, for a density close to the one predicted in [35,36]
with an agnostic description of the EOS. Agnostic descrip-
tions, however, do not allow the determination of the star
composition [34,35,71,72].
We conclude that the description of neutron star matter

based on the microscopic model of nuclear matter consid-
ered shows a behavior of the speed of sound compatible
with the results of [35,36]: in our framework, if the
parameter ξ is large enough the speed of sound increases
until a value of ∼0.4c − 0.45c at ∼3ρ0 and then stabilizes
or decreases. If in the future the speed of sound is

constrained and a speed of sound of the order of 0.4c is
obtained in the center of a NS, the present work shows that
we do not necessarily need exotic degrees of freedom or a
deconfinement phase transition to interpret this value. Note,
however, that although our results are compatible with the
prediction of [36], where the authors only give a 68% CI,
there are some qualitative differences, in particular, con-
cerning the sharp peak of the sound speed followed by a
softening that occurs at 4ns. The sharp peak is missing in
our analysis with nucleonic matter, and it exists but with a
different structure in our study with hyperonic matter.
Besides, the low-density constraints imposed in both works
are different. Since no confidence interval is given in [38],
in our work we have taken the uncertainty to be the double
of the one given motivated by the dispersion of chEFT
results compiled in [73], and this was not considered in
[36]: the larger uncertainty will result in a wider band at low
densities.

B. Effect of pQCD constraints

In our Bayesian inference, no constraints from pQCD
have been included. Our framework is not valid for
densities as high as the ones explored with pQCD, however,
indirect constraints may be imposed. It has been shown in
[36,74] that pQCD constraints have a finite effect at
densities found inside NS, and in [74] a set of constraints
on the pressure, chemical potential and baryonic density
were calculated using information from thermodynamic
potentials together with causality and stability conditions.
In this subsection, we discuss the compatibility of our
different EOS sets with the pQCD constraints deduced
in [74].
In Fig. 15 we plot for three values of the QCD scale X the

pressure versus energy density including the pQCD con-
straints on these quantities, respectively from left to right,
for Set 0, Set 0 with hyperons, Set 1 and Set 3. We also
identify the constrained region for selected baryonic
densities, up to eight times saturation density taking for
this quantity a reference value, ns ¼ 0.16 fm−3. This
density is above the central density of the maximum mass
star of all our sets. Set 1 is having the largest densities in the
center and at 90% CI these are below 7.2ns. At 5ns almost
all models satisfy pQCD. However, at 8ns some models fail
the constraints, in particular, some models with a small ξ,
depending also on the value of QCD scale X. It is
interesting that all models of Set 3 (large values of ξ)
satisfy the pQCD constraints independently of the scale.
Also, the set that includes hyperons essentially satisfies the
pQCD constraints. In the future, these constraints could be
imposed in the Bayesian inference. As can be seen, at high
densities, X ¼ 4 is imposing the strongest constraints.
Models of Set 1 (with the smaller ξ) are the ones that fail
more frequently the constraints at 8 ns. Considering the
constraint X ¼ 1 in Set 1, from the total 21037 models 618
do not satisfy the pQCD constraints. The last models have

FIG. 14. The NS mass-radius complete domains generated
using only nucleonic and hyperonic matter, based on the Set 0
conditions, are depicted in their full posterior form; the dotted
(blue) region corresponds to the no-hyperon (hyperon) calcu-
lation. For the meaning of all the other regions and curves please
see the caption of Fig. 6.
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larger maximum masses (2.307–2.512M⊙ at 90% CI in
contrast with 2.07–2.51M⊙ for the models that satisfy the
constraints). The absolute maximum mass is ∼2.75M⊙ for
the excluded models and ∼2.5M⊙ for the others.
In order, to understand which models do not satisfy

pQCD constraints we have considered the combination that
excludes the largest number of EOS, Set 1 with the QCD
scale X ¼ 4, to allow for acceptable statistics. Under these
conditions 12662 models satisfy the pQCD constraints
(pQCD_in) and 8375 do not (pQCD_out). In Fig. 16, the
speed of sound of the two sets pQCD_in and pQCD_out of
Set 1 is compared with the other two sets, Set 2 and Set 3,
shown in Fig. 12. Models excluded by pQCD have in
average the largest speeds of sound at all densities. A large
number of the excluded models have a ξ parameter close to
zero, but not all of them, and on average a larger gω
coupling and a larger incompressibility. As a result, larger
radii are predicted for 1.4M⊙ stars, as well as larger
maximum masses, and smaller baryonic densities at the

FIG. 15. We display the values of energy density (ϵ) and pressure (p) for four different sets: Set 0, Set 0 with hyperon, Set 1, and Set 3
(from left to right columns). In addition, we apply the robust equation of state constraints from Ref. [74] that ensures stability, causality,
and thermodynamic consistency. The regions enclosed by the solid blue lines are subject to pQCD constraints that restrict the values of
energy density (ϵ) and pressure (p) within the same solid line regions. These constraints apply specifically to baryon number densities of
n ¼ 2, 3, 5, and 8 ns (where ns ¼ 0.16 fm−3). In contrast, dotted blue lines represent excluded regions, where not all pQCD conditions
are met. We show the results for different renormalization scale parameters X [75] for 1, 2, and 4 in order from top to bottom row. The
green and red dots represent, respectively, the models in our sets that satisfy and do not satisfy pQCD constraints.

FIG. 16. The effect of pQCD constraints on the speed of sound;
the median and 90% credible interval of the square of the speed of
sound (c2s ) as a function of baryon density are shown for Set 1
(ξ ∈ ½0; 0.004�) pQCD excluded EOS (pQCD_out, black dot) and
pQCD included EOS (pQCD_in, light blue), for Set 2
(ξ ∈ ½0.004; 0.015�, salmon), and for Set 3 (ξ ∈ ½0.015; 0.04�,
green).
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center of the maximum mass star, corresponding to
harder EOS.

VI. CONCLUSIONS

In the present study, we have studied the nuclear matter
properties and NS properties obtained within a RMF
description of nuclear matter. We have considered a RMF
model that includes mesonic nonlinear self-interaction and
mixed interaction terms as in models discussed in
[11,14,17,18,76]. A Bayesian inference analysis was per-
formed, considering flat distributions for the priors, the
model parameters, and imposing a small number of nuclear
matter properties and the 2M⊙ observational constraint.
Presently, nuclear matter properties at saturation are

reasonably well constrained, however, at high densities
there is still too little information to constrain nuclear
models. In the RMF model used in our study, the nonlinear
ω4 term has a special role in establishing the high-density
behavior of the EOS. We have, therefore, considered three
different scenarios by imposing different constraints to the
coupling ξ of the ω4 term.
One of the main conclusions is that the strength of the ω4

term controls the magnitude of the speed of sound in the
center of the star; a larger coupling will originate a smaller
speed of sound in the center. However, a smaller speed of
sound also indicates a softer EOS at high densities. The two
solar mass constraint in this model with a large coupling ξ
is only satisfied if the EOS is stiff at low and intermediate
densities, and, therefore gives rise to larger 1.4M⊙ NS radii.
At 90% CI we have obtained for the 1.4M⊙ star the radius
11.99 < R1.4 < 12.66 km for ξ < 0.015 which increases to
12.44 < R1.4 < 13.29 km if ξ > 0.015 is considered.
It is interesting to verify that for Set 3 (ξ > 0.015) the

speed of sound has a nonmonotonous behavior; it attains a
maximum around 4ρ0 and decreases for larger densities. In
[36,77], the authors study the behavior of the speed of
sound at high density, extrapolating the equation of state to
high densities using a Gaussian process EOS description.
They condition the EOS to astrophysical observations, or to
both astrophysical observations and pQCD, and verify that
the QCD conditioning gives rise to a decrease of the speed
of sound above ∼3ρ0 after a steep rise until this density.
Notice that this is precisely the density at which the speed
of sound of the three sets cross in Fig. 12. The softer the
EOS above that density, the stiffer it is below this reference
density and the other way around. The decrease of the
speed of sound with the onset hyperons, as discussed in
Sec. VA and in [78], occurs below 3ρ0 but for values of c2s
of the same order of magnitude ≲0.4c2. The probability
distribution for Sets 2 and 3 and Set 0 with hyperons in
Fig. 12 are compatible with the results of [36] when pQCD
constraints are imposed. If in the future the speed of sound
is constrained and a speed of sound of the order of 0.4c is
obtained in the center of a NS, the present study shows that

it is not necessary to include exotic degrees of freedom or a
deconfinement phase transition to interpret this value.
All observational constraints existing presently (from

NICER, from LIGO-Virgo Collaboration, and from the
measurement of NS masses above two solar masses) can be
satisfied within the RMF model discussed. Notice that the
GW170917 tidal deformability constraint is well satisfied
by the present model. The maximum mass attained is
∼2.75M⊙ and was obtained for a ξ < 0.004, i.e., for an
almost zero ω4 term. For a finite ξ > 0.015 the maximum
mass obtained is ∼2.3M⊙.
Another important nuclear matter property affected

indirectly by the ω4 term is the symmetry energy. It was
discussed that a larger ω4 term gives rise to a larger ϱ-field
and, therefore, a smaller proton-neutron asymmetry. A
direct effect is the onset of direct Urca nucleonic processes
at lower densities, and, therefore smaller NS masses.
We have also confirmed the anticorrelation obtained in

[65] between the maximummass radius and the correspond-
ing central baryonic density with a set of EOS built using the
speed of soundmethod.We have shown that both a linear and
a quadratic relation give rise to a similar chi-square fit.
It is interesting to establish a comparison with the results

of a similar Bayesian inference analysis carried out in a
different family of RMF models in [6], where a model with
density-dependent couplings was considered. The high-
density behavior of the EOS in our approach is defined by
the nonlinear meson terms included in the Lagrangian
density, which are not included in the formulation with
density-dependent couplings. Comparing the outputs in both
studies we conclude that the conclusions drawn in [6] do not
differ much from the results obtained with Set 2. Set 1
predicts largermaximummasses and speed of sound than the
ones obtained in [6]. On the other hand, Set 3 predicts larger
radii for the canonical NS and smaller central speeds of
sound, clearly showing a different high-density behavior.
In [78], the authors undertook the Bayesian inference

considering the possibility that hyperons nucleate inside
NS. In that study, the authors concluded that the joint effect
of the presence of hyperons and the two solar mass
constraints was the prediction of larger radii for intermedi-
ate mass NS. This is a conclusion similar to the one drawn
with Set 3; the ω4 softens the EOS, in an equivalent way the
onset of hyperon does, and, as a consequence the EOS has
to be stiffer at intermediate densities, giving rise to larger
radii. We have also studied the onset of hyperons in the
present framework. The two solar mass constraint restricts
the parameter ξ to quite small values. On average the NS
radius of a 1.4M⊙ star increases and the speed of sound has
a steep drop around 2ρ0 and a moderate growth for larger
baryonic densities keeping inside the range constrained by
pQCD [36].
It has been shown in [74] that pQCD imposes constraints

at densities that can be as low as ∼2ns. We have verified
whether the different EOS sets generated satisfy the
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constraints deduced in [74] and concluded: a) the con-
straints are satisfied for any QCD scale X ∈ ½1; 4� if a ξ >
0.015 is used; b) the set with hyperons and any value of ξ
satisfies almost completely the constraints, except for a
very fewmodels if X ¼ 1 is chosen; c) Set 1 with ξ < 0.004
is the one that has the largest number of models that do not
satisfy the pQCD constraints (e.g. ∼3% if X ¼ 1 and ∼40%
if X ¼ 4). For X ¼ 1 the absolute maximummass of the Set
1 models drops from ∼2.75M⊙ to ∼2.5M⊙ for models that
satisfy pQCD, and for X ¼ 4 it drops to ∼2.15M⊙.
In [32] the authors have performed a Bayesian inference

analysis to constrain the EOS using as framework a RMF
model similar to the one considered in the present study,
taking, however, ξ ¼ 0 and Λω ¼ 0 and using only obser-
vations to constrain the parameters. They have tested
several different priors and the possibility of Λ-hyperon
onset. They have generally obtained larger radii for a
1.4M⊙ star, possibly because they take Λω ¼ 0. As a
consequence, they also get quite large values of the
symmetry energy slope at saturation, except when the
saturation symmetry energy takes values below 20 MeV.
Besides, in [32] smaller maximum masses were obtained.
This property is connected to the nuclear effective mass in
this kind of model. The most probable effective masses
obtained are generally above 0.7 nucleon mass. As shown
in [67] in the model used in [32], the larger the effective
mass the smaller the maximum mass configuration. In the
model applied in our study, this correlation does not exist
because of the presence of the ω4 term. In the study [30],
the authors also take astrophysical observations as the
constraining power of the Bayesian inference which takes

as the underlying framework the same used in our study.
In this study, the nuclear physics constraints are minimal
and are mainly included in choosing a narrower prior that
takes into account some nuclear physics prior knowledge. It
is very interesting to see that observations favor a large ξ
parameter, and, as a consequence a speed of sound square
of the order of 0.4 c2 in the center of massive stars.
In the Supplemental material [79], we present a few

selected models for NSs with maximum mass 2.0, 2.2, 2.4,
2.6, and 2.75M⊙ (the extreme one), namely BMPF_most_
HESS, BMPF220, BMPF240, BMPF260, and BMPF275,
respectively. Its model parameters together with its NMP
and NS properties are given, respectively, in Tables II
and III of the Supplemental Material.

The final posterior of the model parameters, the equa-
tions of state, and the solutions for the star properties
obtained with all the sets can be obtained from the link [80].
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