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We study the detectability of gravitational-wave signals from subsolar-mass binary neutron star systems
by the current generation of ground-based gravitational-wave detectors. We find that finite size effects from
large tidal deformabilities of the neutron stars and lower merger frequencies can significantly impact the
sensitivity of the detectors to these sources. By simulating a matched-filter based search using injected
binary neutron star signals with tidal deformabilities derived from physically motivated equations of state,
we calculate the reduction in sensitivity of the detectors. We conclude that the loss in sensitive volume can
be as high as 78.4% for an equal mass binary system of chirp mass 0.17M⊙, in a search conducted using
binary black hole template banks. We use this loss in sensitive volume, in combination with the results from
the search for subsolar-mass binaries conducted on data collected by the LIGO-Virgo observatories during
their first three observing runs, to obtain a conservative upper limit on the merger rate of subsolar-mass
binary neutron stars. Since the discovery of a low-mass neutron star would provide new insight into
formation mechanisms of neutron stars and further constrain the equation of state of dense nuclear matter,
our result merits a dedicated search for subsolar-mass binary neutron star signals.
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I. INTRODUCTION

The first detection of a gravitational-wave signal from a
binary neutron star merger, GW170817, [1] allowed the
exploration of matter at high densities [2–6]. The LIGO-
Virgo network of second-generation gravitational-wave
observatories have observed neutron stars in four compact
binary coalescence events. Two of these were binary
neutron star mergers, and the other two neutron star black
hole mergers [1,7,8]. Among these, matter was only
detected for the GW170817 event, which was accompanied
by a multiwavelength electromagnetic counterpart that was
observed across the entire electromagnetic spectrum [9].

The masses of the neutron stars observed in these events are
greater than 1M⊙. Separately from these, gravitational-
wave events involving subsolar-mass compact objects
provide another important discovery space. The observa-
tion of even a single subsolar-mass event could be a
revolutionary discovery, and can imply the existence of
qualitatively new kinds of exotic objects, since there are no
known astrophysical processes involving subsolar-mass
compact objects that produce gravitational-wave signals
detectable by the LIGO-Virgo detectors [10].
The recent claim of the observation of a 0.77M⊙ neutron

star within a supernova remnant [11] suggests that sub-
solar-mass neutron stars could be an important class of
sources for gravitational-wave detectors. The minimum
theoretical mass of a neutron star constructed from a cold,
dense equation of state is ≈0.1M⊙ [12]. However, the
supernova mechanism likely imposes a minimum mass
larger than this [13]. This constraint provides a lower bound
on the allowed masses of neutron stars, but it depends
on supernova physics that is not yet fully understood.
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Very low-mass neutron stars with masses down to about
0.1M⊙ are still gravitationally bound and could be formed
through speculative channels, such as the fragmentation of
a neutron star in a collision [14]. The 0.2M⊙ object
discovered by self-lensing in the KIC 8145411 system
could be an example of such a low-mass neutron star,
formed in an unexpected way [15]. As pointed out by Silva
et al. [16], there are various observational and theoretical
reasons why low-mass neutron stars are an interesting
target for gravitational-wave detectors.
The cores of neutron stars can reach densities up to 5–6

times the nuclear saturation density n0 ¼ 0.16 fm−3. The
phase of gravitational wave signals emitted by inspiraling
binary neutron star systems carries information about tidal
effects on neutron star matter, which is strongly dependent
on the nuclear equation of state [17,18]. Extracting infor-
mation about the tidal polarizability of neutron stars from
gravitational-wave signals allows us to probe the dense
low-temperature region of the phase space of nuclear matter.
This region is inaccessible through the existing theoretical
tools, like chiral effective field theory or perturbative
quantum chromodynamics [19], or through laboratory
experiments [20,21] which probe the low-density regime.
The constraints on the tidal deformability of neutron stars
from GW170817 [2–6], and those on neutron star radius,
obtained from the NICER x-ray telescope [22–24], have
ruled out a large fraction of the equations of statewhichwere
previously considered feasible.
Measurements of the tidal deformability of neutron stars

with masses less than 1M⊙ can provide very interesting
constraints on the structure of the crust of a neutron star.
The central density of neutron stars with M ≲ 0.5M⊙ is
n ∼ 0.2 fm−3, with central densities near the minimum
mass being as low as n ∼ 0.1 fm−3. As a result, these stars
have a large crust compared to higher mass neutron stars,
and their tidal deformabilities are largely insensitive to the
equation of state of the core [25]. While the exact equation
of state of the crust has been shown to not affect the tidal
deformability parameter, Λ [defined in Eq. (1)], for a
fiducial mass neutron star (M ¼ 1.4M⊙) [26], the behavior
of Λ shows a noticeable dependence on the crust near the
minimum neutron star mass. Therefore, measurements of
tidal deformability for a neutron star near 0.1M⊙ could help
constrain the behavior of the neutron star crust directly.
However, we are largely insensitive to the equation of state
of the core because of the low densities of subsolar-mass
neutron stars [25].
Current searches for binary neutron stars are not designed

to be sensitive to systems having component masses below
1M⊙, even though they retain some sensitivity in this regime.
LIGO and Virgo have searched for gravitational-wave
signals from subsolar-mass black holes, with component
masses lying in the range 0.2–1M⊙ [27–30]. These searches
assume that the compact objects have a dimensionless tidal
deformability Λ1;2 ¼ 0, and the inspiral waveforms used as

templates are terminated at their Nyquist frequency, which is
1024 Hz. Matter effects have been previously shown to
impact searches for gravitational waves from binary neutron
star systems in [31].
In this paper, we assess the impact of neglecting the

tidal deformabilities and physical merger frequencies in a
search for binary neutron star systems with component
masses m1; m2 ∈ ½0.2; 1.0�M⊙. We find that this can cause
a nontrivial loss in detected event rate, due to the mismatch
between the signal and template waveforms, in a matched-
filter search. We use this result, and the result of the search
for primordial black holes in the data collected by the LIGO
and Virgo detectors during the O1 to O3 observing runs,
reported in [32], to set an upper limit on the merger rate of
subsolar-mass binary neutron stars.
The organization of the paper is as follows: In Secs. II

and III, we explore the effects of large tidal deformabilities
and lower merger frequencies resulting from large radii of
subsolar-mass neutron stars, on the gravitational signals
emitted by these sources. In Sec. IV, we analyze the
detectability of these sources using binary black hole
template banks, which are conventionally used during
searches for subsolar-mass binaries, by simulating a search
for injected subsolar-mass binary neutron star signals in the
Advanced LIGOnoise curve.We use the PyCBC toolkit [33]
to perform the analysis presented in this section. In Sec.Vwe
estimate an upper limit on the merger rate of subsolar-mass
binary neutron star systems by combining the reduction in
sensitive volume of the detectors with the rate upper limit
on subsolar-mass black hole binaries from a previous search,
conducted on the data from the LIGO and Virgo observa-
tories through the completion of their third observing run.
Section VI includes a discussion of our main results and the
potential astrophysical implications of observations of gravi-
tational-wave signals from binary neutron star mergers
involving subsolar-mass component stars.

II. EQUATION OF STATE MODELS AND THE
TIDAL DEFORMABILITY OF SUBSOLAR-MASS

NEUTRON STARS

Neutron stars in binary systems are deformed by the tidal
forces of their companion object, leading to deviations from
spherical symmetry. The tidal deformability of a neutron
star is defined as the constant of proportionality between
the induced quadrupolar response, Qij, of the star and the
external perturbing field, Eij, that is, Qij ¼ −λEij [18].
The phase of gravitational waves emitted by inspiraling

binary neutron star systems is sensitive to the nuclear
equation of state through the effective tidal deformability
parameter for the binary system. The tidal deformability
parameter of a neutron star, in its dimensionless form, is
given by [17,18]

Λ ¼ λ

ðGm=c2Þ5 ¼
2

3
k2

�
Gm
Rc2

�
−5
: ð1Þ
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Here, k2 is the quadrupolar (l ¼ 2) tidal Love number,
which characterizes the neutron star’s response to an
external tidal field, R is its radius, and m its mass [34].
For neutron stars having comparable masses, a higher
value of Λ is indicative of a stiffer equation of state,
and hence a more deformable structure. The leading-order
tidal correction to the phase of the gravitational waveform
which occurs at 5 PN (post-Newtonian) order is expressed
in terms of the effective tidal deformability parameter, Λ̃
of the binary neutron star system, [17,18,35]

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
; ð2Þ

wherem1,m2 are the masses andΛ1,Λ2 are the dimension-
less tidal deformabilities of the component neutron stars.
To account for the uncertainties in the nuclear equation of
state at densities encountered in neutron stars, we assume
three different equation of state models, namely the
APR [36], SLy4 [37] and BSk21 [38–40] equations of
state. These models all use a unified nonrelativistic
formalism and produce neutron stars which are consistent
with both the maximum mass of known neutron stars [41],
the measured values of neutron star radii from NICER,
and Λ1.4 from GW170817 [2–6,22–24,42]. This set of
equations of state is by no means comprehensive, but
provides a range of possible neutron stars consistent with
observational constraints. Using the equation of state
models as inputs to the Tolman-Oppenheimer-Volkoff
system of differential equations, and then following the
approach discussed in [17], we evaluate the tidal deform-
ability of the neutron stars, which is then used to calculate

the effective tidal deformability of the binary system
using Eq. (2).
To demonstrate the effect of tidal deformabilities of

subsolar-mass neutron stars on the gravitational-
wave signals emitted by inspiraling binary neutron star
systems, we generate a set of waveforms for equal mass
binary neutron stars, with chirp masses in the range
MC ∈ ½0.18; 0.87�M⊙, and effective tidal deformabilities
in the range Λ̃ ∈ ½1000; 5 × 106�. We compute the match
between each injected waveform and a binary black hole
waveform having the same component masses, where the
match quantifies the resemblance between the two. It is
the overlap between the two waveforms, weighted by the
Advanced LIGO noise power spectral density, maximized
over the extrinsic paremeters of the waveform. The overlap
integral for match calculation is evaluated from a lower-
frequency cutoff of 15 Hz, up to the Schwarzschild innermost
stable circular orbit (ISCO) frequency. The plot on the left
panel of Fig. 1 shows the match as a function of chirp mass,

MC ¼ ðm1m2Þ3=5
ðm1þm2Þ1=5, and effective tidal deformability Λ̃, of the

binary neutron star systems. The region bounded by the
equation of state curves overlaid on the figure approx-
imately represents the feasible part of the parameter space
for subsolar-mass binary neutron star systems. As can be
seen in the figure, the tidal deformabilities of the subsolar-
mass neutron stars are large, and the gravitational-wave
signals emitted by them can be significantly different from
binary black hole signals, as is indicated by the low match
values in the plot. This suggests that it is important to
account for the tidal deformabilities of subsolar-mass
neutron stars in order to accurately model the gravitational
waveforms emitted by these sources.

FIG. 1. Left panel shows the match between binary neutron star and binary black hole waveforms as a function of chirp massMC and
effective tidal deformability Λ̃ of the binary system, for equal mass binaries. The binary neutron star signals are terminated at the
frequency of gravitational-wave emission at the innermost stable circular orbit for a point particle orbiting a Schwarzschild black hole.
Low match values in the region bounded by the equation of state curves indicate that ignoring the tidal deformability of subsolar-mass
neutron stars can reduce the sensitivity of LIGO searches to gravitational-wave signals from these sources. Right panel shows the match
between binary neutron star and binary black hole waveforms as a function of the chirp mass of the system, for equal mass binaries, and
for three different neutron star equations of state. The lower frequency cutoff for match evaluation is 15 Hz.

DETECTABILITY OF SUBSOLAR MASS NEUTRON STARS … PHYS. REV. D 107, 103012 (2023)

103012-3



III. MERGER FREQUENCIES OF SUBSOLAR-
MASS NEUTRON STARS

In addition to assuming that the sources are binary black
holes, the waveform models used in subsolar-mass searches
also terminate the binary inspiral templates at the Nyquist
frequency, 1024 Hz [27–29]. This assumption is justifiable
for binary black holes and more massive binary neutron
star systems, since these are extremely compact objects.
Subsolar-mass neutron stars, on the other hand, are sig-
nificantly less compact, and have large radii, as can be seen
in Fig. 2. In the case of binaries in which one or both of the
stars have a large radius and large tidal deformability, such
as the low-mass binaries considered here, the merger is
expected to take place shortly after Roche overflow of the
secondary star [43,44]. As such, the point of Roche lobe
overflow can be used as a conservative time at which to
terminate an inspiral gravitational waveform model [45,46].
Here, we estimate the gravitational-wave frequency corre-
sponding to the mass-shedding limit fRoche by performing a
sequence of numerical simulations of binary neutron stars
based on quasicircular equilibrium approximation [47].
We approximate the gravitational-wave driven inspiral of

the binaries as a sequence of quasicircular orbits. We use the
publicly available library LORENE [48] to create binary
equilibrium configurations within the extended conformal
thin sandwich formalism [49].Neutron starmatter is taken to
be irrotational, as this well represents the late stages of the
binary evolution as studied in [50,51]. The resultant field
equations are then solved using a multidomain spectral
approach, as implemented inLORENE [52].We refer to [53]
for details on the mathematical formalism and implementa-
tion, where various tests of the method in different regimes
are also presented.
For our calculations, we consider five domains for each

neutron star, with one domain inside the star and the

remaining four to cover the remaining region around them
and match the boundary of the neutron star. The number
of collocation points are Nr × Nθ × Nϕ ¼ 25 × 17 × 16,
where Nr, Nθ, Nϕ denote the number of points in radial,
polar and azimuthal directions, respectively.
Following [47], we monitor the gravitational binding

energy of each binary Eb ¼ MADM − ðM1 þM2Þ as a
function of the dominant (l ¼ 2, m ¼ 2) gravitational-
wave frequency fGW, where MADM, the Arnowitt-Deser-
Misner mass, is defined as the total mass-energy content
in a hypersurface (see e.g. Eq. 64 of Ref [54]). We find
good agreement between the numerical results and the 3PN
point-particle limit [55] at low frequency (large separa-
tions). As we increase the frequency (reduce the separa-
tion), we observe that the two start to deviate. This is an
indication that matter effects become progressively more
important and that the system is approaching Roche over-
flow [47]. A representative example is shown in Fig. 3. At
even higher frequencies (smaller separations), no quasie-
quilibrium configurations can be found using LORENE. We
take the highest gravitational frequency for which a quasie-
quilibrium configuration can be found as a conservative
estimate for fRoche. To validate this choice, we perform full
numerical relativity simulations of three configurations
using the LORENE configuration with fGW ¼ fRoche as
initial data and the WhiskyTHC code [56–58] for the
evolution. fRoche should be thought of as a lower limit to
the merger frequency. We find that the merger takes place
only ∼2–3 gravitational-wave cycles after this point [59].
Using this procedure, we estimate fRoche for various

other mass configurations and the three equations of state

FIG. 2. Comparison of mass-radius curves for neutron stars,
obtained by integrating the Tolman-Oppenheimer-Volkoff system
of differential equations for the three different equations of state
being considered in this work. The large radii of the low-mass
neutron stars impact the merger frequency of their gravitational
waveforms as they are tidally disrupted by the companion at
lower frequencies than higher-mass neutron stars.

FIG. 3. Gravitational binding energy Eb for an equal mass
binary neutron star system with M1 ¼ M2 ¼ 1M⊙ as computed
with LORENE (accounting for matter effects) and in the point-
particle limit at 3PN. The APR equation of state is used in this
calculation. The Roche lobe overflow frequency (vertical dashed
line) is estimated as the frequency beyond which no equilibrium
solution can be found.
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considered in this study: APR, SLy4, and BSk21. In total,
we have generated 117 binary sequences (39 for each
equation of state). Our results are collected in Fig. 4. The
observed trends can be understood as an interplay between
the compactness of the stars, the tidal fields of the
companion, and the mass ratios. When the mass increases,
the neutron star becomes more compact and less suscep-
tible to the companion’s tidal field in a binary. The tidal
field falls off with distance as d−3. As a result, only at very
small separations the companion’s tidal field becomes
strong enough to initiate Roche lobe overflow. When
considering different mass ratios, the trend is that, as the
asymmetry in binary masses increases, the lower-mass star
is tidally disrupted at a larger separation. As can be seen
from Fig. 4, the Roche lobe overflow frequencies typically
lie within the sensitive band for the Advanced LIGO
detectors, thus suggesting that it is important to consider
the effect of lower termination frequencies of the inspiral
signals in modelling the gravitational-wave signals from
these sources.

IV. IMPACT ON SEARCH SENSITIVITY

The discussion in Secs. II and III motivates the need to
incorporate the tidal deformabilities of the neutron stars and
their physical merger frequencies, for accurate modelling of
gravitational waveforms from subsolar-mass binary neu-
tron star systems. In order to test how the differences in the
binary neutron star waveforms from their binary black hole
counterparts affect the search sensitivity, we simulate a set
of realistic binary neutron signals, and determine the ability
to recover these waveforms for the Advanced LIGO
detectors. The tidal deformabilities of the neutron stars
are derived from the APR, SLy4, and BSk21 equations of
state, and their merger frequencies are calculated by using a
two-dimensional interpolating function which estimates the
Roche Lobe overflow frequency of the system as a function
of component masses m1 and m2, using the data from the
simulations described in Sec. III.
Gravitational waves from compact binary coalescences

are conventionally searched for by matched filtering against
pre-constructed template banks [60–70], which are families

of templates generated using a parametrization that is
believed to efficiently describe the astrophysical parameter
space of interest. We used the Advanced LIGO zero-
detuned high-power noise curve [71] and a lower frequency
cutoff of 15 Hz for constructing the template bank, as well
as for fitting factor computations. The aim of this paper is
to explore how well the conventional binary black hole
template banks used in LIGO searches would recover an
incoming gravitational-wave signal from subsolar-mass
binary neutron star mergers. We restrict our analysis to
nonspinning binary neutron star systems. In principle,
waveform models for rotating neutron stars can be con-
sidered, as has been discussed in [72], but a detailed
discussion of spin is beyond the scope of this work.
In order to quantify how well a binary black hole

template bank can identify a gravitational-wave signal
from a subsolar-mass binary neutron star system, we
perform a set of template bank simulations and evaluate
the fitting factors for each of the injected signals. For a
given signal waveform h̃s, the fitting factor is the maximum
fraction of signal-to-noise ratio recovered when it is filtered
against the template from the bank that generates the
highest value of match for it [73–76]. It serves as a measure
of the efficiency of the template bank in searching for
gravitational-wave sources characterized by the same
parameters as those used to construct the template bank,

FF ¼ max
h̃b∈bank

Mðh̃b; h̃sÞ; ð3Þ

where the match, M, is the noise-weighted overlap
between two normalized waveforms, maximized over the
extrinsic parameters of the system [77], which in this case,
are the time tC and the phase ϕC of coalescence,

Mðh̃bðΛÞ; h̃sðλ; tc;ϕcÞÞ ¼ max
tC;ϕC

hh̃bðΛÞjh̃sðλÞeið2πftc−ϕcÞi:

ð4Þ

To determine the loss in signal-to-noise ratio incurred on
using a binary black hole template bank to search for
subsolar-mass binary neutron star signals, we construct a

FIG. 4. Gravitational-wave frequency at Roche lobe overflow for binaries with different masses m1 ≥ m2 and three equations of state:
APR, SLy4, and BSk21. Each point represents a binary neutron star system, and is colored according to the gravitational-wave
frequency at the point of Roche lobe overflow.
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template bank containing 1.7 × 106 templates which span
the mass range m1; m2 ∈ ½0.2; 1.0�M⊙. For details of
template bank construction, we use Ref. [77,78]. The
templates are generated using TaylorF2 waveforms which
follow the stationary phase approximation, accurate to 3.5
PN order. They have an upper cutoff frequency correspond-
ing to that of gravitational-wave emission from a point
particle orbiting around a Schwarzschild black hole, in its
innermost stable circular orbit. This varies inversely with
the total mass M of the binary system, as

fISCO ¼ c3

6
ffiffiffi
6

p
πGM

: ð5Þ

The template bank is constructed to have a minimal match
of 0.95, corresponding to a maximum allowed fractional
loss in signal-to-noise ratio of 5% due to the mismatch
between the signal and the template.
To test the efficacy of the template bank, we perform a

series of template bank simulations to evaluate the fitting
factors for injected signals corresponding to binary black
holes (used as the control setup), and binary neutron
star inspirals with component masses lying in the range
m1;m2∈½0.2;1.0�M⊙, and having tidal deformabilities
derived from the APR, SLy4 and BSk21 equations of state.
To test the effect of the different frequency cutoffs, we
perform one set of simulations where the inspiral waveforms
extend all the way up to the Schwarzschild ISCO frequency,
and another where they are terminated at the Roche Lobe
overflow frequency, computed by using a two-dimensional
interpolating function for the data generated from the
simulations described in Sec. III.
Iterating through the full template bank, containing

1.7 million templates, to find the best match template
for a large number of injected signals, would cause a
wasteful expenditure of a large amount of computational
power and resources. We can reduce the number of match
computations by comparing the values of the 0 PN chirp
time, τ0, of the injected signal with those of the templates in
the bank, and eliminating those templates that have a τ0

value that differs from that of the injection by more than
three seconds. Here, the τ0 parameter depends on the chirp
mass of the system as τ0 ¼ 5

256ðπfLÞ8=3 M
−5=3
C , where fL is

the lower-frequency cutoff [79]. Since τ0 is a metric
coordinate used in the construction of the template bank,
the difference between the τ0 values of the signal and the
template serves as a test of proximity of templates to the
signal.
The results of the template bank simulations for the

control setup, consisting of binary black hole signals, are
shown in Fig. 5. The figure illustrates that the template
bank recovers 100% of the injected subsolar-mass binary
black hole signals with fitting factors greater than 0.95, as is
expected.
For the subsolar-mass binary neutron star systems, the

fitting factors are weakly dependent on the equation of
state, but for a vast majority of the signals, they are
lower than 0.95, which is the specified minimal match for

FIG. 5. The shaded region in the figure shows the fitting factor
[Eq. (3)] as a function of component masses ðm1; m2Þ of injected
binary black hole signals. Fitting factors are highest for signals
located closest to the templates, and lowest for those located
equidistant from two nearest templates.

TABLE I. A summary of the results of the template bank simulations, for different equations of state, and termination
frequencies. ISCO stands for the frequency of gravitational-wave emission by a point particle orbiting a Schwarzschild
black hole, in its innermost stable circular orbit. RLO refers to the Roche Lobe overflow frequency, where one of the
neutron stars is tidally disrupted by its companion and has reached the mass shedding limit.

Equation of state and
termination frequency

Minimum fitting
factor

Maximum fitting
factor

% of signals having
FF < minimalmatch

APR (RLO) 0.6024 0.9823 63.06
APR (ISCO) 0.5788 0.9810 69.39
SLy4 (RLO) 0.5780 0.9785 72.72
SLy4 (ISCO) 0.5580 0.9761 78.63
BSk21 (RLO) 0.5900 0.9712 82.24
BSk21 (ISCO) 0.5764 0.9690 87.12
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the template bank. Table I summarizes the results of
the template bank simulations for the binary neutron
star signals. For the softer equations of state, the tidal

deformabilities are low, and so the percentage of signals
having fitting factors lower than 0.95 is less than that for
the stiffer ones. However, as can be seen from the third

FIG. 6. Left panel shows fitting factors obtained on performing template bank simulations, for injected binary neutron star signalswith the
component neutron stars having tidal deformabilities derived from the APR, SLy4 and BSk21 equations of state, and terminated at their
RocheLobeoverflow frequencies, plotted as a functionof the primarymassm1 and secondarymassm2. Right panel shows a plot of effective
tidal deformability of the binary neutron star systems, as a function ofm1 andm2. The fitting factors are lower for systemshavinghigher tidal
deformabilities, indicating greater mismatch between the binary black hole templates and the injected binary neutron star signals.
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column of the table, a majority of the injected signals can
not detected by using the binary black hole template bank,
with the percentage of signals having fitting factors lower
than the minimal match ranging from 63% for the APR
equation of state, to 82% for BSk21.
The fitting factors evaluated from the template bank

simulations improve slightly when the waveforms are
terminated at their Roche Lobe overflow frequency.
However, even for the softest equation of state being
considered here, i.e. the APR equation of state, the fitting
factor obtained on matched-filtering an inspiral signal
from a ð0.2; 0.2ÞM⊙ binary neutron star system is ∼0.60,
corresponding to a 78.4% loss in sensitive volume of the
detectors to these sources. Figure 6 shows the tidal
deformabilities, as well as the fitting factors obtained
from the template bank simulations, as a function of the
component masses of the injected binary neutron star
signals, for the three different equations of state.

V. CONSTRAINT ON MERGER RATE

We use the loss in sensitivity computed in Sec. IV,
and the results from the search for subsolar-mass binary
black holes reported in [32], to obtain a conservative
upper limit on the merger rate of subsolar-mass binary
neutron stars. This search used data collected by the
Advanced LIGO and Advanced Virgo detectors
during their first three observing runs, to place an
upper limit on rate for subsolar-mass binaries, in the
range 720–46000 Gpc−3 yr−1 for the chirp mass range
ð0.17; 0.87ÞM⊙. Using the loudest event statistic formal-
ism, the 90% confidence interval on the chirp mass
dependent upper limit of merger rate can be obtained as

R90 ¼
2.3
hVTi ; ð6Þ

where V is the sensitive volume, and T is the time
analyzed [80].
To estimate an upper limit on the merger rate of

subsolar-mass binary neutron stars, we use the fractional
loss in average sensitive distance, computed from the
fitting factors. We compute the average fitting factors for
the entire population by dividing into equally spaced
chirp mass bins, and use them to compute the sensitive-
volume of the detectors for binary neutron stars as
VBNS ¼ FF3 × VBBH. Substituting this in Eq. (6), we
obtain a rate upper limit for subsolar-mass binary neutron
stars as ½830–210; 000� Gpc−3 yr−1 for the chirp mass
range ð0.17; 0.87ÞM⊙.
For the subsolar-mass binary black holes, the merger

frequencies do not lie in the sensitive band of the LIGO-
Virgo detectors, and the amplitude of the gravitational-
wave strain is a function of the chirp mass at leading order.
As a result, the constraint on the merger rate for the
primordial black hole search is not strongly dependent on
the total mass of the sources or their mass ratios. Since we
combine the results of the template bank simulations with
the rate constraint from the primordial black hole search,
and the fitting factors vary only slightly as a function of
mass ratios, the rate constraint derived here is not sensitive
to the mass ratios of the binary neutron star systems. It is
also found to be largely independent of the equation of state
model being used, since the fitting factors from the
template bank simulations do not depend strongly on the
equation of state. Figure 7 depicts the derived upper limit
on the merger rate of subsolar-mass binary neutron stars.

FIG. 7. Left panel: Blue curve shows the upper limit on merger rate for subsolar-mass binaries obtained in [32] for the O1 to O3b
observing runs. Red curve shows an upper limit on the rate of subsolar-mass binary neutron star mergers, obtained using the sensitive
volume reduced by a factor of ðaverage fitting factorÞ3. Right panel: The ratio of upper limit on the rate of binary neutron star mergers to
the upper limit on the rate of binary black hole mergers, plotted as a function of chirp mass of the binary system.
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Our results indicate that a dedicated search for binary
neutron star signals using a template bank that incorporates
their tidal deformabilities and physical merger frequencies
would be more sensitive to these sources than a search for
subsolar-mass binary black holes.

VI. CONCLUSIONS

The analysis presented in this paper explores our ability
to identify gravitational-wave signals from inspiraling
subsolar-mass binary neutron star systems, when a template
bank search for compact binary coalescences involving
low-mass sources is carried out for the Advanced LIGO and
Virgo detectors. As discussed in the text, existing template
banks to search for binary neutron star signals treat neutron
stars as effective black holes, since their tidal deformabil-
ities and lower frequencies of merger are unaccounted for
in the construction of the template banks. We find that
ignoring the finite size effects of low-mass neutron stars,
such as their large tidal deformabilities and physical merger
frequencies, on the gravitational-wave signals, can lead to a
significant loss in signal-to-noise ratio, thus potentially
missing signals from such sources. Using a binary black
hole template bank to search for subsolar-mass candidate
events in Advanced LIGO noise fails to recover a signifi-
cant fraction of the injected signals with fitting factors
above the specified minimal match for the template bank.
This effect is amplified with decreasing chirp mass of the
system. At the lower end of the mass range considered here,
the loss in sensitive volume of the detectors is as high as
78.4%, thus necessitating the use of refined template banks
which are specifically designed to search for binary neutron
stars [81] in order to effectively recover gravitational-wave
signals involving subsolar-mass neutron stars.
Using the results of the search for subsolar-mass binaries

for the O3b observing run of the LIGO-Virgo detectors
[32], and accounting for the reduced detection efficiency
for low-mass neutron stars, we obtain a chirp mass
dependent upper limit on the merger rate, lying in the
range ½830–210; 000� Gpc−3 yr−1. This constraint can be
improved by implementing a search using a template bank
that incorporates the tidal deformabilities and physical
merger frequencies for binary neutron star signals, which
we will explore in a subsequent paper. The cost of
performing a search for subsolar-mass neutron stars would
depend, to a large extent, on that of generating a template
bank that spans the parameter space of interest, i.e.
m1; m2 ∈ ½0.2; 1�M⊙ and their respective tidal deformabil-
ities lying in the range allowed by plausible equations
of state describing dense nuclear matter. Template banks

incorporating tidal effects can be generated using a stochastic
template placement algorithm, as discussed in [81].
Including the tidal deformability is expected to increase
the number of templates beyond 1.7million, which is the size
of the bank spanning them1,m2 parameter space for binary
black hole systems. However, imposing physical constraints
on the allowed values of tidal deformability, i.e. restricting to
a region bounded by plausible equations of state on the soft
and stiff end, can reduce the number of templates required to
some extent. The ability to test the validity of proposed
formationmechanisms for neutron stars and further constrain
the nuclear equation of state, through the detection of
gravitational-wave signals involving low-mass neutron stars,
makes it a useful scientific goal to consider a directed search
for such events in the future observing runs of the LIGO-
Virgo-KAGRA network.

Supporting data for this manuscript is available at [82].
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