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Starting from the relativistic Brueckner-Hartree-Fock theory for nuclear matter and the Dyson-
Schwinger equation approach for quark matter, the possible hadron-quark phase transition in the interior
of a neutron star is explored. The first-order phase transition and crossover are studied by performing the
Maxwell construction and three-window construction respectively. The mass-radius relation and the tidal
deformability of the hybrid star are calculated and compared to the joint mass-radius observation of a
neutron star and the constraints from gravitational wave detection. For the Maxwell construction, no stable
quark core is found in the interior of a neutron star. For the three-window construction, the parameters of
the smooth interpolation function are chosen in such a way to keep the thermodynamic stability and lead to
a moderate crossover density region. To support a two-solar-mass neutron star under the three-window
construction, the effective width of medium screening effects in quark matter should be around 0.35 GeV.
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I. INTRODUCTION

At sufficiently high temperature or density, the quarks
are likely to “escape” from nucleons and become basic
degrees of freedom. Such transition is known as the hadron-
quark phase transition. Unlike the transition at high temper-
ature, which is reachable in heavy ion collisions, the
transition at large density is far beyond the scope of
terrestrial experiments. The corresponding density can only
be found in astronomical compact objects, such as neutron
stars. The neutron star is the remnant of a supernova
explosion, and the density inside a neutron star could reach
about 5 ∼ 10ρsat, where ρsat ¼ 0.16 fm−3 is the nuclear
saturation density [1,2]. At such a density, it is very likely
that the hadron-quark phase transition will take place
and deconfined quark matter appears [3,4]. Therefore, it
is possible to use an astronomical observation of neutron
stars to constrain the theories about the dense matter and
phase transition.
Currently, it is difficult to unitedly describe the hadron

matter, quark matter, and hadron-quark phase transition
within a single theoretical framework. To study the hadron-
quark phase transition inside the hybrid star, it is common
to describe the hadron and quark matter separately with
corresponding approaches, and then use different construc-
tion schemes to combine them and get a complete equation
of state (EOS).

For the hadron matter, there have already been many
nuclear many-body methods, among which the nonrelativ-
istic [5,6] and relativistic [7–11] density functional theories
(DFTs) are very important. They are based on effective
nucleon-nucleon ðNNÞ interactions, where the parameters
are determined by fitting the ground state properties of
finite nuclei and infinite nuclear matter at saturation. The
predictions of the neutron star properties with different
DFTs are rather divergent due to the loose constraints of the
effective NN interactions at higher densities. In compari-
son, one can start from realistic NN interactions where the
parameters are constrained with the NN scattering data in
free space, and utilize the many-body methods to deal
with the realistic NN interactions, such as the relativistic
Brueckner-Hartree-Fock (RBHF) theory [12] as well as its
nonrelativistic counterpart BHF theory [13]. In particular,
the RBHF theory is rooted in the relativistic framework,
which contains significant three-body force effects self-
consistently [14] and naturally avoids the problem of
superluminance in nonrelativistic methods [15]. The
RBHF theory has been successfully applied to study the
neutron star with pure hadron matter [16–18].
In the description of quark matter, phenomenological

models are widely used (see, e.g., Refs. [19–25]). In spite of
these successful models, a study that is directly based on
quantum chromodynamics (QCD) is still needed.
The most important first-principle method, the lattice
QCD [26,27], is powerful at zero chemical potential but
encounters the notorious “sign problem” at large density.*sqin@cqu.edu.cn
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The perturbative QCD [28,29] also loses its power in the
phase transition region. Therefore, a nonperturbative, con-
tinuum approach is required to study the phase transition of
cold-dense matter. In particular, the Dyson-Schwinger equa-
tion (DSE) approach [30,31] is a typical functional method
based on QCD. It can deal with the confinement and
dynamical chiral symmetry breaking simultaneously, and
can be naturally used at finite temperature and chemical
potential. In recent years, there have already been studies of
neutron stars by using the DSE method [32–37]. However,
the relevant study is still in its early stages, and more efforts
must be paid to make this method mature.
As for the construction of phase transition, the most

widely used method is the Maxwell construction [38–40]. It
assumes that the phase transition is of first order [41,42]
and a stable quark core is formed inside the neutron star. It
has also been argued that with the increase of density, the
boundaries of hadrons will gradually disappear and the
transition from hadron matter to quark matter will be a
smooth crossover [43]. Under this assumption, the three-
window construction [44,45] was proposed. In this paper,
both of these schemes will be used.
Apart from those theoretical approaches, on the exper-

imental side, the studyof hadron-quarkphase transition relies
closely on the astronomical observations of neutron stars.
Several massive neutron stars have already been detected
with high-precision mass measurements [46–50]. These
observations provide the lower limit for the stiffness of
the neutron star EOS. The joint mass-radius observation of
the neutron star from the Neutron Star Interior Composition
Explorer (NICER)mission provides additional requirements
[51–54]. The detection of gravitational wave (GW) signals
from a binary neutron star merger [55,56] has also provided
an important constraint for the neutron star properties.
In previous works, numerous methods for nuclear

matter and quark matter have been implemented to study
the hadron-quark phase transition in the hybrid star
[36,37,57,58–70]. In Refs. [32–35], the BHF theory
and the DSE approach have been combined.
Nevertheless, this prescription is inconsistent with respect
to the relativity, as the BHF theory is nonrelativistic while
the DSE approach is relativistic. This paper utilizes the
RBHF theory for nuclear matter and the DSE approach for
quark matter, which are both in the relativistic framework.
To construct the EOS of the hybrid star, the Maxwell
construction and three-window construction are employed
to describe the first-order phase transition and crossover,
respectively. The mass-radius relation and tidal deform-
ability of the hybrid star are calculated and are compared
with the astronomical observations.
This paper is organized as follows. In Sec. II, the RBHF

theory for nuclear matter, the DSE approach for quark
matter, and the construction schemes for hadron-quark
phase transition are briefly introduced. The results and

discussions are presented in Sec. III. Finally, a summary is
given in Sec. IV.

II. NUCLEAR MATTER, QUARK MATTER, AND
HADRON-QUARK PHASE TRANSITION

A. Nuclear matter

In the RBHF theory, the nuclear matter is described with
the nucleons as the basic degrees of freedom. The single-
particle motion of a nucleon in nuclear medium is described
by the Dirac equation

ðα · pþ βMτ þ βÛτÞuτðp; sÞ ¼ Ep;τuτðp; sÞ; ð1Þ

where the subscript τ ¼ n; p indicates neutron or proton.
Mτ is the mass of a free nucleon. uτðp; sÞ is the Dirac spinor
of a nucleon with momentum p, spin s, and single-particle
energy Ep;τ. The single-particle potential operator Ûτ is
generally divided into scalar and vector components

ÛτðpÞ ¼ US;τðpÞ þ γ0U0;τðpÞ þ γ · p̂UV;τðpÞ: ð2Þ

Here p̂ ¼ p=p is the unit vector parallel to the momentum
p. The quantities US;τðpÞ, U0;τðpÞ, and UV;τðpÞ are the
scalar potential, the timelike part, and the spacelike part of
the vector potential. The momentum dependent potentials
can be determined uniquely by considering the positive-
and negative-energy states simultaneously, i.e., the RBHF
theory in the full Dirac space [71]. However, this method is
now limited up to the density ρ ¼ 0.57 fm−3 [72], which is
not high enough to study the hadron-quark phase transition
in neutron stars. This density limitation is absent if the
momentum-independence approximation [73] is utilized,
where US;τ and U0;τ are approximated to be constants and
UV;τ is neglected. Within this approximation, the single-
particle potential operator Ûτ is written as

Ûτ ¼ US;τ þ γ0U0;τ: ð3Þ

By defining the effective nucleon mass M�
τ and effective

energy E�
p;τ

M�
τ ¼ Mτ þ US;τ; E�

p;τ ¼ Ep;τ − U0;τ; ð4Þ

the Dirac equation (1) in nuclear medium can be
rewritten as

ðα · pþ βM�
τÞuτðp; sÞ ¼ E�

p;τuτðp; sÞ: ð5Þ

From the Dirac equation (5), the dispersion relation E�
p;τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM�2
τ

p
is obtained, and the Dirac spinor can be solved

exactly as
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uτðp; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�
p;τ þM�

τ

2M�
τ

s 0
BB@

1

σ·p
E�
p;τþM�

τ

1
CCA χsχτ; ð6Þ

where χs and χτ are the spin and isospin wave
function, respectively. The normalization condition is
ūτðp; sÞuτðp; sÞ ¼ 1.
In the RBHF theory, the single-particle potentials US;τ

and U0;τ are self-consistently determined with the effective
NN interaction, G matrix, which can be obtained by
solving the Thompson equation [73,74]

Gττ0 ðq0;qjPÞ¼Vττ0 ðq0;qÞ

þ
Z

d3k
ð2πÞ3Vττ0 ðq0;kÞ

Qττ0 ðk;PÞ
Wττ0 −E�

ττ0
Gττ0 ðk;qjPÞ;

ð7Þ

where ττ0 ¼ nn, pp, or np. In Eq. (7), P ¼ ðk1 þ k2Þ=2 is
the center-of-mass momentum, and k ¼ ðk1 − k2Þ=2 is the

relative momentum of two interacting nucleons with
momenta k1 and k2 in the rest frame of nuclear matter.
The quantities q, q0, and k are the initial, final, and
intermediate relative momenta of the two nucleons scatter-
ing in nuclear matter, respectively. Wττ0 ¼ E�

Pþq;τ þ E�
P−q;τ0

is the starting energy, and E�
ττ0 ¼ E�

Pþk;τ þ E�
P−k;τ0 is the

total single-particle energy of intermediate two-nucleon
states. The Pauli operator Qττ0 avoids the NN scattering to
occupied states in the Fermi sea and is defined as

Qττ0 ðk;PÞ ¼
�
1 if jPþ kj > kτF and jP − kj > kτ

0
F;

0 otherwise;

ð8Þ

where kτF represents the Fermi momentum for nucleon τ. For
nuclear matter with total nucleon density ρ ¼ ρn þ ρp and
isospin asymmetry δ ¼ ðρn − ρpÞ=ðρn þ ρpÞ, the Fermi
momentum is calculated as kτF ¼ ½3π2ð1� δÞρ=2�1=3.
With the G matrix, one can calculate the single-particle

potential energy

UτðpÞ ¼
X
s0;τ0

Z
kτ

0
F

0

d3p0

ð2πÞ3
M�

τ0

E�
p0;τ0

hūτðp; 1=2Þūτ0 ðp0; s0ÞjḠðWÞjuτðp; 1=2Þuτ0 ðp0; s0Þi; ð9Þ

where Ḡ is the antisymmetried G matrix and the factor
M�

τ0=E
�
p0;τ0 comes from the normalization condition above.

Alternatively, the single-particle potential energy can be
obtained by sandwiching the single-particle potential oper-
ator between the Dirac spinors

UτðpÞ¼
M�

τ

E�
p;τ
hūτðp;1=2ÞjÛτjuτðp;1=2Þi¼

M�
τ

E�
p;τ
US;τþU0;τ:

ð10Þ

By combining Eqs. (9) and (10), one can extract the two
constantsUS;τ andU0;τ with twomomenta, e.g.,0.5kτF andk

τ
F.

Equations (1), (7), (9), and (10) constitute a coupled set
of equations that needs to be solved self-consistently.
Starting from initial values of Uð0Þ

S;τ ; U
ð0Þ
0;τ in vacuum, the

Dirac spinors are obtained by solving the Dirac equa-
tion (1). Then one solves the Thompson equation (7) to get
the G matrix and obtain the single-particle potential energy
by using the integrals in Eq. (9). From Eq. (10) a new set of

values for Uð1Þ
S;τ ; U

ð1Þ
0;τ are found, which are to be used in the

next iteration. This iterative procedure is repeated until the
satisfactory convergence is reached.
Once the solution is converged, the binding energy per

nucleon in nuclear matter can be calculated as

E
A
¼ 1

ρ

X
s;τ

Z
kτF

0

d3p
ð2πÞ3

M�
τ

E�
p;τ

hūτðp; sÞjγ · pþMτjuτðp; sÞi −
1 − δ

2
Mp −

1þ δ

2
Mn

þ 1

2ρ

X
s;s0;τ;τ0

Z
kτF

0

d3p
ð2πÞ3

Z
kτ

0
F

0

d3p0

ð2πÞ3
M�

τ

E�
p;τ

M�
τ0

E�
p0;τ0

hūτðp; sÞūτ0 ðp0; s0ÞjḠðWÞjuτðp; sÞuτ0 ðp0; s0Þi: ð11Þ

The neutron star matter is regarded as the beta-equilibrium nuclear matter consisting of protons, neutrons, electrons, and
muons. The energy density εH of the neutron star matter or pure hadron star is calculated as εH ¼ ρetot, where the total
energy etot is defined as

etotðρ; Yn; Yp; Ye; YμÞ ¼ E=Aðρ; YpÞ þ YpMp þ YnMn þ Ee=Aþ Eμ=A: ð12Þ
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The quantities Ee=A and Eμ=A are the contributions from
electrons and muons, which are treated as gas of relativistic
noninteracting fermions. The equilibrium particle concen-
trations Yi ¼ ρi=ρ ði ¼ n; p; e; μÞ can be calculated via the
β-stability condition and charge neutrality condition

μn − μp ¼ μe; ð13aÞ

μn − μp ¼ μμ; ð13bÞ

ρe þ ρμ ¼ ρp; ð13cÞ

where μi (i ¼ n, p, e, μ) is the chemical potential for
particle i. For electrons and muons, the chemical potential
is obtained via

μi ¼
∂etot
∂Yi

: ð14Þ

For protons and neutrons, the chemical potential is calcu-
lated as the single-particle energy at the Fermi surface.
Once the total energy etot is calculated, the pressure of the
neutron star matter can be obtained as

PH ¼ ρ2
∂etot
∂ρ

: ð15Þ

Owing to the cluster effects in nuclear matter with density
ρ < 0.08 fm−3, the RBHF theory is not applicable, and the
EOS introduced with the Baym-Bethe-Pethick [75] and
Baym-Pethick-Sutherland models [76] is used. It should
also be noticed that the results of the RBHF calculation are
not so smooth that numerical derivatives can be performed.
Parametrization or regression strategies [16,77] are often
employed to the neutron star EOS. In this work, Gaussian
process regression [65] is implemented to process our
RBHF results.

B. Quark matter

The DSEs are the equations of motion for fields. They
can be derived by differentiating the action of QCD and
contain all the information of QCD Lagrangian. In this
paper, the DSE of the quark propagator is concerned, the
quark-gluon vertex is truncated by a symmetry preserving

scheme, and the gluon propagator is approximated by the
interaction model. Therefore, the complicated DSE set can
be reduced to a solvable gap equation. The Feynman
diagram for the gap equation is shown in Fig. 1.
At zero temperature and finite chemical potential, the

gap equation for the quark propagator Sðp; μÞ reads as

S−1ðp; μÞ ¼ Z2ðiγ · pþ iγ4p̃4 þmqÞ þ Σðp; μÞ; ð16Þ

wherep ¼ ðp; p4Þ is the four-momentum and p̃4 ¼ p4 þ iμ
with μ is the quark chemical potential. In Eq. (16), the
Euclidean metric is used, which is different from the
Minkowski metric used in Eq. (3). mq is the current mass
of the quark q with q ¼ u, d, s. In this paper, the current-
quark masses mu=d ¼ 0 are chosen for simplicity, while
ms ¼ 115 MeV is obtained by fitting the K meson mass in
vacuum [78]. Σðp; μÞ is the renormalized self-energy of the
quark

Σðp; μÞ ¼ Z1

Z
d4q
ð2πÞ4 g

2ðμÞDρσðk; μÞ
λa

2
γρSðq; μÞ

×
λa

2
Γσðq; p; μÞ; ð17Þ

where Z1, Z2 are the renormalization constants. λa=2 is the
fundamental representation of SUð3Þ color symmetry.
Dρσðk; μÞ with k ¼ p − q is the renormalized dressed gluon
propagator, and Γσðq; p; μÞ is the renormalized dressed
quark-gluon vertex. gðμÞ is the density-dependent coupling
constant.
To solve the gap equation (16), we have to know the

quark-gluon vertex Γσðq; p; μÞ and gluon propagator
Dρσðk; μÞ. In this paper, the dressed quark-gluon vertex
Γσðq; p; μÞ is truncated by using the rainbow approxima-
tion [79], and the nonperturbative dressing effect of the
dressed gluon propagator Dρσðk; μÞ can be absorbed in
the effective interaction function Gðk2; μÞ [78]. Therefore,
the interaction kernel can be expressed as

Z1g2ðμÞDρσðk; μÞΓσðq; p; μÞ ¼ Gðk2; μÞDfree
ρσ ðkÞγσ; ð18Þ

where Dfree
ρσ ðkÞ ¼ 1

k2 ðδρσ − kρkσ=k2Þ is the free gluon
propagator in the Landau gauge. The interaction function

FIG. 1. The Feynman diagram for the gap equation. The solid (wavy) line with the thick black dot represents the dressed quark (gluon)
propagator, the thick gray dot represents the dressed quark-gluon interaction vertex, and the thin black dot represents the bare quark-
gluon interaction vertex.
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Gðk2; μÞ is usually divided into two parts: the infrared part
and ultraviolet perturbative part. At zero temperature, the
quark properties are mainly determined by its infrared
behavior, so we omit the ultraviolet part as in Ref. [32] for
better numerical behavior. The gluon interaction function
we applied is [32]

Gðk2; μÞ
k2

¼ 4π2D
ω6

k2e−k
2=ω2

e−μ
2=ω2

eff : ð19Þ

Hence, the integration is finite at the ultraviolet limit, and
the renormalization procedure can be omitted by simply
setting all the renormalization factors to unit. The param-
eters D and ω control the strength and width of the
interaction in vacuum, respectively. It is found that the
observables of vector and pseudoscalar mesons are insen-
sitive to variations of ω ∈ ½0.4; 0.6� as long as Dω ¼
constant [80,81]. As in Refs. [32,36], we choose ω ¼
0.5 GeV and D ¼ 1.0 GeV2.
In the interaction model Eq. (19), the factor e−μ

2=ω2
eff

depicts the effects of the medium screening on the
interaction at finite chemical potential μ, where ωeff is
the effective width of medium screening effects. The larger
the ωeff , the weaker the medium screening effects and the
stronger the gluon interaction. In Refs. [32,36,37,82], the
effective width of medium screening effects is primarily
adopted as ωeff ≲ 0.5 GeV to study the hadron-quark phase
transition. In this paper, we will also study the dependence
of our results on the effective width ωeff .
With the interaction model in Eqs. (18) and (19), the self-

energy in Eq. (17) can be reduced as

Σðp; μÞ ¼
Z

d4q
ð2πÞ4

4π2D
ω6

k2e−k
2=ω2

e−μ
2=ω2

eff ðδρσ − kρkσ=k2Þ

×
λa

2
γρSðq; μÞ

λa

2
γσ: ð20Þ

Therefore, the gap equation (16) is simplified as an solvable
equation in terms of the quark propagator Sðq; μÞ, which
can be decomposed according to the Lorentz structure

Sðp; μÞ−1 ¼ iγ · pAðjpj2; p̃2
4Þ þ Bðjpj2; p̃2

4Þ
þ iγ4p̃4Cðjpj2; p̃2

4Þ: ð21Þ

The scalar functions Aðjpj2; p̃2
4Þ, Bðjpj2; p̃2

4Þ, and
Cðjpj2; p̃2

4Þ can then be solved with the gap equation. It
is known that the gap equation has multiple solutions. In
vacuum, massless quarks may have the solution BðpÞ≡ 0
or BðpÞ ≠ 0, which are called the Wigner solution and
Nambu solution, respectively. The Wigner solution corre-
sponds to the dynamical chiral symmetry (DCS) phase,
where the quarks are bare and have no dynamical mass. The
Nambu solution corresponds to the dynamical chiral
symmetry breaking (DCSB) phase, where the massless

quarks are dressed and the mass functions MðpÞ ¼
BðpÞ=AðpÞ acquire nonzero values. Although there are
arguments that there might exist quarkyonic matter that is
DCS but still confined, it is usually believed that DCSB and
confinement appear simultaneously. Therefore, the Wigner
solution corresponds to the deconfined quark phase, and
the Nambu solution corresponds to the confined hadron
phase. To describe the quark core in the interior of a neutron
star at high density, we only consider theWigner solution in
this paper. In the left and right panel in Fig. 2, the Wigner
solution of the quark propagator for the massless quark is
shown as the functions of momentum and chemical
potential, respectively. At zero chemical potential, the
functions A and C are identical as the Lorentz Oð4Þ
symmetry is satisfied. At zero momentum, the function
A shows different chemical potential dependence in com-
parison to the function C at intermediate chemical poten-
tial, while both functions A and C approach unit as the
quark propagator approaches asymptotic freedom at high
chemical potential.
With the Wigner solution, the distribution function

f1ðp; μÞ can be obtained from the quark propagator

f1ðp; μÞ ¼
1

4π

Z
∞

−∞
dp4 trD½−γ4Sðp; μÞ�; ð22Þ

where the trace is for the spinor indices. With the quark
propagator, the integration in f1ðp; μÞ can be converted to a
contour integral on the complex plane of p̃4,

f1ðp;μÞ ¼
1

π

Z
∞

−∞
dp4

iðp4 þ iμÞCðjpj2; ðp4 þ iμÞ2Þ
M

; ð23Þ

where

FIG. 2. The Wigner solution of the quark propagator for
massless quark with varying momentum (left) or varying chemi-
cal potential (right).
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M ¼ p2A2ðjpj2; p̃2
4Þ þ p̃2

4C
2ðjpj2; p̃2

4Þ þ Bðjpj2; p̃2
4Þ: ð24Þ

Then the number density nq with quark flavor q ¼ u, d, s
can be obtained as a function of chemical potential [83]

nqðμÞ ¼ 2NcNf

Z
d3p
ð2πÞ3 f1ðp; μÞ; ð25Þ

where Nf ¼ 3 and Nc ¼ 3 denote the number of flavor and
color, respectively.
The quark star matter is composed of quarks and leptons

under the β equilibriumand electric charge neutral condition,

μd ¼ μu þ μe ¼ μs; ð26aÞ

μd ¼ μu þ μμ; ð26bÞ

2nu − nd − ns
3

¼ ne þ nμ; ð26cÞ

where the chemical potential for quark is denoted by μq with
q ¼ u,d, s. In Eq. (26c), the number density of leptonnlwith
l ¼ e, μ is calculated as nl ¼ k3Fl=3π

2 where the Fermi
momentum kFl is related to the chemical potential μl by
k2Fl ¼ μ2l −m2

l . In the description of the pure quark star, we
takeme ¼ 0.511 MeV andmμ ¼ 105 MeV. In practice, for
given μn with

μn ¼ μu þ 2μd; ð27Þ

one can obtain the chemical potential μi with i ¼ u, d, s, e, μ
by solving Eqs. (26) and (27).
Once the quark chemical potential μq is obtained, the

number density nqðμqÞ can be calculated with Eq. (25), and
the baryon number density ρ is found as ρ ¼ 1

3
ðnuþ

nd þ nsÞ. Furthermore, one can calculate the pressure by
integrating the number density

PqðμqÞ ¼ Pqðμq;0Þ þ
Z

μq

μq;0

dμ nqðμÞ: ð28Þ

Theoretically, the starting point of the integral μq;0 can be any
value. In this paper we take μu;0 ¼ μd;0 ¼ 0 and choose μs;0
as the value of the starting point of theWigner phase. Similar
to Ref. [32], we take the vacuum pressure Puðμu;0Þ ¼
Pdðμd;0Þ ¼ −45 MeV · fm−3 and Psðμs;0Þ ¼ 0. Since the
leptons are treated as free Fermi gas, their pressure is

Pl¼
1

24π2

�
kFlμlð2k2Fl−3m2

l Þþ3m4
l ln

�����kFlþμl
ml

����
��

;

l¼e;μ: ð29Þ

Finally, with the chemical potential μi and number
density ni with i ¼ u, d, s, e, μ, the total pressure

and total energy density of the pure quark star can be
obtained as

PQ ¼
X

i¼u;d;s;e;μ

PiðμiÞ; ð30aÞ

εQ ¼
X

i¼u;d;s;e;μ

μini − PQ: ð30bÞ

C. Hadron-quark phase transition

In this paper, we will study the hadron-quark phase
transition as a first-order transition as well as a crossover.
The first-order phase transition is described with the
Maxwell construction, and the crossover is described with
the three-window construction. For the Maxwell construc-
tion, the phase transition occurs when the baryon chemical
potential and pressure of the two phases are equal:

PHðμn;cÞ ¼ PQðμn;cÞ; ð31Þ

where μn;c is the critical baryon chemical potential of the
first-order phase transition. Therefore, the pressure of the
hybrid star under the Maxwell construction is

PðμnÞ ¼
�
PH; if μn ≤ μn;c;

PQ; if μn > μn;c:
ð32Þ

Correspondingly, the energy density of the hybrid star
under the Maxwell construction is

εðμnÞ ¼
�
εH; if μn ≤ μn;c;

εQ; if μn > μn;c:
ð33Þ

For the three-window construction, a smooth interpola-
tion of the energy density between the hadron and quark
phases is performed:

εðρÞ ¼ f−ðρÞεHðρÞ þ fþðρÞεQðρÞ: ð34Þ

The interpolation function f� is chosen as [44,45]

f� ¼ 1

2

�
1� tanh

�
ρ − ρ̄

Γ

��
; ð35Þ

where the parameters ρ̄ and Γ describe the center density
and the width of the transition region.
Taking parameters ðρ̄;ΓÞ ¼ ð3.5; 1.5Þ as an example, the

variation behavior of the function f� in terms of the baryon
density is shown in Fig. 3. Once the energy density of the
hybrid star has been obtained, the pressure can be deter-
mined with the thermodynamic relation
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PðρÞ ¼ ρ2
∂ðε=ρÞ
∂ρ

: ð36Þ

With the EOS of the neutron star matter, the mass-radius
relation of the neutron star can be obtained by solving the
Tolman–Oppenheimer–Volkov equation [84,85], and the
tidal deformability can be calculated as in Ref. [86].

III. RESULTS AND DISCUSSION

In the left panel of Fig. 4, the energy density ε and
pressure P of the pure hadron star are calculated by the
RBHF theory with NN interactions pvCD-Bonn A, B, and
C [87]. It is clear that the difference of the results from
pvCD-Bonn A, B, and C is negligible. This is reasonable
since the main difference between the three parametriza-
tions is in the tensor force strength, which is mostly
reflected in the (T ¼ 0) 3S1-3D1 states with T the total
isospin. This partial wave does not contribute to the
(T ¼ 1) neutron-neutron state [16], which is dominant in
the neutron star. In the following discussion, the potential
pvCD-Bonn A is used, since the empirical nuclear satu-
ration properties can be described satisfactorily by the
RBHF theory with pvCD-Bonn A [88]. In the right panel,
the energy density ε and pressure P of the pure quark star
are calculated by the DSE approach with different effective
width ωeff of medium screening in the interaction model
(19). It is found that with the effective width ωeff increas-
ing, i.e., the increasing of the gluon interaction, the
energy density and pressure become larger. Besides, the
differences of the energy density and pressure become
more evident at higher density.

Figure 5 shows the P-μn relation and P-ρ relation of the
hybrid star under Maxwell construction. The legend A-ωeff
denotes that the nuclear matter is described by the RBHF
theory with potential pvCD-Bonn A and the quark matter is
described by the DSE approach with effective width ωeff of
medium screening. For comparison, the results of the pure

FIG. 3. The interpolation functions f� with respect to the
baryon density ρ=ρsat. The center density and the width of the
transition region are ðρ̄;ΓÞ ¼ ð3.5; 1.5Þ. The shaded region
denotes the crossover region ρ̄ − Γ ≤ ρ ≤ ρ̄þ Γ.

FIG. 4. Left panel: energy density and pressure as functions of
density for the pure hadron star described by the RBHF theory
with potentials pvCD-Bonn A, B, and C. Right panel: similar to
the left panel, but for the pure quark star described by the DSE
approach with different effective width ωeff of medium screening
in the interaction model (19).

FIG. 5. The P-μn relation (left) and P-ρ relation (right) of the
hybrid star under Maxwell construction with nuclear matter
described by the RBHF theory with potential pvCD-Bonn A
and quark matter described by the DSE approach with different
effective width ωeff of medium screening in the interaction model
(19). In comparison, the results of the hadron star described by
the RBHF theory with potential pvCD-Bonn A and the P-μ
relation obtained by the BHF theory with potential Bonn B from
Ref. [32] are also given.
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hadron star described by the RBHF theory are also given. In
the left panel, the intersection points of the EOSs in theP-μn
plane are the critical points of the first-order phase transition
in Eq. (31). In the right panel, the pressure is constant at the
critical point of the first-order phase transition, while the
density jumps from ρH to ρQ. The values of μn;c,Pðμn;cÞ, ρH,
and ρQ are listed inTable I. It is found that for a largerωeff, the
critical baryon chemical potential μn;c and density region
½ρH; ρQ� are higher, and the corresponding pressurePðμn;cÞ is
larger. Forωeff ¼ 0.5 GeV, the corresponding density of the
critical point is about 8.1 ρsat. Considering that the nucleon
degrees of freedom becomes less available at higher density,
the parameterωeff should be smaller than 0.5GeV to obtain a
reasonable EOS of the hybrid star. For comparison, in the left
panel of Fig. 5, we also show the P-μ relation calculated by
the BHF theorywith the potential BonnB and corresponding
three-body forces from Ref. [32]. The critical properties
obtained with the Maxwell construction are also shown in
the last row in Table I. It is found that the nonrelativistic
calculations lead to a softer EOS, and the first-order phase
transition happens much earlier than the relativistic ones.
The mass-radius relation of the hybrid star under the

Maxwell construction are plotted in Fig. 6. It can be found
that, once the first-order transition happens, the mass and
radius decrease simultaneously. It is known that, if the mass
decreases with respect to the increase of central density, the
neutron star is unstable against oscillation. Therefore, this
sharpness reflects that the appearance of quark matter leads
to an unstable hybrid star. In other words, under the
Maxwell construction with the present models, there is
no such quark core in the interior of a neutron star. We note
that similar results are also found by combining the BHF
theory with the DSE approach in Ref. [32].
Under the three-window construction, a phenomenologi-

cal interpolation of the energy density between the hadron
and quark phases is performed, where the interpolation
function is given in Eq. (35). The parameters ρ̄ and Γ
characterize the center and effective width of the crossover
region in baryon density. Inspired by and basing them on
Ref. [44], we consider two constraints on the choice of the
two parameters: (1) the system is always thermodynamically
stable, i.e., dP=dρ > 0, and (2) the crossover density region

should be moderate to avoid the failure of the nuclear matter
method and quark matter method, i.e., ρ̄ − Γ > ρsat and
ρ̄þ Γ < 6ρsat. In addition, a stiffer EOS is favored to satisfy
the observation of massive neutron stars.
Figure 7 depicts the P-ρ relation of the hybrid star under

the three-window construction. The quark matter effective
width ωeff ¼ 0.35 GeV is chosen as an example, and four
representative parameter sets (ρ̄;Γ) are shown. The param-
eter sets (3.5, 1.0) and (4.0, 1.5) lead to nonmonotonic
pressure and should be discarded. The maximum density of

TABLE I. Critical chemical potential μn;c, critical pressure
Pðμn;cÞ, and the phase transition density region ½ρH; ρQ� obtained
with the RBHF theory and DSE approach under the Maxwell
construction. The results obtained with the BHF theory and DSE
approach from Ref. [32] are also shown.

Model
μn;c

[GeV]
Pðμn;cÞ

[GeV · fm−3] ρH [ρsat] ρQ [ρsat]

A-0.5 1.995 0.916 8.105 16.689
A-0.35 1.640 0.471 6.078 10.940
A-0.25 1.366 0.225 4.379 7.189
BHF-0.35 1.416 0.193 3.556 5.744

FIG. 6. The mass-radius relation of the hybrid star under
Maxwell construction with nuclear matter described by the
RBHF theory with potential pvCD-Bonn A and quark matter
described by the DSE approach with different effective width ωeff
of medium screening in the interaction model (19). In compari-
son, the results of the pure hadron star described by the RBHF
theory are also given.

FIG. 7. The pressure of the hybrid star as a function of density
under the three-window construction with four representative
parameter sets ðρ̄;ΓÞ. The results for the pure hadron star are
also shown. The effective width ωeff ¼ 0.35 GeV is fixed for the
description of quark matter with the DSE approach.
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the parameter set (4.0, 2.0) is 6ρsat, which is somehow too
large for the RBHF theory. The parameter set (3.5, 1.5)
satisfies the conditions (1) and (2) and is chosen in the
following calculations.
In Fig. 8, the ε-ρ relation and P-ρ relation of the hybrid

star under the three-window construction are shown. In the
left panel, the ε-ρ relations are interpolated in the crossover
region. Outside the crossover region, pure nuclear matter or
pure quark matter dominates. In the right panel, the
pressure in the crossover region increases monotonically
with an increasing baryon density for the effective width
ωeff of different quarks. From Fig. 8, it is clear that with a
lager ωeff, the energy density ε and pressure P are larger in
the crossover region.
The mass-radius relation of the hybrid star under the

three-window construction is plotted in Fig. 9. The maxi-
mum mass with different models, the corresponding radius,
and the radius for 1.4M⊙ neutron star are listed in Table II.
For ωeff ¼ 0.25 GeV, the maximummass of the hybrid star
is about 1.5M⊙, which cannot support the astrophysical
observation of massive neutron stars. For ωeff ¼ 0.5 GeV,
the maximum mass of the hybrid star is 2.53M⊙. This is in
contradiction to the results from binary neutron star
mergers, which require that the EOS cannot be too stiff,
and provide an upper bound for the maximum mass [89].
For ωeff ¼ 0.35 GeV, the maximummass of the hybrid star
is 2.1M⊙, which is consistent with the current constraints
from astrophysical observation. Therefore, to obtain a
hybrid star supporting 2M⊙ with a three-window con-
struction, the effective width ωeff of medium screening
effects should be close to 0.35 GeV.
In Fig. 10, the EOSs of the pure hadron star, the pure

quark star, and the hybrid star under the Maxwell

construction and three-window construction are compared.
For the Maxwell construction, there is a clear plateau of
pressure as a function of energy density. This corresponds
to the latent heat of the first-order phase transition. For the
three-window construction, the central density of the phase
transition region is ρ̄ ¼ 3.5ρsat with an effective width
Γ ¼ 1.5ρsat. Outside the crossover region, the EOS of the
hybrid star asymptotically approaches that of the pure
hadron star or the pure quark star. We also find the
crossover region is lower than the first-order phase tran-
sition region in terms of energy density.
In Fig. 11, the mass-radius relation of the pure hadron star,

the pure quark star, and the hybrid star under the Maxwell
construction and three-window construction is depicted.
Except for the pure quark starmodeled by theDSE approach,
both the pure hadron star and the hybrid star can support
2M⊙. In comparison, the joint constraints of the mass and
radius of neutron stars are also shown. The 68% and 95%
contours of the joint probability density distribution
of the mass and radius of PSR J0030þ 0451 [52] and

FIG. 8. The ε-ρ relation (left) and P-ρ relation (right) of the
hybrid star under the three-window construction with nuclear
matter described by the RBHF theory with potential pvCD-Bonn
A and quark matter described by the DSE approach with different
effective width ωeff of medium screening in the interaction model
(19). In comparison, the results of the hadron star described by
the RBHF theory are also given.

FIG. 9. The mass-radius relation of the hybrid star under the
three-window construction with nuclear matter described by the
RBHF theory with potential pvCD-Bonn A and quark matter
described by the DSE approach with different effective width ωeff
of medium screening in the interaction model (19). In compari-
son, the results of the hadron star described by the RBHF theory
are also given.

TABLE II. The maximum mass Mmax of the neutron star, the
corresponding radius RMmax

, and the radius for 1.4M⊙ neutron
star R1.4M⊙

under the three-window construction with different
effective width ωeff .

Model Mmax [M⊙] RMmax
[km] R1.4M⊙

[km]

pvCD-Bonn A 2.198 11.15 12.47
A-0.5 2.530 13.54 13.93
A-0.35 2.102 12.91 13.20
A-0.25 1.539 12.39 12.57
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PSR J0740þ 6620 [54] from the NICER analysis are also
shown. It can be found that the mass radius of the pure
hadron star, the hybrid stars with the Maxwell, and three-
window constructions are all consistent with the recent
constraints by NICER. The radii of a 1.4M⊙ hybrid star

R1.4M⊙
under the Maxwell construction and three-window

construction are 12.47 km and 13.20 km, respectively.
The tidal deformability of the pure hadron star, the pure

quark star, and the hybrid star under the Maxwell con-
struction and three-window construction are shown in
Fig. 12. The tidal deformability of the pure hadron star
and that of the hybrid star under the Maxwell construction
share the same value, 473, which is consistent with the
constraints Λ1.4M⊙

¼ 190þ390
−120 from GW170817 [56]. The

tidal deformability of the hybrid star under the three-
window construction is 715, which is slightly higher than
that from the astronomical observation. We notice that the
RBHF theory used in the present work can be improved by
considering the negative-energy states in the full Dirac
space [18,71], where the tidal deformability can be reduced
to a value which is much closer to the center value from
GW170817. Therefore, the three-window construction
with the nuclear matter described by the RBHF theory
in the full Dirac space might lead to a tidal deformability
which is consistent with the GW constraints.

IV. SUMMARY AND PROSPECTS

The possible hadron-quark phase transition is explored
by combining the RBHF theory for nuclear matter and the
DSE equation approach for quark matter. The Maxwell
construction and three-window construction are imple-
mented to study the first-order phase transition and cross-
over, respectively. For the Maxwell construction, the phase
transition occurs where the baryon chemical potential and
pressure of the two phases are equal. With the RBHF theory

FIG. 10. The P-ε relation of the pure hadron star, the pure
quark star, and the hybrid star under the Maxwell construction
and three-window construction. Nuclear matter is described by
the RBHF theory with potential pvCD-Bonn A, and quark
matter is described by the DSE approach with effective width
ωeff ¼ 0.35 GeV.

FIG. 11. The mass-radius relation of the pure hadron star, the
pure quark star, and the hybrid star under the Maxwell con-
struction and three-window construction. Nuclear matter is
described by the RBHF theory with potential pvCD-Bonn A,
and quark matter is described by the DSE approach with the
effective width ωeff ¼ 0.35 GeV. The dark (light) green and
purple regions indicate the 68% (95%) confidence intervals
constrained by the NICER analysis of PSR J0030þ 0451 [52]
and PSR J0740þ 6620 [54].

FIG. 12. Tidal deformability of the pure hadron star, the pure
quark star, and the hybrid star under the Maxwell construction
and three-window construction. Nuclear matter is described by
the RBHF theory with potential pvCD-Bonn A, and quark matter
is described by the DSE approach with the effective width
ωeff ¼ 0.35 GeV. The constraints from GW170817 Λ1.4M⊙

¼
190þ390

−120 [56] are also shown.
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and DSE approach, there is no stable quark core in the
interior of a neutron star, which confirms previous studies
with nonrelativistic Brueckner-Hartree-Fock theory and the
DSE approach. For the three-window construction, a
smooth interpolation of the energy density between the
hadron and quark phases is performed, where the param-
eters in the interpolation function are chosen in such a way
as to keep the thermodynamic stability and lead to a
moderate crossover density region. To support a two-
solar-mass neutron star under the three-window construc-
tion, the effective width of medium screening effects in
quark matter should be around ωeff ¼ 0.35 GeV. The
mass-radius relation of the hybrid star is consistent with the
joint mass-radius observation, while the tidal deformability
of a 1.4 solar mass is found slightly higher than the
constraints from gravitational wave detection.
In the future, this work can be extended by improving the

theoretical methods for hadron matter, quark matter, and
construction schemes. The RBHF theory can be improved
by considering the negative energy states in the full Dirac
space. For the DSE framework, the parameters cannot be
changed arbitrarily as they are determined by the hadron
properties as well as the phase transition at finite

temperature. To obtain a stiffer EOS for the quark matter,
it is necessary to improve the vertex and gluon truncation in
the DSE approach, for example, by using the Ball-Chiu or
Chang-Liu-Roberts vertex [90,91] and including more
interaction channels [92] as well as higher order corrections
[93]. As for the construction schemes, considering the
studies by combing BHF and DSE approaches [32], the
Gibbs construction is likely to support a stable quark core.
After the corrections and improvements are realized, it is
hopeful to achieve a better understanding of the hadron-
quark phase transition in neutron stars.
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