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We describe a new axion search method based on measuring the variance in the interference of the axion
signal using injected photons with a power detector. The need for a linear amplifier is eliminated by putting
a strong signal into the microwave cavity, to acquire not only the power excess but also measure the
variance of the output power. The interference of the external photons with the axion to photon converted
signal greatly enhances the variance at the particular axion frequency, providing evidence of its existence.
This method has an advantage in that it can always obtain sensitivity near the quantum noise limit even for a
power detector with high dark count rate. We describe the basic concept of this method both analytically
and numerically, and we show experimental results using a simple demonstration circuit.
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I. INTRODUCTION

The axion particle, whose existence would provide
evidence that the strong CP problem has been solved with
spontaneous symmetry breaking of a global chiral sym-
metry [1–3], is also a good candidate for dark matter when
it has a very light mass [4–6] through the Kim-Shifman-
Vainshtein-Zakharov [7,8] or the Dine-Fischler-Srednicki-
Zhitnitsky (DFSZ) models [9,10]. The haloscope method
that converts dark matter axions into microwave photons,
using a cavity resonance in strong magnetic fields, as
proposed by Sikivie [11], is still the most sensitive method
to search for invisible axions. The total power of axion to
microwave photon conversion rate is

Pconv ¼
g2aγγρa
ma

hB2iVcC
QcQa

Qc þQa
; ð1Þ

where gaγγ is the axion-photon coupling, ρa is the local dark
matter axion density, ma is the axion mass, and hB2i is the
average of the square of the applied magnetic field over the
cavity volume Vc. C is the form factor describing how well
the resonant mode is matched with the applied magnetic
field, while Qc and Qa are the quality factors of the cavity
and axion, respectively [12]. The axion line shape was
estimated by Turner [13] to be a Lorentzian, with a quality
factor approximated to be about 106.

For example, without an antenna under an average
magnetic field of about 10 T, a DFSZ axion dark matter
generates 102 × rf-photons=s (independent of frequency)
in a 37 liter cavity with a quality factor of 105 and a form
factor of 0.5. With an optimal coupling of 2, 1=3 of it is
actually generated, of which 2=3 is transmitted to a receiver
circuit [12]. The thermal photons from the cavity that
couple to the outside circuit are a primary source of noise;
50 mK cavity temperature with an integration time of 1 s
corresponds to the same equivalent power level with a SNR
of 1, according to the Dicke radiation formula [14].
However, the amplifiers needed to enhance the available
power level add their own noise; even for the best linear rf
amplifiers, the added noise is many times the power
expected from the axion conversion. In addition, linear
amplifiers have an unavoidable minimum noise limit due to
quantum fluctuations of the Heisenberg uncertainty prin-
ciple depending on the target frequency fc∶ 48 mK×
ðfc=1 GHzÞ. The latest quantum amplifiers typically add
noise in the range of 1–10 times higher than this quantum
limit [15–20].
The axion search can essentially be reduced by trying to

reveal its frequency location among the potentially millions
of frequency channels it could be hiding in. If the axion
frequency is known accurately enough, then an experiment
with reasonable sensitivity could determine whether axions
constitute the local dark matter or not in less than a day of
integration time, even if they were only a fraction of the
local dark matter halo density. To find the axion frequency,
experiments scan for the possible axion masses aiming to
observe an anomalous photon excess. In this process, the
phase information of the dark matter axion is discarded.

*Corresponding author.
jwpc0120@gmail.com

†Corresponding author.
semertzidisy@gmail.com

PHYSICAL REVIEW D 107, 103005 (2023)

2470-0010=2023=107(10)=103005(8) 103005-1 © 2023 American Physical Society

https://orcid.org/0000-0003-0194-9587
https://orcid.org/0000-0001-7941-6639
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.103005&domain=pdf&date_stamp=2023-05-03
https://doi.org/10.1103/PhysRevD.107.103005
https://doi.org/10.1103/PhysRevD.107.103005
https://doi.org/10.1103/PhysRevD.107.103005
https://doi.org/10.1103/PhysRevD.107.103005


However, using the knowledge that the phase of the axion is
constant for an estimated coherence time, it is possible to
easily reach the quantum limit by constructing an interfer-
ometer with precisely controlled external photons and
measuring the interference effect at every coherence
interval.
There has been impressive progress within the last

decade toward theoretically interesting sensitivities in the
axion dark matter field [19–22]. Nonetheless, since the
possible axion frequency range is vast, the field can use
more sensitive and simplified methods to boost the scan-
ning rate by a factor of a few to an order of magnitude. In
this paper, we propose a new method to look for the axion
signal impended in a thermal noise by injecting probe
photons into the cavity from the outside and interfering
them with the axion induced photons. This method is
similar to the heterodyne detection developed [23] for any
light particle search at Deutsches Elektronen-Synchrotron
(see also [24]), with a significant difference: that in the
axion dark matter case the axion phase is constant only
within the axion coherence time and hence detecting the
variance is more appropriate. The method is advantageous
to the traditional detection method when the linear amplifier
noise temperature is more than about one photon quanta.

II. HETERODYNE HALOSCOPE

Heterodyne detection is a signal processing technique
frequently used in microwave engineering, and it is used
to raise or lower the frequency of a signal by interfering it
with a coherent reference photon of known frequency,
using a mixer. In optics, since the observer itself is a power
detector, not a field detector, and it has a “square-law”
characteristic, interference effects naturally appear when
several frequency components, signal, and probe, enter
together. Heterodyne detection is an experimental tech-
nique often used in optics for the following purposes:
(1) amplifying a weak signal, (2) detecting a phase change
in a signal, (3) lowering the frequency through beating, and
(4) reducing the noise contribution of a power detector.
For effective interference, the heterodyne detection

technology must maintain the coherence of the two
frequencies [23]. In the case of a local oscillator at
microwave frequencies, coherence can be maintained with
very high precision. However, the photon signal induced
from the dark matter axion field cannot maintain long-time
coherence, because it is limited by its quality factor. This
implies constructive and destructive interferences are
repeated at regular (but unknown) periods in the interfer-
ometer so that the average power excess will be very close
to zero.
However, the expected quality factor of the axion dark

matter around the Solar System can be obtained by the
virial theorem [13]. Since the relative phase of the dark
matter axion to the local oscillator for every interference is
given arbitrarily, it is also arbitrary whether the interference

at every coherence time interval is constructive or destruc-
tive. Therefore, the variance in the interference for each
coherence time interval can reveal the existence of the
axion using the advantages of a heterodyne interferometer.
A mathematical description of the amplification of the
variance of the axion signal by interfering with the probe is
described in Appendix A.
Assuming that the axion and the probe signals are sine

waves with the same frequency and random relative phases,
the superposition of such waves is either constructive or
destructive. Although the random relative phase suggests
that the average effect is nullified, the variance of such
repetitive superposition is always finite. Figure 1 shows a
schematic setup and the underlying procedure in the in-
phase and quadrature (IQ) frame for such an axion
detection method. Injecting the probe signal simply shifts
the signal and the noise in the IQ plane, so it does not
enhance the signal-to-noise ratio when a field measurement
approach is applied. In the case of power detectors,
however, the probe increases the variance of the detected
photons, signal, and noise, while the dark count of the
detector is unchanged. A simple experiment showing the
variance enhancement through the application of probe
microwave photons was performed and is briefly described
in Appendix B. Therefore, the variance detection with
a probe can enhance the signal-to-noise ratio when the
dark count of a power detector is the dominant noise
source, which is the case for most current microwave
bolometers [25,26].
When a candidate axion signal location is found, it can

also be marked for cross-checking by rescanning, using the
most sensitive amplifier available at the time, and applying
the traditional power-level detection method for the par-
ticular frequency channel.

FIG. 1. Detector schematics for a variance measurement setup
and in-phase and quadrature components (a) without a probe and
(b) with a probe. The orange and blue circles refer to the noise
and the signal, respectively, and the red arrow indicates the
probe case.
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III. AMPLIFIED-VARIANCE DETECTOR
SENSITIVITY

The average number of transmitted photons on a power
meter per sampling NT is the sum of the signal photons
Ns, the probe photons Np, and the noise photons Nn ¼
Nth þ ND, where Nth corresponds to the thermal noise
photons and ND is the dark count photons where all of
the sources follow Poisson statistics. The variance of the
transmitted photons for each sample, for a signal with
random phase, is

σ̂2ðNTÞ ¼ Nth þ ND þ Ns þ Npð1þ Ns þ NthÞ; ð2Þ

where σ̂2 is the variance estimator. The first three terms are
a pure variance of the noise and the signal without the
probe, and the last term is the probe-amplified variance.
The signal-to-noise ratio is defined by the excess divided by
the error of the estimator,

SNRσ̂2 ≡
σ̂2ðNTÞ − σ̂2ðNTÞjNs¼0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̂2ðσ̂2ðNTÞjNs¼0Þ
q

≈
Ns þ NsNp

ðND þ NpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 1=ðND þ NpÞ þOðNthÞ

p ffiffiffi
n

p
;

ð3Þ

where n is the number of samples for the variance
measurement. When deriving the last line, we assumed a
sufficiently large n and a very small Nth. A detailed
derivation is described in Appendix C.
For cryogenic temperatures, the bosonic occupation

number of the thermal photons decreases exponentially
and the zero-point fluctuations can be neglected via a single
quadrature measurement. In other words, for adequately
low temperatures, this implies that Nth → 0. Therefore, in
the absence of external driving power, i.e., Np ¼ 0, the
SNR of variance detection is proportional to the ratio of
the signal counts to the dark counts (SNRσ̂2 ∝ Ns=ND for
ND ≫ 1 and SNRσ̂2 ∝ Ns=

ffiffiffiffiffiffiffi
ND

p
forND ≪ 1). On the other

hand, when there is a sufficient amount of probe photons,
i.e., Np ≫ 1, the dark count elements in the SNR disappear
and the SNR becomes proportional only to the number of
signal photons.
For a detector with a sampling rate of fs, the number of

photons per sampling is the ratio of the photon rate to the
sampling rate. So the SNR for the photon rate is

SNRσ̂2 ≈
_Ns þ _Ns

_Np=fs

ð _ND þ _NpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ fs=ð _ND þ _NpÞ

q ffiffiffiffiffiffiffiffiffiffi
fsΔt

p

≈
_Nsffiffiffiffiffiffiffi
2fs

p ffiffiffiffiffiffi
Δt

p
ð _Np ≫ fs; _ND; _NsÞ; ð4Þ

where _Ni’s are the photon rates for Nið¼D;s;pÞ, and Δt is the
acquisition time. If the sampling rate is smaller than the
axion bandwidth Δfa, the ratio fs=Δfa corresponds to
the detection efficiency, since integrating for more time
does not increase the variance. On the other hand, if
the sampling rate is larger than Δfa, the signals within
the coherence time are correlated. So, before calculating the
variance, the number of photons within the axion coherence
time interval should be summed up to avoid the correlation
effects, limiting the maximum effective sampling rate to be
the axion bandwidth.
Figure 2 shows the signal-to-noise ratio obtained from

Eq. (4) as a function of dark count and probe photon rates.
The plot is divided into four regions by the sampling rate,
ideally equal to the inverse of the axion coherence time.
When the dark count rate is less than the sampling rate,
regions I and IV, injecting probe photons into the cavity
reduces the signal-to-noise ratio. On the other hand, if the
dark count rate is larger than the sampling rate and more
than one dark count is expected per sampling, regions II
and III, the signal-to-noise ratio can be increased signifi-
cantly by injecting probe photons, converging to the case
when the dark count rate is equal to the sampling rate.
For example, when searching for an axion signal at

1 GHz and a quality factor of 106, using a power detector
with a high dark count rate designed to have a sampling rate
of 1 kHz, the effective dark count rate can be lowered to
1 kHz by injecting a sufficient number of probe photons.
Since the variance error is larger than the regular counting
error by a factor of

ffiffiffi
2

p
, the total acquisition time required

for SNR ¼ 5 is 80 s. Haloscope experiments running at
lower than 10 GHz, e.g., ADMX, CAPP, HAYSTAC,

FIG. 2. SNR defined in Eq. (4) for the dark count rate and the
probe photon rate with target frequency of 1 GHz, sampling rate
of 1 kHz, signal photon rate of 25 photons=s, and acquisition
time of 400 s. The white solid lines are located at the sampling
rate, dividing the figure into four distinct regions.
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DMRadio [19–21,27], etc., have the most to gain with this
new method.1

For comparison, the SNR obtained by a single
photon detector, using the number of mean transmitted
photons [28], is given by

SNRμ̂ ≈
Nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nth þ ND
p ffiffiffi

n
p ¼

_Nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Nth þ _ND

p ffiffiffiffiffiffi
Δt

p
: ð5Þ

Comparing with Eq. (4), the only difference is that the
square root of the denominator changes from 2fs to
_Nth þ _ND. In other words, in the case where the dark
count rate is higher than twice the sampling rate, the signal-
to-noise ratio obtained by the amplified-variance method
can be better than the conventional method. For example, in
an axion haloscope at 1 GHz, a detector with a dark count
rate higher than 2 kHz, corresponding to 2 dark counts/ms,
can achieve better sensitivity when using the amplified-
variance method.
Furthermore, using the beating effect and a power

detector with a short sampling time, it is also possible to
be sensitive to axions with a frequency close but not exactly
at the same frequency as the probing photons. The beating
effect due to the interference in terms of the number of
transmitted photons is given by

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N pN a

q
cos ½ðωp − ωaÞtþ ϕ�; ð6Þ

where N p;a are the numbers of corresponding photons,
ωp;a are the angular frequencies of the pump and the axion
signals, respectively, and ϕ is the phase of the axion signal
relative to the pump. It is known that N p;a follows the
Poisson distribution for each sampling and ϕ approxi-
mately follows the uniform distribution for each coherence

time. This corresponds to 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N pN a

q
cosϕ of the real

part of the Fourier component at the beating frequency.
The Fourier component at the beating frequency also
oscillates at each coherent time. Therefore, the variance
in the Fourier component has the same sensitivity at the
sideband frequencies.
By rearranging Eq. (4) and assuming a detector with

sufficiently short sampling time, the scanning rate in the
haloscope experiments is

df
dt

≈
Δfc
Δt

¼
_N2
s

SNR2
σ̂2

Δfc
2Δfa

ð _Np ≫ Δfa; _ND; _NsÞ; ð7Þ

where Δfc is the cavity bandwidth, and the effective
sampling rate is set to match the axion bandwidth Δfa.
To determine the increase in scanning rate with the newly

proposed detection method, we compared it with the
ordinary method [12]. In Fig. 3, the scanning rate using
the amplified-variance method was compared with the
scanning rate using the ordinary method when the axion
haloscope was performed around 1 GHz under various
physical cavity temperatures. When the amplifier noise was
close enough to the quantum limit, the traditional scanning
rate was faster, due to the loss of a factor of square root of 2
when applying the variance estimator. On the other hand,
once the amplifier noise is sufficiently large compared to
the quantum limit, the variance method can be expected to
improve the scanning rate significantly.

IV. DISCUSSION

The method can also be used to reveal the location of
hidden signals in the spectrum, when their variance
characteristics are not random. As an example, detectors
such as bolometers have little preference for input fre-
quency, but have a high noise equivalent power (corre-
sponding to the dark count) and have a large bandwidth.
However, if the variance detection method is used, it is
possible to target only a specific frequency, and at the same
time, the effective noise in terms of dark count rate can be
reduced to the axion bandwidth.

FIG. 3. The scan rate enhancement compared to the ordinary
acquisition method versus the noise temperature of the amplifier
(added noise) under various physical cavity temperature con-
ditions. The search frequency here is assumed to be 1 GHz. The
equivalent dark count rate on the top axis is derived by assuming
the detector bandwidth to be the axion bandwidth. The blue
shaded region represents where the performance of the amplified-
variance method exceeds that of the ordinary method. The
hatched area is where the amplifier noise would be less than
the quantum limit and hence impossible for linear amplifiers
without squeezing.

1If the axion signal is at 1 MHz, then a quality factor of 106
would bring the integration (sampling) time to 1 s. The amplified-
variance method in that case brings the effective dark count rate to
1 Hz, i.e., 1000 times better than in the 1 GHz case.
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As with the optical heterodyne method, the stability of
the probe source used greatly affects the experimental
sensitivity. A stable probe source must be used, and more to
that effect, the probe power can be branched early to correct
its fluctuations, in order to reduce the related errors. In
particular, if a squeezed light source is used to provide the
probe photons, the limiting statistical uncertainty can be
further reduced [29] significantly.
Since this method basically uses a variance estimator, it

has a disadvantage by a factor of
ffiffiffi
2

p
in SNR compared to a

single photon detection method. Therefore, there is no need
to use this method when the sensitivity of a power detector
itself is better than the standard quantum noise limit.
However, in the submegahertz to tens of gigahertz region,
using the amplified-variance estimator can be effective
because most sensitive bolometer detectors still have a high
dark count rate.

V. CONCLUSIONS

We have demonstrated analytically and numerically that
probing the amplified-variance content of each frequency
bin may be more advantageous than looking at its average
power content. Using the variance method compensates for
the lack of knowledge of the axion phase. Even if the dark
count rate of the power detector is high, a near-quantum-
noise limit can always be obtained by setting up a precise
heterodyne interferometer. The variance estimator for each
known coherence time with a stable external probe signal
gives an effective dark count rate of twice the sampling rate,
i.e., two photon quanta per sampling. Moreover, if the
sampling rate of the detector is shorter than the coherence
time, sideband signals can also be searched, using the
beating effect. In the last case, almost all axion dark matter
experiments currently in progress should find the suggested
method most advantageous over the traditional one.
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APPENDIX A: AXION-INDUCED POWER
VARIANCE ENHANCEMENT

If the axion frequency and phase were known, we could
have injected external power [24] at the same frequency
and π=2 relative phase to enhance the axion production
rate. Then the cavity detector would qualitatively behave
similar to a simple driven harmonic oscillator,

d2X
dt2

þ γ
dX
dt

þ ω2
0X ¼ Ed cos ðωtÞ; ðA1Þ

with the power decay lifetime τ ¼ 1=γ being the time
it takes for the power to be reduced to 1=e of its initial
value. The cavity quality factor is given by Q ¼ ω0=γ. X is

the axion field in arbitrary units. The general solution is
given by

XðtÞ ¼ A1e−γt=2 cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

0 − γ2=4Þ
q

tþ ϕ1

�

þ Ed
ωγ sinωtþ ðω2

0 − ω2Þ cos ðωtÞ
ðω2

0 − ω2Þ2 þ ω2γ2
; ðA2Þ

with the first term ignored for large times γt ≫ 1, while the
second term consists of a cosine and a sine term. The power
injected is proportional to the velocity times the force, i.e.,
dX
dt Ed cos ðωtÞ, with the average power given by

hPi ¼
�
dX
dt

Ed cos ðωtÞ
�

¼ 1

2
E2
d

ω2γ

ðω2
0 − ω2Þ2 þ ω2γ2

; ðA3Þ

since only the sine term from Eq. (A2) survives the
integration. At resonance, it simplifies to

hPi ¼ 1

2
E2
d
Q
ω0

: ðA4Þ

Clearly, when the external driving term is a cosine, the
oscillating term phase in the cavity gets shifted by π=2. If
we want this term to be accumulating on the axion driven
oscillation, it would then have to be also π=2 off the axion
phase with the correct sign.
The total axion plus the external driving term will

accumulate a total power of

PT ∝ ½Ed sin ðωdtþ ϕdÞ þ Ea cos ðωatþ ϕaÞ�2:

When the driving frequency is the same as the axion
frequency, then the total power is equal to

PT ∝ ð1=2ÞE2
d þ ð1=2ÞE2

a

þ 2ðEd sin ðωatþ ϕdÞÞðEa cos ðωatþ ϕaÞÞ: ðA5Þ

The oscillating term is equal to zero if one integrates for a
longer time than the axion coherence time, estimated [24]
to be on the order of 1 ms for 1 GHz axions. However, the
characteristic effect is to greatly enhance the variance of the
power of the particular frequency bin when we sample it
within a time shorter than the expected axion coherence
time. Note that, even if the axion has a finite coherence and
is therefore not monochromatic, the converted photons are
given as the sum of each frequency component because
the harmonic oscillator is a linear differential equation.
To ensure that the variance will be large, even in the case
where the axion has a really long coherence time, one can
randomly select the phase of the driving term.
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APPENDIX B: TEST BENCH MEASUREMENTS

A pilot experiment at room temperature was performed
to test whether the variance increases when injecting a
probe in the presence of the signal as expected. The signal
from a network analyzer was used as the probe, and a
random phase axion signal was generated from the signal
generator. The signal and the probe were synthesized with
a directional coupler just before injection into the cavity.
The network analyzer scanned the vicinity of the resonance
frequency of the test cavity, and the transmission was
repeatedly measured with an axion signal at the resonance
frequency each time. Although this experiment is a double
quadrature measurement using a network analyzer, when
enough iterations are performed with a power meter, it is
classically the same as when only power is used in double
quadrature measurement.
The results are illustrated showing, in Fig. 4(a), multiple

traces of power spectra with increasing axion power at a
constant probe power and, in Fig. 4(b), the observed power
distribution at the peaks of the curves (axion resonance
frequency). A clear variance was observed at the resonance
frequency that we injected in, and the histogram shows that
the peaks appear at both ends for sufficient signal power,
indicating that it follows the distribution of a sine function.
As the strength of the axion signal increases, the dispersion
increases, while the average remains almost the same.
The slight change in the mean is presumed to be due to gain
drift of the amplifier located between the cavity and the
network analyzer. Figure 5 shows the variance versus the
signal power, including statistical errors. As expected from
Eq. (2), the variance has very good linearity with the signal
power.

APPENDIX C: SIGNAL-TO-NOISE RATIO

The signal-to-noise ratio of the variance-based method is
as follows by definition:

SNRσ̂2 ≡
σ̂2ðNTÞ − σ̂2ðNTÞjNs¼0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̂2ðσ̂2ðNTÞjNs¼0Þ
q : ðC1Þ

The term in the numerator is readily available from Eq. (2),
while the mean squared error of the variance estimator in
the denominator can be obtained with the fourth moment
(μ4) and variance (σ2) of the distribution of the transmitted
photons at the detector [30],

FIG. 4. (a) Power transmission versus frequency at a constant probe power and increasing axion signal power that is indicated by the
color of the trace. Arbitrary offsets are added to visually separate the traces. Notably, for the axion power of 10−5 mW (in red), the
measured power at the resonant frequency (middle) fluctuates. Such fluctuation of the power can be measured to indicate the underlying
axion power, since the probe power is known a priori. Distributions of the measured power at the peaks of the traces are noted and
plotted separately in (b). (b) The histograms show the distribution of the peak powers of (a) with matching colors. In the presence of
axion signal power (orange, green, and red) traces a typical sine-wave histogram distribution is observed. Such significance of “sine
waveness” in the distributions can be quantified to report the underlying axion power. Such sine-wave-like distribution of the peak
powers from (a) suggest that the measurement of the aforementioned probe-signal interference is measurable.

FIG. 5. The recorded variance as a function of the applied
signal power to be detected. The marker represents the average of
the variance measurement and the error bar refers to the error of
the variance measurement with 50 traces. The dashed line is the
case in which there is no signal power, with the shaded area as the
deviation of it.
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σ̂2ðσ̂2ðNTÞÞ ¼
μ4 − σ4ðn − 3Þ=ðn − 1Þ

n
≈
μ4 − σ4

n
; ðC2Þ

where

μ4 ¼ hN4
Ti − 4hNTihN3

Ti þ 6hNTi2hN2
Ti − 3hNTi4;

σ2 ¼ hN2
Ti − hNTi2: ðC3Þ

The distribution of the transmitted photons follows:

NT jNs¼0 ∼N th þN D þN p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N pN th

q
cosϕ; ðC4Þ

where N th, N D, and N p follow Poisson distributions with
the expected rates of Nth, ND, and Np, respectively, and ϕ
follows a uniform distribution between −π and π. From the
given distribution,

σ̂2ðNTÞ ¼ hN2
Ti − hNTi2

¼ Nth þ ND þ Ns þ Npð1þ Ns þ NthÞ; ðC5Þ

and the signal-to-noise ratio is

SNRσ̂2 ≈
Ns þ NsNpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ4 − σ4
p ffiffiffi

n
p

;

¼ Ns þ NsNpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ C2Nth þ C3N2

th

p ffiffiffi
n

p
; ðC6Þ

with

C1 ¼ ðND þ NpÞ2ð2þ 1=ðND þ NpÞÞ;
C2 ¼ 1þ 4ND þ 2Npð5þ 7Np þ 4NDÞ;
C3 ¼ 2ð1þ 7Np þ N2

pÞ: ðC7Þ

When Nth → 0, Eq. (C6) becomes Eq. (3). By replacing
the number of photons with the photon rates divided by the
sampling rate, the signal-to-noise ratio in terms of the
photon rates is

SNRσ̂2 ≈
_Ns þ _Ns

_Np=fsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1 þ C2

_Nth þ C3
_N2
th

q ffiffiffiffiffiffiffiffiffiffi
fsΔt

p
; ðC8Þ

with

C1 ¼ ð _ND þ _NpÞ2ð2þ fs=ð _ND þ _NpÞÞ;
C2 ¼ fs þ 4 _ND þ 2 _Npð5þ 7 _Np=fs þ 4 _ND=fsÞ;
C3 ¼ 2ð1þ 7 _Np=fs þ ð _Np=fsÞ2Þ: ðC9Þ

For a sufficient amount of probe photon rate, _Np ≫ _ND and
_Np ≫ fs, the signal-to-noise ratio is further reduced,

SNRσ̂2 ≈
_Nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2s þ 7 _Nthfs þ _N2
th

q
ffiffiffiffiffiffiffiffiffiffi
fsΔt
2

r
: ðC10Þ
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