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TianQin is a proposed space-based gravitational-wave detector designed to operate in circular high Earth
orbits. As a sequel to [Zhang et al. Phys. Rev. D 103, 062001 (2021)], this work provides an analytical
model to account for the perturbing effect of the Earth’s gravity field on the range acceleration noise
between two TianQin satellites. For such an “orbital noise,” the Earth’s contribution dominates above
5 x 107> Hz in the frequency spectrum, and the noise calibration and mitigation, if needed, can benefit
from in-depth noise modeling. Our model derivation is based on Kaula’s theory of satellite gravimetry with
Fourier-style decomposition and uses circular reference orbits as an approximation. To validate the model,
we compare the analytical and numerical results in two main scenarios. First, in the case of the Earth’s static
gravity field, both noise spectra are shown to agree well with each other at various orbital inclinations and
radii, confirming our previous numerical work while providing more insight. Second, the model is
extended to incorporate the Earth’s time-variable gravity. Particularly relevant to TianQin, we augment the
formulas to capture the disturbance from the Earth’s free oscillations triggered by earthquakes, of which the
mode frequencies enter TianQin’s measurement band above 0.1 mHz. The analytical model may find

applications in gravity environment monitoring and noise-reduction pipelines for TianQin.
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I. INTRODUCTION

TianQin plans to launch three identical satellites equipped
with drag-free control of high precision, which orbit
the Earth at an altitude of ~103 km. They form a nearly
equilateral triangle constellation facing the white dwarf
binary RX J0806.3+1527 and detect gravitational waves
(GWs) through measuring distance change between
satellites using laser interferometry of picometer-level
precision [1]. In addition to GWs, the gravity field of
the Earth-Moon’s system also causes distance change
between the satellites. The effects are twofold. First, it
leads to the constellation deviating from the nominal
equilateral triangle, which must be reduced by orbit
optimization and control [2-4]. Second, it may induce
in-band range variations mixing with GW signals, and
hence pose a potential noise source to TianQin [5].

To assess the impact of the Earth-Moon’s gravity, we
have developed the program TianQin Quadruple Precision
Orbit Propagator (TQPOP) in the previous work [5]. The
simulator takes in optimized initial orbit parameters and
uses detailed force models to propagate the satellites’ pure-
gravity orbits with low numerical noise that is not available
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from commonly used double precision. The resulting
ephemerides were converted to the intersatellite range
acceleration p, and we computed the amplitude spectral
density (ASD) and made the comparison with the accel-
eration noise requirement of TianQin. According to the
estimates, we expect the effect of the Earth-Moon’s gravity
to be below the noise requirement in the sensitive frequency
band of TianQin (10~*~1 Hz) and hence not constituting a
showstopper to the mission [5]. Furthermore, we also
explored how the Earth-Moon’s gravity disturbance varies
with different orbital radii and orientations for TianQin [6].
A general trend is that the disturbance shifts to lower
frequencies as the orbital radius increases, which may set
the lower bound of the measurement band. Some useful
guidelines were drawn for the orbit and constellation
design for future geocentric missions like TianQin. All
these previous works rely heavily on numerical calcu-
lations, and it would be desirable to also examine the
relevant issues by analytical modeling so as to, e.g., gain
more understanding.

In the line of analytical work, our team has studied the
effect of the Sun’s and the Moon’s point masses on TianQin’s
constellation stability [7]. By solving Lagrange’s perturba-
tion equations, the explicit orbit solutions have been derived
and linked to the arm-length and breathing-angle variations,
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which can account for the long-term lunisolar influence
with sufficient accuracy. In the range-acceleration ASD,
the Moon’s point mass dominates below 5 x 107 Hz [5].
Hence, in this work, we will instead focus on modeling the
disturbance of the Earth’s gravity, as it dominates above
5 x 107> Hz in the frequency spectrum and is more relevant
to TianQin.

Important lessons can be learned from low-low satellite-
to-satellite tracking gravimetry missions represented by
Gravity Recovery And Climate Experiment (GRACE) and
GRACE Follow-On [8,9]. The missions mainly consist of
two identical satellites with separation of about 220 km
and flying in the same circular polar orbit at an altitude
of 300-500 km. The formation measures intersatellite
distance variation using microwave/laser ranging systems.
From the viewpoints of experiment design and data
processing, TianQin shares many common aspects with
GRACE and GRACE Follow-On, and therefore (semi)
analytical work in space gravimetry can offer valuable
reference to TianQin’s modeling.

For instance, Kaula’s linear perturbation approach
[10-14] can be used for analytically calculating the
Earth’s gravity field coefficients from satellite observables.
An important procedure therein is to express the Earth’s
gravity field experienced by a satellite as a function of the
orbital elements [10,11]. Also based on Kaula’s repre-
sentation of geopotential, an analytical method for the
Earth’s gravity-field recovery was provided by Ref. [15]
(see also Refs. [16-25]). The method shares the same
observable with the intersatellite line-of-sight differential
gravitational acceleration approach [26-30], and contains
an analytical expression of the differential gravitational
acceleration of two GRACE satellites which fly along a
circular reference orbit encircling the Earth in uniform
rotation.

Based on the above works, we will construct the
analytical model for the influence of the Earth’s static
gravity field and consider TianQin’s special case of a high-
altitude and long-measurement baseline. Then, we will,
taking the Earth’s free oscillations as an example, extend
the model to include the Earth’s time-variable gravity field.
In this latter regard, Ref. [31] has discussed the influence of
the Earth’s free oscillations triggered by large earthquakes
on the intersatellite measurement of GRACE. We will
follow a similar treatment in this work.

This paper is organized as follows. Section II shows the
detailed derivation of the analytical model. Section III
tests the model with numerical results obtained from
TQPOP. Section III A presents the result for TianQin,
and Sec. III B presents the results for other orbital
inclinations and radii. Section IV extends the model
to include time-variable gravity field from the Earth’s
free oscillations. Section V carries out the corresponding
numerical verification. At last, Sec. VI draws the
conclusions with outlooks.

II. MODEL DERIVATION: STATIC GRAVITY

In this section, we detail the derivation of an explicit
expression for the range acceleration p between two
circularly orbiting TianQin satellites under the influence
of the Earth’s static gravity field in uniform rotation. For
readers’ convenience, the table containing the symbols and
their meanings in this paper is shown in Appendix A.

A. Basic mathematical setup

As shown in Fig. 1, we have two satellites SC1,2 moving
along the same nominal circular orbit around the rotating
Earth. The phase difference between the two is y = 120°,
i.e., the angle subtended by the satellites with respect to
the Earth.

In the International Terrestrial Reference System, the
Earth’s gravity field can be modeled by [32]

Vim0~ 3 (B)

n=0 m=0

X (Cpy c08(mA) + S,,,, sin(ml))P,,,,(cos 0),

(1)
where G is the universal gravitational constant; M is

the Earth’s total mass; R is the Earth’s average radius;
and n and m are the degree and order of the spherical

. Orhit

v

FIG. 1. TianQin satellites in circular prograde orbits around the
Earth in the ICRS with a phase difference y = 120°. The orbit
radius is 1 x 10° km, and the inclination and longitude of the
ascending node are 74.5° and 211.6° [2], respectively. The arrows
on SC1,2 mark the flight directions.
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harmonic expansion, respectively. Moreover, N denotes the
truncation degree, and r, 6, and A represent the radius,
colatitude, and longitude, respectively, in the spherical
coordinate system. Following the convention in gravimetry,
the geopotential takes on positive values. The spherical
harmonic coefficients C,,, and S,, and the associated
Legendre functions P,,,(cos®) are all normalized, with
Cim =0=3S8,.

For modeling satellite motion, we switch to the
International Celestial Reference System (ICRS). To depict
the local gravity field experienced by the satellites, one
may substitute the spherical coordinates with the orbital
elements and express the geopotential in terms of of the
latter [10,11],

V(a,i,e,w,M,Q,0)

GM & (R)n+l U
R n=0 a m=0 p=0

X Y Grpg(€)Sumpg(0. M. Q. 0), (2)

g=—0c0

sl

nmp(i)

where the arguments {a,i,e,®, M,Q, 0} denote, respec-
tively, the semimajor axis, the inclination, the eccentricity,
the argument of perigee, the mean anomaly, the right
ascension of the ascending node, and the Greenwich
Apparent Sidereal Time. The explicit form of the function
Sumpg 18 given by

Snmpq(a)9 M, Q, ®) = Oum COSY pmpq + ﬂnm sin Yampq- (3)

Here, the coefficients {a,,,,.n} are rearrangements of
{Cnmvsnm}7

Coms
Ay = -
=S
nm:»

n—m = even,
n—m = odd,

n—m = even,

S s
Bum = { " (4)

Cnm7 n—m = odd,
and the angular argument reads
Wampg = (M —=2p)w+ (n=2p + )M + m(Q-0). (5)

For the function G,,,,(e), only the case of e = 0 is used.
The expression for the inclination function F,,,,(i) will be
discussed in the next subsection, with the normalization
related to P,,,(cos@).

It is worth mentioning that in deriving Kaula’s repre-
sentation (2) one has neglected the procession, nutation,
and polar motion of the Earth’s rotation axis [11]. These
effects are typically slow varying [32]. For TianQin’s
measurement band of 10~ — 1 Hz (roughly 1 s to 3 h
in timescales), we deem it reasonable to assume uniform

Earth rotation in the derivation and will verify it with the
numerical simulation in Sec. III.

B. Circular reference orbits

Now, we introduce another important simplification by
adopting circular reference orbits. The reasons are twofold.
First, the nominal orbit of TianQin is circular and has a
large radius of ~1 x 10° km by design. After orbit opti-
mization, the deviation from perfect circularity is primarily
due to the Moon’s and the Sun’s gravitational perturbations,
which increase the eccentricity only to 5 x 10~* on average
[2]. Second, the approximation also makes the further
derivation much more tractable, which is already quite
complicated on its own. More specifically, in calculating p
[see Eq. (17)], we will directly use the circular reference
orbits and ignore the coupling between the Earth’s non-
spherical and third-body gravitational acceleration and
the satellite’s perturbed position from the circular orbit.
The validity of this approximation is to be confirmed by
numerical simulation in Sec. III.

Assuming e = 0, Eq. (2) can be simplified to [15]

GM N R\ nt+1 n_ )
V= T (5) Z Zanp(l)

n=0 m=0 p=0
X (@ COS Wy & B SINY ) (6)
with the angular argument
Yamp = (1= 2p)0” + mo,. (7)
and
@’ =w+M, w, =Q—0. (8)

Note that only the ¢ = 0 components of G, ,,(0) retain the
value 1 while the others vanish. Now, in Eq. (6), the orbit
elements {a, i, e, Q, w} are of fixed values, and M increases
linearly with time.

In practice, it is more convenient to rearrange the
summation indices and their order so that Eq. (6) can be
rewritten as [15]

m=0 k==N n=n[2)

and

102004-3



LEI JTAO and XUEFENG ZHANG

PHYS. REV. D 107, 102004 (2023)

Yok = mw, + ka®, (11)

with k = n —2p. The summation bounds {n;,n,} are
related to {m, k, N} by

K[ = m,
n, =< m, |k| <m, m—k=even,
m+1, |kl <m, m—k=odd,
N, N — k = even,
n, = (12)
N-1, N-—k=odd,

and the notation [2] means that the step size of the
summation is 2.
Introducing the auxiliary index

”‘2’" , n—m = even,
9= n—m—1 = odd (13)
==, n—m=odd,

one can express the inclination function F¥%,, (i) as

m L& ()ets (2n—21)!
k .
Fim (@) ZZZ 22" 20l (n— 1) (n—m—21)!

s=0 t=t; c=c,

x Cs,CE_, 2,HC’n et- “(sin i)™ (cos i)’,
(14)
with
iy l’ k>n-2g,
t =0, t2_{ Kt K2n=2g )
g, k<n-2g,
and
0, 2s —k—=2t<2m—n,
CcC1 =
: s——k—t—l— n—m, 2s—k—-2t>2m—n,
s—=2t+n—m, 2s+k—-2t<2m—n,
Cy = 1 1 (16)
——k—t+§n, 2s +k—=2t>2m—n.

Examples of explicit forms of F%, (i) are shown in
Appendix B.

C. Range acceleration

By differentiating the (instantaneous) range p=|r, —r;|
between two TianQin satellites, the range acceleration in
the presence of the geopotential V reads

N N ny

. 1, . ) .
ﬁ:(sz—vvl)'612+;(|l’2—1‘1|2—!’2>- (17)

The first term on the right-hand side,
DA = (VV2 - VVI) . é127 (18)

represents the differential gravitational acceleration along
the line of sight between the satellites, where the subscripts
{1,2} indicate SC1 and SC2, respectively, and €, is the
unit vector from SC2 to SC1. The second term on the right-
hand side of Eq. (17),

L. . .
CA ::;(|r2 -1, 2=/, (19)

represents the centrifugal acceleration with r; and r, the
position vectors of SC1 and SC2, respectively. Based on the
circular orbits and geometric relation, this term is given by

CA— 2GM 51;1(7//2) ’ (20)
a

which is a constant and depends on the phase difference y.
This means that in evaluating the ASD of p, we neglect the
contribution from the centrifugal acceleration, of which the
validity can be verified by numerical simulation for TianQin.
In terms of the orbit elements, the expression of D.A can

written as (see Ref. [15] for more details)

DA = 14 92, N Ay
(6002 00)?) €08 (2) + (6r2 + 0r1 S

)] (ks (£ ) 1) 0%t ) o
e 1)sin( ) ) sin

(1)
Then, we evaluate the partial derivatives to have
N ny _
=> Z > kuy(a)Ff, (i)
m=0 k==N n=n, 2]
X (ﬁnm COSYmk — Anm sin l//mk) (22)
and
ny 1 _
3D ) SR R0
m=0 k=—N n= nl[Z]
X (anm COS Yy + ﬁnm sin l//mk)' (23)
By substitution into Eq. (21), we arrive at [15]
+1) sm< >ﬂnm> siny?, — <k cos( >ﬂnm (n+ 1) sin <g> anm> cosyl,
(24)
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where the superscript of y/}ni means SC1,2. Introducing "
as the argument of latitude of the midpoint of SC1,2 and

1 om 4
Yo = Mo, + k(o £
o (0" =5), 25)
Yink — M@, + k( o+ %)
we can rewrite DA as [15]
N N
DA = Z Z [ES . cos(mw, + ka®™)
m=0 k=—N
+ ES  sin(mw, + ko™)], (26)
with
n
E;%k = Z Enmk(a’ i7 y)anmv (27)
n=n[2]
1y
E;ﬁk = Z E‘nmk(av 2 y)ﬂnmv (28)
n=n[2]
and
‘—‘nmk(aly) 2u()Fm

(om(e) ()
() o

The variables @w, and w°" can be expressed in terms
of the Earth’s rotation frequency f, and the satellites’ orbit
frequency f,, i.e.,

+(n+1

{ w, = 2xf,t + ®,, (30)

0" =2zxf t + @40,

where w,, and w,, are the initial phases and f, is
determined by

fo= oM . (31)

472a3

Inserting Eq. (30) into Eq. (26), we obtain
N N
DA=>" 3" [Egcos Tpu(t) = Epysin T (n)], (32)

m=0 k=—N

with the angular argument

ka(t) - Zﬂ(mfe - kfo)t — MWy — kwoO‘ (33)

Or equivalently, one can rewrite Eq. (32) as

DA=3 S Eppcos(Toul)~ o). (34

m=0 k=—N
with
Epi =/ (Ep)* + (Ep), (35)
tanw,,, = —E3, /ES,. (36)

At last, one can model the range acceleration between
two TianQin satellites by

N N .

. 2GM sin(y/2)

p= g E E, i cos (1 (1) = @) + —a2
m=0 k=—N

(37)

with E,;, Y,.(f), and o, given by Egs. (27)-(36).
The formula consists of a series of cosine functions
of time t. Note that terms with m = 0 and opposite k
are combined into one. Their amplitudes depend on the
harmonic coefficients C,,, and S,,, and the satellite orbit
elements a and i as well as the phase difference y. The
associated frequencies are integer linear combinations of
the Earth’s rotation frequency f, and the satellites’ orbit
frequency f,. Hence, through a Fourier-style decomposi-
tion in terms of frequency components, the formula can
reveal the frequency-domain characteristics of the effect of
the Earth’s gravity field {C,,,,S,,} on the intersatellite
range-acceleration p. Moreover, the dependence on the
orbit elements a, i, Q also allows one to study the impact
of orbit selection [6]. To see explicit examples of Eq. (37),
one can refer to Appendix C, which contains the low-
degree case of N = 2.

D. Comments

In Kaula’s original linear perturbation method [10,11],
the orbital element representation (2) of the geopotential
for a satellite moving along a reference orbit is plugged
into Lagrange’s perturbation equations to solve for orbital
element perturbation relative to the reference values. The
reference orbit is a slowly precessing circular orbit, i.e.,
where {a, e, i} are of fixed values and where {Q, w, M} are
linear functions of 7. It is obtained also by solving
Lagrange’s equations that contain the dominating C», term.
Once the orbital element perturbations are acquired, one
can establish the relationship between the range or range-
rate observables and the geopotential coefficients [12—14],
which can be used to determine the latter from the former
for gravimetry.
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TABLE I. The parameter setting of the analytical model [32].
Symbols Parameters Values

N Maximum degree 12

a Orbit radius 1 x 10° km

i Inclination 74.5°

Q Longitude of ascending node 211.6°

GM Earth’s gravity constant 3.986 x 10" m3/s?
R Average Earth radius 6.378 x 10° m
T, Earth rotation period 86164 s

@40 Satellite initial phase /2

Unfortunately, the solutions to Lagrange’s equations
containing high-degree geopotential terms have very com-
plicated forms, cumbersome to use for our purposes.
Moreover, what we need for the noise assessment is the
range-acceleration variation in the frequency domain rather
than the intersatellite range or range rate in the time
domain. Therefore, instead of solving Lagrange’s equa-
tions, we directly use Kaula’s representation Eq. (2) and
calculate the range acceleration through differential gravi-
tational acceleration sensed by the satellite pair. The
treatment is inspired by Ref. [15] and takes into account
TianQin’s large orbit radius and long baseline. It should be
mentioned that the small orbit precession has been
neglected in our analytical model, because of the large
orbit radius resulting in much weaker influence of Cs, as
opposed to the case of low-orbit gravimetry missions. This
has also been confirmed by the numerical work [2].

III. MODEL VERIFICATION

In this section, we verify the analytical model with
high-precision numerical orbit simulation. First, we dis-
cuss the case of TianQin’s orbit and compare the resulting
ASD curves. Then, we alter the orbital elements to
different values [6] so as to test the model in more generic
settings.

From the previous work (Ref. [5]; see Sec. IVB, Fig. 3),
we have learned that the total range-acceleration ASD can
be viewed as the sum of the lunisolar contribution and
the Earth’s contribution. Since the latter dominates above
5 x 107 Hz in the total ASD and hence is more relevant to
TianQin, we will focus on the Earth’s contribution alone in
the verification. For an analytical model of the Sun and the
Moon’s effect on the constellation stability, one may refer
to Ref. [7].

A. TianQin’s orbit
In this case, we set the parameters of Eq. (37) according
to Table I [32] and use EGM2008 [33] for the Earth’s static
gravity field with the maximum degree N = 12. Then, the
range acceleration is calculated every 50 s for a duration of

TABLE 1II. Force models implemented in the numerical
simulation.
Models Specifications

Earth’s precession & nutation
Earth’s polar motion
Earth’s static gravity field

TAU 2006/2000A [34]
EOP 14 C04 [35]
EGM2008 (N = 12) [33]

90 days. At the same time, we numerically integrate the
orbits using the TQPOP program [5] with the force models
listed in Table II. Note that the Earth’s rotation models are
also included to test our assumption of uniform Earth
rotation in the model.

The two ASD curves are compared in Fig. 2. Note
that the flattening of the red curve above ~107* Hz is
due to numerical error of TQPOP (interpolation of the
earth orientation parameters (EOP) data, likewise for the
figures in Sec. III B), while the green curve from Eq. (37)
can extend below this error. Both curves agree well with
each other except at the orbital frequency 3 x 107¢ Hz,
and the much lower peak in the green curve is likely
owing to the vanishing eccentricity of the circular refer-
ence orbit. However, one can see that the analytical model
can indeed capture the main spectral feature of the effect
due to the Earth’s static gravity field.

B. Other inclinations and radii

First, we reset the inclination to 30°, 90°, and 150° in the
analytical model while keeping the other parameters
the same. The results are shown in Fig. 3-5, all of which
show good agreement and are consistent with Ref. [6].

10° ey g ey

Numerical

— — — Analytical

— — —Noise req. 1.4e-15

-
e
o

10-10 .

10-15 -

TQ range acceleration ASD [m s? Hz'”z]

M
106 10 104 1078 1072
Frequency [Hz]

1020 -

FIG. 2. Comparison of TianQin’s range-acceleration ASD
curves obtained from the analytical model (green) and the
numerical simulation (red). The flattening of the red curve above
~10~* is due to numerical error. The mismatch at the orbital
frequency 3 x 107 is likely owing to the assumption of the
circular reference orbit in the analytical model.
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10° T T T
Numerical ASD
— — — Analytical ASD
— — — Noise Requirement
10°®

10710

10-15

TQ range acceleration ASD [m s? Hz'”z]

1020 - -
106 10 104 1078 1072
Frequency [Hz]

FIG.3. Comparison of the range-acceleration ASD curves from
the analytical model (green) and the numerical simulation (red)
with 30° inclination.

Additionally, we have also tested the cases of 60° and 120°.
They all show similar features like Fig. 3—5 and hence are
omitted here.

Second, we reset the radius to 0.8 x 10° km and
1.2 x 10° km in the analytical model while keeping the
other parameters the same. The results are shown in
Figs. 6 and 7. Again, one has an evident matching of
the two results.

Because of rotational symmetry about the Earth’s axis,
we do not need to test different longitudes of the ascending
node. All these results have shown the validity of our
model, as well as the approximations made in the deriva-
tion. It prompts us to take a further step and include time-
variable gravity in the model.

100 T T T

Numerical

— — — Analytical
— — — Noise req. 1.4e-15

-
e
(&

_.
e
5

10-15

TQ range acceleration ASD [m s? Hz'”g]

1020 . .
10 10 10 1073 102
Frequency [Hz]

FIG. 4. Comparison of the range-acceleration ASD curves from
the analytical model (green) and the numerical simulation (red)
with 90° inclination.

10° T T :
Numerical
— — — Analytical
— — —Noise req. 1.4e-15
10°®

10710

1071°

TQ range acceleration ASD [m s? Hz'1/2]

1 0-20 L
10°® 107 104 107 1072
Frequency [Hz]

FIG.5. Comparison of the range-acceleration ASD curves from
the analytical model (green) and the numerical simulation (red)
with 150° inclination.

IV. MODEL DERIVATION:
TIME-VARIABLE GRAVITY

The model (37) can be extended straightforwardly to
incorporate the Earth’s time-variable gravity by adding
time-dependent corrections to the harmonic coefficients
C,n and S,,. The temporal gravity variations can be
categorized into tidal and nontidal parts. For the Earth’s
tides (solid Earth, ocean, pole, and atmospheric), their
analytical models in the form of the harmonic correction
terms are well known (e.g., see Ref. [34]) with frequency
components typically outside TianQin’s measurement band
of 10™#—1 Hz. As has been shown for TianQin, the tidal
contributions to the total rang-acceleration ASD are con-
siderably smaller than the static one [5]. Therefore, for

10° ey g ey
Numerical
— — — Analytical
— — —Noise req. 1.4e-15
10°

10-10

10-15

TQ range acceleration ASD [m s? Hz'”z]

1020 !
106 10°° 104 107 1072
Frequency [Hz]

FIG. 6. Comparison of the range-acceleration ASD curves from
the analytical model (green) and the numerical simulation (red)
with 0.8 x 10° km radius.
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FIG.7. Comparison of the range-acceleration ASD curves from
the analytical model (green) and the numerical simulation (red)
with 1.2 x 10° km radius.

TianQin, it is more relevant to instead examine non-
tidal gravity variations that may enter the measure-
ment band.

From the classification of nontidal variations, the Earth’s
free oscillations are of particular interest since their
frequencies are typically in the mHz range. Free oscilla-
tions of the Earth are standing waves at discrete frequencies
of the solid Earth like a ringing bell (see Ref. [36] and not to
be confused with seismic waves). They are typically
excited and observed after a large earthquake and can last
for days. In this section, we model the effect of the Earth’s
free oscillations triggered by earthquakes as a demonstrat-
ing example. Other types of nontidal variations can be
treated in a similar manner.

An earthquake can be characterized by the point-source
double-couple model and associated parameters such as
scalar seismic moment, dip, rake, and strike [37,38]. The
free oscillation excited by an earthquake is a superposition
of the Earth’s normal modes with amplitudes determined
from the parameters of the earthquake [36,39]. The
normal modes of the Earth can be calculated by the
Preliminary Reference Earth Model, which is a non-
rotating, elastic, spherically symmetric, one-dimensional
Earth model widely used in the literature [40]. According
to Refs. [31,41], the gravity change due to free oscillations
following an earthquake can be modeled by

Cnm(t) = Cnm + Z%:O ZACnmlé:n(t - t())’ (
= Snm + Z[L:() [ASnmlén(t - tO)’

where [ marks free-oscillation overtones, L is the maxi-
mum overtone, and 7, is the earthquake occurrence time.
The time dependence is given by

(1) = D
1) =
1 —z,(t)cos 2z, f,t), t>0,
with the attenuation function
2m,f t)
7 (1) =exp | ——2), 40
a0 =exp (-5 (40)

for each degree and overtone, where ,f, is the oscillation
frequency, ;0, is the attenuation factor, and ZAC‘nm and
[AS’,,m denote the permanent changes of the harmonic
coefficients. Moreover, to be consistent with the notation
of Eq. (4), we introduce

{ AC,,,, n—m=even,

Aay,, = _

—AS,,,, n—m=odd,
IASM, n—m = even,

lAﬂnm = — (41)
AC,,,, n—m=odd.

The expressions for a,,,,(7) and f3,,,(f) can be written down
accordingly.
Including these time variations, the range-acceleration
formula can be written as
p=DA, +DA, +DA; + CA. (42)
Here, the first term DA, is identical to DA in the absence
of the free oscillations. The second term is given by

N N
DA =) Ppuicos (Tyu(t) = &),

(43)
m=0 k=—N

with
Poi =/ (Poy)® + (Po)? (44)

and
{ank St Sho Sl b

P = 20t 220 Bamk (@ 1. 7) 8B

and

tan e, = =P, /P (46)

The term stands for the permanent change of p resulting
from an earthquake, where the frequency combinations
Y, (1) are identical to the ones in D.A with the amplitudes
and phases slightly altered. The third term carries the free
oscillation information and reads
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N L
DA3 - Z Z Z lenmlen(t) [COS (Zlel—ka‘) - lynmk) + cos (ZlP;mk(t) + lynmkﬂ’ (47)

with the time dependence

{ 1o (1)

= 277:([fn + (mfe - kfo»t - 2”lfnto — M,y — kwoO’

(48)

llPr_tmk([) = 2”(lfn - (mfe - kfo))[ - 2ﬂ"lfntO + mam,( + kwoO’

and

lTnmk = \/(IT:;mk)z + (lTiunk)z’ (49)

where one has

letmk = _E‘nmk(af I Y)lAanm! (50)
lT;vlmk - _E‘nmk(a’ i y)lAﬁnmv

and
t@an v, = = Do/ 1T i (51)

The term represents a series of damped oscillations
after the earthquake. Note that the resulting oscillation
frequencies in p are the free oscillation frequencies ,f,, plus
or minus the integer linear combinations of the Earth’s
rotation frequency f, and the satellites’ orbit frequency f,.
This indicates splitting of one mode frequency in the range-
acceleration ASD due to the coupling with the Earth’s
rotation and the satellites’ orbital motion. Furthermore,
the amplitudes of the frequency components depend on the
parameters a, i, y and the earthquake-induced geopotential
changes ;Aa,,, and ;Ap,,,. For more details, one can refer
to Appendix D, which shows an example of the spherical
mode S, ([n, ] = [2,0]) oscillation in the presence of the
Earth’s static N = 2 gravity field.

V. MODEL VERIFICATION

Again, we verify the extended model with high-precision
numerical orbit simulation. Here, we keep using the

TABLEIII. Exemplary mode periods and attenuation factors of
the tested free oscillations.

Parameters Values Parameters Values
ol 3233.678 s 00> 509.6824
oT5 2134.577 s 005 417.5499
T, 1471.996 s 10, 310.2749
282.5018

T, 1064.875 s 10,

[

parameter setting from Sec. III A. In addition, the moment
magnitude of the test earthquake is 6.0, and the occurrence
time 7, is 30 days after the initial simulation time. The
maximum degree N and overtone L are both set to be 12.
The mode periods ,7, = 1/,f,, the attenuation factor ,Q,,
and the geopotential corrections {;AC,,, ,AS,,} are
shown in Tables III and IV (only prominent ones are
shown, e.g., (S,,053.195,.153), which are obtained by
following the procedures of Ref. [31].

As in the previous case of static gravity, we calculate the
intersatellite range-acceleration ASD from Eq. (42). At the
same time, we obtain the numerical result from TQPOP in
which the force models consist of the Earth’s static gravity
and the gravity change from the free oscillations mentioned
above. Note that the Earth’s polar motion is turned off to
lower the numerical error above ~107* due to data
interpolation. The two ASD curves are compared in
Fig. 8, and the peaks above 2 x 10~* Hz are due to the
free oscillations. Both curves agree well with each other,
indicating the validity of our model. The agreement also
holds for other earthquakes we have tested, not shown here
for succinctness. As an extra comment, it should be pointed
out that spectrograms are normally preferred for visualizing

TABLE IV. Corrections to the geopotential coefficients due to
the earthquake, cf. Eq. (38).

Parameters Values Parameters Values
0ACy 2.954 x 1077 0ASy 0
0ACy, 1.595 x 1071¢ 0ASy, —-2.313 x 1071
0ACy 2.355 x 10~1° 0ASy 1.078 x 10710
0ACy -2.118 x 1077 0AS3 0
0AC3, —9.627 x 1071° 0ASs 6.953 x 10716
0AC3 6.099 x 10717 0AS3, 6.132 x 1077
0AC3; 3.797 x 10716 0AS3; 8.375 x 10710
1ACy —1.896 x 107" 1482 0
(ACy,; 1.104 x 1071 (AS,, —8.167 x 1071
1A§22 1.269 x 10~ 1A§22 3.188 x 10710
1AC30 2.772 x 10_18 IAS30 0
(ACy, 1.392 x 10~1 (AS3 —-1.043 x 1071
\AC3, -9.928 x 10717 (AS3, -4.501 x 107"
1 ACs; -5.365 x 10716 1 AS3; -1.237 x 1071

102004-9



LEI JTAO and XUEFENG ZHANG

PHYS. REV. D 107, 102004 (2023)

10° T T T

Numerical
— — — Analytical

<
@

10-15 -

1 0-20 -

1 0-25 .

TQ range acceleration ASD [m s? Hz'”z]
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FIG. 8. Comparison of TianQin’s range-acceleration ASD
curves obtained from the analytical model (green) and the
numerical simulation (red). The data length is 90 days, and
the earthquake occurs after the first 30 days. The range of
the vertical axis is extended to exhibit higher-frequency free
oscillation signals.

nonstationary signals such as damped oscillations.
Nevertheless, since our purpose is to compare the fre-
quency content of the two results, we still use ASDs,
but one should keep in mind that the peak levels above
2 x 107 Hz do not reflect the actual amplitudes of the
perturbed p due to the free oscillations.

Furthermore, we make the comparison in the time
domain as well. We calculate the TianQin’s range-
acceleration time series using the numerical procedure and
the analytical formula. Then, we process the data with a high-
pass filter [42] to extract signals of Earth’s free oscillation
induced by earthquake above 10~ Hz. The numerical and
analytical waveforms are compared in Fig. 9. The fitting
factor is > 99%, indicating a good consistence.

x1078
T T T T T T T T T
(\Il'_' Numerical
2]
1+ o y i
é Analytical
c
.g 05 i
[
[}
3 0 /\J
Q
o
©
o -05r ]
(o))
c
g Ll ]
€]
'_
15 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9

Time [s] x10*

FIG. 9. Comparison of TianQin’s range-acceleration temporal
waveforms obtained from the numerical simulation (red) and the
analytical model (green). Both have undergone high-pass filtering
(>107* Hz) so that they reveal the influence of Earth’s free
oscillation induced by earthquake. The time axis above is shifted
to 5000 s before the earthquake occurs.

VI. CONCLUSIONS

In this work, we provide an analytical model which can
account for the perturbing effect of the Earth’s gravity field
on TianQin’s intersatellite range acceleration. Especially,
we have verified that the ASD curves obtained from the
analytical model match those from the numerical simu-
lation. The work helps to confirm the numerical result of
Ref. [5] and to better understand the underlying mechanism
in terms of the frequency composition as well as the
dependence on orbit selection [6]. Particularly, we have
also extended the model to capture the time-variable gravity
from the Earth’s free oscillations, which enters TianQin’s
measurement band.

For future applications in environment monitoring and
noise-reduction pipelines, the model is useful in studying
TianQin’s detector response to gravity disturbance from the
Earth, particularly through time delay interferometry com-
binations [43]. Additionally, the model may also find usage
in fast waveform generation for subtracting unwanted
terrestrial gravity disturbance in case of occasional large-
scale geoseismic activities. Some related work will be
reported in the future.
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APPENDIX A: TABLE OF SYMBOLS

Table V below lists the symbols used in the paper as well
as their meanings for quick lookups.

TABLE V. List of symbols and their meanings.

Symbols Meanings

Earth’s gravity potential

Universal gravitational constant

Earth’s total mass

Earth’s average radius

Degree of spherical harmonic expansion
Order of spherical harmonic expansion
Truncation degree

Earth’s free-oscillation overtone
Maximum overtone

Index with values 0,1, ...,n

Index with values
—-,...,—1,0,1,...,+00

RN N~ZI I mEQ<

(Table continued)
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TABLE V. (Continued)

TABLE V. (Continued)

Symbols Meanings Symbols Meanings
k Index with values —N, ...,—1,0,1,...,.N P P See Eq. (45)
ny, Ny See Eq. (12) Emk See Eq. (46)
t Time Y- See Eq. (49)
ty Earthquake occurrence time P A See Eq. (50)
r Radius ok See Eq. (51)
0 Colatitude k(@ 1,7) See Eq. (29)
A Longitude Y, (1) See Eq. (33)
Y Phase difference between two satellites &) See Eq. (39)
a Semimajor axis 17, (1) Attenuation function defined by Eq. (40)
i Inclinat%O.n llp:lrmk(;), (1) See Eq. (48)
¢ Eccentricity CA Centrifugal acceleration
@ Argument of perigee DA Projected differential gravitational
M Mean anomaly acceleration
Q Right ascension of ascending node DA, Identical to DA
0 Greenwich Apparent Sidereal Time DA, Permanent change of j given by Eq. (43)
Com> Sum Spherical harmonic coefficients DA Attenuation oscillation change
Lm> Pum Rearrangements of Cons Sum of p given by Eq. (47)
defined by Eq. (4) p Intersatellite range
AC, AS,, Coefficients of correction of the p Intersatellite range rate
harmonic CoefﬁCien_tS ~ p Intersatellite range acceleration
1A, APy Rearrangement of | AC,,,,, ;AS,,, ry, I, Position vectors of SC1 and SC2
_ defined by Eq. (41) ry,r, Velocity vectors of SC1 and SC2
P,,.(cos @) Normal.ized associated Legendre ¢ Unit vector from SC2 to SC1
functions
Sumpqg(@, M, Q,0) See Eq. (3)
e See Eq. (5)
Yomp See Eq. (7) APPENDIX B: EXPLICIT FORMS OF
INCLINATION FUNCTIONS
WYonk See Eq. (11)
anq(e) Functions of eccentricity A non-normalized version of F amp Up tO N = 4 can be
Fp (i) Functions of inclination found in Ref. [1 l].. The. explicit forms of normalized F ’;,m(l)
(i) Another form of functions of up ton = 4 used in this work are shown below, following
inclination defined by Eq. (14) the ascending order of [m, k, n:
u,(a) Functions of radius defined by Eq. (10)
o Sec Eq. (8) F20) = 19 (gin (B1)
, See Eq. (8) 128
@™ Argument of latitude of the midpoint
of SC1,2 3(i) = > V/(sin iy (B2)
fe Earth’s rotation frequency 16
fo Satellites’ orbit frequency 3
obtained from Eq. (31) o ..
@0 Initial phases of Earth’s rotation Fzg(l) - 8 \B(sm iy (B3)
@h0 Initial phases of satellites’ movement
n Earth’s free-oscillation frequency FZOZ (i) = - E (sin i)4 + E (sin i)2 (B4)
19, Earth’s free-oscillation attenuation factor 32 16
E..« See Eq. (35) 1
Eis B See Eq. (27) o) = ) 3sini (BS)
Ok See Eq. (35)
Pk See Eq. 44) F5l(i) = - 1—2 V(sini) + % Visini  (B6)

(Table continued)

102004-11



LEI JTAO and XUEFENG ZHANG

PHYS. REV. D 107, 102004 (2023)

Foo(i) =1

(i) = 2V5(sinip -2 V5

- 1

Fl (i) = 1—2\/7(Sinz)3 — = \/Tsini
F2,(i) = == V5(sini)?

- 1 4

F3,(i) = —%(sin i* —I—%(smz)2

105

— 2 (Gin i)
—128(s1n1)

Fio(i)
Ty 21\/—..3 .21\/—..3
F41(z):—a 10(sin i) cos1+a 10(sin 7)
__3 . 5 . .2 . 5 . .2
F5i(i) = 3—2\/4§(sml) cos i —3—2\/ﬁ(sml)
APV U | .
F21(l):Z\/ESIHICOSl—Z\/BSIHL
- 21 9
Fgf(i):E\/E(sinifcosi—E 10sinicos i
—Q\/E(sini)3 +2\/Esini
32 16
o 1
F11(1>:_§ 3cosz—|—§ 3
1/ 15\/‘_‘ 02 . 5\/’" s n\2
F3l(z):—3—2 42(sin i) (:osz+3—2 42(sin i)
1 1
—&-g\/éﬁcosi—g\/‘ﬁ
- 1
Fgl(i):—ix/ﬁsinicosi

Fi\(i) = —%M(Sini)3cosi+§\/Esinicosi

_ 1 1
F}l(l) :E\/ECOSI—FE\/g

- 15 5
(B7)  Fl (i) = 3—2\/éﬁ(sini)2 cosi+3—2\/éﬁ(sin i)?

1 1
(BS) — 5 VA2cosi —gx/Zfz' (B25)
- 1 1
(B9) F3,(i) = Z\/Esinicos i+ Z\/Bsini (B26)
2 9
(B10)  F3,(i) = E\/ﬁ(smz) cos i —1—6\/ﬁsmzcosz
21 9
+==V10(sin i) = —/10sini B27
- 2 TOsin )} - (B27)
B12) F3,(i) = —%\/ﬁ(sm i)zcosi—;—ZJE(sin i) (B28)
Fi (i) = —E\/E(sin i) cosi—g\/E(sin i)*>  (B29)
(B13) 4 64 64
Fi) = —E\/g(sin i)?(cosi)? +§\/§(sini)2 cos i
(B14) 2 64 32
- 2711 V/5(sin i) (B30)
(B15)
- 1 1
F33(i) = T 105 sin i(cos i)? + 3V 105 sin i cos i
(B16) |
16 105sin i (B31)
F33(i) = g\/ﬁ(cos i)? —Z\/Ecosi—i—g\/g (B32)
(BI8) 21 21
F3(i) = B\/g(sin i)?(cosi)? — E\/g(sin i) cosi
3 3 3
—E\/g(cosz) —l—gx/gcosz—ﬁx/g (B33)
(B19) ; |
F3l(i) = eV 105 sin i(cos i)? — gV 105 sin i cos i
(B20) ~ L /103 sini (B34)
16
- 1 1
FO (i) = —Z\/B(cos i) +Z\/B (B35)
(BZI) =0 /(= 63\/_ s n\2 N2 21\/_ s \2
Fy, (i) =-3 5(sini)*(cos i) t5 5(sin )
3 3
(B22) +§ﬁ(cos i)? —§\/§ (B36)
B2 - 3 1
(B23) Fi (i) = T 105 sin i(cos i)? — gV 105 sin i cos i
1
(B24) —|—1—6\/ 105sini (B37)
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_ 1 1 1
(i) = g\/ﬁ(cos i)? +Z\/Ecosi+§\/ﬁ (B38)

- 21 21
F,(i) = E\/g(sin i)%(cosi)® + —\fS(sin i)? cosi
3 3

—f\/_(cosz) —g\/gcom—ﬁ\/g (B39)
- 1 1
F3,(i) = 6V 105 sini(cos i) + gV 105 sin i cos i

1
+ 2o VI05sini (B40)

21
— —V/5(sini)? cos i

21
- N2 (cos i)2
=" V/5(sin i)2(cos i) 3

21 .
—a\/g(sml) :

Fi (i)

(B41)

APPENDIX C: AN EXPLICIT EXAMPLE FOR
THE EARTH’S STATIC GRAVITY FIELD

To help gain more intuition about Eq. (37), we exhibit
its explicit form for N = 2 static gravity field. In this case,
one has

p=2GMsin(y/2)/a* + Ay + Aps cos (2 f oot + @gn)
+ Ajgcos (2zf 1ot + @19) + Angcos (27 f 20t + ¢20)
+ A 508 (2nf ot + @in) + Ay cos (2zf 12t + @12)
+ Ay 508 (27f 25t + @r3) + Axy cOS (27 f ot + p2).
(C1)
As can be seen, besides the constant terms, there are
several cosine terms of the time ¢ in Eq. (Cl). The
amplitudes, frequencies, and phases of these cosine term

are given below:
(1) Term with the frequency 0:

GM 4
Agy = —2—-sin| =
0 a? sm(2>

_3V5GM (—) (3(sini)* ~ 2>S‘“<2>C2°

2 R \a
(C2)
(2) Term with the frequency f,:

Jor = 2f,, (C3)

|
{ 1:|:2
A —
El:pz -

+‘/_ (a) sin

\/—GM (R)

i(cosi F 1) x
ni(cosi F 1) x

2 R?

3V5GM [R\*
Am:i— () (sini)?
a

7/ -
<2smycos <2> 4+ 3sin <2> cosy) Cyo,

P = 2w,0.

(3) Term with the frequency f:

flO = fe7
Ajg =/ (Efy)* + (E}))?,
ES, = _3f (®)*sin i cos i sin(})S,;.
Ejy = +3V158 (B)tsinicosisin(5)Cyy,
P10 = —Weo — W10,
tan @y = _Eio/Eio-

(4) Term with the frequency f»:

Ja0 =2fe

{ ESy = MG (B)4((cos i)? =~ 1) sin(5) C,
Ejy = 2B G (B)3((cos i)? — 1) sin(})S,.
P20 = —2w,0 — Wy,
tan WyHoy = _EEO/ESO

(5) Term with the frequency f4,:

f1$2:fei2fm

Az = (B + (B,

(2siny cos(%) + 3 sin(}) cos )8y,
(2siny cos(%) 4 3sin(%) cos y) Cay,
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P12 = —0,0 £ 2040 — 0152, (C19)
tan a)l¢2 = _EliqZZ/Ei)?Q' (CZO)
(6) Term with the frequency f5:
fog2 =2f, £2f,. (c21)
A =\ (BS ) + (B )P, (c22)
ES_, = —@GR—Q” (B)*(cosi F 1)? x (2siny cos(}) + 3sin(}) cos y) Cra, (©23)
Ej_, = —@%—@’ (B)*(cosi F 1)% x (2siny cos(}) + 3sin(%) cosy)Sa,
|
P12 = —2w,0 £ 2000 — W22, (C24) Cao(1) = Cap + ¢ACo ¢&, (7 = 10).
: . Caoi(1) = Co1 + oACy o8, (1 = 1),
tan w22 = ~Eipa/ i (€23) $21(1) = 81 + ASyy o&, (1 — 1) (D1)
21\7) = 021 T (B921 052 0)s
Thc? resulftir;lg geqllllencies are ifnteger linf;?r co(;nlili— 6‘22(1) =C,y + OACZQ o0& (t— 1),
nations of the Earth’s rotation frequency f, and the < < < _
satellites’ orbital frequency f,, i.e., 2f s, for 2f0 $22(1) = S22 + 0882 0551 — 10).
fe F2f,,2f, F 2f,. The amplitudes are functions
of the Earth’s gravity field coefficients Cy, C1, 215 with the oscillation function
C»5y, Sy, and TianQin’s orbital parameters a, i, y. The
phases are determined by the initial phases of the
Earth’s rotation and the satellite orbits, @, and w,y, 062t —19) = 1= g7a(1) cos (2, f2(t — 1)) (D2)
as well as the parameters a, i, y. The frequencies and
associated amplitudes correspond to the peaks of the .4 the attenuation
ASD curves.
APPENDIX D: AN EXPLICIT EXAMPLE o(1) =exp [ - 2mpf(t = to) (D3)
FOR THE EARTH’S TIME-VARIABLE 072 2,0, '

GRAVITY FIELD

To help gain more intuition about about Eq. (42), we
exhibit its explicit form for the N = 2 static gravity field
with the oscillation mode S, ([n,[] = [2,0]). After the
earthquake’s occurrence, the N = 2 terms change into
|

The forms of CA and DA, are identical to the ones for the
N =2 static gravity field. The term DA, is negligible
compared to DA, and hence is omitted here. The term
DA; reads

DA; = Cop g72(t)[c0s (2f g0t + {p) + cos (27 fot + Lgo)] + Con 72 (1) [cos (27 f i + L) + cos 2nf it + (i )]
+ Cio7a(t)[cos (2zf ot + i) + cos (2zf ot + L1p)] + Cao g 72 (1) [c08 (27f 59t + £39) + cos (2zf 30t + C3)]
+ Ci_p gra(t)[cos 2mf{ ot + &1y) + cos (2uf ot 4+ E75)] + Cragra(t)[cos 2mf ot + &) + cos 2af it +¢h)]
+ Cyp g1o(t)[cos (2zf3_y1 + {3 ;) + cos (2nf5 51 + 55)] + Con g7a (1) [cos (27f 3,1 + £3,) + cos (2af 55t + E3,)]-

(D4)

It is a summation of several oscillation functions with the attenuation 7, (). The frequency, amplitude, and phase of each
term are listed below in their order of appearance in the equation:

(1) Terms with the frequencies {fg. foo }:

foo = foo = of2»

(D5)
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(3) Terms with the frequencies {f7,. /1o }:

3vV5GM (R\*
COO_T\/’F <E> (3(Sinl) —2)S1n<2> ACZO’ f;rozofz_’_fe’
(Dﬁ) {f1_o:of2_fe’
1

ClO -5 (OTEIO)2 + (OT§10>2’
Eoo = Soo = =27 210 (D7) 2 \/

= 4315 sinicosisin(%),AS,,
(2) Terms with the frequencies {fg. fo }: { 310 @ BloAS:
T3
0

510 =—3V15 %@4 ()% sini cos i sin(5)yACyy.

{f(J)rZZOfZ_zfm (D8)
f62 :Of2+2foa
{ QTO = —2myf2tg — Weo — o210
\/— Z—”1_0 = _27[0f2t0 + Weo + V210
3V5GM (R\*, . .
Cp = R () (sini)? an T8 )T
a o¥210 0210/ 01 210
X (2 siny cos (%) -+ 3sin <g> cos 7) 0ACy, (4) Terms with the frequencies {f73. /3 }:
(Dg) {f;0_0f2+2fea
a0 =0f2=2fe.
$op = —2my 2ty — 20,4, |
{ - (D10) C20:—\/( TC )2+(Ts )2’
Con = 27 f 210 + 240 5V o220 01529
|
{ngzo = —@%’I () x ((cosi)* = 1) sin(5),ACy,,
0120 = _¥GR—[¥(§)4 x ((cosi)® = 1) Sin(%)oAszz,

{ 520 = —2myf2t) — 20.0 = ¢¥220
$o0 = —2mpfato + 2we0 + Y2205

tan o720 = =o7320/ 0T 520-
(5) Terms with the frequencies {f1,. fiz,}:

{fr$2zof2+fe:t2f()a
figz =of2—fe F 2f0,

1
Cipr = 3 \/(0T§1:F2)2 + (0T§1:F2)27

oT 5152 = —@%—?(5)4 sini(cosi F 1) x (2siny cos(%) + 3 sin(}) cos y),AS,,
@%—@4 () sini(cosi F 1) x (2siny cos(%) + 3sin(}) cosy) ACy;.

{ T;Z 271'0f2t0 — W, T 20,0 — 072152
C]:FZ - _2”0f2t0 + Wy F 260(,() + 07/21:F2’

—_ s C
tan gy, 4y = _0T21¢2/0T21:F2-
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(6) Terms with the frequencies {f,, o>}
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Qin’s orbital parameters a, i, y. The phases are determined
t@an g7y = =0T/ 0T5r- (D30) by (/> the earthquake occurrence time 7, the initial phases

The resulting frequencies are integer linear combinations of
the ,S, mode frequency (f,, the Earth’s rotation frequency
fe» and the satellites’ orbital frequency f,, ie., of,,

of the Earth’s rotation and the satellite orbits, @,y and @, as
well as the parameters a, i, y. The frequencies and associated
amplitudes correspond to the peaks of the ASD curves in the
presence of the free oscillations.
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