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Gravitational-wave backgrounds are expected to arise from the superposition of gravitational-wave
signals from a large number of unresolved sources and also from the stochastic processes that occurred in
the early Universe. So far, we have not detected any gravitational-wave background, but with the
improvements in the detectors’ sensitivities, such detection is expected in the near future. The detection
and inferences we draw from the search for a gravitational-wave background will depend on the source
model, the type of search pipeline used, and the data generation in the gravitational-wave detectors. In this
paper, we focus on the effect of the data generation process, specifically the calibration of the detectors’
digital output into strain data used by the search pipelines. Using the calibration model of the current
LIGO detectors as an example, we show that for power-law source models and calibration uncertainties
≲10%, the detection of isotropic gravitational-wave background is not significantly affected. We also
show that the source parameter estimation and upper limit calculations get biased. For calibration
uncertainties of ≲5%, the biases are not significant (≲2%), but for larger calibration uncertainties, they
might become significant, especially when trying to differentiate between different models of isotropic
gravitational-wave backgrounds.
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I. INTRODUCTION

Since the first detection in September 2015 [1], the
LIGO [2], and the Virgo [3] gravitational-wave (GW)
detectors have detected nearly 100 compact binary merger
signals [4–6]. They correspond to individual merger
signals with a high signal-to-noise ratio (SNR). In addition
to those high SNR signals, assuming the merger events are
outliers in a much larger population of compact mergers,
we also expect many low SNR signals that are hard to
detect individually. The superposition of such a large
number of low SNR signals would give rise to a gravi-
tational-wave background (GWB) that could be detected
with the current or next generation of gravitational-wave
(GW) detectors [7–10].
Apart from the compact binary merger signals, super-

position of other astrophysical GW signals such as from
core-collapse supernovae [11,12] and magnetars [13,14]
could also give rise to GWB. In addition to these astro-
physical sources, various events that took place in the early
Universe such as inflation and phase transitions could also
give rise to GWB [15]. The detection of GWB from
astrophysical sources can help us better understand the
population and the evolution of stars in the Universe [16–18]
while the detection of GWB from cosmological sources can
provide information about the processes in the very early
Universe which are otherwise difficult to obtain [19].

The LIGO-Virgo-KAGRA (LVK) collaboration, in their
recent analyses using data from the observing run O3, did
not find any evidence of GWBs and hence placed upper
limits on the amplitudes of possible isotropic [20] and
anisotropic GWBs [21]. With the proposed improvements
to the current GW detectors [22], it might be possible to
detect the GWB from compact binary mergers [10]. Also,
the proposed next-generation GW detectors [23,24] are
expected to observe the GWB from compact binary mergers
with high SNRs [25,26]. The data generation and various
aspects of the search are expected to affect the GWB search
results, and hence it is important to understand them. In this
paper, we focus on the effects of the data generation,
specifically that of the calibration, on the analysis results.
Calibration is the process of converting the raw digital
outputs of the detectors into strain data that are further used
in the GWanalyses. Any uncertainties in that process could
translate into biases and larger uncertainties in the final
results, affecting our interpretations.
Typically, cross-correlation-based searches correlating

data from multiple detectors are used to detect GWBs [27].
In previous such searches usingLIGO-Virgodata [20,28,29],
upper limits were calculated after marginalizing over
calibration uncertainties as outlined in [30]. However, that
method does not capture any biases introduced by uncer-
tainties and systematic errors in the calibration model.
In this work, we try to address that issue. In the past, this
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has been studied primarily in the context of the search for
GW signals from individual compact binaries [31–34].
Recently, such questions have also been addressed for the
detection and parameter estimation of individual compact
binarymerger signals [35–37].We use a similar simulation-
based method [35,36] to address the effects of calibration
uncertainties on the searches for GWB. In addition, we also
show that one could try to estimate theGWBand calibration
model parameters simultaneously and get a reasonable
signal recovery.
The remainder of this paper is organized as follows. In

Sec. II, we briefly introduce the model and search for GWB
using data from GW detectors. In Sec. III, we discuss the
calibration model used to convert the raw digital output into
strain data used in GW searches. In Sec. IV, we describe the
method used to quantify the effects of calibration uncer-
tainties on the isotropic GWB searches. In Sec. V, we show
the results of our analyses, and in Sec. VI conclude with the
main results and future outlook.

II. MODELING AND SEARCH FOR ISOTROPIC
GRAVITATIONAL-WAVE BACKGROUNDS

An isotropic GWB is usually characterized in terms of
fractional energy density in gravitational wavesΩgwðfÞ [27],
given by

ΩgwðfÞ ¼
f
ρc

dρgw
df

; ð1Þ

where f is the frequency, dρgw is the energy in gravitational
waves in the frequency interval from f to f þ df, and ρc is
the critical energy density needed to close the Universe. The
value of ρc is given by

ρc ¼
3c2H2

0

8πG
; ð2Þ

where c is the speed of light, G is the gravitational constant,
andH is the Hubble constant. In this work, we use the value
of the Hubble constant measured by the Plank satellite,
H0 ¼ 67.9 km s−1Mpc−1 [38]. However, the conclusions
drawn are independent of the actual value of H0.
TypicallyΩgwðfÞ is expressed in the form of a power law,

ΩgwðfÞ ¼ Ωα

�
f
fref

�
α

; ð3Þ

where fref is a reference frequency. For results reported in
this paper, we use a reference frequency of fref ¼ 25 Hz as
used in the LVK analyses [20,28,29]. The value of the
power-law index α depends on the source of GWB we are
interested in. For cosmological GWB from inflationary
scenarios, we typically expect α ¼ 0 [15] while for
astrophysical GWB from the superposition of many
compact binary merger signals α ¼ 2=3 [16]. Similar to

LVK analyses [20,28,29], in addition to α ¼ 0 and
α ¼ 2=3, we also look at α ¼ 3 representing astrophysical
GWB models such as from supernovae [39].
Instead of searching for ΩgwðfÞ, traditionally, isotropic

GWB searches try to estimate Ωα for different values of
power-law index α. The optimal estimator of Ωα, for an
isotropic GWB, at a time t and at a frequency bin f is given
by [18,40]

Ω̂αðt; fÞ ¼
2

T
ℜ½d�I ðt; fÞdJðt; fÞ�

γIJðfÞSαðfÞ
; ð4Þ

where d1ðt; fÞ and d2ðt; fÞ are short-time Fourier trans-
forms of the strain data from the two detectors ðI; JÞ
evaluated at time t, T is the duration of the data segments
used for Fourier transforms, and γIJðfÞ is the normalized
overlap reduction function for the given two detectors
ðI; JÞ. The function SαðfÞ is proportional to the assumed
spectral shape α and is given by [18,40]

SαðfÞ ¼
3H2

10π2
1

f3

�
f
fref

�
α

: ð5Þ

In the weak-signal limit, the variance of Ω̂α is given
by [18,40]

σ2Ω̂α
ðt; fÞ ¼ 1

2TΔf
PIðfÞPJðfÞ
γ2IJðfÞS2αðfÞ

ð6Þ

where PIðfÞ, PJðfÞ are the one-sided power spectral
densities of the strain data from the two detectors ðI; JÞ,
and Δf is the frequency resolution. For data spanning many
segments and a large frequency band, the final optimal
estimators are obtained by a weighted sum,

Ω̂α ¼
P

t;fσ
−2
Ω̂αðt;fÞΩ̂αðt;fÞP
t;fσ

−2
Ω̂α
ðt;fÞ ; σ−2Ω̂α

¼
X
t;f

σ−2Ω̂α
ðt;fÞ; ð7Þ

where t runs over available time segments and f runs over
discrete frequency bins in the desired frequency band.

III. CALIBRATION MODEL

The raw outputs of gravitational-wave detectors are
digitized electrical signals from the photodetectors at the
output port. The process of converting these electrical
signals into strain data is called calibration. The LIGO,
Virgo, and KAGRA detectors have relatively similar
fundamentals in optical layout and control system top-
ology [2,3,41]. While their methods to describe and
characterize that system are different (sometimes only in
subtle ways that reflect their detailed differences), any of
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those methods could be used to describe current GW
detectors. Thus, here, we follow and choose the methods
of the LIGO detectors [42,43]. For details of different
calibration techniques used in the current generation of
gravitational-wave detectors, see [42,44–46]. As shown
in [43], after detailed modeling of the detectors, a response
function RðfÞ is derived, which is then used to convert
the digitized electrical output into strain hðfÞ using the
expression

dðfÞ ¼ 1

L
eðfÞRðfÞ ð8Þ

where eðfÞ is the digitized signals from the output
photodetectors, RðfÞ is the response function that converts
eðfÞ into the differential displacement of the two arms of
the detector, and L is the average (macroscopic) length of
the two arms.
The response function of a gravitational-wave detector,

in the frequency domain, can be written as [43]

RðfÞ ¼ 1þ AðfÞDðfÞCðfÞ
CðfÞ ; ð9Þ

where CðfÞ is the sensing function corresponding to the
response of the detector to differential changes in its two
arms without any feedback control, AðfÞ is the actuation
function used to control the positions of the mirrors, and
DðfÞ is any digital filter(s) used in the control loop.

A. Sensing function

The sensing function CðfÞ of a dual recycled Michelson
interferometer enhanced with Fabry-Perot resonators in the
arms has been modeled in [43,47] as

CðfÞ ¼
�

κCHC

1þ iff−1cc

��
f2

f2 þ f2s − iffsQ−1

�

× CRðfÞ; ð10Þ

where optical gainHC represents the overall gain, coupled-
cavity pole frequency fcc defines the detector bandwidth,
and fs and Q correspond to optical antispring pole
frequency and its quality factor, respectively. The term
CR represents the frequency dependencies not captured by
the other terms (for example, the response of the elec-
tronics chain used for the digitization, etc.), and κC is a
scale factor representing the changes in the sensing
function with respect to a reference time. The sensing
function we use in our analysis is shown in Fig. 1. We use
the pyDARM package [48] to generate the calibration model
used in this work. For LIGO detectors, during the past
observing runs and for frequencies ≳20 Hz, the optical
spring term [second term in Eq. (10)] was usually close to
1 (for example, see [49,50]). Since in our work, we use a
20–1726 Hz band as done in LVK analyses [20,28,29], we

treat the optical spring term in Eq. (10) as constant and do
not study its effects in this work.

B. Actuation function

The actuation function is modeled in the frequency
domain as [43,47]

AðfÞ ¼ κUAUðfÞ þ κPAPðfÞ þ κTATðfÞ; ð11Þ

where U, P, and T represent the lowest three stages of
suspensions (upper intermediate mass, penultimate, and test
mass stages) used to suspend the main optics [2,43]. AiðfÞ
(where i ¼ U, P, T) are frequency-dependent actuation
models of the three stages of the suspensions, including
digital filters in the control path and analog responses of the
three stages of suspensions [43]. The scale factors κi capture
any changes in the reference actuation model of each stage,
and in general, they could be time dependent and frequency
dependent [51]. The plots of actuation models for the three
stages and the combined actuation model used in this work
are shown in Fig. 2.

C. Interferometer response function

Apart from the notch filters used to prevent the excitation
of resonances of the test mass suspensions, DðfÞ is a
smooth function of frequency that is decided by the
feedback control morphology used. The total response
function, as shown in Eq. (9), is a function of CðfÞ,
AðfÞ, and DðfÞ. Figure 3 shows the response function we
use in our analysis.

FIG. 1. The sensing function CðfÞ used in our analysis. It is one
of the sensing functions of the LIGO Hanford detector during the
observing run O3 that is available in the pyDARM package. The
unit of CðfÞ is the counts produced in the Analog-to-Digital
converter at the output port for a meter differential length change
in the two arms of the GW detector [43].
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IV. ANALYSIS METHOD

In this work, we look at the effects of calibration
uncertainties on the recovery of GWB and on the parameter
estimation of the recovered GWB. Specifically, we look at
the isotropic GWBs described by power-law models with
power-law indices of α ¼ 0; 2=3, 3 (see Sec. II).
If the response function used to calibrate the digitized

signal in Eq. (8) is not the true response function, then
we get

dtrueðfÞ ¼ dcalcðfÞ ×
RtrueðfÞ
RcalcðfÞ

ð12Þ

¼ dcalcðfÞ × ΛðfÞ; ð13Þ

where true and calc correspond to the true and calculated
quantities respectively. In the above Eq. (12), we have
defined ΛðfÞ as

ΛðfÞ ¼ RtrueðfÞ
RcalcðfÞ

ð14Þ

for convenience. The uncertainties in the calibration
process enter the GW analyses as ΛðfÞ shown above.
We note here that RtrueðfÞ, with measurement uncertainty,
can be calculated using a length (or frequency) reference
such as a photon calibrator [52–56], but due to difficulty in
the implementation RcalcðfÞ is traditionally used in the
calibration process leading to the difference we see in
Eq. (12). The RtrueðfÞ is usually in a nonparametric form
while RcalcðfÞ is parametrized with a relatively small
number of parameters [Eq. (9)]. Hence from an imple-
mentation point of view, RcalcðfÞ is more convenient.
Because of the simple parametrization, changes in RcalcðfÞ
can also be easily tracked, which is also important for
calibration. Moreover, the ratios ΛðfÞ are usually very
close to 1, and hence use of RcalcðfÞ is well justified.
Owing to the measurement uncertainties in RtrueðfÞ, the

estimation of the ratios ΛðfÞ has both systematic and
statistical uncertainties associated with it. Using Eq. (12) in
Eqs. (4) and (6) we get

Ω̂αðfÞ ¼
2

T

ℜ½d�I;calcðfÞdJ;calcðfÞΛ�
I ðfÞΛJðfÞ�

γIJðfÞSαðfÞ
ð15Þ

and

σ2Ω̂α
ðfÞ ¼ 1

2TΔf
PI;calcðfÞPJ;calcðfÞ

γ2IJðfÞS2αðfÞ
jΛIj2jΛJj2: ð16Þ

Equations (15) and (16) provide a way to estimate the
effects of calibration uncertainties on the signal estimate Ω̂α

and its variance σ2Ω̂α
. If we further assume that the ratios

ΛðfÞ are real, i.e., the difference is only in the magnitude,
then we get

Ω̂αðfÞ ¼ Ω̂α;nocalðfÞΛIðfÞΛJðfÞ; ð17Þ

σ2Ω̂α
ðfÞ ¼ σ2Ω̂α;nocal

ðfÞΛ2
I ðfÞΛ2

JðfÞ; ð18Þ

where nocal subscript corresponds to the quantities calcu-
lated in the absence of calibration uncertainties that we
want. With this assumption, the simulations become simple.
We can start with Ω̂α;nocalðfÞ and σ2Ω̂α;nocal

ðfÞ calculated

from the simulated data and using Eqs. (17), (18), and (7)
we can estimate the effects of calibration uncertainties on
the calculation of Ω̂αðfÞ and σ2Ω̂α

ðfÞ. However, in Sec. V we

also show the results without using this assumption. Since

FIG. 3. The reference response function RðfÞ used in our
analysis.

FIG. 2. The actuation functions of the bottom three stages
(top, penultimate, and test mass stages) and the combined
actuation function used in our analysis. This is one of the
models of LIGO Hanford’s main optic suspension during the
observing run O3 available in the pyDARM package. The unit of
AðfÞ is the differential length change produced in the two arms
for a unit count in the digital-to-analog converter that drives the
actuators [43].
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the response functions, RI;J themselves are functions of
A [Eq. (11)], C [Eq. (10)], and D the number of free
parameters in the above equations becomes large. Owing to
the large number of parameters, it is difficult to calculate the
effects analytically, so we use numerical simulation to
calculate the effects. This method becomes more valuable
when including a more complicated signal model and
additional calibration parameters.
For the results reported in this paper, we use one week of

simulated data for Hanford and Livingston detectors using
advanced LIGO design sensitivity [22]. Here, one week of
data is chosen to represent the traditional long-duration
analyses of GWB and to avoid complexities arising from
large SNRs in individual segments [27]. We use publicly
available LVK code packages [57] to calculate Ω̂αðt; fÞ and
σΩ̂α

ðt; fÞ. We use standard search parameters of 192-sec
segment duration and frequencies from 20 Hz to 1726 Hz
with a frequency resolution of 1=32 Hz as used in the LVK
isotropic GWB searches [20,28,29]. In this work, we use
the same calibration model for Hanford and Livingston
detectors described in Sec. III.
We do the following to calculate the effects of calibration

uncertainties on the recovery of the GWB signal.
As indicated in Eqs. (17) and (18), we multiply the
Ω̂α;nocalðt; fÞ and σ2Ω̂α;nocal

ðt; fÞ estimators of each segment

calculated using LVK code packages by distributions
representing the ratios ΛðfÞ. We assume Gaussian distri-
butions for ΛðfÞ, centered at 1 with standard deviations
defined by the desired calibration uncertainty. We also
truncate the Gaussian distribution at two-sigma points on
both sides to avoid the realization of unrealistic values for
ΛðfÞ (for example, values close to zero or even negative).
Then, using Eq. (7), we combine the segmentwise and
frequency-dependent results of Ω̂αðt; fÞ and σΩ̂α

ðt; fÞ to get
the final estimate and its uncertainty. Then we use SNR,
defined in a frequentist approach [58], given by

SNRΩ̂α
¼ Ω̂α

σΩ̂α

as the detection statistics in the search for an isotropic
GWB. Comparing the results with and without the calibra-
tion uncertainties, we identify the effects of calibration
uncertainties on Ω̂α, σ2Ω̂α

, and SNRΩ̂α
.

We further look at the effects of calibration uncertainties
on the parameter estimation, specifically on the Ω̂α and α̂,
by varying the values of various parameters in the RðfÞ [see
Eqs. (9)–(11)].

V. RESULTS

In this section, we present the results of our studies.
To generate these results, we initially assume that the
ratios of response function ΛðfÞ are real and hence use

Eqs. (17) and (18). We note that this assumption is used to
marginalize calibration uncertainties in the LVK isotropic
GWB analyses [20,28,29]. However, for comparison, we
also produce results by additionally using one-sigma phase
uncertainties of 5°, the maximum of what was seen in LIGO
detectors during the observing run O3 [43]. This is to show
how much phase uncertainties that are currently not
included in the GWB analyses affect the final results. At
each frequency, we model the magnitude of ΛðfÞ by a
Gaussian distribution with a mean 1 and standard deviation
σΛðfÞ that is small compared with 1 and phase of ΛðfÞ by a
Gaussian distribution with a mean zero and standard
deviation of 5°. As indicated earlier, we also truncate the
Gaussian distribution at two-sigma values to avoid unreal-
istic realizations of ΛðfÞ.

A. Effect of calibration uncertainties on the isotropic
GWB detection

The recovered values of the Ω̂α, σΩ̂α
and SNR at

various levels of calibration uncertainties for the three
power-law models α ¼ 0; 2=3, 3 are shown in Fig. 4. In
this analysis, we increase the uncertainty from 0% to 20%
in steps of 2%. We also repeat the analysis 20 times,
regenerating the ΛðfÞ values 20 times at each uncertainty
level to calculate the spread on the recovered values.
We also compare the results, including one-sigma phase
uncertainties of 5°.
From the plots, we see that as we increase the values of

uncertainties, there are changes in the recovered values of
Ω̂α, σΩ̂α

, and SNR. The recovered values are underesti-
mated, and the trends are similar for the three α values.
However, the changes in the recovered SNRs are small,
almost negligible, below the calibration uncertainties of
∼10%. Since SNR is generally used as a detection statistic,
this suggests that the detection of an isotropic GWB is not
significantly affected by the uncertainties in the calibration.
We also see a slight reduction in the SNR for larger
calibration uncertainties. The SNR dependence on the
calibration uncertainty goes as ð1 − σ2ΛðfÞÞ where σΛðfÞ is
the standard deviation of the Gaussian distribution used for
the different realizations of ΛðfÞ. This quadratic depend-
ence agrees with the results previously reported in the
literature [31].
The Ω̂α, σΩ̂α

change by ∼10% when we change the
uncertainty of response function by ∼20%. The reduction
in the estimated σΩ̂α

can be attributed to how we combine
different time segments and frequency bins. Since we use
weighted average method [see Eq. (7)], any downward
fluctuations in individual σΩ̂α

ðt; fÞ due to calibration
uncertainties will bring down the final σΩ̂α

. A similar
effect could be attributed to the reduction in the final Ωα.
This suggests that the recovered values of Ωα and σΩα

are
biased in the presence of calibration uncertainties. Since the
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upper limits on Ωα, for example, 95% upper limit in the
frequentist approach, can be written as

Ωα;95% ≈ Ω̂α þ 2σΩ̂α
;

calibration uncertainties are also expected to bias the upper
limit calculations. From our results, we see that if the
calibration (magnitude) uncertainty is 10%ðσΛðfÞ ¼ 0.1Þ,
the upper limit would be underestimated by ∼3%. Since
this dependence on the calibration uncertainty is quadratic,
this effect could become significant at larger calibration
uncertainties. Such biases are not completely taken into
account when estimating Ωα or while calculating upper
limits on Ωα in the analyses reported in the literature
[20,28,29] and need to be accounted for in future analyses.
The plots also suggest that including phase uncertainties at
the level of ≲5° does not change the results significantly.
Hence, as done in LVK analyses [20,28,29], phase uncer-
tainties can be neglected if they are ≲5° when searching for
isotropic GWB using LVK data.

B. Effects of the calibration uncertainties on the
parameter estimation of isotropic GWBs

The second part of the study looks at the effects of
calibration uncertainties on estimating the parameters of the
isotropic GWB signals. Here we mainly focus on the
estimation of Ωα and α [see Eq. (3)]. In Sec. VA, Fig. 4
already shows the effect of the uncertainties of the response
function as a whole on the recovery of Ωα. Instead of the
uncertainties of the total response function, in this section,
we look at the effects of individual calibration parameters
on the recoveries of Ωα and α. Since we are using the
parameters that make up the calibration model, in the
literature, this is considered a physically motivated
approach to include calibration uncertainties in the signal
analyses [35,36]. In this study we mainly focus on the
parameters κC, fcc (see Sec. III A), κU, κP and κT (see
Sec. III B). Other parameters in the response function tend
to be more or less constant during an observing run, or their
effects are small, and hence we do not include them here.

FIG. 4. Plots showing the effect of calibration uncertainty on the recovery of Ωα, σΩ̂α
and SNR for injected isotropic GWB signals

described by α ¼ 0; 2=3, 3. The calibration uncertainty is quantified by the standard deviation of the Gaussian distribution σΛðfÞ used for
the different realizations of ΛðfÞ. The solid (blue) line corresponds to no phase uncertainty, while the dotted (red) line corresponds to 5°
1-sigma phase uncertainty.
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The maximum likelihood values of the recovered param-
eters Ωα and α, for α ¼ 0; 2=3, 3, as functions of errors on
the various calibration parameters are shown in Fig. 5. The
plots in Fig. 5 show the recovered values of Ωα and α as we
increase the errors on the calibration parameters κC, fcc, κU,
κP, and κT in the response functionRðfÞ used to calibrate the
detector output. For testing the recovery, we inject isotropic
GWBs with amplitudes of Ωα ¼ 1.21 × 10−8; 1.04 ×
10−8; 2.70 × 10−9 for α ¼ 0; 2=3, 3 respectively and try
to recover them with and without errors on the above
calibration parameters. On the right side of the plots in
Fig. 5, we also show the difference between the injected and
recovered values normalized by the one-sigma uncertainties
in the recovery. To have a common y axis on the right
side, for each α, we use the largest one-sigma uncertainty we
observe among different calibration parameters for the
normalization.
We use the maximum likelihood method described in [59]

and use DYNESTY [60] sampler in the Bilby [61] package for
sampling the likelihoods and estimating the maximum
likelihood values of Ωα and α (shown in Fig. 5) from
Ω̂αðfÞ and σΩ̂α

ðfÞ. From the plots in Fig. 5, we see that
when the errors on the calibrationmodel parameters are zero,
we recover the injected values very well. However, the
recovered values of Ωα and α become biased as we increase
the error on the calibration model parameters. The errors on
κP, κT , and κC significantly bias the recoveries of Ωα and α
while fcc and κU have very little effect. For example, for
α ¼ 2=3, with 10% error on the κT the recovered Ωα is
≈ 2.5σΩα

away from its true value, while with 10% error on

the κP the recovered α is ≈1.5σα away from its true value.
We also notice that, even though κT significantly affects the
Ωα estimate, it has minimal impact on the recovery of α.
These effects are likely due to how these different terms
contribute to the interferometer response function. Rewriting
Eq. (9) into contributions from different components, we get

FIG. 5. Effect of the errors in various calibration model parameters on the recovery of the signal parameter Ωα and α for isotropic
GWB signals described by α ¼ 0; 2=3, 3. The solid lines correspond to the maximum likelihood values, and the shaded regions indicate
a 68% confidence interval. The injected values of Ωα are 1.21 × 10−8, 1.04 × 10−8, and 2.70 × 10−9 for α ¼ 0; 2=3, 3 respectively.

FIG. 6. Relative contribution of various calibration parameters
to the interferometer response function and 90% search sensi-
tivity region for the α ¼ 2=3 GWB search. For α ¼ 0 and α ¼ 3,
the 90% search sensitivity regions extend up to ≈40 Hz and
≈175 Hz respectively. Because of the nontrivial phase relation-
ship between different components in Eq. (19), we see that
individual components’ relative contributions to the response
function can even go above 1.
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RðfÞ ¼ 1=CðfÞ þ κUDðfÞAUðfÞ
þ κPDðfÞAPðfÞ þ κTDðfÞATðfÞ: ð19Þ

Figure 6 shows the relative contribution of the different
terms in Eq. (19) to the response function and also 90%
search sensitivity region for the α ¼ 2=3 isotropic GWB.

The 90% isotropic GWB search sensitivity region increases
as we increase the values of α. For α ¼ 2=3, the 90% search
sensitivity region extends up to ≈ 45 Hz, while for α ¼ 0
and α ¼ 3, the 90% search sensitivity regions extend up to
≈ 40 Hz and ≈ 175 Hz, respectively.
We see that in the 90% sensitivity region, penultimate

and test mass actuation and sensing functions make the

FIG. 7. Corner plot (blue) showing the recovery of GWB and calibration model parameters using raw, uncalibrated data. For
comparison, we also show the recovery of GWB parameters (green) using well-calibrated data. The injected values are shown using the
(red) cross and vertical lines. The Bayes factors comparing signal vs noise hypothesis for the two cases have also been shown.
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most significant contributions. The top test mass actuation
function contributes ≲10% to the response function in
the 20–1726 Hz band and hence does not affect the signal
recovery. In the sensing function [see Eq. (10)], the
dominant contribution comes from κC. Since the typical
value of fcc of advanced LIGO detectors during the O3
run was ∼ 400 Hz and the 90% search sensitivity region
extends only up to a maximum of ∼200 Hz (for α ¼ 3), the
effect of fcc on the estimation of the parameters is minimal.
Since the α values of 0 and 2=3 are relatively closer, the

results of α ¼ 0 and α ¼ 2=3 in Fig. 5 are very similar. We
also observe that the result for α ¼ 3 is slightly different.
Since α ¼ 3 probes a much larger frequency band of
∼20–175 Hz where contributions from κC and κT to the
response function tend to be larger on average compared
with the other parameters (see Fig. 6), κC and κT start to
affect the recoveries of Ω and α significantly. We see this
for α ¼ 3 in Fig. 5.
The optical configuration of the detector determines its

optical response, i.e., the cavity pole frequency, while the
control architecture of the detector determines the relative
contributions of different actuation stages. Thus, the effects
of different calibration factors on the isotropic GWB search
heavily dependon the detector’s optical layout and operation.
We also try to simultaneously estimate the calibration and

GWB signal parameters to see how well we can do. Here we
use (simulated) uncalibrated raw digital signals to extract all
the parameters. Figure 7 shows an example of the simulta-
neous estimation of all the parameters for the α ¼ 2=3
signal model. The plot shows that, along with the GWB
model parameters, we can also infer the values κP, κT , and
κC to some level, but recoveries of fcc and κU are poor
which are consistent with the results in Fig. 5. For
comparison, we also show the recovery of GWB model
parameters using calibrated data without any uncertainties.
The plots also have the Bayes factors, comparing the signal
vs noise hypothesis for those two cases. We see that the
Bayes factors do not change significantly in the two cases
(as expected, it is slightly lower when we estimate calibra-
tion parameters also). However, the posteriors of GWB
parameters are very broad and probably biased when we
simultaneously estimate the GWB and calibration model
parameters. So it is crucial to havewell-calibrated data to get
better posteriors on the signal parameters and a better Bayes
factor.

VI. CONCLUSIONS

In this work, we have studied the effect of calibration
uncertainties on the detection and parameter estimation of
isotropic GWB signals. We focused on the amplitude (Ωα)
and power-law index (α) of power-law isotropic GWBs. We
find that, for the second generation of gravitational-wave
detectors, when the calibration uncertainties are less than
∼10%, they do not significantly affect the detection of a
GWB signal. The calibration uncertainties of the LIGO and

the Virgo detectors reported during the last observing run
O3 are well within this ∼10% limit [43,45].
We also find that the recovery of isotropic GWB model

parameters could be affected depending on which calibra-
tion parameter is poorly constrained and its uncertainty
level. The recovered values of signal parameters are biased
due to errors in calibration model parameters. Even though
the current errors on the individual model parameters of
LIGO detectors are much smaller (≲1%), the cumulative
effect of the different parameters could bias the recovered
GWB parameters. Currently, this bias is not considered
during the GWB parameter estimation or upper limit
calculation. For a calibration uncertainty of ∼5% of the
interferometer response function (90% maximum reported
for the LIGO detectors during O3), the biases in estimating
GWB amplitudes or its upper limits are not significant
≲2%. However, this might become significant for larger
calibration uncertainties, especially when we try to differ-
entiate between different models of GWB. In this work, we
also try to estimate the isotropic GWB and calibration
model parameters simultaneously and find that we could
detect the GWB signal, albeit with some loss of Bayes
factor (SNR). However, the posteriors of the GWB signal
parameters become very broad and probably biased due to
their correlation with some of the calibration parameters.
This suggests the importance of well-calibrated data for
detecting and recovering GWB signals, which is expected to
be in the near future.
We also note that the analysis presented in this paper

highly depends on the GW detectors’ calibration model
(parameters). Hence, one might need to repeat this study
when the calibration model changes significantly, for
example, for future detectors. However, if the calibration
uncertainties are kept small (≲ 5%), as we see in our
analysis in this paper, the effects on the isotropic GWB
analyses are expected to be small. Since the calibration
model depends on the detector design and its control system
architecture, one could also choose to design future detec-
tors that would reduce the effect of calibration uncertainties.
This is something that could be studied further. One could
also extend the study reported in this paper to estimate the
effect of calibration uncertainties on the GWB with more
complicated model parameters or anisotropic GWB.
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